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ABSTRACT The primary challenge with biological sciences is to control gene regulatory networks (GRNs),
thereby creating therapeutic intervention methods that alter network dynamics in the desired manner. The
optimal control of GRNs with probabilistic Boolean control networks (PBCNs) as the underlying structure
is a solution to this challenge. Owing to the exponential growth in network size with the increase in the
number of genes, we need an optimal control approach that scales to large systems without imposing any
limitations on network dynamics. Furthermore, we are encouraged to use the graphics processing unit (GPU)
to reduce time complexity utilizing the easily available and enhanced computational resources. The optimal
control of PBCNs in the Markovian framework is developed in this paper employing an information-
theoretic approach which includes Kullback-Leibler (KL) divergence. We convert the nonlinear optimal
control problem of PBCN to a linear problem by using the exponential transformation of the cost function,
also known as the desirability function. The linear formulation enables us to compute an optimal control using
the path integral (PI) method. Furthermore, we offer sampling-based methodologies for approximating PI
and therefore optimizing PBCN control. The sampling-based method can be implemented in parallel, which
solves the optimal control problem for large PBCNs.

INDEX TERMS Information-theoretic control,Markov decision processes (MDPs), optimal control, parallel
processing, probabilistic Boolean control networks (PBCNs).

I. INTRODUCTION
The popularity of Boolean networks (BNs) has increased
gradually since Kauffman introduced them [1]. BNs are
qualitative models that describe the dynamics of the gene
activity profile (GAP) characterizing the status of a gene as
active/inactive (or 0/1) in gene regulatory networks (GRNs).
BNs can be used to investigate GRNs in a restricted environ-
ment, however their simplicity, along with their deterministic
rigidity, limits the ability to analyze reasonably complex net-
work dynamics. The use of probabilistic switching between
several networks substantially improves a model’s capacity
to represent behaviors that are near to actual observations.
The probabilistic Boolean networks (PBNs) introduced by
Shmulevich [2] include this stochastic nature, making them
a natural choice for modeling the limited information GRNs.
PBNs with the addition of Boolean control inputs are called
probabilistic Boolean control networks (PBCNs). Since the
introduction of semi-tensor product (STP) of matrices by
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Cheng et al. [3], many fundamental properties of switched
Boolean control networks, PBNs and PBCNs have been
characterized in the literature including but not limited to
observability [4]–[6], controllability [7]–[9], reconstructibil-
ity [4], fault detection [10], stabilizability [11]–[15], structure
identification [16], [17], output tracking control [18], [19] and
model checking [20].

GRN activities are closely associated to a certain health-
related problems, such as cancer. Naturally, the possibility
of controlling GRN behavior in such a way that it avoids
its states from adverse configurations attracts a lot of inter-
est. PBCNs are used to design such control strategies. The
goal of developing a PBCN control approach is to determine
the gene perturbation effect and devise an optimal interven-
tion to alter the network’s long-term behavior or modify its
dynamics. The former is traditionally referred to as structural
intervention, while the latter is known as external control of
PBCNs [21].

The authors in [22]–[24] propose the control-theoretic for-
mulations that employ the STP. In particular, the robust event-
triggered control of PBCNs is examined in [23], optimal
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time-varying feedback controllability for PBCNs is discussed
in [22], and the authors have proposed a pinning control
approach in [24]. Because PBCN states form a Markov chain
with a finite state space, it is compatible with Markov deci-
sion processes (MDPs). In [25], the authors include discrete-
time MDP into PBCN modeling and establish a probability
criterion to restrict the induced loss defined by the state
cost for finite time steps, before the network encounters
the desirable states for the first time. Several more studies
use the MDP framework for PBCN optimal control, includ-
ing [26]–[28]. In [29], the context-sensitive PBNs with per-
turbations are used to minimize the finite horizon expected
cost. Recently, reinforcement learning (RL) based techniques
have been proposed in [30]–[36] to solve the optimal control
problem of PBCNs.

The curse of dimensionality i.e., the problem of expo-
nentially growing states and controls as the network size
grows, affects most of the approaches available to control
PBCNs. This problem cannot be solved without making
some simplifying assumptions. Due to the necessity of com-
putations on large matrices, the matrix-based techniques,
i.e., STP orMDP, worsen the performance. Besides the utility
of matrix-based methods is infeasible to even smaller sys-
tems than methods which do not involve matrix operations.
Furthermore, for large systems, the approximate solution
techniques impose a computational load, and convergence
to the (sub)optimal solution is only guaranteed in the lim-
ited scenario of infinite iterations. Furthermore, adequate
error margin performance can only be ensured after several
simulations.

The techniques from continuous-time stochastic optimal
control (SOC) [37], [38] can be adapted for PBCNs to address
most of the above challenges. A family of nonlinear control
problems with control affine dynamics and quadratic con-
trol cost is examined by Kappen [39] using the path inte-
gral (PI) based representation. The PI-based SOC is restated
as a problem of minimizing the Kullback-Leibler (KL) diver-
gence between controlled and uncontrolled transition distri-
butions in [40]. The KL divergence is also referred to as
an information cost between two distributions. The result-
ing control formulation is regarded as information-theoretic
control [41] with the cumulative sum of the state depen-
dent cost and information cost as free energy [42]. The
framework of linearly-solvable MDP (LMDP) [43] achieves
a comparable formulation for discrete state space with
the restriction of information cost in terms of KL diver-
gence and the transition probabilities denoting continuous
inputs.

Inspired by the preceding discussion, we develop a novel
information-theoretic strategy to effectively solve the optimal
control of PBCN and implement the same using a graphics
processing unit (GPU) based parallel processing framework.
The optimal control of PBCNs is proposed in theMDP frame-
work, with the cost-to-go consisting of the state cost and the
information cost. The following are the key contributions of
the proposed framework in this paper:

1) To get the advantage of the inherent stochastic behavior
of PBCNs, an information-theoretic formulation utiliz-
ing the augmented state space is proposed for optimal
control of PBCNs.

2) To obtain the solution to information-theoretic con-
trol through approximation and overcome limitations of
the Monte Carlo sampling method, an entropy-based
improved Monte Carlo sampling technique is proposed.

3) To overcome memory constraints, a matrix-free
approach for simulating the PBCN model is developed.

4) To obtain scalability of optimal control in large PBCNs,
a GPU-based parallel implementation is introduced.

The paper is organized as follows: Section II introduces the
required fundamentals. In Section III, the PBCN classical and
information-theoretic optimal control formulation over the
proposed augmented state space is investigated. Section IV
deals with the solution in terms of desirability function
estimation, employing the path integral representation and
its improved Monte Carlo sampling-based approximation.
In Section V, several algorithms and GPU-based implementa-
tion are developed. A couple of illustrative examples are pre-
sented to validate the effectiveness proposed method, and the
scalability is demonstrated by implementation on a 37-gene
T-cell network in Section VI.

NOTATIONS
R, R+, Z, and Z+ denote the sets of real numbers, non-
negative real numbers, integers and nonnegative integers,
respectively. The scalar multiplication of two numbers is
denoted by ×. E[·] represents the expectation. The set of
integers is indicated by {m1, . . . ,m2} for given any integers
m1,m2 ∈ Z+, such that m1 ≤ m2. The symbol |P| denote the
cardinality of any set P. If both of the inputs are the identical,
the function δ(·, ·) returns 1, else it returns 0. We use the
symbols X (U ) and s (a) for states (control inputs) of PBCN
and MDP, respectively. We denote the Boolean domain by
B := {0, 1}. Similarly,the Cartesian product of B n-times is
given by Bn := B × · · · × B︸ ︷︷ ︸

n

. Logical AND, OR, and NOT

operations are denoted by ∧, ∨, and ¬, respectively.

II. PRELIMINARIES
In the following, we present a brief review of Probabilistic
Boolean control networks (PBCNs) in the Markovian frame-
work, Markov decision processes (MDPs), and information-
theoretic control framework.

A. PROBABILISTIC BOOLEAN CONTROL NETWORKS
For i ∈ {1, 2, . . . , n} and k ∈ {1, 2, . . . ,m} consider the
nodes xi(t) ∈ B and Boolean control inputs uk (t) ∈ B. In this
network, the vector representation of the expression levels of
all the genes at time t is given by the row vector x(t) ∈ Bn
defined as x(t) := [x1(t) x2(t) . . . xn(t)]. Similarly, the row
vector corresponding to inputs is represented by u(t) ∈ Bm
and defined as [u1(t) . . . um(t)]. For every node xi consider a
set Fi = {f

(j)
i }∀j ∈ 1, . . . , li, where each f

(j)
i : Bn+m → B
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represents a possible predictor function (or an update rule)
to determine the value of gene xi and |Fi| is the number of
possible predictor functions of xi. A PBCN with n genes and
m control inputs for t ∈ Z+ is described as follows

xi(t + 1) = f (j)i (x1(t), . . . , xn(t), u1(t), . . . , um(t)). (1)

The probability of selection associated with the predictor
function f (j)i is denoted as c(j)i and it satisfies the following
condition

6
|Fi|
j=1 c

(j)
i = 1.

For any PBCN, the total number of constituent Boolean
control networks (BCNs) is given by

N =
n∏
i=1

|Fi| .

Let f̃l denote the dynamics of the l th constituent BCN and
P1,P2, . . . ,PN be the selection probability associated with
each of theN possible networks. The selection probability of
a l th BCN denoted by Pl is obtained as,

Pl =
n∏
i

c(li)i ,

with selection of the functional relationships comprising of
(f (l1)1 , f (l2)2 , . . . , f (ln)n ) where li ∈ {1, . . . , |Fi|}.

B. MARKOV DECISION PROCESS
AnMarkov decision process (MDP) is represented by a tuple
of a state space, an action space, transition probabilities, and
reward, i.e.,

(
S,A,P(s′|s, a),R(s′|s, a)

)
[44] given as state

space and action space as

S := {s1, . . . , s|S|}, A := {a1, · · · , a|A|}.

It’s aMarkov process that generates a series of states which
follow the Markov property

Pr(s(t + 1) | s(t), . . . , s(0)) = Pr(s(t + 1)|s(t)),

where s(t + 1), s(t), s(0) ∈ S and are affected by external
interventions. Given a state s ∈ S and a control action a ∈ A,
we can calculate the transition probability for possible next
state s′ ∈ S as

P(s′|s, a) = Prs(t + 1) = s′|s(t) = s, a(t) = a.

Likewise, there is a cost associated with any current state s,
current action a, and the future state s′ as follows

R(s′|s, a) = E{r(t + 1)|s(t) = s, a(t) = a, s(t + 1) = s′},

which indicates favorability of a state. In this case, r(t + 1)
represents a real valued function of the state and action.

C. INFORMATION-THEORETIC CONTROL FRAMEWORK
The standard control problemwith discrete control inputs and
arbitrary control cost varies from the information-theoretic
control problem [42] presented here.
Definition 1: Continuous input is regarded as the input

across a continuous set of transition probabilities from a
given state under the effect of discrete control input a,
i.e., a(s′|s) = P(s′|s, a).
Definition 2: At state s, the uncontrolled distribution also

referred to as passive dynamics, P(·|s), describes the system
behavior in the absence of control inputs.
In continuous stochastic systems, the passive dynamics
(or distribution) is clearly defined, but its discrete case equiv-
alent corresponds to the random walk in state space.
Definition 3 [45]: The KL divergence given below is a

dissimilarity measure between two distributions h1(s) and
h2(s)

KL(h1 ‖ h2) = Eh1

[
log

(
h1(s)
h2(s)

)]
=

∫
h1(s) log

(
h1(s)
h2(s)

)
ds. (2)

The information-theoretic approach can be applied to
MDPs where immediate cost representing the one-step run-
ning cost, i.e., l(s, a) is calculated as the sum of the state
cost and the KL divergence between controlled and passive
dynamics, KL

(
P(·|s, a) ‖ P(·|s)

)
as shown below.

KL
(
P(·|s, a) ‖ P(·|s)

)
= Es′∼P(·|s,a)

[
log

P(s′|s, a)
P(s′|s)

]
,

where P(s′|s, a) and P(s′|s) are transition probabilities under
the controlled and passive dynamics respectively.

l(s, a) = q(s)+ Es′∼a(·|s)
[
log(a(·|s)/P(·|s))

]
, (3)

The cost of altering the passive distribution can be viewed
as the KL divergence.

The following absolute continuity condition must be satis-
fied ffor well-defined KL divergence.

P(s′|s) = 0 H⇒ P(s′|s, a) = 0. (4)

By using the Bellman principle of optimality, the optimal
control is determined as the minimizing control a of the cost-
to-go function represented by J (s).

J (s) = min
a∈A

{
q(s)+ Es′∼a(·|s)

[
log

a(·|s)
P(·|s)

]
+ J (s′)

}
. (5)

To get the linear form of the above nonlinear Bell-
man equation, the desirability function obtained as z(s) =
exp(−J (s)). By the introduction of normalization term
Gz(s) =

∑
P(s′|s)z(s)= Es′∼P(·|s) in (5), yields the following

optimization problem

min
a∈A

{
q(s)− logGz(s)+ KL

(
a(s′|s) ‖

P(s′|s)z(s)
Gz(s)

)}
, (6)
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which achieves minimum when the controls are selected
using (7).

a∗(s′|s) =
P(s′|s)z(s)
Gz(s)

. (7)

Substituting (7) in (5) results in the following linear equa-
tion in z

z(s) = exp (−q(s))Gz(s′). (8)

The function z(s) indicates how desirable a state is. Since
the desirability function is defined as an exponential of the
negative cost function, the desirability function has a higher
value for trajectories with lower costs. An expectation oper-
ator, which is a linear operator, constitutes the normalising
term, as a result, the equation (8) can be solved using tech-
niques applicable to the linear system of equations such as
the Eigenvalue problem, iterative backward evaluation, and
others. The linear equation (8) is solved to find desirabil-
ity function of all states. The information-theoretic control
framework doesn’t provide the optimal control input explic-
itly; instead, it gives the optimal transition probability under
optimal control input.

III. PBCN OPTIMAL CONTROL PROBLEM FORMULATION
The control dependent counterpart of the probability distri-
bution vector w(t) for one-step evolution is given by

w(t + 1) = w(t)P(U (t)), (9)

where P(U (t)), represented by P(U ) in sequel for U ∈ U ,
is a controlled transition probability matrix in R2n×2n . For
detailed description one can refer [28]. Let f̃l(XI ,UK ) be the
dynamics of the l th constituent BCN. For notational simplic-
ity, we have suppressed the dependence of states (X ), control
inputs (U ) over time t .
The controlled Markov chain can be utilised to describe

the dynamical behavior of PBCN, the theory of MDP can
be employed to find an optimal intervention policy [46]. The
PBCN can be defined as an MDP comprising of the set of
states X := {X1, . . . ,X2n} with XI = 1 +

∑n
i=1 2

n−ixi the
set of controls U := {U1, . . . ,U2m} with the control vector
UK = 1 +

∑m
k=1 2

m−kuk , and the probability of transition
from X = XI to X ′ = XJ under input U ∈ U is obtained
from the element in I th row and J th column of the controlled
transition distribution matrix P(U ) in (9). In the following,
we discuss the classical approach, its limitations, and our
proposed framework for PBCN optimal control.

A. CLASSICAL APPROACH TO OPTIMAL CONTROL
Under the probability distributions specified by (9), opti-
mal control problem is to minimizing the expected cost (or
cost-to-go function) of trajectories beginning from any state.
To regulate PBCN behavior, control inputs are applied for a
finite horizon tf and the states are divided into two categories:
favorable (low penalty) and undesired (high penalty). The
optimal control seeks a policy π = {µ0, µ1, · · · , µtf−1},
where µt : X → U mapping the state space to control

space. A one step cost l(X ,U ) : X × U → R+ comprises
of the state dependent cost q(X ) : X → R+ and control cost
g(U ) : U → R+ i.e., l(X ,U ) = q(X )+g(U ). For X , the cost-
to-go for a trajectory generated by the policy is calculated as
follows:

Jπ,t (X ) = EX ′∼P(·|X ,U )

[ tf−1∑
τ=t

l(X (τ ), πτ (X (τ )))+ φ(X (tf ))
]
,

and the corresponding Bellman equation as

Jt (X ) = min
U
{l(X ,U )+ EX ′∼P(·|X ,U )

[
Jt+1(X ′)

]
},

Jtf (X (tf )) = φ(X (tf )). (10)

The control policy π∗ = µ∗0, µ
∗

1, · · · , µ
∗

tf−1
is opti-

mum and Jt (X ) = Jπ∗,t (X ) is the optimal cost-to-go,
if U∗(t) = µ∗t (X ) minimizes the right hand side of (10) for
each state X and time t . Because the cost remains bounded,
a solution to the optimal control problem is always exists.
Hence, in this case, the resultant control policy is a time-
dependent short-term policy that alters PBCN’s dynamic
behavior.

Despite the fact that the MDP framework enables dynamic
programming, the established Bellman equation (10) is non-
linear and ineffective in several cases as

i) it rarely offers analytic solutions and is computation-
ally expensive to solve using approximation methods in
general,

ii) each iteration in iterative approaches requires an exhaus-
tive search over all feasible inputs,

iii) in terms of computational cost and memory, an exact
solution for large PBCN suffers from the curse of
dimensionality.

In comparison to traditional MDP-based approaches that
approximate the solution of a nonlinear Bellman equation,
the information-theoretic framework that can overcome the
said hurdles is more powerful computationally because it
approximates the solution of a linear equation. However,
in posing the PBCN optimal control in this context, the
following difficulties arise:

i) The classical PBCN possesses discrete and finite inputs,
however we require continuous inputs that represent the
transition probabilities.

ii) Because the PBCN is control action non-affine, a pos-
sible passive dynamics can coincide to a network with
the equally likely occurrence of actions. However, out
of P(UK ) ∀UK ∈ U , the passive dynamics P(·|X ) have
no obvious choice, and switching between controlled
dynamics P(UK ) may not be feasible if the absolute
continuity requirement (4) is not fulfilled.

iii) Information-theoretic cost cannot be incorporated into
the context-specific control cost specified for given
PBCN.

In the next section, we develop a novel state space architec-
ture to overcome these difficulties.
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FIGURE 1. Example 1 state transition (a) under input U1 (b) under input U2 (c) in augmented
state space. Solid lines represent transitions determined from state space for inputs U1 (in
blue) and U2 (in red). Dotted lines indicate the new transitions as a result of augmentation.

B. CONSTRUCTION OF AUGMENTED STATE SPACE
To allow information-theoretic control of PBCN, we start
with augmented state space generation and provide the res-
olution of the difficulties described in the preceding section.
Definition 4: For a PBCN (1), the augmented state space

X̃ is constructed as the set of all the tuples generated by the
Cartesian product of X and the set of available control inputs
U i.e.,

X̃ := X × U := {(XI ,UK )| XI ∈ X ,UK ∈ U}. (11)

Definition 5: The transition probability of the augmented
state X̃ to X̃ ′ is defined as

P̃X̃ ,X̃ ′ =
L∑
l=1

δ(X ′I , f̃l(XI ,UK ))Pl
1
2m
. (12)

Remark 1: The transition probability for augmented states
is the average value of all underlying BCN transition proba-
bilities.Whereas any alternative choice is likely to experience
bias, the impact of continuous control inputs is considered to
be equally probable for an unspecified natural intervention
rate.
Example 1 [28]: Consider a two-gene PBCN with single

control input with the system evolution according to (c(j)i ).
The gene x1 has a single Boolean function f (1)1 with prob-
ability c(1)1 = 1 while gene x2 has two Boolean predictor
functions f (1)2 and f (2)2 with probability of selection c(1)2 =

0.5 and c(2)2 = 0.5 respectively.

x1(t + 1) = f (1)1 = x1(t) ∨ u(t)

x2(t + 1) =

{
f (1)2 = x2(t) ∨ x1(t) ∧ u(t)

f (2)2 = x1(t) ∧ u(t)

FIGURE 1 (a) and (b) depicts the state transition diagrams
corresponding to different values of control input. The aug-
mented state space is obtained in FIGURE 1 (c) as

X̃ = {(X1,U1), (X2,U1), (X3,U1), (X4,U1),

(X1,U2), (X2,U2), (X3,U2), (X4,U2)}.

P̃ =



0.5 0 0 0 0.5 0 0 0
0 0 0.5 0 0 0 0.5 0
0.5 0 0 0 0.5 0 0 0
0.25 0.25 0 0 0.25 0.25 0 0
0.5 0 0 0 0.5 0 0 0
0 0 0.25 0.25 0 0 0.25 0.25

0.25 0.25 0 0 0 0.5 0 0
0 0 0 0.5 0 0 0 0.5


As shown below, the augmented state space resolves the

challenges in restructuring PBCN optimal control in the
paradigm of information-theoretic control.
1) the input A of the augmented state space can now be

considered equivalent to the continuous transition prob-
abilities i.e., P(X̃ ′|X̃ ,A) = A(X̃ ′|X̃ ) as required by the
information-theoretic framework,

2) All of the controlled transition probabilities P(UK )
can be integrated into a single state transition matrix
P̃, which is 2m+n × 2m+n in size. The probabil-
ity matrix P̃ is used to represent the state transi-
tion matrix for the system’s passive dynamics, which
addresses problem (ii) from the preceding section. Fur-
thermore, meeting the criterion of absolute continuity
is no longer required in switching between controlled
dynamics.

3) The penalty to be incurred for reshaping the passive
dynamics can be viewed as the KL divergence between
continuous input A and passive dynamics P̃.

Remark 2: The aforementioned transition probability
matrix 2n+m × 2n+m) in size over augmented state space
is not the same as the STP-based matrix 2n+m in size [34].
The developed approach, in this paper, does not involve a
matrix representation of the system dynamics. The additional
dimensions show that the state space has grown, yet they
do not cause problems when used in large systems. This is
due to the fact that this methodology is based on a trajectory
dependent approach. The trajectories can be obtained from
recorded data or produced through simulations using a known
dynamic model.
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FIGURE 2. PBCN information-theoretic optimal control in nutshell.

C. PBCN INFORMATION-THEORETIC CONTROL
The proposed information-theoretic optimal control PBCN is
presented in the FIGURE 2. In augmented state space, the
Bellman equation is reformulated with the immediate cost
l̃(X̃ ,A) and the terminal cost Jtf (X̃ (tf )) = φ(X̃ (tf )) as follows

Jt (X̃ ) = min
A
{l̃(X̃ ,A)+ EX̃ ′∼A(·|X̃ )[Jt+1(X̃

′)]}, (13)

In this case, q̃(X̃ ) is the augmented state cost obtained as
q(XI )+ g(UK ). The immediate cost is given as

l̃(X̃ ,A) = q(XI )+ g(UK )+ EX̃ ′∼A(·|X̃ )

[
log

A(·|X̃ )

P̃(·|X̃ )

]
.

The minimizing control A of the optimum control is gen-
erated from (13).

Jt (X̃ ) = min
A

{
q(XI )+ g(UK )

+EX̃ ′∼A(·|X̃ )

[
ln

A(·|X̃ )

P̃(·|X̃ ) exp (−Jt+1(X̃ ′))

]}
. (14)

Taking into account the desirability function zt (X̃ ) =
exp(−Jt (X̃ )) and zt+1(X̃ ) = exp(−Jt+1(X̃ )). Incorporating
zt and zt+1 in (14) provides

− ln zt (X̃ ) = min
A

{
q(XI )+ g(UK )+ EX̃ ′∼A(·|X̃ )[

ln
A(·|X̃ )

P̃(·|X̃ )zt+1(X̃ ′)

]}
, (15)

Consider the normalizing term for the denominator of
expectation as

∑
X̃ ′ P̃(X̃

′
|X̃ )zt+1(X̃ ′) = G[zt+1](X̃ ). The

normalizing term G[zt+1](X̃ ) is divided by the term inside
expectation results in

− ln(zt (X̃ )) = min
A

{
q(XI )+ g(UK )

+EA(·|X̃ )
[
ln
( A(X̃ ′|X̃ )

G[zt+1](X̃ )

P̃(X̃ ′|X̃ )zt+1(X̃ )
G[zt+1](X̃ )

)]},
The expectation term is expressed as follows

EA(·|X̃ )
[
ln
( A(X̃ ′|X̃ )

G[zt+1](X̃ )

)
− ln

( P̃(X̃ ′|X̃ )zt+1(X̃ )
G[zt+1](X̃ )

)]}
, (16)

= EA(·|X̃ )
[
ln
(
A(X̃ ′|X̃ )

)
− ln

(
G[zt+1](X̃ )

)
− ln

( P̃(X̃ ′|X̃ )zt+1(X̃ )
G[zt+1](X̃ )

)]}
, (17)

Since the term− ln(G[zt+1](X̃ )) is constant with respect to
distribution A(·|X̃ ), the expectation EA(·|X̃ )[− ln(G[zt+1](X̃ ))]
will be independent and equal to− ln(G[zt+1](X̃ )). Substitut-
ing the expectation in (16) results in

− ln(zt (X̃ ))

= min
A

{
q(XI )+ g(UK )− ln

(
G[zt+1](X̃ )

)
+EA(·|X̃ )

[
ln
(
A(X̃ ′|X̃ )

)
− ln

( P̃(X̃ ′|X̃ )zt+1(X̃ )
G[zt+1](X̃ )

)]}
,

The expectation EA(·|X̃ )
[
ln
(

A(X̃ ′|X̃ )
P̃(X̃ ′|X̃ )zt+1(X̃ )

G[zt+1](X̃ )

)]
is represents

the KL divergence between A(X̃ ′|X̃ ) and P̃(X̃ ′|X̃ )zt+1(X̃ )
G[zt+1](X̃ )

.
Therefore,

− ln(zt (X̃ )) = min
A

{
q(XI )+ g(UK )− lnG[zt+1](X̃ )

+KL
(
A(·|X̃ ) ‖

P̃(X̃ ′|X̃ )z(X̃ ′)

G[zt+1](X̃ )

)}
. (18)

Because the normalizing term (− lnG[zt+1](X̃ )), state
costs q(XI ), and control costs g(UK ) are independent of A
(optimizing variable), if the contribution in (18) of the KL
divergence is zero, the minimum is achieved. As a result,
by setting the KL divergence component to zero, the optimal
continuous inputs can be found as

A∗(X̃ ′|X̃ ) = (P̃(X̃ ′|X̃ )z(X̃ ′))/G[zt+1](X̃ ). (19)

ReplacingA(·|X̃ ) with the optimal continuous control input
A∗(·|X̃ ) and q(XI )+ g(UK ) by q̃(X̃ ) results in

− ln(zt (X̃ )) = q̃(X̃ )− lnG[zt+1](X̃ ),

ln(zt (X̃ )) = −
(
q̃(X̃ )− lnG[zt+1](X̃ )

)
,

zt (X̃ ) = exp
(
− q̃(X̃ )

)
+ exp

(
lnG[zt+1](X̃ )

)
,

zt (X̃ ) = exp
(
− q̃(X̃ )

)
G[zt+1](X̃ ), (20)

where z(X̃ ) is referred to as the optimal desirability function
of the augmented state X̃ . The normalizing term G[zt+1] is
replaced with

∑
X̃ ′ P̃(X̃

′
|X̃ )zt+1(X̃ ′) in (20) results in a linear

Bellman equation in the desirability function for optimal
control at time t as follows

zt (X̃ ) = exp
(
− q̃(X̃ )

)
G[zt+1](X̃ ),

= exp
(
− q̃(X̃ )

)
EX̃ ′∼P̃(·|X̃ )

[
zt+1(X̃ ′)

]
,

ztf (X̃ ) = exp
(
− φ(X̃ (tf ))

)
. (21)

In the augmented settings the desirability function is eval-
uated for all augmented states by solving the linear equa-
tion (21). In this case, the state X̃ (t) ∈ X̃ will have the
maximum desirability if the trajectories starting from the
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same state result in the lower values of the cost function.
Besides the desirability function here comprises both costs,
i.e., the state and control costs. This scenario helps in finding
the optimal control input for the problem under considera-
tion. The desirability For small size systems, the desirability
function (21) can be obtained through matrix operation.

IV. PATH INTEGRAL SOLUTION TO
INFORMATION-THEORETIC CONTROL OF PBCN
For large systems, the PI-based method is advantageous since
it can be adapted to work without explicitly computing the
state transition matrix.

A. DESIRABILITY FUNCTION ESTIMATION USING PATH
INTEGRAL
Using the Feynman–Kac lemma and diffusion process [39],
it is possible to transform the backward in time calculation for
the optimal control solution to a forward in time computation.
Similar rationale the discrete system can be used to establish
PI formulation with continuous inputs and information [47].
The desirability function is determined using PI, in which
the expected cost of a particular state is estimated by taking
into account all of the system’s possible paths. By substitut-
ing G[zt ](X̃ ) over augmented states, the desirability function
zt (X̃ ) is expressed in terms of PI as follows:

zt (X̃ ) = exp
(
− q̃(X̃ )

)
Gzt+1 (X̃ ),

= exp
(
− q(X̃ )

)
EX̃ ′∼P̃(·|X̃ )

[
zt+1(X̃ ′)

]
. (22)

Similarly, we have,

zt+1(X̃ ′) = exp
(
− q̃(X̃ ′)

)
EX̃ ′′∼P̃(·|X̃ )

[
zt+2(X̃ ′′)

]
,

with X̃ ′′ denoting the augmented state at time t + 2. Substi-
tuting zt+1(X̃ ′) in (22) we get the following form in terms of
probability independent cost q̃(·) for zt (X̃ ),

EX̃ ′∼P̃(·|X̃ )
[
exp−

(
q̃(X̃ )+ q̃(X̃ ′)

)
EX̃ ′′∼P̃(·|X̃ )

[
zt+2(X̃ ′′)

]]
.

With the recursion of z(·) in the inner expectation the PI
based desirability function is derived as follows

zt (X̃ ) = EX̃ ′∼P̃(·|X̃ )
[
exp−

(
φ̃(X̃tf )+

tf−1∑
τ=t+1

q̃(X̃τ )
)]
. (23)

B. SAMPLING BASED APPROXIMATION
In most cases, analytic assessment of PI is impractical, caus-
ing the use of numerical approximation. The PI is calculated
using a random sampled trajectories from a distribution P̃
using the Monte Carlo (MC) sampling method which yields
the desirability function approximation shown below

z̃(X̃ ) ≈
1
S

∑
s

exp(−q̃s,t→tf ), (24)

where S is total number of samples. The cost over the sampled
path s, i.e., q̃s,t→tf , is defined as

(
φ̃(X̃tf )+

∑tf−1
τ=t+1 q̃(X̃τ )

)
.

MC sampling, on the other hand, has the following
drawbacks:
i) When generating augmented passive dynamics P̃ ,

an arbitrary starting distribution for selection of the con-
trol action must be considered.

ii) The optimal desirability generated corresponds to arbi-
trarily assumed initial control action distribution. Order
of desirability may be different for different initial con-
trol action distributions.

iii) The contribution of every randomly generated path is
weighted equally in desirability estimation. Therefore,
the non-optimal paths could introduce significant bias in
the estimation.

iv) There is no way to indirectly comment on other distribu-
tions under the selection of different control actions.

v) Uncertainty in system dynamics not taken into account.

C. ENTROPY-BASED IMPROVED MC SAMPLING
The limitations as mentioned above can be overcome by
introducing modifications in MC sampling as follows:
i) A weighting function is introduced to modify the

expected cost of trajectories starting from the required
augmented state.

ii) Cost-dependent weightage is assigned to each path. The
weights assigned could be either monotonically increas-
ing or decreasing over the range of costs.

iii) Uncertainty in system dynamics is accounted for by
introducing probability dependence in the weighting
function.

We describe the weighting function in terms of average
entropy, relative cost, and an application-specific parameter
for an extra degree of freedom. The entropy for a gene
measures the randomness associated with that gene. Further-
more, entropy is affected by the probability distribution of
gene selection. This distribution has the highest entropy if
it is uniform, while any other distribution has low entropy.
For example, in the Example 1, because gene x2 has higher
randomness, its entropy will be higher than gene x1, which
has 0 entropy. Having followed these principles, we define the
average entropy for a PBCN, whichmeasures the randomness
depending on the distribution of selection probabilities across
the overall network.
Definition 6: The average entropy H (x) of PBCN, with

entropy of genes h(xi) = −
∑|Fi|

li=1
c(li)i log|Fi|

(c(li)i ), is defined
as

H =
1
n

∑
i

h(xi).

Definition 7: The relative error Re is defined as

Re =
(

q̃s,t→tf −mins q̃s,t→tf

maxs q̃s,t→tf −mins q̃s,t→tf

)
. (25)

Definition 8: Index denoted by Id which can be used as
exponent utilizing entropy is defined as

Id =
1− H
H

. (26)
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FIGURE 3. Entropy-based improved MC Sampling with min-skew and
max-skew.

The weighting function ws,t (X̃ ) for sth sample is
determined using relative error Re (25) and power factor (26)
considering the path costs either in pessimistic or optimistic
manner. We propose two approaches in the subsequent
section termed min-skew in optimistic way and max-skew
in pessimistic way.

1) MIN-SKEW SAMPLING
The optimistic approach reinforces the greedy estimation of
costs by skewing the expected path cost in the direction
of minimum (min-skew). The paths with lower costs are
accommodated with higher weightage and vice-versa in min-
skew approach. The control action is selected that pertains
to the minimum expected cost after min-skew. FIGURE 3
represents the functioning of min-skew in essence which is
summarized as follows:

i) Evaluate the original cost distribution k(c)
(FIGURE 3 (a)) using sampled trajectories.

ii) Generate the weighting function w(c) that acts as the
non-linear scaling function. (FIGURE 3 (b2))

iii) Apply the nonlinear scaling w(c) on x-axis (cost)
depending upon relative distance form minimum cost
(point a in (FIGURE 3 (a))) to determine the inwards
shift (towards a). Point a remains stationary and point
b experiences the maximum shift therefore termed
min-skew.

iv) The expected cost after min-skew is acquired by averag-
ing over k ′(c) normalized by total shift.

Some candidate weighting function w(c) to be considered for
min-skew case are as follows:

ws,t (X̃ ) =

{
1 ∀ q̃s,t→tf = mins q̃s,t→tf

(1− Re)Id Otherwise

ws,t (X̃ ) =

{
1 ∀ q̃s,t→tf = mins q̃s,t→tf

α(−Re)×Id Otherwise

ws,t (X̃ ) =

1 ∀ q̃s,t→tf = mins q̃s,t→tf

(
1− Re + ε

1+ ε
)Id Otherwise

(27)

where α and ε are application-specific parameters.

2) MAX-SKEW SAMPLING
In contrast to min-skew, in pessimistic consideration, the
preference is given to limit the worst-case scenarios by
skewing the expected path cost in the direction of max-
imum (max-skew). In max-skew paths with higher cost
are assigned higher weightage and vice-versa. The control
action is chosen that pertains to the minimum expected cost
after max-skew. The effect of max-skew is portrayed in
FIGURE 3 (b2) and (c2).

Some candidate weighting function w′(c) to be considered
for max-skew case are as follows:

ws,t (X̃ ) =

{
0 ∀ q̃s,t→tf = mins q̃s,t→tf

(Re)Id Otherwise

ws,t (X̃ ) =

{
0 ∀ q̃s,t→tf = mins q̃s,t→tf

α(1−Re)×Id Otherwise

ws,t (X̃ ) =

0 ∀ q̃s,t→tf = mins q̃s,t→tf

(
Re + ε
1+ ε

)Id Otherwise

ws,t (X̃ ) =

{
0 ∀ q̃s,t→tf = mins q̃s,t→tf

α(1−Re)×Id Otherwise
(28)

Use of (28) as the time dependent weighting function can
be contemplated by considering two extreme cases.
1) When PBCN contains no uncertainty (i.e., it is nothing

but a BCN), it has zero entropy (H = 0). The weight-
ing function in (28) comes out to be 1 for the path
corresponding to the minimum cost and 0 for all the
remaining paths. This is precisely the behavior desired
as for deterministic systems, the path of minimum cost
can be traversed with certainty.

2) The PBCN has extreme uncertainty embedded in its
structure when all the network selection probabilities are
equal, i.e. c(j)i = c(k)i ∀ j, k . For this case the entropy
assumes largest possible value H = 1 and all paths are
weighted equally as expected.

The approximation of desirability over S samples using
entropy-based improved MC sampling that introduces a bias
towards minimum is specified as,

z̃(X̃ ) ≈
1∑

s ws,t (X̃ )

∑
s

ws,t (X̃ ) exp (−q̃s,t→tf ). (29)
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Once the desirability of an augmented state is estimated
using (29), we propose amethod to determine the correspond-
ing discrete optimal action in the next section.

V. ALGORITHMS AND IMPLEMENTATION
A. OPTIMUM DISCRETE INPUT FROM OPTIMUM
DESIRABILITY FUNCTION
The augmented state space desirability function is obtained
in (24) which corresponds to the optimal continuous control
input. As a result, the continuous input must be linked to
the discrete inputs from the original PBCN. For each state,
the optimal discrete input is determined by calculating the
maximum desirability across the set of augmented states
X̃ ∈ X̃ for a given state (XI ∈ X ). Following are the steps
in the procedure:
1) The vector for optimal desirability function of a given

state X̃I with the passive dynamics P̃ is computed as

zt (X̃I ) = exp(−q(X̃I ))Gz(X̃I ), (30)

where zt (X̃I )= [z(XI ,U1), · · · , z(XI ,U2m )]T ,Gz(X̃I ) =

[Gz(XI ,U1), · · · ,Gz(XI ,U2m ), ]T and exp(−q(X̃I )) is a
diagonal matrix with 2m elements exp(−q(XI ,UK ))

2) The optimum discrete input U∗ ∈ U for state XI is

U∗ = argmax
UK
{z(XI ,UK ) | K ∈ {1, · · · , 2m}}. (31)

In a summary, the augmented dynamics incorporate the corre-
sponding distributions for all possible state transitions under
the feasible control inputs.

An augmented state’s desirability that gives the optimal
desirability for state XI is obtained by iterating over all pos-
sible future augmented states. This automatically includes
state transitions from state XI under all inputs along with the
induced control costs. Therefore, the state with optimal desir-
ability of XI corresponds to the optimal discrete input U∗.

B. SCALABLE CONTROL ALGORITHM
To avoid the problems associated with matrix-based imple-
mentation, a couple of algorithms is suggested to run in
conjunction that provide yields the optimal control solution
of large PBCN. The matrix-free evaluation of the next state
is obtained from Algorithm 1. In this algorithm, we use the
predictor function selection probability of each gene and
compare it with a randomly generated probability. Based on
the probabilities comparison the expression level of gene is
determined.

Algorithm 1 is used to generate the trajectories start-
ing from the given initial state XI for the terminal time tf
while evaluating the PBCN optimal control input U∗ using
Algorithm 2. In this case, ru(arg1, arg2) generates a random
sequence of length arg1 by sampling from an uniform distri-
bution 0 to (arg2−1). We translate the objective and initialize
the cost vectors and state in Algorithm 2. For the S number
of samples the path cost corresponding to each trajectory is
calculate using the function presented in Algorithm 3. Even

Algorithm 1Matrix Free State Evaluation
function BooleanDynamics (state - {x1(t), x2(t), . . . , xn(t)},
input - {u1(t), u2(t), . . . , um(t)})
1. for (i = 0 to n)
2. Generate ηi from uniform distribution in [0, 1]
3. Set b = 1 and c̄i = c(1)i
4. while (ηi <= c̄i)
5. c̄i← c̄i + c

(b)
i

6. b← b+ 1
7. xi(t + 1)← f (b)i (xi)
end function
Return {x1(t + 1), · · · , xn(t + 1)}

Algorithm 2 Information-Theoretic Control of PBCNs
Result: Optimal control input U∗

Initialization: m, n, Number of samples= S, Cost vector for
all genes and control inputs, tf , initial state XI (0)
1. for (t = 0 to tf − 1)
2. t ′ = tf − t
3. for(K = 1 to 2m)
4. Calculate path cost q̃t ′→tf for S samples by:

Sequential_Cost_Compute(·) Algorithm 3 or
Parallel_Cost_Compute(·) FIGURE 5

5. Evaluate desirability function z̃(XI (t),UK (t))
using: (24) for MC sampling and (29) for entropy-
based improved MC sampling.

6. Calculate U∗(XI (t)) using (31)

Algorithm 3 Sequential Cost Computation Over S Samples
function Sequential_Cost_Compute(S, UK , t ′)
1. for(s = 1 to S)
2. Generate control sequence Us← {UK , ru(t ′ − 1, 2m)}
3. Generate network sequence Xs as:
4. for (Ur in Us)
5. Calculate Xs(r) for Ur using Algorithm 1
6. Evaluate path cost q̃t ′→tf (s)←

∑tf−1
τ=t q(Xsτ )

end function
Return Cost vector q̃t ′→tf

though Algorithm 2 along with 3 and 1 allows optimal control
inputs evaluation for large PBCN, the sample size required for
a reasonable approximation of the desirability function grows
rapidly. Consequently, the time taken by the calculation of the
sampled trajectories costs tends to grow significantly. This
problem is resolved by incorporating a variation of Algo-
rithm 3 in the parallel computation framework, as discussed
in the following section.

C. GPU BASED PARALLEL IMPLEMENTATION
Because of its programmable improvements [48], the Graph-
ics Processing Unit (GPU) had also found utility in domains
other than gaming. NVIDIA, one of the most popular GPU
manufacturers, offers a compute unified device architecture
environment (CUDA) which is a collection of resources for
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FIGURE 4. Architecture of Parallel processing using CUDA.

multi-threaded applications that can perform multiple tasks
in parallel. FIGURE 4 shows the generalized architecture for
GPU-based parallel processing. The GPU is a co-processor
for the CPU with its own dynamic random access mem-
ory (DRAM) implementation [49]. In addition to implement-
ing a large number of tasks in parallel, CUDA organizes
threads into logical blocks, each of which maps onto a multi-
processor. Because the number of threads a block can handle
is limited, the blocks are organized into grids in order to
run a large number of threads at the same time without
communicating.

Through PI, the desirability function is evaluated by
estimating the costs of the paths. The parallel computing
architecture is facilitated by the fact that each path’s cost
is calculated independently of the others. The number of
threads, blocks, and grids used in the CUDA architecture is
decided by the number of samples needed to approximate the
desirability function. The GPU efficiently implements mul-
tiple instances of the cost calculation task, greatly reducing
the computational time. Threads are the basic component of
computations that are executed in the cores of GPU in the
CUDA architecture. As shown in the FIGURE 5, each thread,
identified by the thread id s, independently computes the cost
q̃s,t→tf for one sample. Each thread starting from an initial
state evaluates the trajectory and its path cost as show in
the right part of FIGURE 5. This resulted path cost is then
transferred to the CPU by each thread, which further executes
instructions to obtain a desirability function estimate based
on the sample costs available. The task division between the
GPU and the CPU allows the system memory to be refreshed
after each cycle of path cost calculation and desirability
function estimation. As a result, for accurate estimation of the

FIGURE 5. Flowchart for Parallel_Cost_Compute(·) with state cost vector
Cq, terminal state cost vector Cφ and control cost vector CU .

desirability function, a much larger number of samples than
the system’s memory handling capacity can be used.

VI. RESULTS AND DISCUSSION
Some of the existing results from the literature are compared
with the solution obtained using proposed technique in this
paper. The first is a two-gene artificial PBCN from [28]
that was solved for optimal control using the conventional
dynamic programmingmethod. In the second illustrated case,
the polynomial optimization-based approximation solution
approach for a three-gene example from [50] is compared.
Furthermore, we demonstrate the efficacy of entropy-based
improved sampling in this scenario. After establishing the
validity of the results, the technique is used to biological
network optimal control problems. The WNT5A biological
network, which has seven genes and one control gene, is the
first biological network to be considered. A T-cell signaling
network with 37 genes and three inputs is used to show the
method’s effectiveness for large systems. Furthermore, for
this example, a GPU-based parallel implementation is used.
The Python programming language is used to perform all
of the simulations. The parallel implementation algorithm is
executed on a Google colab GPU with a maximum virtual
RAM of 12.72GB and a maximum disk space of 68.40GB.

A. ILLUSTRATIVE EXAMPLES
1) ARTIFICIAL 2-GENE NETWORK
We match the solution of our proposed method with results
from [28] where the problem is solved using the classi-
cal dynamic programming approach for two genes artificial
PBCN given in Example 1 previously. In this case, the ter-
minal penalties associated with states X1,X2,X3 and X4 are
assumed to be 0, 1, 2 and 3 respectively. For any intermediate
time, no cost is associated with states. The control cost of 1 is
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levied whenever control U2 is applied. The control objective
with tf = 5 is:

Jt (X (t)) = min
U (t)

[
U (t)+

4∑
τ=t

p(X (τ + 1)|X (τ ),U (τ ))

Jt+1(X (t + 1))
]
, ∀t ∈ {0, 1, 2, 3, 4}

J5(X (5)) = φ(X (5)).

The terminal costs and intermediate costs for augmented
states are

XI (t) = 0 ∀I ∈ {1, 2, 3, 4}

XI (t) = 1 ∀I ∈ {5, 6, 7, 8}

XI (tf ) = 0 ∀I ∈ {1, 5} XI (tf ) = 1 ∀I ∈ {2, 6}

XI (tf ) = 3 ∀I ∈ {3, 7} XI (tf ) = 4 ∀I ∈ {4, 8}.

For the augmented state space, the passive dynamics are
derived in Example 1, and the optimal control problem is
solved using (23) and (31). The algorithms 2 and 1 are
employed utilizing sequential computation, to arrive at opti-
mal control solution. The MC sampling is used for the
estimation of desirability functions of states. The control
sequence obtained is, u(t) = 0 ∀t ∈ {1, 2, 3, 4} ∀X (t) ∈
{1, 2, 3, 4} and u(5) = 0 for X (5) = 1, 2, 4 and u(5) =
1 for X (5) = 3, which matches exactly with the result
in [28].

2) ARTIFICIAL 3-GENE NETWORK
The Boolean function and corresponding transition proba-
bilities are given in (32) for a PBCN under consideration.
The optimal control problem is formulated such that the
expression of gene x3 is deregulated at end of treatment
horizon. This objective can be translated to find the control
input that minimizes the cost (33) in finite horizon (tf = 2)
case.

F1 =

{
f (1)1 = x3(t) ∧ ¬a(t), c

(1)
1 = 0.8

f (2)1 = ¬x3(t) ∧ ¬a(t), c
(2)
1 = 0.2

F2 = f (1)2 = x1(t) ∧ ¬x3(t), c
(1)
2 = 1.0

F3 =

{
f (1)3 = x1(t) ∧ ¬x2(t), c

(1)
3 = 0.7

f (2)3 = x2(t) ∨ a(t), c
(2)
3 = 0.3

(32)

vt (X ) =
tf−1∑
τ=t

x3(τ )+ a(τ )+ x3(tf ) (33)

The optimal solution is achieved by use of MC sampling
in Algorithms 1 - 2 and the control actions obtained for all
states are a(0) = 1, a(1) = 1 which match with results
given in [50]. The average cost, starting from all states, over
32000 simulation epochs are as depicted in FIGURE 6. This
figure shows that the expression of gene x3 at the time tf =
2 using improvedMC sampling is less in comparison with the
MC sampling. Following improved MC sampling from (29)
the better costs are achieved as illustrated in FIGURE 6 for

FIGURE 6. Expected costs with MC and entropy-based improved MC
sampling.

FIGURE 7. Cost distribution for state 2 with entropy-based improved MC
sampling.

the following resulting control actions

At t = 0,

a(0)= 2 for states {2, 4, 6, 8}, a(0)=1 for remaining states

At t = 1,

a(1)= 1 for all states. (34)

For the given treatment window, the disease should be
treated by using the drug based on the observations and time
refereeing to (34).

The min-skew sampling is employed to solve this problem
and the cost distribution for state 2 is provided in FIGURE 7.
The time and path dependent weighting function used in this
case is as follows.

ws,t (X̃ ) =

{
1 ∀ q̃s,t→tf = mins q̃s,t→tf

(1− Re)Id Otherwise.

The entropy and the index factor obtained are

H =
1
3

∑
i

h(xi)

=
−1
3

(0.8 log2 0.8)+ (0.2 log2 0.2)+ (0.7 log2 0.7)

+ (0.3 log2 0.3)

= 0.5344,

Id =
1− H
H
= 0.8712.

The distribution plot of cost in FIGURE 7 clearly depicts
the shift in distribution towards minimum and FIGURE 6
shows the improvement over the average cost for all states
after incorporation of improved MC sampling.
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FIGURE 8. Expected cost with and without control for WNT5A network.

3) BIOLOGICAL WNT5A NETWORK
There are seven genes as WNT5A, pirin, S100P, RET1,
MART1, HADHB, and STC2 in a biological network which
relates to melanoma. The concentration level are given
by 0 corresponding to low concentration and 1 corresponding
to high concentration. Because the gene pirin is a control
input u, we may generate a BCN with dynamics f (i)d for all
genes xi as follows:

pirin : x ′1 = ¬x5, MART1 : x ′4 = ¬x6 ∨ a,

S100P : x2 = ¬x6,HADHB : x ′5 = x2 ∨ x3,

RET1 : x ′3 = x3, STC2 : x ′6 = x6 ∨ ¬a.

The following update rules transform this BCN to a PBCN
by introducing random perturbations with a probability p

x ′i =


f (i)d (x, u), with a probability of p
0, with a probability of (1-p)/2
1. with a probability of (1-p)/2

(35)

WNT5A expression is directly correlated to the creation of
melanoma. As a result, the control goal is to stop WNT5A
from expressing at the end of a specified time horizon tf
of dynamic system evolution. Assigning cost q(x1) = 1 for
WNT5A and q(xi) = 0 for all other genes, as well as assign-
ing terminal cost qtf (x1) = 10 forWNT5A and qtf (xi) = 0 for
all other genes, the control objective in mathematical form is

J (X ) = min
u

EX ′∼P(·|X ,u)
[ tf−1∑
k=0

(
x1(k)+ u(k)

)
+ 10 x1(tf )

]
.

The optimal solution is obtained for two sets of function
selection probabilities and random perturbation for the start-
ing state [1 1 0 1 0 0 0]T for 5 time steps, i.e., tf = 5. The
control input sequence for p = 0.5 is

{u(0) = 1, u(1) = 1, u(2) = 0, u(3) = 0, u(4) = 0},

while for p = 0.95 is

{u(0) = 0, u(1) = 0, u(2) = 0, u(3) = 0, u(4) = 0}.

From this result we can clearly see that for high degree of
uncertainty, the optimal choice is to avoid the pirin expres-
sion. For all initial states and selection probability of p = 0.8,
we show the estimated cost with application of control and
without control in FIGURE 8.

TABLE 1. Comparative Analysis of Sequential Computing and Parallel
Computing for Information-theoretic Control of T-cell Signaling Networks
for Finite time (tf = 5).

4) 37-GENE BIOLOGICAL T-CELL SIGNALING NETWORK
To illustrate the scalability of the developed method, a bio-
logical T-cell signaling model [51] is used. With prob-
ability p = 0.99, let the T-cell network of 37 genes
and 3 control variables follow its Boolean dynamics as
shown in TABLE 2. With a probability of 0.9937 ≈

0.69, the system is likely to follow the dynamics, imply-
ing a high level of uncertainty (approximately 31%). The
optimal control problem is solved to avoid the expres-
sion of genes Calcin,DAG,NFkB,Ras,Rlk after 5 time
steps. Moreover, the system should avoid the expression of
genes DAG,Gads,Calcin,Fos, IKKbeta, JNK,Lck,NFAT,
PLCg(act),Rsk,SLP76,Ras for states visited in-between.
The genes CD45,CD8, and TCRlig are used as con-
trol variables to perform aforementioned task which can
be translated to the objective function comprising of the
state cost q(X ) = Cq × [x1(t) . . . xn(t)]T , terminal cost
φ(X ) = Cφ × [x1(tf ) . . . xn(tf )]T , and control cost g(U ) =
[0.01 0.05 0.02]× [u1(t) u2(t) u3(t)]T .

Cq = [ 1.93 1.33 0.0 1.13 2.06 0.54 0.0 0.95 0.0 1.02

0.0 0.37 0.0 1.97 1.33 2.31 0.0 1.54 2.48 0.0

0.96 0.0 2.73 0.27 0.0 0.72 2.73 0.43 0.0 1.37

2.78 0.0 1.73 0.0 1.72 2.19 1.96 ]

Cφ = [ 9.84 5.55 0.0 6.23 0.0 1.07 8.19 8.53 1.23 5.34

3.95 6.92 2.24 6.25 7.75 8.76 3.76 4.74 8.8 4.94

3.31 0.4 0.0 5.06 7.87 0.65 7.53 4.74 0.0 7.54

9.57 7.91 1.24 0.0 7.69 3.31 4.97 ].

Because evaluating the transition probability matrix is
impractical in this case, we utilize the matrix-free technique
to simulate the dynamics of Boolean network (Algorithm 1)
followed by the information-theoretic approach to deter-
mine the optimal solution. Using the suggested Algorithm 2,
results are compared between sequential implementation and
GPU-based parallel implementation. The control inputs and
corresponding trajectory starting from an initial state XI (0) =
98024258941 with 4.096× 108 number of samples are given
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TABLE 2. T-cell receptor Dynamics.

as follows

U∗(0→ tf −1)= [5 5 1 1 1],

XI (0→ tf )= [98024258941 42441672659 56104651553

88586447361 5119257649 5941237809].

The state encountered at the terminal time tf is
5941237809 and its Boolean equivalent is given by
000̄0010̄11000100010000000̄01100̄000̄110001. It can be
clearly observed from the Boolean representation of state
at tf = 5, the gene expression for Calcin(x3), DAG(x7),
NFkB(x23), Ras(x29), Rlk(x31) is downregulated (shown by
bar on the Boolean number.) According to TABLE 1, the
time needed to execute the proposed algorithm in sequential
manner increases dramatically with the number of samples
(Column 2), but the time required to accomplish the same
operation using GPU-based parallel processing increases
moderately with the number of samples (Column 3).

B. DISCUSSION
Despite the richness and elegance of the dynamic program-
ming (DP) given in [28], solving the Bellman equation for
most practical problems is intractable in computational sense.
This is due to the fact that the value function must be recorded
for each state, and indeed the number of states in PBCNs
increases exponentially. As a result, a number of approx-
imation strategies based on solving the Bellman equation
approximately have emerged. The policy iteration [34], value
iteration [46], [52], and Q-learning [35], [53] are all com-
mon approximation approaches in the reinforcement learning
field. The policy iteration has been shown to be superior than
the value iteration in that it delivers the optimal stationary
policy in a finite number of steps, whereas the value iter-
ation may require an infinite amount of steps for conver-
gence [46]. Q-learning [53] is the other technique used, and
the learning time grows as the number of genes increases.

As a consequence, the authors remark that the Q-learning
technique might not always scale to large networks [53].
Furthermore, some of the approaches are matrix-based [34],
which operate directly upon matrices and therefore are not
suitable for large PBCNs because to memory constraints.

The fundamental advantage of our proposed framework
is that, given the cost function, minimization of objective
may be executed analytically. We derive the linear Bellman
equation, which allows for forward in-time simulation with
parallel computing of the cost function evaluation, which
is not possible with iterative approaches due to iteration
interdependence. Our method could readily be extended to
a model-free approach, in which the transition probabilities
are learned from the data rather than calculated from known
network dynamics.

The effectiveness of optimal control methods proposed
in the literature was validated through the use of biological
networks such as the 7-gene WNT5A network [29], [33],
[46], [52], the 13-gene (9 state, 4 control) ARA OPERON
network [34], and the 8-gene artificial network [54], among
others. Neither approximation nor analytical PBCN optimal
control approaches have been validated using a large biologi-
cal network of 40 genes (37 states, three control), to the best of
the authors’ knowledge. The results of applying information-
theoretic PBCN optimal control to a T-cell signaling network
demonstrate the scalability of the method with large PBCNs.

VII. CONCLUSION
For PBCN, which is set in a traditional MDP form,
an information-theoretic optimal control formulation is
developed by adopting the stochastic optimal control theory.
A nonlinear control problem is transformed into a linear
problem using the proposed solution method. The resultant
formulation is solved analytically using a matrix-free tech-
nique, allowing large systems to be solved. The suggested
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framework’s scalability is validated through the use of
GPU-based parallel processing for speedy estimate of the
desirability function. The methodology described is general
and can be applied to a variety of PBCN optimal control tasks.
The proposed method is not confined to a specific type of dis-
tribution and could also be used to regulate context-sensitive
PBCN. Cross-fertilization of a concept from stochastic opti-
mal control and MDP can be used to develop the receding
horizon approach. The method presented in this research is
not limited to PBCN and can be used to other sequential
decision-making issues including uncertainty. The method-
ology proposed is a model-based approach that begins with
the PBCN model of gene regulation networks. We intend to
investigate the state-of-the-art machine learning techniques to
create a PBCNmodel using time-course gene expression data
and solve the optimal control problem.
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