
Received September 29, 2021, accepted November 10, 2021, date of publication November 23, 2021,
date of current version December 9, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3129990

Towards a Self-Driving Management System for
the Automated Realization of Intents
KRISTINA DZEPAROSKA 1, (Member, IEEE), NASIM BEIGI-MOHAMMADI1, (Member, IEEE),
ALI TIZGHADAM2, (Member, IEEE), AND ALBERTO LEON-GARCIA 1, (Life Fellow, IEEE)
1Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada
2Department of Technology Strategy and Business Transformation, TELUS Communications Inc., Toronto, ON M4C 1L7, Canada

Corresponding author: Kristina Dzeparoska (kristina.dzeparoska@mail.utoronto.ca)

This work was supported in part by the TELUS Communications Inc., and in part by the Natural Sciences and Engineering Research
Council (NSERC) Collaborative Research and Development.

ABSTRACT Network management faces the interrelated challenges of increasing network complexity,
meeting sophisticated business requirements, and being subject to human oversight. Self-driving networks
possess the key properties to overcome such challenges. We present and implement a management system
that addresses several elements of a self-driving network. Our system leverages intents, a policy-based
paradigm and autonomic control loops. Intent-based networking allows us to formalize how an intent can
be provided as input to a control loop, and how the complexities can be abstracted from the user. To realize
and assure the intent, autonomic networking enables us to create Monitor-Analyze-Plan-Execute (MAPE)
loops. Finally, we execute the control loops using a policy-based approach.We propose a policy abstraction to
support requirements at different levels of abstraction, and anApplication Programming Interface (API) layer
to reduce management complexity from the user perspective. We propose a formal policy information model
to model policies across layers of abstractions and to support simplified mapping and strong consistencies
among various policy abstraction levels. We have implemented our proposal and present a proof-of-concept
use-case to showcase the intent refinement.

INDEX TERMS Autonomic networks, intent-based networking, network management, policy-based
management, self-driving network.

I. INTRODUCTION
Network management poses a major challenge in today’s
environment where complex and large-scale networks must
support diverse applications and services with stringent
service levels. In this current ecosystem, demands for per-
formance, availability, reliability, and security are becoming
increasingly difficult to deliver to the levels required by
existing and emerging applications. The next generation
management system must now exercise software control that
operates on heterogenous and distributed computing and
networking resources spanning multiple layers that include
wireless access, virtualized computing, electronic routing and
switching, and optical paths. And, as business requirements
become more sophisticated, it will be increasingly difficult
for human operators to translate the multiplicity of require-
ments into the numerous changes that need to be made in the
network software and equipment. It is evident that there is a

The associate editor coordinating the review of this manuscript and

approving it for publication was Eyuphan Bulut .

need for an automated, and practically human-independent
way of translating and realizing business requirements.
In addition, the dynamicity of networks, rapid traffic changes
and system failures, require networks to be self-adaptive
so that business requirements can be met continuously
from deployment to termination. Clearly the era of manual
network management is ending and the advent of network
automation is upon us [1]–[6]. In general, the challenges that
network management is faced with today call for substantial
changes that include a more data-driven, and autonomic
approach, that is, one where networks learn to drive
themselves.

A self-driving network is a network that can measure and
control itself, with the control part relying on learning and
data analytics [5]. A self-driving network would include the
following four elements: one, the use of high-level user-
provided intents to guide the network; two, the use of control
loops to realize and assure intents; three, the execution of the
control loops; four, the use of learning strategies to adjust
and adapt the control loops to environmental changes. In this

159882
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-3322-8648
https://orcid.org/0000-0002-9888-0389
https://orcid.org/0000-0003-4744-9211

K. Dzeparoska et al.: Towards Self-Driving Management System for Automated Realization of Intents

paper we explore the first three elements, and leave the fourth
for future work.

Our primary motivation is to overcome network com-
plexity challenges associated with business requirements
and human oversight, while taking into consideration the
elements of a self-driving network. To address this we
leverage a set of well-established contributions such as
intent-based networking, autonomic computing, policy-based
management and recent enabler technologies. Our focus
in this paper is the design and implementation of an
automated, intent-based management system to intelligently
refine intents into configurable actions through a set of
autonomically derived policies.

For this, our work has the following objectives. First,
the system should understand and process high-level user
requirements in the form of intents. An intent is an abstract,
high-level objective, often stated in human-natural language,
that specifies what a system should do, without specifying
how. In particular, business requirements can be expressed
using intents. Second, there needs to be a mechanism for
intelligent conversion of intent into a set of policies. Third,
intent assurance requires the ability to detect and adapt, hence
autonomic management becomes a must. The emergence of
network softwarization, enhanced device programmability,
massive scale monitoring, and big data analytics and machine
learning provide the foundation for autonomic management.
A well-known approach for autonomic management is the
MAPE-K control loop that delivers the self-x properties
(self-healing, self-configuration, self-optimization and self-
protection) [7], [8]. The above objectives correspond to the
first two elements of a self-driving network.

Fourth, the system should be able to execute the control
loops, and for this we turn to a policy-based approach.
Policy-based Management (PBM) is the current approach
for network management [9] that typically involves action
policies (specified as event-condition-action (ECA) rules).
PBM itself does not currently support autonomic behaviour
primarily because the enabling technologies have only
recently become available. This fourth objective corresponds
to the third element of a self-driving network which we
realize as follows. We define a policy information model
to support the conversion from intent to low-level action
policies, and to ensure synchronization and strong mapping
across abstractions. The policy model should deal with
policy definers (i.e., authors) at various abstraction levels,
and ideally it should represent various forms of policies
(including goal and utility, in addition to action) that can
be involved to refine an intent. To establish a coherent flow
of policies we define a hierarchical policy representation.
For each refined intent, there is a policy tree that includes
the policies generated during the refinement of the intent,
and as such the policy tree represents the policy execution
flow within the control loops. The fifth and final objective is
that the system should have easily extendable functionalities
and logic. For this we organize our system in a three-
layered, hierarchical architecture that consists of applications

(that accept intents), APIs, and platform components. The
applications and platform components offer functionalities
that are enabled through workflows, whereby each workflow
is organized as a set of sequenced jobs.

Our contributions are as follows:
• Wepropose a system that realizes the first three elements
of a self-driving network. Our proposal receives as
input intents, and refines and assures the intents
through control loops. During refinement, each intent is
transformed and then decomposed into a set of policies.

• We propose a policy abstraction and an API layer to
support user input at different levels of abstraction and
to process the policies.

• We define a formal unified policy model for modeling
policies at any layer of abstraction within our manage-
ment system. The model is flexible enough to support
a wide variety of network and service management
policies in the form of goal, utility, and action policies.
The model ensures consistency and integrity of policies
across various layers of abstractions with various roles.

• We have implemented our proposal towards a self-
driving management system to showcase the practical
integration of intent-based networking, PBMand control
loops. We present a network intent use-case to demon-
strate the intent refinement using our approach.

The rest of the paper is organized as follows: we
review related work in Section II, starting with PBM
and Autonomic Network Management followed by Policy
models, IBN proposals and self-driving networks.We provide
summary tables of IBN-related proposals closest to our work.
In Section III, we outline our proposal for an Autonomic
Management System, in which we introduce the architecture
and its associated components followed by policy abstraction
and API layer, and we conclude the section by explaining the
intent refinement concept. Next, in Section IV, we present our
policy model first, followed by an integrity and consistency
analysis to ensure quality of policies, and end the Sectionwith
a processing model to generate policies for intent refinement,
and define a Policy Tree. Finally, in Section V, we provide a
proof of concept to demonstrate the refinement of an intent,
and a resulting policy tree, followed by a discussion on
performance and use-case generalization. Last, we provide
our conclusions, and future work directions in Section VI.

II. RELATED WORK
We review policy-based and autonomic networkmanagement
first, followed by policy models and intent-based networking,
and concludewith self-driving networks.We also provide two
summary tables of IBN-related proposals.

A. POLICY-BASED MANAGEMENT (PBM)
PBM separates the rules that govern system behaviour
from system functionalities, with the goal to allow system
behaviour to adapt without having to restart the system [9].
Typical PBM components are: a policy management
tool (PMT) to define policies, a policy repository (PR) to store

VOLUME 9, 2021 159883

K. Dzeparoska et al.: Towards Self-Driving Management System for Automated Realization of Intents

policies, event monitoring, a policy decision point (PDP) to
interpret and determine policies to be enforced, and agents or
policy enforcement points (PEP) to enforce policies.

In general, there are two well-established policy types:
high-level (human-friendly) and low-level action policies
(domain or device-related) [10]. According to Kephart and
Walsh [11] high-level policies are further divided into goal
and utility function policies, a classification inspired by
knowledge-based agents [12]. An action policy dictates a
single or set of actions to be taken when the system is in
some state, i.e. if (condition), then (action), where condition
specifies a state or set of possible states that satisfy the
condition. A goal policy specifies either a single desired
state, or one or more criteria to characterize a set of
equally desirable states. A utility policy is realized through
a utility function that assigns a utility value to each possible
state, hence it generalizes goal policies that perform binary
classification. Utility policies are more powerful than goal
and action, but entail a recurring computation to select the
state with highest utility. Utility and goal policies are enforced
through action policies. In PBM, action policies in the form
of ECA are frequently used [9].

Differences in PBM proposals originate from factors
such as targeted systems, policy models, architecture,
technologies, or use-case dependencies. For example, [13]
focuses on PMT to propose validation and transformation
of business-level policies to technology-level policies. The
policy translation method is defined per-discipline, making
the method less generic as rules need to be defined for each
discipline. Verma et al. [14] enabled autonomic behavior
within devices so that devices can generate policies for their
operations; each device must have local policy refinement,
PDP and PEP, resulting in a localized approach that does
not account for global network states. Wickboldt et al. [15]
presents Software-Defined Networking (SDN) management
requirements and challenges, and identifies more SDN-
focused research is needed to better understand the PBM
scope within SDN.

Our proposed autonomic management system combines
PBM and MAPE-K control loops. We provide a mapping of
our system to the PBM framework. We separate some of the
combined capabilities in the PBM framework components
and by doing so we ensure a clear separation between
component functions. Based on our design choices, multiple
components can enforce policies at different levels of
abstractions, hence the PEP functionality in our system is
distributed.

B. AUTONOMIC NETWORK MANAGEMENT
Autonomic computing (AC) can facilitate management and
operations of complex computing systems and reduce the
level of human support required [16]. An AC architecture
to deliver the self-x properties is the MAPE-K closed-
control loop [7] which enables sequential loops involving
Monitor-Analyze-Plan-Execute, supported by Knowledge.
The application of the autonomy concept to network

management results in an autonomic network management
system (ANMS) [17].

ANMS-related surveys, challenges and proposals are
discussed in [16]–[23], in general there are differences in
architectures, policymodels, scope and requirements, and tar-
get systems. For example, FOCALE [24] uses control loops
(with a PBM-based approach to some of the components)
and the DEN-ng information model and policy continuum.
ANEMA [25] uses goal, behavioral and utility function
policies (behavioral policies are used to guide network
devices to react to changes), with a per-device approach that
does not consider network-wide decisions. STAR [26] is an
autonomic resource management proposal with a focus on
SLA violations. IETF’s Autonomic Networking Integrated
Model and Approach (ANIMA) [27] working group explores
autonomic networking of managed devices with the goal
to provide the self-x properties, however, control loops
are currently not covered. Some proposals include learning
([21], [28]–[32]), for example [21] uses agents to implement
cognitive control loops, and [32] proposes a multi-agent
network automation architecture that follows the Generic
Autonomic Network Architecture (GANA) reference model
from the European Telecommunication Standards Institution
(ETSI) [33]. The failure to deploy autonomic network
management in the past is discussed and reconsidered in light
of new enabler technologies in [23]. Research efforts in [34]–
[39] explore the potential to combining ANMS and SDN.
SDN controllers that communicate south-bound with data
plane devices, and north-bound with applications, provide the
hierarchy and interfaces to support autonomic management.

We propose an architecture for autonomic management
where the logic is separated from the functionalities offered
by the system, and is defined per application to achieve any
management task. To accomplish this objective, we propose
a policy abstraction to capture user requirements at different
levels. The policy abstraction is presented through a unified
formal policy model. We propose an API layer to provide
functionalities needed to process the policy abstraction. The
proposed autonomic management system is flexible to cover
a wide array of management scenarios due to its well-defined
and modular components that can be easily extended.

C. POLICY MODELS
A policy information model facilitates a policy language
for formal representation of policies. The IETF/DMTF
Policy Common Information Model (PCIM) [40] is used
to represent device and application characteristics to enable
vendor-agnostic device control. Strassner [41] proposed
the Directory Enabled Networks (DEN)-ng information
model that models policy based on ECA paradigm across
policy continuum. Although DEN-ng was extended in [42]
with a PolicyRuleComponentStructure so that specific rule
structures can be defined for non-ECA policies, it does not
natively model goal and utility policies. NOVI [43] is another
information model for network management that supports
virtualization and federation and models policy using ECA.

159884 VOLUME 9, 2021

K. Dzeparoska et al.: Towards Self-Driving Management System for Automated Realization of Intents

A survey on policy languages in network and security
management is presented in [10]. Beckett et al. [44] proposed
the Probane language to help network admins specify routing
policies in a high-level manner. Probane encodes the flow
of routing information along policy-compliant paths and
raises the level of abstraction for imperative policies related
to traffic engineering (TE) tasks. Frenetic [45] provides a
high-level language for TE that aims to ease the work of
network operator, however, both languages are designed
for OpenFlow-based TE, and it is not clear if they can
represent network engineering policies [46]. The lack of
formalism and heterogeneity in intent and policy processing
in [47]–[49] incur sophisticated mapping functions and
analysis to map the attributes among policy abstraction types.
This additionally introduces the challenge of inconsistency
and synchronization across layers of abstraction [50]. The
languages proposed in [51]–[53] are specifically tailored to
model QoS and access control policies.

The policy models discussed above do not account for
the policies involved in the whole intent life-cycle, including
policies in the assurance loop [4]. Most focus on the high-
level requirement translation and intent formulation, and
most are specifically designed to model traffic or network
engineering tasks, which limits their applicability to represent
a wide variety of policies in autonomic management. Further,
they do not capture various forms of policies including goal,
utility and action at the same time.

Our model models the policies involved in the complete
intent life-cycle. Due to our generic policy formalism, our
model is capable to represent various forms of policies.
Last, our unified model models policy across layers of
abstraction which allows for simplified mapping and strong
synchronization among various policies during deployment
and run-time.

D. INTENT-BASED NETWORKING (IBN)
To the best of our knowledge the first IBN standardisation
effort was made by the Open Networking Foundation (ONF)
with their proposal to fill the northbound interface (NBI) gap
between SDN controllers and SDN applications [54]. In addi-
tion to ONF, the 3rd Generation Partnership Project (3GPP),
European Telecommunications Standards Institute (ETSI),
International Telecommunication Union (ITU) and Internet
Engineering Task Force (IETF) have their own IBN-related
groups as well. For example, the IETF Network Management
Research Group has several efforts underway [55]–[57] to
define intent, the intent life-cycle, and intent assurance,
as well as the relation between intent and policy, and the
use of control loops. A recent survey on existing intent-based
frameworks, activities and standardization efforts, as well as
challenges is given in [58].

A number of well-known open-source projects such
as NEMO, ONOS Intent Framework, OpenDaylight NIC,
OpenStack’s GBP and Congress have explored IBN, and
have implemented a limited set of intents that are focused
mainly around SDN-based network capabilities. In academia,

proposals have focused on different aspects of IBN, for
example DOVE [59] is a network virtualization proposal
for multi-tenant network services that uses an intent-based
approach. Han et al. [48] presents an intent-based VN
management platform for network slicing and automated
configuration with SDN. Intent-based NBIs are presented
in DISMI [60] for controllers to provide application-centric
networking, and in [61] to orchestrate VNF service chaining.
Similarly, the iNDIRA tool [62] interacts with SDN NBIs
to support IBN, and INSPIRE [63] refines intents into VNF
service chains. Other research proposals for IBN that present
IBN frameworks are included in [46], [64]–[75]. Although
SDN seems to be the typical architecture for implementing
IBN, IBN should not be limited to SDN [4].

Intent or policy refinement are concepts that exist in the
literature to refer to the processes that transform either an
intent or a policy to formal policies that can be subse-
quently decomposed to actions. For example, INSPIRE [63]
considers intents as high-level abstract policies that IBN
should translate to low-level configurations, Moffett and
Sloman [76] explored the refinement of high-level policies
into a set of more specific policies to form a policy hierarchy,
Craven et al. [77] described a method for policy refinement
that consists of decomposition, operationalization, deploy-
ment and re-refinement, and Jacobs et al. [49] refines natural
language intents into network configurations (using ML to
translate intents to the Nile intent language first, and then to
SONATA-NFV commands).

PBM can facilitate the policy aspect of an intent, such that
an intent can be uniformly realized through a set of policies,
and an autonomic control loop can be used to ensure the
self-x properties during the intent’s life-cycle. IBN can be
a solution towards an intelligent network that automatically
converts, deploys and optimizes itself to achieve a target state
based on an intent, however to attain this, IBN has some
challenges that need to be addressed, e.g, continuous closed-
loop verification, automated deployment, conflicts [4].

In Tables 1 and 2, we provide a summary of IBN-
related proposals and their main features. None of these
proposals consider the complete set of objectives that our
paper seeks to realize, in order to support automated intent
realization.

Our proposal provides intent refinement and assurance
through a PBM paradigm and control loops. We define
a set of abstractions that allow clear mapping during the
intent refinement, and we detect inconsistencies using our
formal policy model that is applicable during the intent’s
life-cycle.

E. SELF-DRIVING NETWORKS
A self-driving network canmeasure, analyse and control itself
such that the network can predict changes and adapt without
the intervention of an operator [5], [6], [49], [78]–[80].
Such a network should take as input a high-level goal and
automatically generate the necessary measurements, infer-
ences and decisions to execute [5], [81]. The above outlines

VOLUME 9, 2021 159885

K. Dzeparoska et al.: Towards Self-Driving Management System for Automated Realization of Intents

TA
B

LE
1.

Su
m

m
ar

y
ta

bl
e

of
in

te
nt

-b
as

ed
ne

tw
or

ki
ng

pr
op

os
al

s.

159886 VOLUME 9, 2021

K. Dzeparoska et al.: Towards Self-Driving Management System for Automated Realization of Intents

TA
B

LE
2.

Su
m

m
ar

y
ta

bl
e

of
in

te
nt

-b
as

ed
ne

tw
or

ki
ng

pr
op

os
al

s.

VOLUME 9, 2021 159887

K. Dzeparoska et al.: Towards Self-Driving Management System for Automated Realization of Intents

four elements: high-level goal to specify desired behaviour,
autonomic control loop to realize the goal, execution of the
control loop, and learning algorithms for inference.

Currently, there is no accepted framework yet, and
most of the literature focuses on specific elements of a
self-driving network, for instance Jacobs et al. [49] focuses
on the intent refinement to translate intents expressed in
natural languages; Madanapalli et al. [82] explores quality
of experience by detecting deteriorated states and applying
corrective actions; Zerwas et al. [83] proposes self-driving
network benchmarks; and Pasandi and Nadeem [84] proposes
a self-driving approach for the design and evaluation of
network protocols.

To develop a reliable data-driven self-driving network,
data quality and ML are required. In this context [85]
surveys the use of unsupervised learning for next-generation
networks. Proposals focused on learning include: deep
reinforcement learning to provision and coordinate VNF
services [86]; reinforcement learning to optimize service
provisioning policies for the optical domain [87]; [88] uses
a measure-learn-decide-action control loop within data and
control planes for local control, and a management plane to
revise globally; [89] explores the adaptability in SDN, NFV
throughML-enhanced observation, composition, and control;
and, [90] studies fault detection for IoT networks.

The focus of our work is on the integration of the first
three elements of a self-driving network: receive high-level
goals (intents) as inputs, use control loops to realize goals,
and use policies for the execution of the loops. Our proposal
incorporates these into a rule-based starting point first, with
future work to include the fourth element, learning.

III. AUTONOMIC MANAGEMENT SYSTEM
In this section, we describe our proposedAutonomicManage-
ment System (AMS) for automated resolution of intents. First,
we summarize our objectives for this system: (a) to support
and to realize intents; (b) to have a mechanism for intelligent
conversion of intent into a set of policies; (c) to provide
assurance for intents, and to enable the self-x properties for
autonomic behaviour, and to comply with existing policies.

Networkmanagement may operate onmultiple domains. A
domain represents a local grouping of one or more networks
and devices within a collective infrastructure group, typically
governed by a single authority. Multi-domain settings imply
that there are at least two domains involved, each with its own
specific organization in terms of network and infrastructure
control. Hence, multi-domain settings can consist of domains
under single or multiple authorities.

To support the above objectives we propose the follow-
ing. First, we use a policy-based approach to realize the
requirements imposed by intents. An intent is refined so
that it is transformed to domain-specific terms first, and
then decomposed to determine if, and what the necessary
actions should be. Second, for the autonomic management
system to support high-level user inputs, and to simplify
overall management, we propose a policy abstraction and

an API layer. The policy abstraction allows users of the
autonomic management system (humans or applications) to
define policies at different levels of abstraction. The API
Layer exposes the platform functionalities to the applications,
moreover it abstracts the details and unifies the format, and
supports the intent refinement and policy decomposition.
Third, an autonomic control loop to assure intents and
to provide the self-x properties. Thus, the system enables
creation of MAPE loops for a specific logic, so that it can
monitor, analyze, plan and execute to transition to desired
states in compliance with policies and intents.

Figure 1 shows our autonomic management system
which has three layers: Applications (top layer), Application
Programming Interfaces (middle layer) and Autonomic
Management Platform (AMP) (bottom layer).

Users can interact with the AMP through the applications.
A user can be internal (e.g. the service provider itself),
or external (e.g. a customer of the service provider such
as an enterprise). Users can choose from a pre-loaded set
of intents that are offered as a catalog of intents, or, users
can build new intents and add to the catalog. The latter
requires careful consideration of rules and vocabulary, so as to
ensure that new intents can be transformed to domain-specific
terms. Applications are built by application developers who
can be internal or external to the described system. Each
application is built to support one or more related intents,
e.g. an application can offer a VPN service to an external
user, where the user can define specifics such as over the top
SD-WAN VPN with real-time application oriented routing
and support of a number of QoS classes. Other example
applications include: an operator service for maximizing or
minimizing core network throughput (an example of such
a network intent is presented in Section V, to showcase
the intent refinement process); a monitoring service; a fast
MAPE-K control loop service to ensure existing intents are
met.

Each application has an Autonomic Manager (AM)
that consists of application-specific MAPE-K components.
Applications consume infrastructure resources through AMP
services to deliver content and services to their users
according to their business objectives defined by intent. The
AMP services consist of platform MAPE-K components to
manage the infrastructure. These services are made available
to applications through the API layer. As such, an AM can
use APIs from the AMP to form the required feedback control
loop. To support and guide the AM, as well as to interact with
the platform, each application needs to have a pre-defined
workflow logic. A workflow is an organized set of jobs that
are sequenced in a specific order and with a set of checks and
balances.

In general, the platform may have different workflows
to support commonly requested services. Using the APIs,
applications can define and use their own workflows, use
the platform workflows, or use a hybrid approach. Any of
these approaches enables per application MAPE-K control
loops to be instantiated. A loop requires enforcing a set of

159888 VOLUME 9, 2021

K. Dzeparoska et al.: Towards Self-Driving Management System for Automated Realization of Intents

FIGURE 1. Overview of the Autonomic Management System (AMS). Applications use Application Programming Interfaces (APIs) to invoke the Autonomic
Management Platform (AMP) components and their respective functions, to enable per application control loops.

FIGURE 2. Intent refinement through the Policy Abstraction and API layer. The refinement occurs from left to right: each policy abstraction type is
processed using the corresponding API class (shown on top of each policy abstraction type). The Declarative API is used to transform an intent and
generate a Declarative Policy; the Definitive API to generate and enforce Definitive Policies, and the Imperative API to generate and enforce Imperative
policies that realize the intent. Applications shown in Figure 1 use the API classes to invoke the AMP components.

policieswithin each component to derive the actions needed
to realize the user input.

A. POLICY ABSTRACTION AND API LAYER
Next, we describe the policy abstraction that is used to specify
the requirements at different abstraction levels, followed by
a description of the API layer. Before getting to the details
of policy abstraction, we first overview intent and policy
definitions which lead us to policy abstraction.

In general, an Intent specifies what should be done, not
how, in a high-level manner, typically using human-natural
language. An intent needs to be refined before it can be
realized and enforced within a single domain, multi-domain
or federation settings. In ourAutonomicManagement System
(AMS), an intent must first be transformed, and then
decomposed to a set of policies. Hence, the output of a
transformed intent is a high-level policy in domain-specific
terms. A policy is a formal representation of some desired
behaviour (state). A policy can be decomposed to additional
policies, a rule or set of rules to administer, manage and
control resources and processes such that a desirable state is
achieved.

1) POLICY ABSTRACTION
We propose three policy abstraction types to support user
inputs at different levels of abstraction as shown in Figure 2.
A Declarative policy defines what should be done, not how
in a high-level manner, and in domain-specific language.
It is derived by transforming an intent into domain-specific
terms and enhanced with domain-specific knowledge from
a system’s knowledge base. A set of declarative policies
can result from a single intent. For example, an intent in
multi-domain or federation settings requires a declarative
policy per domain, or per provider and per domain, wherein
each declarative policy is represented by domain-specific
terminology and knowledge. ADefinitive policy defineswhat
should be done in a granular manner by specifying what
should be done by Analyze, Plan and Monitor components,
so as to guide the steps towards a desired decision making.
A set of definitive policies essentially determines the changes
that should be done in the system to achieve the desired
outcome. An Imperative policy defines how and not what
should be done, by specifying an action, or a set of
actions for execution to attain the intent objective, goal or
desired outcome. It is derived and enforced by the Execute

VOLUME 9, 2021 159889

K. Dzeparoska et al.: Towards Self-Driving Management System for Automated Realization of Intents

FIGURE 3. UML class diagram for the Knowledge component of the AMP.

component based on the necessary changes as determined
through definitive policies.

During the intent refinement process the following tran-
sitions occur from one policy type to another: first, each
intent is transformed to declarative policies. The declarative
policies cannot immediately be realized, so they need to be
decomposed to definitive policies. Each definitive policy can
generate one or more definitive and/or imperative policies.
An imperative policy, or a set of imperative policies, once
executed, realize the intent. Typically, imperative policies are
executed in the form of an action policy (e.g. using any part
of the ECA structure discussed in II-A).

2) API LAYER
In Figure 2, we also propose an API layer that consists of
three classes. The APIs expose the AMP components and
functionalities for use by applications at various levels of
abstraction to help reduce management complexity from user
perspective. Our management system can receive and refine
an intent (input) through any of the policy abstraction types,
into single or multiple action policies (output) using the APIs.
Each API class corresponds to the processing required by
each policy abstraction type and are defined as Declarative,
Definitive and Imperative API.

The Declarative API provides functions within the MAPE-
K components that enable the transformation of an intent to
a declarative policy, e.g. Natural Language Processing. The
Definitive API involves a diverse set of functionalities pro-
vided by Analyze, Plan, Monitor and Knowledge. Through
definitive APIs, analysis and planning are performed using
monitoring and knowledge data, so that changes that need to
be enforced as actions are determined. The Imperative API is
used to enforce such actions across infrastructure resources
and involves Execute only.

B. AMP COMPONENTS AND FUNCTIONALITIES
We now present the platformMAPE-K components and their
functionalities through UML class diagrams. We do not show
class methods or attributes, but we do discuss some of their
functionalities.

1) KNOWLEDGE
Central to the architecture, Knowledge contains a pool of data
that the rest of the components rely on. In Figure 3, we present
the UML class diagram for Knowledge.

TheData class receives input from theMonitor component
to store pertinent real-time monitoring data that can be
consumed by the rest of the MAPE-K components. The
monitoring data includes events of interest and processed
telemetry data, specific to the enforced monitoring policies.
To prevent exhausting storage resources, retention policies
are used to specify the data retention period. The UML
classes State and Resource use the Data class for updates.
Resource models all the assets and services that are available
for consumption, both virtual and physical, e.g. network,
compute, storage. These resources are represented through
the Network Model, Compute Model and Storage Model
classes. These classes store processed data in their respec-
tive repositories. The resource model can be extended to
include other resources considering policies of various roles,
which we leave for future work. Policies maintains policy
repositories for the intent refinement process (declarative,
definitive, imperative). We consider Knowledge to hold
both traditional content (e.g. repositories for real-time and
historical monitoring data, policy repositories, topology
data), as well as custom content and classes as described next.

In order to benefit from powerful and expressive APIs
that invoke each component, we extended Knowledge to
include the following content: the MAPE-K components,
their classes, semantics that define properties and relations
(e.g. data and object properties, axioms), state repository
(records of optimal states). We allow exposing the APIs
through our Knowledge component. In this manner, the APIs
can be used to perform the necessary tasks and to adhere to
the self-x properties.

2) MONITOR
This component gathers real-time monitoring data from
infrastructure sensors. Based on the type of resource, there
could be more than one sensor deployed. The collected data
is processed (e.g. normalized, aggregated), and stored in
Knowledge.

159890 VOLUME 9, 2021

K. Dzeparoska et al.: Towards Self-Driving Management System for Automated Realization of Intents

FIGURE 4. UML class diagram for the Monitor component of the AMP.

FIGURE 5. UML class diagram for the Analyze component of the AMP.

Figure 4 shows the UML class diagram forMonitor which
uses data (e.g. Policies from Knowledge) for the Notify class
to determine and notify about changes in resource state and
events of interest. Often these notifications need to be shared
with Analyze, however the manner in which this occurs
depends on the application logic.

To enable data collection, based on Resource Type, a
Data Schedule is created and used by the Sensor class.
The Data Schedule contains data collection metrics that
define the required processing on the collected data which
is completed by the Data Processing class. Figure 4 shows
the processing classes, e.g. normalize, aggregate. The output
from Data Processing creates Data, which is stored in
Knowledge, whereas Notify can use this monitoring data
directly. If a new type of monitoring data needs to be
collected for which sensors have not been configured
yet, then, imperative policies for sensor configuration are
enforced through Execute, followed by definitive policies
that are enforced by Monitor, so that the new data collection
can begin.

3) ANALYZE
This component enables several types of analysis to support
intent transformation and policy decomposition. Analyze
can be invoked by different inputs to support different

types of analysis as shown in Figure 5, for example:
1) Intent transformation and conflict detection, 2) Validation
of declarative policies, 3) State analysis, 4) Notification
analysis. In general, the output from Analyze contains
relevant Analyze Data (e.g. ordered violations) which is used
by Plan.

When an intent is provided as input to Analyze, the output
is a declarative policy. The transformation occurs through
several steps, and user feedback may be requested in some
steps. Our goal is to eventually have the system minimize
human intervention. As shown in Figure 5, the Transform
Intent class starts the analysis of an intent. Natural Language
Processing is used to parse and map the intent to domain-
specific language through the NLP class which makes use of
the Vocabulary class. Vocabularies are typically created per
application and are available within Knowledge to be used by
applications. The Sanity Check class in conjunction with the
Data Mapping and Conflict Detection classes, help to verify
and transform the intent through the following steps:

• Authentication and Authorization is required at the
user, application, API and platform level to verify
privileges for the resource requesting the service.

• Intent to Policy Mapping enables the transformation.
The Sanity Check class is used to verify the format, e.g.
if values are within the allowed range. If input values

VOLUME 9, 2021 159891

K. Dzeparoska et al.: Towards Self-Driving Management System for Automated Realization of Intents

FIGURE 6. UML class diagram for the Plan component of the AMP.

are missing for mandatory attributes, or are invalid, user
feedback is requested. The intent is processed with NLP
using the Vocabulary class which requires access to
adequate vocabularies. The Data Mapping class is used
to map the output from NLP to a data model.1

• Conflict Detection is used to verify if a declarative
policy is in conflict with existing ones. If a conflict
is detected, Plan needs to be invoked to determine
possible conflict resolutions. Based on the conflict type,
it can either be solved automatically, or suggestions are
presented to the user. The Conflict Detection class is
not limited to declarative policies, and can be used for
any conflict detection required at any layer of policy
abstraction.

Upon completion of the above steps, the intent is
transformed to one or more declarative policies, that need
to be further decomposed to definitive policies. Optionally,
declarative policies can be communicated to the user to
ensure user’s intent is captured. A declarative policy is further
analyzed, so that one or more definitive policies are gener-
ated, each to perform a specific step of the analysis. Some
policies could be defined as goal or utility types of policies,
as discussed in II-A. Definitive policies can result with
diverse resource analysis, e.g. routing and forwarding tables,
traffic demands, resource status (e.g. health, utilization),
policy violations and conflicts, permissions and restrictions,
business objectives, risk and failure assessments (e.g. Shared
Risk Resource Groups). For the above,Analyze uses available
content from Knowledge, e.g. traffic demand data, topology
data, policy repositories, resource status, virtual network
functions. Through definitive policies, Analyze can perform
analysis to determine the current or future state of the system
and resources with respect to the policy requirements.

We briefly describe some of the other types of analysis:
The Validate class can be used to process a new declarative
policy, or to examine the status of existing intents through
their respective policies. Both scenarios are completed by
establishing the Policy Status using Observe under a specific
State. The policy status is a logical value that specifies

1An information model is presented in Section IV.

whether a policy is enforced or not. If policy status returns
‘‘False’’, it indicates that the policy is not enforced (e.g. it has
been deactivated, or as a result of some policy violation). The
Monitor component can determine events of interest to assist
Analyze as described before. Such information is provided to
the Notification class for further analysis and correlation to
detect possible policy violations. The Detect Violations class
is used to check for policy violations.

4) PLAN
This component receives a definitive policy and uses
Knowledge data, where the Analyze Data is available. Plan
should determine an optimal solution that minimally affects
the other policies. Plan follows a similar process as Analyze,
in that it processes one or more definitive policies. Plan can
determine possible solutions, and provide conflict resolution.
The Optimize class is used to review the solutions, and where
possible, it can perform different optimizations. The output
from Plan contains the identified solution as part of the
Plan Data, which is to be used by Execute to enforce the
solution.

In Figure 6, we show the UML diagram for Plan. Plan
uses Knowledge data to reason about possible strategies.
The Strategy class is used to invoke the necessary planning
classes (e.g. Traffic, Network or System Engineering). Traffic
Engineering is mainly used for finding optimal network paths
for services, or optimal network resource utilization. ThePath
Computation Engine (PCE) class is used to find such paths,
and it can account for different protocols and services (e.g.
QoS, VPN, VNF). For the above,PCE uses the networkmodel
(available from Knowledge, as shown in Figure 3) through
the Resource class in Figure 6. The Network Engineering and
System Engineering classes are used to explore options such
as resource or capacity planning. To accomplish this, they
consider all the available resources, both virtual and physical.
These resources are available within Knowledge as shown in
Figure 3 under theResource class which includes theNetwork
Model, Compute Model and Storage Model. As an example,
the Virtual class can use the Network Function Virtualization
and VNF chaining classes.

159892 VOLUME 9, 2021

K. Dzeparoska et al.: Towards Self-Driving Management System for Automated Realization of Intents

FIGURE 7. Mapping of the general IETF/DMTF PBM framework to our
policy framework for autonomic management.

Based on the discussed strategies, possible solutions
identified through any of the engineering classes can be
provided to Optimize. Lastly, Reason is used to review the
possible solutions, and Conflict Resolution is used to resolve
any identified conflicts from Analyze. The output (Plan Data)
can then be used as input to Execute.

5) EXECUTE
This component receives a definitive policy and uses Knowl-
edge data where the Plan Data is available. Accordingly,
Execute decomposes the received definitive policy to one or
more imperative policies. The imperative policies are often
represented as an action type of policy with details for device-
specific configurations. These action policies are instantiated
on the applicable resources.

Each ECA policy that Execute generates is a single
transaction. However, this transaction is in fact a consolidated
set of actions. A transaction is successful, only if the complete
set of actions are successfully executed. A transaction is
unsuccessful, if any action from the set of actions fails,
in which case we must revert the changes.

6) MAPPING OF OUR FRAMEWORK FOR AUTONOMIC
MANAGEMENT TO THE PBM FRAMEWORK
Our proposal can be mapped to the general PBM framework
requirements identified in the PBM literature (e.g. [9], [91],
[92]). Figure 7 shows the mapping between the traditional
IETF/DMTF PBM framework and our proposal. For each
MAPE-K component, we specify in braces the general appli-
cable PBM component: Monitor {event monitoring system,
Policy Enforcement Point (PEP)}, Analyze and Plan {Policy
Decision Point (PDP), policy analysis, PEP}, Execute {PEP,
policy deployment model, enforcement agents} and Knowl-
edge {policy repository (PR), Management Information Base
(MIB)}.

The Policy Enforcement Point (PEP) needs to be present in
each of the MAPE components, as each enforces policies at
different levels of policy abstraction. For example, Execute
as a PEP enforces imperative policies, while Monitor
and Plan enforce definitive policies, and Analyze enforces
declarative and definitive policies. The policy console and
policy management tool (PMT) framework requirements
correspond to the applications in our proposal.

C. GENERIC INTENT REFINEMENT WORKFLOW
Algorithm 1 describes the generic workflow for an applica-
tion to establish a MAPE-K loop to refine intents. There can
be multiple active applications at a given time. This implies

that multiple loops can co-exist with some running more
frequently, each having the goal of finding mitigation
strategies to reinforce their existing intents. For example,
applications could support fast loops, where new intents may
not be immediately included in the policies that are enforced
at that time. On the other hand, applications can support
slow loops that receive new intents within the loop and
that try to enforce both existing and new intents with some
overall optimization goal in mind. For instance, a service
provider may wish to enforce all intents (both existing and
new) while maximizing the network throughput in a loop
that runs, for example, every eight hours. The inputs to the
algorithm typically involve an intent or a list of intents,
a policy model (described in section IV), a resource model,
and all the available AMS resources (e.g. network, compute,
storage). The algorithm results in a set of policies generated
as a result of a single intent. The output typically includes
actions (i.e. action policies) that are actuated on the resources.

Algorithm 1: Generic Intent Refinement Algorithm
input : {intentList} – list of intents
input : policyModel – models the policy at various layers of

abstraction.
input : resourceModel – network, compute, storage
input : resources – network, compute, storage
output : {actions}

1 Receive {intentList}. Transform {intentList} to declarativePolicies
using policyModel. Perform integrity and consistency analysis on
declarativePolicies;

2 Monitor resources: topology, flow tables, demands, resource utilization
are read from resources and updated in the resourceModel;

3 Analyze resourceModel to determine if declarativePolicies are
enforced. If {violatedPolicies} are detected, generate a policy using
policyModel to pass {violatedPolicies} to 4;

4 Plan resolutions by reasoning and learning over resourceModel,
PolicyModel, and {violatedPolicies} to find {actions} to mitigate
{violatedPolicies}. Report {violatedPolicies} & {actions} to user for
authorization (optional); if authorised, generate a policy using
policyModel to send possibly modified {actions} to 5;

5 Execute {actions} on resources;
6 Generate policies using policyModel to monitor newly enforced

policies. Go to 2.

In Algorithm 1 first intents are received by the application,
where they are transformed into a set of declarative policies
(line 1). Integrity and consistency analysis is performed
next on declarative policies (as explained in Section IV).
Monitoring data is collected at regular intervals from the
resources and is used to update the resource model stored
in Knowledge (line 2). Any of the MAPE-K components
can receive real-time data from Monitor or use data from
Knowledge.

The resource model and policy model are analyzed (line 3)
to determine if all declarative policies are enforced, and to
identify if any policies are violated. Analyze decomposes a
declarative policy to a set of definitive policies to perform
the necessary analysis. Based on the analysis outcome (e.g.
violated policies) relevant data is passed to Plan in the form
of a definitive policy generated using the policy model. Plan
reasons about different solutions (line 4) in accordance with

VOLUME 9, 2021 159893

K. Dzeparoska et al.: Towards Self-Driving Management System for Automated Realization of Intents

the definitive policies it receives from Analyze. Alternatively,
the solutions can be confirmed with the user before they are
sent to Execute for execution.

The definitive policies that mandate some actions to be
enforced are passed to Execute (line 5). Accordingly, Execute
may generate one or more imperative policies to enforce
the necessary actions. Further, in Execute, some policies are
generated to install new sensors to monitor data related to
the new enforced policies. Then the application generates
monitoring policies targeting Monitor to monitor the new
policies (line 6). Once the algorithm reaches the last step
(line 6), it loops back to line 2.
In this section, we addressed part of the objectives we

defined in Section I for our Autonomic Management System.
In doing so, we have enabled the following:
• support for user intents and their refinement: intelligent
and automated intent to policy conversion; intent
assurance using control loops.

• three-tiered architecture with separation between appli-
cations and platform components, policy abstraction and
corresponding API classes.

• support for new services by extending or adding new
logics as guidance to the system.

Next, we address the policymodel, and the hierarchical policy
representation objectives for our AMS.

IV. POLICY MODEL
Information models are required to formalize the policies to
be analyzed by the system. There are two main requirements
from our autonomic management system to be addressed
by a policy model. First, the policy model should facilitate
mapping from one layer to another leading to strong
synchronization and consistencies among various policies,
especially at run-time [50]. Hence, we require a unified
policy model that models policies across various layers
of abstraction within our management system. Second, the
model should be flexible enough to represent various types
of policies that can be involved in the refinement of an
intent including utility and goal policies, in addition to action
policies.

In order to define a policy model that is oblivious to the
level of abstraction and policy type, we define policy as an
action that is constrained with respect to resource, spatial, and
temporal attributes to achieve a desirable state. The actions
and constraints can be atomic or non-atomic depending on
the level of abstraction. In the non-atomic case, the action
and constraints are further decomposed into other actions and
constraints at lower abstraction levels.
Hence, based on above definition, we formally define
Policy

−→
P as:

−→
P = (D,E,A,

−→
C). (1)

where D denotes the policy definer that defines the policy,
E is an entity or a group of entities that enforce the policy,
and A is an action.

−→
C is a vector of constraints that apply to

actionA in terms of the resources,2 location, and time, defined
as:

−→
C = (

−→
R ,
−→
T ,
−→
S). (2)

Here
−→
R is a vector of tuples consisting of resources (ri)

and their metrics (−→mi) defined as:
−→
R = ((r0,

−→m0), . . . , (rK ,−→mK)). (3)

We emphasize that in our policy definition, the term
resource is used to express and generalize any entity that can
be consumed by another entity. An entity is something that
exists separately from other things and has a distinct identity
of its own. For example, entity can be a human, application,
software or hardware component, etc. In particular, in this
work we consider policies as resources. In this context the
term ‘‘resource’’ is appliedmore broadly and therefore it does
not solely refer to the conventional use of the term ‘‘resource’’
(e.g., a network resource such as capacity), which may be
limited or scarce. If we refer explicitly to network resources,
the term ‘‘network resource’’ will be used.

For each ri,
−→mi is a vector of metrics defined as:
−→mi = (mi0, . . . ,miL). (4)

We define legal operations for each metric, mij, per each
resource ri. For example for the resource Link, we define
following operations for the metric Utilization: {max, min,
sum, subtract, percentile, average, >, <, =, 6=}.

Resource ri can take any of the following forms:
• Simple: there are a number of metrics associated with ri
where mij is not a resource itself, for 0 ≤ j ≤ L.

• Nested: Resource ri includes another resource rj as one
of its metrics and this inclusion can go on recursively, for
0 ≤ j ≤ L. The state of the outer resource is dependent
on the state of the inner resource. For instance, interface
I , which itself is a resource, is modeled as an ingress
or egress interface of Link L. If the metric State of I is
down, so is the state of L.

• Compound: Resource ri is composed of multiple
resources where the relationship between the resources
is defined by the legal operations of their metrics. For
instance, ri can be defined as the average link utilization
of links L1 and L2.

−→
T is a vector of temporal attributes related to time such as
date, interval, duration etc.:

−→
T = (−→t0 , . . . ,

−→tK). (5)

For each ri,
−→ti is a vector of temporal attributes defined as:

−→ti = (ti0, . . . , tiM). (6)
−→
S is a vector of spatial attributes related to location such as
IP address, ID, geographical address, etc.:

−→
S = (−→s0 , . . . ,−→sK) (7)

2Throughout the rest of this paper the term ‘‘resource’’ will be used in the
context of the proposed policy model.

159894 VOLUME 9, 2021

K. Dzeparoska et al.: Towards Self-Driving Management System for Automated Realization of Intents

For each ri,
−→si is a vector of spatial attributes defined as:

−→si = (si0, . . . , siN). (8)

for ∀i, j,K ,L,M ,N ∈N in equations 3−8.
A policy

−→
P may be composed of multiple policies, denoted

by
−→
P =
−→
P1�
−→
P2 · · ·�

−→
PS where by definition

−→
P is enforced

if
−→
Pj is enforced, for 1 ≤ j ≤ S, S ∈ N. The order of

composition defines the proper order of enforcement. For
instance, for

−→
P to be enforced,

−→
P1 needs to be enforced

before
−→
P2 and so on. We define policy

−→
P1 nested if

−→
P1

is constrained on another policy,
−→
P2 (i.e,

−→
P2 as a resource

constraint to
−→
P1); this means that

−→
P1 will be enforced if

−→
P2

has been already enforced.
For policy

−→
P , we define policy meta-data as:
−−→
PMD = (ID,DM ,EX ,PR,AP) (9)

where ID is the policy identifier, DM defines the domain
where

−→
P is enforced, EX is the expiration date of

−→
P , PR

defines the priority of
−→
P , andAP is the autonomic permission

that determines if the policy definer wishes to confirm the
actionable policies to enforce

−→
P .

Modeling Event:Next we explain how the proposed model
captures events. Events can bemodeled as composite data that
is composed based on evaluation of one or more conditions
or as primitive data [10].
Definition 1: Let ev be an event that happens if Condition

c is satisfied.
Strictly speaking, in order to check if an event has happened,
one needs to perform an action (i.e., analyze) to see if
a condition is true. Hence, we model the event ev with
Policy

−→
P , action analyze, and the constraint c as defined

in Equation 2. Assume we are interested to model the event
linkfailure of Link l with State s. We define Policy

−→
P as:

−→
P = (d, e, analyze, (((l, (s))))) (10)

following Equation 1 where d is a policy definer, e is the
entity that enforces the policy (i.e, an analyzer), analyze is
the action and l is a resource with the metric s. The temporal
attribute is not given which is implicitly defined as always
and there is no spatial attribute. So Event ev happens if

−→
P is

enforced (i.e, if the result of analysis is true.)
If the event is received as primitive data, then we model

the event as a resource (ri) in the policy definition. The
metrics of the event can include event type, event location
and event time. For example, link failure of Link l is modeled
as resource r1 with metric (−→m1) given in Equation 11 where
linkFailure is the type of the event, l is the location where the
event happens and t is the time of the event.

−→m1 = (ev, (linkFailure, l, t)) (11)

In general we model an ECA policy
−→
P by evaluating

events and conditions following Equation 10 and the resulting
policies are passed as nested policies to

−→
P . For example,

consider an ECA policy defined as P1 = ‘‘on congestion,

if packet drop> 5%, load-balance’’. To evaluate the event we
use policy

−→
P2 = (d, e, analyze, (((l, (utilization > 85%))))),

where utilization of link l > 85% is what is defined as
congestion. To evaluate the condition we use policy

−→
P3 =

(d, e, analyze, (((l, (packet_loss > 5%))))). Then,
−→
P1 can be

represented as a nested policy that is constrained on policies
−→
P2 and

−→
P3:
−→
P1 = (d, e, load − balance, ((

−→
P2,
−→
P3))) (12)

In Equation 12, d is the policy definer, e is the enforcer,
load-balance is the action, and the constraint includes
policies

−→
P2 and

−→
P3 . Unlike existing models that model only

ECA policies which limits their applicability to support
futuremanagement scenarios, ourmodel represents non-ECA
policies as well.We provide an example in Section V, to show
how we model a utility policy. Our unified model ensures
the consistency of the policies deployed across the system
and provides the foundation for powerful policy analysis
processes as described next.

A. INTEGRITY AND CONSISTENCY ANALYSIS (ICA)
In the proposed autonomic management system, Integrity
and Consistency Analysis (ICA) is performed to ensure data
quality of policies. Initial ICA is performed when intents are
being transformed to declarative policies. First, the intents
are formalized and checked against the corresponding data
models to see if any value is missing or wrongly entered using
the sanity check. This ensures the integrity of policies. Then
the new declarative policies are analyzed to ensure they are
consistent with the existing ones.

In a shared environment such as a network, policies are
correlated. There may be overlaps between policies where a
policy is already covered by another policy or one policy is in
conflict with other policies either fully or partially. Given our
formal definition of policy, we define following relationships
between policies

−→
Pi and

−→
Pj to detect inconsistencies:

1)
−→
Pi ⊆

−→
Pj :
−→
Pi is a subset of

−→
Pj if both specify the same

action, and constraints of
−→
Pi is a subset of constraints

of
−→
Pj , i.e., Ai = Aj,

−→
Ri ⊆

−→
Rj ,
−→
Ti ⊆

−→
Tj and

−→
Si ⊆

−→
Sj ,

where
−→
Ri ⊆

−→
Rj means ∀ru ∈

−→
Ri , ru ∈

−→
Rj ,
−→
Ti ⊆

−→
Tj

means ∀tu ∈
−→
Ti , tu ∈

−→
Tj and

−→
Si ⊆

−→
Sj means

∀su ∈
−→
Si , su ∈

−→
Sj .

2)
−→
Pi⊥
−→
Pj :
−→
Pi is in conflict with

−→
Pj if they cannot be

enforced for the same set of constraints. In this case,
their actions are orthogonal (i.e., they cannot happen at
the same time) and the constraints of one policy is a
subset of another policy’s constraints. In other words,
Ai⊥Aj,

−→
Ri ⊆

−→
Rj ,
−→
Ti ⊆

−→
Tj ,
−→
Si ⊆

−→
Sj where Ai⊥Aj

means action Ai is orthogonal to action Aj.
Based on above definitions, in consistency analysis,

we check for the following cases:

• Redundancy: Policy
−→
Pi is redundant to policy

−→
Pj ,

if
−→
Pi ⊆

−→
Pj . For instance, the declarative policy

corresponding to intent 1 is redundant to that of

VOLUME 9, 2021 159895

K. Dzeparoska et al.: Towards Self-Driving Management System for Automated Realization of Intents

intent 2 in the following example where bigger priority
number means higher priority:
1) Allow http traffic between host pair (A, B) using

priority 100.
2) Allow http and FTP traffic in the network using

priority 200.
• Partial Redundancy: Policy

−→
Pi is partially redundant to

policy
−→
Pj , if the actions are the same for the same subset

of constraints, i.e., Ai = Aj,
−→
Ri ⊆

−→
Rj ,
−→
Ti ⊆

−→
Tj and

−→
Si ∩
−→
Sj 6= ∅, where

−→
Si ∩
−→
Sj 6= ∅ means ∃su ∈

−→
Si and

−→
Sj . For example, the declarative policies corresponding
to the following intents are partially redundant:
1) Allow http traffic between host pairs (A, B) and

(C, D) using priority 100.
2) Allow http and FTP traffic between host pairs

(A, B) and (E, F) using priority 200.
• Conflict: conflict occurs if

−→
Pi⊥
−→
Pj . For example, the

declarative policies corresponding to the following
intents are in conflict with each other.
1) Allow http traffic between host pairs (A, B) using

priority 100.
2) Drop http and FTP traffic in the network using

priority 200.
• Partial Conflict: Policy

−→
Pi is partially in conflict with

policy
−→
Pj , if their actions are orthogonal for a number of

common constraint attributes, i.e, Ai⊥Aj, (
−→
Ri ∪

−→
Rj) >

(
−→
Ri ∩

−→
Rj) 6= ∅, (

−→
Ti ∪

−→
Tj) > (

−→
Ti ∩

−→
Tj) 6= ∅, (

−→
Si ∪

−→
Sj) > (

−→
Si ∩
−→
Sj) 6= ∅ where (

−→
Ri ∪
−→
Rj) means (ri, rj),

ri ∈ Ri and rj ∈ Rj. For example, the declarative policies
corresponding to the following intents are partially in
conflict with each other:
1) Allow http traffic between host pairs (A, B), (C, D)

using priority 100.
2) Drop http and FTP traffic between host pairs (A,

B), (E, F) using priority 200.
We resolve the above situations with the following

resolutions:
• Redundancy: if Policy

−→
Pi is redundant to policy

−→
Pj ,

only
−→
Pj will be enforced.

• Partial Redundancy: if Policy
−→
Pi is partially redundant

to policy
−→
Pj , we derive a new policy,

−→
Pk , that includes

all the spatial constraints within both policies, where
−→
Rk =

−→
Rj ,
−→
Tk =

−→
Tj ,
−→
Sk =

−→
Si ∪
−→
Sj and enforce

−→
Pk .

• Conflict: if Policy
−→
Pi is in conflict with policy

−→
Pj ,

constraints of
−→
Pi are subset of constraints of

−→
Pj , and

priority of
−→
Pi is lower than

−→
Pj , then

−→
Pj will be enforced.

Otherwise, we break
−→
Pj into two policies where in one

policy, we modify the spatial attributes of
−→
Pj to exclude

the common spatial attributes with
−→
Pi . In another policy,

we enforce
−→
Pj for the common spatial attributes at

times excluding the temporal attributes of
−→
Pi . So

−→
Pj

will be updated as
−→
Pj = (Aj, (

−→
Rj), (
−→
Tj), (
−→
Sj −

−→
Si)) �

FIGURE 8. Generated policies from the refinement of intent using the
three API classes.

(Aj, (
−→
Rj), (
−→
Tj −

−→
Ti), (
−→
Si)) and will be enforced along

with
−→
Pi .

• Partial Conflict: if policy
−→
Pi is partially in conflict with

policy Pj and priority of
−→
Pi is less than

−→
Pj , we update

−→
Pi

as
−→
Pi = (Ai,Ri−(

−→
Ri ∩
−→
Rj),Ti−(

−→
Ti ∩
−→
Tj), Si−(

−→
Si ∩
−→
Sj))

and enforce
−→
Pi and

−→
Pj .

B. POLICY TREE
Figure 8 depicts how an intent, Ii, is transformed and
decomposed to multiple policies across the API classes. First
the intent is transformed to one or more declarative policies
formalized by Equation 1. Then each declarative policy is
further decomposed to multiple definitive policies. Definitive
policies may decompose to other definitive policies or to
imperative policies, data models of which follow Equation 1.
Since we utilize a unified policy model across abstraction
layers, the mapping between policy abstraction types is per-
formed easily which ensures consistency and synchronization
among policies at various layers of abstraction. Also, the
unified policy model greatly helps to manage interactions
and contentions among policies of various roles such as QoS,
security, fault management etc.

Based on the processing model in Figure 8, we define
Policy Tree (PT) as a tree that includes the policies generated
from the refinement of an intent. The root of the tree is the
intent and the pre-order traversal (root-left-middle-right) of
the tree shows the sequence in which policies are enforced.
The sequence of policy enforcement follows the generic
workflow presented in Section III-C.

In PT , starting from an intent, a declarative policy will
be generated. It is worth mentioning that in our data
model for declarative policies, the actions include high
level actions within network and service management. For
example, Connect is one of the high level actions at the
declarative layer that represents connectivity, characteristics
of which (i.e, QoS, type, etc.) are defined using the constraint
attributes. Other examples of high level actions used in
declarative policies are Maximize and Minimize. These are
usually used to form utility policies that optimize network

159896 VOLUME 9, 2021

K. Dzeparoska et al.: Towards Self-Driving Management System for Automated Realization of Intents

FIGURE 9. Initial link utilization state. The use-case topology includes a core network with connections to edge nodes. Core nodes are denoted by CRi
(1 ≤ i ≤ 6), and edge nodes are denoted by ERj (1 ≤ j ≤ 5) and ER2−1. Each link shows the utilization percentage (ingress and egress), computed based
on traffic and link capacity. The link utilization results from 6 demands that are passing through the network, the details of which are given in Table 4.

FIGURE 10. Post increase link utilization state. After demand traffic increases (presented in Table 4), two violations are detected for the intent I7: 1) core
link utilization violation (CR4 − CR5 > 70%) and 2) edge link utilization violation (CR5 − ER4 > 45%).

resources characterized by a set of constraints (i.e., what,
where, and when to optimize.)

In the definitive layer, the declarative policy is further
decomposed to more definitive policies. More specifically,
the declarative policy will generate a main definitive policy
targetingMonitor which then branches out to more definitive
policies for Monitor. Similarly, the declarative policy will
generate a main definitive policy targeting Analyze which
then branches out to more definitive policies for Analyze.
Based on the results from Analyze branch, a definitive policy
will target Plan. This main definitive policy from Plan
branches out to more definitive policies for Plan, and the
same goes for Execute. Consequently, the definitive policies
targeting Execute are then decomposed to imperative policies
that are enforced on the resources. In the next section,
we provide a use-case to demonstrate the intent refinement
and the resulting policy tree.

V. USE-CASE
In this section, we present a proof of concept for intent refine-
ment. We have implemented our proposal to demonstrate the
policies and resulting policy tree, that are generated with
the refinement of an intent. The use-case involves a Service
Provider network, but other use-cases can be considered as
well (e.g. enterprise networks). We proceed with an overview
of the use-case organization and environment, followed by
a detailed description of the intent refinement, that goes
through the policy generation process, and ends with the
results of the intent deployment in a simulated network
environment. We conclude the section with a brief discussion
on system generalization and performance considerations.

In section III-C, we presented a generic intent refinement
workflow. Both the applications and the platform can have
workflows of their own to provide specific functionalities.
Each workflow essentially represents a set of sequenced jobs

VOLUME 9, 2021 159897

K. Dzeparoska et al.: Towards Self-Driving Management System for Automated Realization of Intents

that generate and enforce policies following some decision
process. In this use-case, we consider an application (App1)
for refinement of new intents. The application contains the
logic of the MAPE (Algorithm 2) and, when required, the
application invokes the M, A, P, and E from the platform.
To do this, the applicationMAPE components makeAPI calls
to the platform, and use the functionalities available from the
platform MAPE components (Algorithms 3-6). For example,
the application Monitor component makes an API call to the
platformMonitor workflow. This workflow returns the results
back to the application for review and to determine the next
job. We note that each of the presented platform workflows
are internal to a specific MAPE component. Please note
that for clarity, policies related to each MAPE-K component
are given a prefix with the name of the component (e.g.,
analyzePolicyStatus, analyzeValidate etc.)
Environment and Setup: We use the Cisco WAN

Automation Engine (WAE) Design simulator [93] to create
a network topology for the use-case. The topology (shown
in Figure 9) was extracted from a portion of a real service
provider backbone network, where aggregated (elephant)
traffic flows are passed through a network of six core and six
edge nodes. The topology, as well as the network traffic, were
generated in Cisco WAE Design. In WAE Design, a traffic
flow is defined by a traffic demand that contains at least a
source and destination pair, and traffic volume. We defined
six demands, to generate the network traffic for the use-
case, as well as a set of Segment Routing Label-Switched
Paths (SR LSPs) to route the traffic related to the demands.
WAE allows for adjustments to the traffic volume in order to
simulate different traffic conditions, and investigate possible
routing scenarios (that could be computed for example, using
available, built-in WAE network optimizations). In our use-
case, we show the refinement of a network optimization
intent with a focus on the policy generation part. As for
computing the optimization, we use one of the built-in WAE
optimization functions. Last, from WAE, the topology and
network metrics are also made available to the workflows.
For example, link utilization is one of the metrics that we use,
and WAE calculates this metric by using two other metrics:
link capacity and traffic volume per link.

For the use-case, we consider three states in terms of link
utilization: initial (Figure 9), post traffic increase (Figure 10),
and post optimization (Figure 12). In Table 3, we present link
capacity and link utilization, and in Table 4, we present details
for the six demands.

Use-case:We rely on MPLS-based Segment Routing (SR)
to route traffic via SRLSPs. In SR, a Segment Identifier (SID)
is used to identify a segment. In MPLS-based SR, each
segment is encoded as an MPLS label, and an ordered list
of segments is encoded as a stack of labels. Similar to MPLS
operations, the segment on top of the stack is processed and
the related label is popped from the stack [94]. There are
different types of SIDs that serve different purposes (e.g.
prefix-SID, node-SID, adj-SID, anycast-SID, binding-SID).
We use adjacency segment identifiers (adj-SID) to create the

TABLE 3. Link capacity and utilization for pertinent links.

Algorithm 2: Application Logic (Refine Workflow)
inputs : intent_list=[I7], D: definer (D = app1)
outputs : pt: policy tree, Pd : declarative policy, (M1,A1,Pl1,E1):

MAPE platform instances, MAPEout = (oM ,oA,oP,oE):
outcome from Monitor, Analyze, Plan, Execute

1 for each intent ∈ intent_list do
2 if existing_intent(intent) then
3 outcome← validate_intent(intent)

4 else
5 outcome← refine_intent(intent)

6 // Update knowledge with outcome

7 def refine_intent(intent):
8 // Create Policy Tree for each new intent:
9 pt = nx.DiGraph()
10 // Generate & Enforce P7−0 to transform intent to P7:
11 T1 = Transform(‘intent’, intent, pt)
12 policy, pt← generate(D, T1, ‘analyzeTransform’, intent, pt)
13 Pd ← policy[‘Action’](policy)
14 // Generate & Enforce P7−1 to get monitoring data for P7:
15 M1 = Monitor(‘declarative’, Pd , pt)
16 policy, pt← generate(D, M1, ‘monitor’, Pd , pt)
17 oM ← policy[‘Action’](policy)
18 // Generate & Enforce P7−3 to analyze P7:
19 A1 = Analyze(‘declarative’, Pd , pt)
20 policy, pt← generate(D, A1, ‘analyze’, Pd , pt)
21 oA = policy[‘Action’](policy)
22 if oA then
23 return (True, oA, pt)

24 else
25 // Generate & Enforce P7−6 to plan P7:
26 Pl1 = Plan(‘declarative’, Pd , pt)
27 policy, pt← generate(D, Pl1, ‘plan’, Pd , pt)
28 oP← policy[‘Action’](policy)
29 if oP then
30 // Generate & Enforce P7−9 to deploy intent:
31 E1 = Execute(‘declarative’, Pd , pt)
32 policy, pt← generate(D, E1, ‘execute’, Pd , pt)
33 oE ← policy[‘Action’](policy)
34 if oE then
35 return (True, MAPEout , pt)

36 else
37 return (oE)

38 end if

39 else
40 return (oP)

41 end if

42 end if

SR LSPs. An adj-SID is defined per node interface as a local
label that points to a specific interface. An SR LSP may have

159898 VOLUME 9, 2021

K. Dzeparoska et al.: Towards Self-Driving Management System for Automated Realization of Intents

TABLE 4. Demand details and LSP information. Demands D2 and D3 have traffic increase. The active LSP Paths are shown for each demand before the
refinement of the intent I7. The refinement of I7 resolves the network violations through a path change for demand D3.

several path options, among which the highest priority and
active one is used.
I7 is transformed to a declarative policy P7 using a

definitive policy P7−0 that is generated and enforced in
Algorithm 2, lines 11-13. The definitive action for P7−0
(analyzeTransform) executes the transform platform work-
flow (Algorithm 3) from the Analyze platform component.
The workflow uses NLP-related methods and vocabularies3

to translate the intent and generate policy P7. Vocabulary
samples are given in Algorithm 3, lines 15-18.

In our use-case, we assume there are 6 existing intents that
specify some application supported services. These services
result in demands passing through the network via SR LSPs.
Details for the demands (such as delay sensitive (DS) or
delay tolerant (DT)) and the LSPs are provided in Table 4.
We suppose that a user (Admin1) submits a new intent (I7)
to App1 defined as: ‘‘Minimizing maximum link utilization
subject to EDGE links having upstream bound of 45% and
CORE links upper bound of 70% utilization’’. During the
refinement of I7, we consider the resulting policies (P1-P6)
from the 6 existing intents. The initial network traffic
resulting from the demands does not violate I7, so we
purposefully increase traffic for two demands (D2, D3) to
demonstrate the response to the violations as part of the intent
refinement. The data models are expressed in Table 5. The
PT is shown in Figure 11, where the policies in white nodes
are enforced at the application level and the grey ones are
enforced at the platform level. We will explain the PT by
traversing it in a pre-order manner that demonstrates the order
of policy enforcement.

The transform workflow first pre-processes the intent
through tokenization, lowercase conversion, punctuation and
stop words removal (lines 6-9). Item I from Table 6
shows the output after these methods are applied. Next, the
transformation continues using regex,4 lemmatization, and
matching word tokens with pre-defined lookup vocabularies
(lines 10 and 11). Item II from Table 6 shows the output
after these methods are applied. The declarative policy P7 is
generated by mapping the output to our policy model in
line 12. P7 (shown in Listing 1) models the intent through

3We note that application owners should ensure adequate vocabularies
exist in Knowledge, or add vocabularies as needed.

4Regular expression.

Algorithm 3: Platform Workflow (Transform)
inputs : intent, pt , vocabularies
outputs : Pd

1 Subclass Transform():
2 __init__(self, type_input, input, pt, **kwargs)
3 def analyzeTransform(self, policy):
4 if self.type_input = ‘intent’ then
5 nlp = NLP()
6 tokenized← nlp.tokenize(self.input)
7 lowercase← nlp.lowercase(tokenized)
8 no_punct← nlp.punctuation(lowercase)
9 no_stop← nlp.stopwords(no_punct)
10 processed← nlp.regex(no_stop)
11 formalized← nlp.lemmatize_and_match(processed)
12 Pd , pt← generate(D, E, A, C, pt)
13 return (Pd)

14 end if

15 // Vocabulary samples:
16 lookup = {‘minimum’:min, ‘maximum’:max}
17 regex = [(r‘(subject) ([a-zA-z]+) ([a-zA-z]+) (upstream bound)

([0-9]+)’, ‘\g<2> \g<3> < \g<5>’), (r‘(upper bound) ([0-9]+)’, ‘<
\g<2>’)]

18 policy_lookup = {‘Action’: [‘minimize’, ‘maximize’], ‘Resource’:
[‘link’, ‘node’], ‘Metric’: [‘edge’, ‘core’], ‘Utilization’:[‘<’: le]}

a main policy that is constrained on a second policy. When
a policy is constrained on other policies, the policy can be
modeled as a nested policy. To model P7 as a nested policy
we take the edge link utilization as our main policy, and the
core link utilization as our second policy (a constraint to the
main policy). In P7 the policy definer is Admin1, the enforcer
is App1, and the declarative action isMinimize constrained on
two resources, Link and the second policy.

During the refinementP7 is decomposed intomore policies
starting from a definitive policy P7−1 defined by App1 where
the definitive action is monitor, so that a Monitor (M1)
provides the monitoring data required for P7. When P7−1
is enforced, the output is returned by a platform workflow
for monitor (given in Algorithm 4). To generate the output,
the workflow first extracts the resources from the declarative
policy (in monitor method, line 5), and then determines
the required monitoring data for each resource by catego-
rizing based on the declarative policy attributes and values
(lines 6-10). In our case, the resources are links, the
declarative action is minimize (i.e. a utility one), and
the utilization metrics are not null, thus the category for

VOLUME 9, 2021 159899

K. Dzeparoska et al.: Towards Self-Driving Management System for Automated Realization of Intents

TABLE 5. Policy data models for refining the intent I7.

TABLE 6. Sample outputs from the intent to declarative policy transformation process.

Listing 1. Declarative Policy (P7).

monitoring data is link utilization. P7−1 is decomposed to
another policy P7−2 that is defined by M1 and is to be
applied by M1.1, a child of Monitor M1. Before generating
P7−2 we verify if such a policy exists within the PT,5

and if not we generate P7−2 with the definitive action as
monitorData (lines 11-17). When P7−2 is enforced in line 19,
themonitorDatamethod (line 23) is called. This method uses
the populated link utilization category and iterates over each
pair of resource and metric to collect the monitoring data
(lines 25-31). In our use-case, each resource is a link with
a metric type that is either core or edge, hence the output is a

5In general, in the workflows (platform or application) before we generate
a new policy, we check the policy tree to ensure no redundant policies are
generated and added to the tree.

FIGURE 11. Policy tree for the intent: ‘‘Minimizing maximum link
utilization subject to EDGE links having upstream bound of 45% and
CORE links upper bound of 70% utilization’’.

key-value data structure separated by metric type, where each
key is a link name and the value is the link utilization. This
result is available to the rest of the workflows.
P7 is further decomposed into policies for analysis:

App1 defines P7−3 so that an Analyzer (A1) analyzes P7.
When P7−3 is enforced, the platform workflow for analysis
is invoked (Algorithm 5), starting with the analyze method
given in line 3. As there is no specific analyze workflow
provided as input to this method, a default workflow is used.
The workflow begins by decomposing policy P7−3 to another
policy P7−4 that is defined by A1 and is to be applied by A1.1,
a child of Analyzer A1. P7−4 is generated in line 13 where the
definitive action is analyzePolicyStatuswhich is a non-atomic

159900 VOLUME 9, 2021

K. Dzeparoska et al.: Towards Self-Driving Management System for Automated Realization of Intents

Algorithm 4: Platform Workflow (Monitor)
inputs : Pd , pt , policy, U : utility lookup e.g. U=[minimize]
outputs : link_util: category for link utilization, mon_data:

monitoring data, R: policy resource = (r,m)
1 Class Monitor():
2 __init__(self, type_input, input, pt, **kwargs)
3 def monitor(self, policy):
4 self.mon_data=[]; self.link_util=[]
5 self.R← extract_resource(policy)
6 for each pair (r,m) ∈ self.R do
7 if r = link and Action ∈ U and util 6= None then
8 self.link_util.append((r,m))

9 end if

10 end for
11 if policy_exist(‘monitorData’) then
12 // if the policy exists, pnb is the policy number
13 policy← self.pt.nodes[pnb]

14 else
15 // Generate & Enforce P7−2 to get monitoring data:
16 E = Data(‘policy’, policy, self.pt)
17 policy, self.pt← generate(D, E, A, C, pt)

18 end if
19 result← policy[‘Action’](policy)
20 return (True, result)

21 Class Data():
22 __init__(self, type_input, input, pt, **kwargs)
23 def monitorData(self, policy):
24 self.data={}; self.mon_data=[];
25 if link_util then
26 for each pair (r,m) ∈ link_util Each do
27 data[r]← self.get_link_util(r,m[type])
28 self.mon_data.append((self.data))
29 reset data

30 end for

31 end if
32 return (self.mon_data)

action that decomposes to another action to verify the status of
P7. WhenP7−4 is enforced in line 15, the analyzePolicyStatus
method is invoked. Within this method we ensure a monitor
policy exists in the PT (line 23), so the necessary monitoring
data is available. The link utilization category determined
by Monitor guides the analysis workflow to the next job,
that is to validate for the link utilization policy constraint
of P7. Policy P7−4 is decomposed to another policy (P7−5)
with a definitive action analyzeValidate that is generated
and enforced through lines 29-36. P7−5 validates the link
utilization for each resource (line 48) to determine if P7 is
enforced. If so, no further action is required and the policy
status of P7 is a logical True. Otherwise, App1 will generate
and enforce policy P7−6 (Algorithm 2, lines 22-28) targeting
Planner Pl1 to plan how to resolve the violations.
Policy P7−6 is decomposed to policies P7−7 and P7−8 to

plan the network optimization. The platform plan workflow
uses Cisco WAE optimizations to resolve network violations.
When policy P7−6 is enforced, the workflow begins with the
planmethod fromAlgorithm 6, line 3. This method generates
and enforces two optimization policies (lines 6-18), one for
core (P7−7) and one for edge (P7−8) optimization. When

Algorithm 5: Platform Workflow (Analyze)
inputs : pt , R, link_util, mon_data, U , pnb: policy number from pt ,

knowledge_intent: status and ID of intent
outputs : Pd , result , knowledge_intent

1 Class Analyze():
2 __init__(self, type_input, input, pt, **kwargs)
3 def analyze(self, policy):
4 if (kwargs) then
5 result← self.initiate_workflow(self.workflow, policy)

6 else
7 if self.type_input = ‘declarative’ then
8 if policy_exist(‘analyzePolicyStatus’) then
9 policy← self.pt.nodes[pnb]

10 else
11 // Generate & Enforce P7−4 to analyze Pd :
12 E = PolicyStatus(‘policy’, policy, self.pt)
13 policy, self.pt← generate(D, E, A, C, pt)

14 end if
15 result← policy[‘Action’](policy)

16 end if

17 end if
18 // Returns False as policy status is found to be False:
19 return (False, result)

20 Subclass PolicyStatus():
21 __init__(self, type_input, input, pt, **kwargs)
22 def analyzePolicyStatus(self, policy):
23 if policy_exist(‘monitor’) then
24 self.R←self.pt.nodes[pnb][‘Enforcer’].R
25 self.mon_data←self.pt.nodes[pnb][‘Enforcer’].mon_data
26 self.link_util←self.pt.nodes[pnb][‘Enforcer’].link_util

27 end if
28 if self.link_util then
29 if policy_exist(‘analyzeValidate’) then
30 policy← self.pt.nodes[pnb]

31 else
32 // Generate & Enforce P7−5 to validate:
33 E = Validate(‘policy’, policy, self.pt)
34 policy, self.pt← generate(D, E, A, C, pt)

35 end if
36 result← policy[‘Action’](policy)

37 end if
38 // Set policy status to False or True:
39 if False ∈ result then
40 return (False, result)

41 else
42 return (True, result)

43 end if

44 Subclass Validate():
45 __init__(self, type_input, input, pt, **kwargs)
46 def analyzeValidate(self, policy):
47 if link_util then
48 result← validate_link_util(mon_data, link_util)
49 knowledge_intent[intent_id]← result[‘status’]

50 end if
51 return (knowledge_intent, result)

each policy is enforced, the planOptimize method that uses
the Cisco WAE APIs to perform available optimizations is
called. For this use-case, we use the Cisco WAE Interior
Gateway Protocol (IGP) metric optimization with parameters
that include utilization thresholds, nodes, interfaces, and

VOLUME 9, 2021 159901

K. Dzeparoska et al.: Towards Self-Driving Management System for Automated Realization of Intents

Algorithm 6: Platform Workflows (Plan, Execute)
inputs : Pd , policy, pt , R
outputs : result

1 Class Plan():
2 __init__(self, type_input, input, pt, **kwargs)
3 def plan(self, policy):
4 result = []
5 D = policy[‘Enforcer’]
6 if policy_exist(‘planOptimize’) then
7 for pol ∈ (pnb) do
8 policy← self.pt.nodes[pol]
9 result.append(policy[‘Action’](policy))

10 end for

11 else
12 // Generate & Enforce P7−7, P7−8 to optimize:
13 for each pair (r,m) ∈ self.R do
14 E = Optimize(‘policy’, policy, pt)
15 policy, pt← generate_policy(D, E, A, C, pt)
16 result.append(policy[‘Action’](policy))
17 D = policy[‘Definer’]

18 end for

19 end if
20 // If successful optimization:
21 return (True, result)

22 Class Optimize():
23 __init__(self, type_input, input, pt, **kwargs)
24 def planOptimize(self, policy):
25 result← metricOptimization(policy)
26 return (result)

27 Class Execute():
28 __init__(self, type_input, input, pt, **kwargs)
29 def execute(self, policy):
30 if policy_exist(‘executeConfigureLSP’) then
31 policy← self.pt.nodes[pnb]

32 else
33 // Generate & Enforce P7−10 to execute configuration:
34 E = ConfigureLSP(‘policy’, policy, pt)
35 policy, pt← generate_policy(D, E, A, C, pt)

36 end if
37 result← policy[‘Action’](policy)
38 // If successful configuration:
39 return (True, result)

40 Class ConfigureLSP():
41 __init__(self, type_input, input, pt, **kwargs)
42 def executeConfigureLSP(self, policy):
43 // Execute configuration workflow based on P7−10
44 if (self.result_plan) then
45 result← self.initiate_workflow(self.result_plan, policy)

46 return (result)

optimization type. Using the metric optimization we are
implicitly calculating the paths by optimizing the IS-IS
metric. The solution contains new LSP paths (for demand D3
only) that enable traffic load-sharing across two paths to edge
node ER4.
After Planner Pl1 has decided on a plan, App1 generates

a definitive policy, P7−9 that asks an Executer E1 to execute
the plan (Algorithm 2, line 33). We provide an example of
a platform execute workflow in Algorithm 6, lines 27-46.
At the platform level P7−10 is generated (lines 30-35) to
start the plan execution through E1.1, a child of Executer E1.

Policy P7−10 is an imperative policy that specifies the
configuration changes for the new LSP paths for demand D3.
In our simulated environment we are using Cisco WAE
Design to apply the optimization changes in line 45 through
a WAE workflow to which we provide as input a WAE plan
file. The plan file is aWAE network snapshot generated when
the optimizations were run during the planning stage of the
MAPE loop. The changes include updating the IGP metrics
and LSP paths for demand D3. We note that the Execute
component in practise would include some configuration
management utilities that would take the above input and
convert it into a set of configuration changes that need to
be applied at the physical device level for instance. Hence,
in a real network setting the decomposition could result
with more definitive and imperative policies: for instance,
policies for the configuration conversion, as well as policies
for the orchestration of the configuration-specific imperative
policies to deploy the resolution from the Planner. However,
the simulated setting that we are using corresponds exactly
to what would be done in a service provider or any other
operational environment.

Last, we present the results from the intent refinement.
Figure 12 shows the changes in Cisco WAE Design for the
LSP paths used by demand D3 only. The blue-colored links
represent the initial LSP path before the intent refinement,
whereas the brown arrows show the updated LSP paths once
P7 is enforced. The updated LSP paths enable equal traffic
load-sharing, from core node CR2 to edge node ER4. The
applied changes result with resolved violations in both core
and edge. In Figure 13, we show the traffic volume for
all demands, before and after the traffic volume increased
for demands D2 and D3. And, in Figure 14, we show the
impact of the intent refinement upon the link utilization:
once demands D2 and D3 increase, the intent becomes
violated as a result of the increased link utilization in edge
(CR5 − ER4 > 45%) and in core (CR4 − CR5 > 70%).
Through the refinement, the autonomic system responds by
redistributing delay tolerant demand D3, such that edge and
core network link utilization is in accordance with the intent
I7. This can also be seen from Figure 14, where after t = 10s,
the link utilization decreases for both links (CR5 − ER4 and
CR4 − CR5).
Next, we provide a brief discussion in terms of use-

case generalizability and performance, for the described
system.

A. DISCUSSION
1) USE-CASE GENERALIZABILITY
It is desirable that the system supports different use-cases.
The system can be generalized to accommodate more use-
cases by expanding on the different components, such as
vocabulary sets, sets of policies, and sets of checks and
balances in each of the M, A, P, E parts. With these
enrichments, we believe that the majority intents from a
network user would be handled.

159902 VOLUME 9, 2021

K. Dzeparoska et al.: Towards Self-Driving Management System for Automated Realization of Intents

FIGURE 12. Post optimization link utilization state. No network violations exist. The links highlighted in blue represent the initial LSP path. The links in
brown show the updated LSP paths with a 50% equal load-share from node CR2 to ER4 across two different sets of links: CR2 − CR5 − ER4 and
CR2 − CR6 − ER4.

FIGURE 13. Traffic volume for all 6 demands.

FIGURE 14. Link utilization as a result of traffic increase and the reaction
of the autonomic system in accordance with the intent. After the
configuration changes, link utilization decreases in both CR4 − CR5 and
CR5 − ER4, and increases in the remaining links.

2) PERFORMANCE
Intent-based frameworks could potentially face long delays
between the intent compilation and installation in the
network. To address this, we consider having a fast loop and
a slow loop. The fast loop enables a quick reaction to the
problem, whereas the slow loop occurs in the background and

tries to re-optimize, so we obtain the optimal solution later,
which is the time-consuming part. To create a quick response
in the fast loop, we consider having pre-defined policies that
we can execute to take actions and enable us to react fast by
deploying a temporary solution.

VI. CONCLUSION AND FUTURE WORK
We presented and implemented our proposal towards a
self-driving management system for future networks, and
demonstrated a proof of concept for the refinement of an
intent. Our proposal addresses the following elements of a
self-driving network: intent, closed-control loop, and policy-
based execution of control loops. We focused on the overall
process of intent refinement, and below we outline our
takeaways and directions that require additional attention in
future research.

The first level of intent demystification is closely coupled
with the vocabulary, and Natural Language Processing
(NLP). Additional work is required to determine: what is the
initial vocabulary set; how can we expand the vocabulary
set, and how can recent advances in ML and NLP improve
our ability to demystify intents. In addition, further work
on intent validation is needed in different parts of the intent
refinement. For example, 1) to validate the intent itself (e.g.
request, syntax, parameter values, etc.), or 2) to perform
an offline execution of the intent in order to validate the
intent deployment. The latter requires that we validate the
imperative actions in a non-production environment, such as
a network twin. Post checks can then be used to discover any
unforeseen impacts of the intent deployment prior the actual
deployment. Through validation we ensure that the intent
deployment is both correct and safe to apply in a production
environment.

A key aspect of self-driving networks is learning. In this
paper, we used a heuristic approach to define the workflows

VOLUME 9, 2021 159903

K. Dzeparoska et al.: Towards Self-Driving Management System for Automated Realization of Intents

that support the intent refinement. In future work, we plan
to explore learning strategies to support the intent refinement
and the creation of policy trees.

Last, we proposed an informationmodel that models policy
across different policy abstraction types that is capable to
model goal, utility and action policies at the same time.
However, the purpose of information models is to present
known facts and not for discovering new knowledge [42].
Autonomic management requires both the discovery of new
knowledge as well as updating the existing one. Therefore,
in order to enable autonomic policy management, we plan to
augment our proposed policy model with an ontology using
Web Ontology Language (OWL) to manage the network as
well as govern the management actions and their interactions
through inference and reasoning. Furthermore, we plan to
develop a language for autonomic management following
our proposed architecture and policy model. We intend to
use the proposed framework for various scenarios including
multi-layer resource management.

GLOSSARY OF ABBREVIATIONS
MAPE-K: Monitor-Analyze-Plan-Execute-Knowledge
AC: Autonomic computing
ECA: Event-Condition-Action
PBM: Policy-Based Management
PEP: Policy Enforcement Point
PDP: Policy Decision Point
PMT: Policy Management Tool
PR: Policy Repository
MIB: Management Information Base
IBN: Intent-Based Networking
NBI: northbound interface
AM: Autonomic Manager
API: Application Programming Interface
AMS: Autonomic Management System
AMP: Autonomic Management Platform
SD-WAN: Software-defined wide-area network
UML: Unified Modeling Language
NLP: Natural Language Processing
TE: Traffic Engineering
NE: Network Engineering
SE: System Engineering
PCE: Path Computation Engine
QoS: Quality of Service
VPN: Virtual Private Network
VNF: Virtual Network Function
NFV: Network Function Virtualization
SDN: Software-Defined Networking
P: Policy
D: Policy Definer
E : Policy Enforcer
A: Policy Action
−→
C : Policy Constraint
−→
R : Policy Resource attributes
ri: policy resource

mi: policy resource metric
−→
T : Policy Temporal attributes
−→
S : Policy Spatial attributes
−−→
PMD: Policy meta-data
ID: Policy Identifier
DM : Domain where Policy is enforced
EX : Policy Expiration date
PR: Policy Priority
AP: Policy Autonomic permission
ICA: Integrity and Consistency Analysis
PT: Policy Tree
WAE: Cisco WAN Automation Engine Design simulator
CR: Core Node
ER: Edge Node
MPLS: Multiprotocol Label Switching
LSP: Label-Switched Path
SR: Segment Routing
MPLS SR: MPLS-based Segment Routing
SID: Segment Identifier
adj-SID: adjacency segment identifier
DT: Delay Tolerant
DS: Delay Sensitive
D: Demand
App: Application
IGP: Interior Gateway Protocol
IS-IS: Intermediate System to Intermediate System
OWL: Web Ontology Language
I : Intent
pt: policy tree
U : utility action lookup
R: policy resources
(r,m): resource and metric tuple
oM , oA, oP, oE : outcomes from analyze, plan, execute
Pdec: declarative policy

ACKNOWLEDGMENT
The authors would like to thank Dr. Mehdi Shajari and Sayed
Ehsan Etesami for discussions about this work. They would
also like to thank Professor Raouf Boutaba and Professor
James Won-Ki Hong for reviewing an early version of this
work and providing valuable feedback.

REFERENCES
[1] C. Hare, Simple Network Management Protocol (SNMP), document

RFC 1098, RFC Editor, M. Fedor, M. L. Schoffstall, D. J. D. Case,
and J. R. Davin, Eds., Apr. 1989. [Online]. Available: https://rfc-
editor.org/rfc/rfc1098.txt

[2] T. Benson, A. Akella, and D. A. Maltz, ‘‘Unraveling the complexity of
network management,’’ in Proc. NSDI, 2009, pp. 335–348.

[3] H. Kim, T. Benson, A. Akella, and N. Feamster, ‘‘The evolution
of network configuration: A tale of two campuses,’’ in Proc. ACM
SIGCOMM Conf. Internet Meas. Conf., 2011, pp. 499–514.

[4] L. Pang, C. Yang, D. Chen, Y. Song, andM. Guizani, ‘‘A survey on intent-
driven networks,’’ IEEE Access, vol. 8, pp. 22862–22873, 2020.

[5] N. Feamster and J. Rexford, ‘‘Why (and how) networks should run
themselves,’’ 2017, arXiv:1710.11583.

[6] P. Kalmbach, J. Zerwas, P. Babarczi, A. Blenk, W. Kellerer, and
S. Schmid, ‘‘Empowering self-driving networks,’’ in Proc. Afternoon
Workshop Self-Driving Netw., Aug. 2018, pp. 8–14.

159904 VOLUME 9, 2021

K. Dzeparoska et al.: Towards Self-Driving Management System for Automated Realization of Intents

[7] J. O. Kephart and D. M. Chess, ‘‘The vision of autonomic computing,’’
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[8] R. Murch, Autonomic Computing. Indianapolis, IN, USA: IBM Press,
2004.

[9] A. Bandara, N. Damianou, E. Lupu, M. Sloman, and N. Dulay, ‘‘Policy-
based management,’’ in Handbook of Network and System Administra-
tion. Amsterdam, The Netherlands: Elsevier, 2008, pp. 507–563.

[10] W.Han and C. Lei, ‘‘A survey on policy languages in network and security
management,’’ Comput. Netw., vol. 56, no. 1, pp. 477–489, Jan. 2012.

[11] J. O. Kephart and W. E. Walsh, ‘‘An artificial intelligence perspective on
autonomic computing policies,’’ in Proc. 5th IEEE Int. Workshop Policies
Distrib. Syst. Netw. (POLICY), Jun. 2004, pp. 3–12.

[12] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
vol. 26. Englewood Cliffs, NJ, USA: Prentice-Hall, 1995.

[13] D. C. Verma, ‘‘Simplifying network administration using policy-based
management,’’ IEEE Netw., vol. 16, no. 2, pp. 20–26, Apr./May 2002.

[14] D. Verma, S. Calo, S. Chakraborty, E. Bertino, C. Williams,
J. Tucker, and B. Rivera, ‘‘Generative policy model for autonomic
management,’’ in Proc. IEEE SmartWorld, Ubiquitous Intell.
Comput., Adv. Trusted Comput., Scalable Comput. Commun.,
Cloud Big Data Comput., Internet People Smart City Innov.
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Aug. 2017,
pp. 1–6.

[15] J. A. Wickboldt, W. P. D. Jesus, P. H. Isolani, C. B. Both, J. Rochol, and
L. Z. Granville, ‘‘Software-defined networking: Management require-
ments and challenges,’’ IEEECommun.Mag., vol. 53, no. 1, pp. 278–285,
Jan. 2015.

[16] M. C. Huebscher and J. A. McCann, ‘‘A survey of autonomic
computing—Degrees, models, and applications,’’ ACM Comput. Surv.,
vol. 40, no. 3, pp. 1–28, Aug. 2008, doi: 10.1145/1380584.1380585.

[17] N. Samaan and A. Karmouch, ‘‘Towards autonomic network manage-
ment: An analysis of current and future research directions,’’ IEEE
Commun. Surveys Tuts., vol. 11, no. 3, pp. 22–36, 3rd Quart., 2009.

[18] N. Agoulmine, S. Balasubramaniam, D. Botvich, J. Strassner, E. Lehtihet,
and W. Donnelly, ‘‘Challenges for autonomic network management,’’
in Proc. IEEE Int. Workshop Modelling Autonomic Commun. Environ.
(MACE), 2006.

[19] Z. Movahedi, M. Ayari, R. Langar, and G. Pujolle, ‘‘A survey of
autonomic network architectures and evaluation criteria,’’ IEEECommun.
Surveys Tuts., vol. 14, no. 2, pp. 464–490, 2nd Quart., 2012.

[20] S. Dobson, S. Denazis, A. Fernández, D. Gaïti, E. Gelenbe, F. Massacci,
P. Nixon, F. Saffre, N. Schmidt, and F. Zambonelli, ‘‘A survey of
autonomic communications,’’ ACM Trans. Auton. Adapt. Syst., vol. 1,
no. 2, pp. 223–259, Dec. 2006.

[21] M. A. Khan, S. Peters, D. Sahinel, F. D. Pozo-Pardo, and X.-T. Dang,
‘‘Understanding autonomic network management: A look into the past,
a solution for the future,’’ Comput. Commun., vol. 122, pp. 93–117,
Jun. 2018.

[22] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo, ‘‘A comprehensive survey on
machine learning for networking: Evolution, applications and research
opportunities,’’ J. Internet Services Appl., vol. 9, no. 1, pp. 1–99,
Dec. 2018.

[23] L. Fallon, J. Keeney, and R. K. Verma, ‘‘Autonomic closed control loops
for management, an idea whose time has come?’’ in Proc. 15th Int. Conf.
Netw. Service Manage. (CNSM), 2019, pp. 1–5.

[24] B. Jennings, S. Van Der Meer, S. Balasubramaniam, D. Botvich,
M. O. Foghlú, W. Donnelly, and J. Strassner, ‘‘Towards autonomic
management of communications networks,’’ IEEE Commun. Mag.,
vol. 45, no. 10, pp. 112–121, Oct. 2007.

[25] H. Derbel, N. Agoulmine, and M. Salaün, ‘‘ANEMA: Autonomic
network management architecture to support self-configuration and self-
optimization in IP networks,’’Comput. Netw., vol. 53, no. 3, pp. 418–430,
2009.

[26] S. Singh, I. Chana, and R. Buyya, ‘‘STAR: SLA-aware autonomic
management of cloud resources,’’ IEEE Trans. Cloud Comput., vol. 8,
no. 4, pp. 1040–1053, Oct. 2020.

[27] M. H. Behringer, B. E. Carpenter, T. Eckert, L. Ciavaglia, and J. C. Nobre,
A Reference Model for Autonomic Networking, document RFC 8993,
May 2021. [Online]. Available: https://rfc-editor.org/rfc/rfc8993.txt

[28] M. Caporuscio, M. D’Angelo, V. Grassi, and R. Mirandola, ‘‘Rein-
forcement learning techniques for decentralized self-adaptive service
assembly,’’ in Proc. 5th Eur. Conf. Service-Oriented Cloud Comput.
(ESOCC), Vienna Austria. Springer, 2016, pp. 53–68.

[29] A. Rodrigues, R. D. Caldas, G. N. Rodrigues, T. Vogel, and P. Pelliccione,
‘‘A learning approach to enhance assurances for real-time self-adaptive
systems,’’ in Proc. 13th Int. Conf. Softw. Eng. Adapt. Self-Manag. Syst.,
May 2018, pp. 206–216.

[30] N. Belhaj, D. Belaïd, and H. Mukhtar, ‘‘Framework for building self-
adaptive component applications based on reinforcement learning,’’ in
Proc. IEEE Int. Conf. Services Comput. (SCC), Jul. 2018, pp. 17–24.

[31] E. Zavala, X. Franch, J. Marco, and C. Berger, ‘‘HAFLoop: An
architecture for supporting highly adaptive feedback loops in self-
adaptive systems,’’ Future Gener. Comput. Syst., vol. 105, pp. 607–630,
Apr. 2020.

[32] S. T. Arzo, R. Bassoli, F. Granelli, and F. H. P. Fitzek, ‘‘Multi-agent
based autonomic network management architecture,’’ IEEE Trans. Netw.
Service Manage., vol. 18, no. 3, pp. 3595–3618, Sep. 2021.

[33] T. B. Meriem, R. Chaparadza, B. Radier, S. Soulhi, and A. P. López,
‘‘GANA-generic autonomic networking architecture,’’ ETSI,
Sophia Antipolis, France, White Paper 16, Oct. 2016.

[34] K. Tsagkaris, M. Logothetis, V. Foteinos, G. Poulios, M. Michaloliakos,
and P. Demestichas, ‘‘Customizable autonomic network management:
Integrating autonomic network management and software-defined net-
working,’’ IEEE Veh. Technol. Mag., vol. 10, no. 1, pp. 61–68, Mar. 2015.

[35] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
‘‘SIMPLE-fyingmiddlebox policy enforcement using SDN,’’ SIGCOMM
Comput. Commun. Rev., vol. 43, no. 4, pp. 27–38, 2013Aug. 2013, doi:
10.1145/2534169.2486022.

[36] J. Rubio-Loyola, A. Galis, A. Astorga, J. Serrat, L. Lefevre, A. Fischer,
A. Paler, and H. De Meer, ‘‘Scalable service deployment on software-
defined networks,’’ IEEE Commun. Mag., vol. 49, no. 12, pp. 84–93,
Dec. 2011.

[37] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, ‘‘PolicyCop:
An autonomic QoS policy enforcement framework for software defined
networks,’’ in Proc. IEEE SDN Future Netw. Services (SDN4FNS),
Nov. 2013, pp. 1–7.

[38] A. Binsahaq, T. R. Sheltami, and K. Salah, ‘‘A survey on autonomic
provisioning and management of QoS in SDN networks,’’ IEEE Access,
vol. 7, pp. 73384–73435, 2019.

[39] Z. Zhao, E. Schiller, E. Kalogeiton, T. Braun, B. Stiller, M. T. Garip,
J. Joy, M. Gerla, N. Akhtar, and I. Matta, ‘‘Autonomic communications in
software-driven networks,’’ IEEE J. Sel. Areas Commun., vol. 35, no. 11,
pp. 2431–2445, Nov. 2017.

[40] D. R. C. Moore, J. Strassner, E. J. Ellesson, and A. Westerinen, Policy
Core Information Model—Version 1 Specification, document RFC 3060,
Feb. 2001. [Online]. Available: https://rfc-editor.org/rfc/rfc3060.txt

[41] J. Strassner, ‘‘DEN-ng: Achieving business-driven network manage-
ment,’’ in Proc. IEEE/IFIP Netw. Oper. Manage. Symp. Manage.
Solutions New Commun. World (NOMS), Apr. 2002, pp. 753–766.

[42] J. Strassner, J. N. de Souza, S. van der Meer, S. Davy, K. Barrett,
D. Raymer, and S. Samudrala, ‘‘The design of a new policy model to
support ontology-driven reasoning for autonomic networking,’’ J. Netw.
Syst. Manage., vol. 17, nos. 1–2, pp. 5–32, Jun. 2009.

[43] J. van der Ham, J. Stéger, S. Laki, Y. Kryftis, V. Maglaris, and C. de Laat,
‘‘The NOVI information models,’’ Future Gener. Comput. Syst., vol. 42,
pp. 64–73, Jan. 2015.

[44] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker,
‘‘Don’t mind the gap: Bridging network-wide objectives and device-
level configurations: Brief reflections on abstractions for network
programming,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 49, no. 5,
pp. 104–106, Nov. 2019, doi: 10.1145/3371934.3371965.

[45] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, ‘‘Frenetic: A network programming language,’’
ACM SIGPLAN Notices, vol. 46, no. 9, pp. 279–291, Sep. 2011.

[46] A. Abhashkumar, J.-M. Kang, S. Banerjee, A. Akella, Y. Zhang,
and W. Wu, ‘‘Supporting diverse dynamic intent-based policies using
Janus,’’ in Proc. 13th Int. Conf. Emerg. Netw. Exp. Technol. (CoNEXT),
Nov. 2017, pp. 296–309.

[47] D. Tuncer, M. Charalambides, G. Tangari, and G. Pavlou, ‘‘A northbound
interface for software-based networks,’’ in Proc. 14th Int. Conf. Netw.
Service Manage. (CNSM), 2018, pp. 99–107.

[48] Y. Han, J. Li, D. Hoang, J.-H. Yoo, and J. W.-K. Hong, ‘‘An intent-based
network virtualization platform for SDN,’’ in Proc. 12th Int. Conf. Netw.
Service Manage. (CNSM), Oct. 2016, pp. 353–358.

[49] A. S. Jacobs, R. J. Pfitscher, R. A. Ferreira, and L. Z. Granville, ‘‘Refining
network intents for self-driving networks,’’ in Proc. Afternoon Workshop
Self-Driving Netw. (SelfDN), Aug. 2018, pp. 15–21.

VOLUME 9, 2021 159905

http://dx.doi.org/10.1145/1380584.1380585
http://dx.doi.org/10.1145/2534169.2486022
http://dx.doi.org/10.1145/3371934.3371965

K. Dzeparoska et al.: Towards Self-Driving Management System for Automated Realization of Intents

[50] C. Rotsos, A. Farshad, D. King, D. Hutchison, Q. Zhou, A. J. G. Gray,
C.-X. Wang, and S. McLaughlin, ‘‘ReasoNet: Inferring network policies
using ontologies,’’ in Proc. 4th IEEE Conf. Netw. Softw. Workshops
(NetSoft), Jun. 2018, pp. 159–167.

[51] R. Soule, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G. Sirer,
and N. Foster, ‘‘Merlin: A language for managing network resources,’’
IEEE/ACM Trans. Netw., vol. 26, no. 5, pp. 2188–2201, Oct. 2018.

[52] C. C. Machado, J. A. Wickboldt, L. Z. Granville, and A. Schaeffer-Filho,
‘‘An EC-based formalism for policy refinement in software-defined
networking,’’ in Proc. IEEE Symp. Comput. Commun. (ISCC), Jul. 2015,
pp. 496–501.

[53] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang, ‘‘PGA: Using graphs to
express and automatically reconcile network policies,’’ in Proc. ACM
Conf. Special Interest Group Data Commun. (SIGCOMM), Aug. 2015,
pp. 29–42.

[54] C. Janz, N. Davis, D. Hood, M. Lemay, D. Lenrow, L. Fengkai,
F. Schneider, J. Strassner, and A. Veitch, ‘‘Intent NBI—Definition and
principles,’’ Open Netw. Found., Menlo Park, CA, USA, Version 2,
Tech. Rep. ONF TR-523, 2015.

[55] A. Clemm, L. Ciavaglia, L. Z. Granville, and J. Tantsura. (Feb. 2021).
Intent-based networking—Concepts and definitions. Internet
Engineering Task Force. [Online]. Available: https://datatracker.
ietf.org/doc/html/draft-irtf-nmrg-ibn-concepts-definitions-03

[56] C. Li, O. Havel, W. S. Liu, A. Olariu, P. Martinez-Julia, J. C. Nobre, and
D. Lopez. (Mar. 2021). Intent classification. Internet Engineering Task
Force. [Online]. Available: https://datatracker.ietf.org/doc/html/draft-irtf-
nmrg-ibn-intent-classification-03

[57] D. Chen, H. Yang, and K. Yao. (Feb. 2021). Network measurement
intent. Internet Engineering Task Force. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-yang-nmrg-network-
measurement-intent-01

[58] E. Zeydan and Y. Turk, ‘‘Recent advances in intent-based networking: A
survey,’’ inProc. IEEE 91st Veh. Technol. Conf. (VTC-Spring), May 2020,
pp. 1–5.

[59] R. Cohen, K. Barabash, B. Rochwerger, L. Schour, D. Crisan, R. Birke,
C. Minkenberg, M. Gusat, R. Recio, and V. Jain, ‘‘An intent-based
approach for network virtualization,’’ in Proc. IFIP/IEEE Int. Symp.
Integr. Netw. Manage. (IM), May 2013, pp. 42–50.

[60] P. Sköldström, S. Junique, A. Ghafoor, A. Marsico, and D. Siracusa,
‘‘DISMI—An intent interface for application-centric transport network
services,’’ in Proc. 19th Int. Conf. Transparent Opt. Netw. (ICTON),
Jul. 2017, pp. 1–4.

[61] F. Callegati, W. Cerroni, C. Contoli, and F. Foresta, ‘‘Performance of
intent-based virtualized network infrastructure management,’’ in Proc.
IEEE Int. Conf. Commun. (ICC), May 2017, pp. 1–6.

[62] M. Kiran, E. Pouyoul, A. Mercian, B. Tierney, C. Guok, and I. Monga,
‘‘Enabling intent to configure scientific networks for high performance
demands,’’ Future Gener. Comput. Syst., vol. 79, pp. 205–214, Feb. 2018.

[63] E. J. Scheid, C. C.Machado,M. F. Franco, R. L. D. Santos, R. P. Pfitscher,
A. E. Schaeffer-Filho, and L. Z. Granville, ‘‘INSpIRE: Integrated NFV-
based intent refinement environment,’’ in Proc. IFIP/IEEE Symp. Integr.
Netw. Service Manage. (IM), May 2017, pp. 186–194.

[64] Y.-W.-E. Sung, X. Tie, S. H. Y.Wong, andH. Zeng, ‘‘Robotron: Top-down
network management at Facebook scale,’’ in Proc. ACM SIGCOMM
Conf., Aug. 2016, pp. 426–439.

[65] M. Pham and D. B. Hoang, ‘‘SDN applications—The intent-based
northbound interface realisation for extended applications,’’ in Proc.
IEEE NetSoft Conf. Workshops (NetSoft), Jun. 2016, pp. 372–377.

[66] G. Davoli, W. Cerroni, S. Tomovic, C. Buratti, C. Contoli, and
F. Callegati, ‘‘Intent-based service management for heterogeneous
software-defined infrastructure domains,’’ Int. J. Netw. Manage., vol. 29,
no. 1, p. e2051, Jan. 2019.

[67] W. Cerroni, C. Buratti, S. Cerboni, G. Davoli, C. Contoli, F. Foresta,
F. Callegati, and R. Verdone, ‘‘Intent-based management and orchestra-
tion of heterogeneous openflow/IoT SDN domains,’’ in Proc. IEEE Conf.
Netw. Softw. (NetSoft), Jul. 2017, pp. 1–9.

[68] Y. Tsuzaki and Y. Okabe, ‘‘Reactive configuration updating for intent-
based networking,’’ in Proc. Int. Conf. Inf. Netw. (ICOIN), 2017,
pp. 97–102.

[69] J. McNamara, L. Fallon, and E. Fallon, ‘‘A mechanism for intent driven
adaptive policy decision making,’’ in Proc. 16th Int. Conf. Netw. Service
Manage. (CNSM), Nov. 2020, pp. 1–3.

[70] B. E. Ujcich, A. Bates, and W. H. Sanders, ‘‘Provenance for intent-based
networking,’’ in Proc. 6th IEEE Conf. Netw. Softw. (NetSoft), Jun. 2020,
pp. 195–199.

[71] A. Leivadeas and M. Falkner, ‘‘VNF placement problem: A multi-tenant
intent-based networking approach,’’ in Proc. 24th Conf. Innov. Clouds,
Internet Netw. Workshops (ICIN), Mar. 2021, pp. 143–150.

[72] M. Riftadi and F. Kuipers, ‘‘P4I/O: Intent-based networking with P4,’’ in
Proc. IEEE Conf. Netw. Softw. (NetSoft), Jun. 2019, pp. 438–443.

[73] J.-M. Kang, J. Lee, V. Nagendra, and S. Banerjee, ‘‘LMS: Label
management service for intent-driven cloud management,’’ in Proc.
IFIP/IEEE Symp. Integr. Netw. Service Manage. (IM), May 2017,
pp. 177–185.

[74] P. H. Gomes, M. Buhrgard, J. Harmatos, S. K. Mohalik, D. Roeland,
and J. Niemöller, ‘‘Intent-driven closed loops for autonomous networks,’’
J. ICT Standardization, vol. 9, pp. 257–290, Jun. 2021.

[75] N. F. S. De Sousa, D. L. Perez, C. E. Rothenberg, and P. H. Gomes,
‘‘End-to-end service monitoring for zero-touch networks,’’ J. ICT
Standardization, vol. 9, no. 2, pp. 91–112, May 2021.

[76] J. D. Moffett and M. S. Sloman, ‘‘Policy hierarchies for distributed
systems management,’’ IEEE J. Sel. Areas Commun., vol. 11, no. 9,
pp. 1404–1414, Dec. 1993.

[77] R. Craven, J. Lobo, E. Lupu, A. Russo, and M. Sloman, ‘‘Policy refine-
ment: Decomposition and operationalization for dynamic domains,’’ in
Proc. 7th Int. Conf. Netw. Service Manage., 2011, pp. 1–9.

[78] (Mar. 21, 2020). Network Management Research Group Charter-irtf-
nmrg-02. [Online]. Available: https://datatracker.ietf.org/doc/charter-irtf-
nmrg/02/

[79] I. F. Akyildiz, A. Kak, and S. Nie, ‘‘6G and beyond: The future of wireless
communications systems,’’ IEEE Access, vol. 8, pp. 133995–134030,
2020.

[80] T. Yaqoob, M. Usama, J. Qadir, and G. Tyson, ‘‘On analyzing self-driving
networks: A systems thinking approach,’’ in Proc. Afternoon Workshop
Self-Driving Netw., Aug. 2018, pp. 1–7.

[81] A. Clemm, M. F. Zhani, and R. Boutaba, ‘‘Network management 2030:
Operations and control of network 2030 services,’’ J. Netw. Syst. Manage.,
vol. 28, no. 4, pp. 721–750, Oct. 2020.

[82] S. C. Madanapalli, H. H. Gharakheili, and V. Sivaraman, ‘‘Assisting delay
and bandwidth sensitive applications in a self-driving network,’’ in Proc.
Workshop Netw. Meets AI ML, 2019, pp. 64–69.

[83] J. Zerwas, P. Kalmbach, L. Henkel, G. Rétvári, W. Kellerer, A. Blenk,
and S. Schmid, ‘‘NetBOA: self-driving network benchmarking,’’ in Proc.
Workshop Netw. Meets AI ML, 2019, pp. 8–14.

[84] H. B. Pasandi and T. Nadeem, ‘‘Towards a learning-based framework
for self-driving design of networking protocols,’’ IEEE Access, vol. 9,
pp. 34829–34844, 2021.

[85] M. Usama, J. Qadir, A. Raza, H. Arif, K.-L.-A. Yau, Y. Elkhatib,
A. Hussain, and A. Al-Fuqaha, ‘‘Unsupervised machine learning for
networking: Techniques, applications and research challenges,’’ IEEE
Access, vol. 7, pp. 65579–65615, 2019.

[86] S. Schneider, A. Manzoor, H. Qarawlus, R. Schellenberg, H. Karl,
R. Khalili, and A. Hecker, ‘‘Self-driving network and service coordina-
tion using deep reinforcement learning,’’ in Proc. 16th Int. Conf. Netw.
Service Manage. (CNSM), Nov. 2020, pp. 1–9.

[87] X. Chen, R. Proietti, C.-Y. Liu, and S. J. Ben Yoo, ‘‘Towards self-
driving optical networking with reinforcement learning and knowledge
transferring,’’ in Proc. Int. Conf. Opt. Netw. Design Modeling (ONDM),
May 2020, pp. 1–3.

[88] T. Mai, S. Garg, H. Yao, J. Nie, G. Kaddoum, and Z. Xiong, ‘‘In-network
intelligence control: Toward a self-driving networking architecture,’’
IEEE Netw., vol. 35, no. 2, pp. 53–59, Mar. 2021.

[89] W. Kellerer, P. Kalmbach, A. Blenk, A. Basta, M. Reisslein, and
S. Schmid, ‘‘Adaptable and data-driven softwarized networks: Review,
opportunities, and challenges,’’ Proc. IEEE, vol. 107, no. 4, pp. 711–731,
Apr. 2019.

[90] H. Huang, L. Zhao, H. Huang, and S. Guo, ‘‘Machine fault detection for
intelligent self-driving networks,’’ IEEE Commun. Mag., vol. 58, no. 1,
pp. 40–46, Jan. 2020.

[91] D. Pendarakis, D. R. Yavatkar, and D. R. Guerin, A Framework for Policy-
Based Admission Control, RFC 2753, Jan. 2000. [Online]. Available:
https://rfc-editor.org/rfc/rfc2753.txt

[92] T. Phan, J. Han, J.-G. Schneider, T. Ebringer, and T. Rogers, ‘‘A survey of
policy-based management approaches for service oriented systems,’’ in
Proc. 19th Austral. Conf. Softw. Eng. (ASWEC), Mar. 2008, pp. 392–401.

159906 VOLUME 9, 2021

K. Dzeparoska et al.: Towards Self-Driving Management System for Automated Realization of Intents

[93] Cisco Systems. (Sep. 2021). WAN Automation Engine (WAE). [Online].
Available: https://www.cisco.com/c/en/us/td/docs/net_mgmt/wae/7-4-
0/user_guide/cisco-wae-74-user-guide.html

[94] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and
R. Shakir, Segment Routing Architecture, document RFC 8402, Jul. 2018.
[Online]. Available: https://rfc-editor.org/rfc/rfc8402.txt

KRISTINA DZEPAROSKA (Member, IEEE)
received the B.Sc. degree in engineering from Ss.
Cyril and Methodius University, Skopje, in 2015,
and the M.A.Sc. degree from the Department of
Electrical and Computer Engineering, University
of Toronto, Canada, in 2018, where she is currently
pursuing the Ph.D. degree with the Department
of Electrical and Computer Engineering. Her
research interests include autonomic networks,
IBN, SDN, and AI.

NASIM BEIGI-MOHAMMADI (Member, IEEE) received the Ph.D. degree
in computer science from York University. She is currently a Postdoctoral
Fellow with the University of Toronto. Her research interests include self-
adaptive networks and service management. For more on her work, please
visit (individual.utoronto.ca/nbm).

ALI TIZGHADAM (Member, IEEE) received the
M.A.Sc. degree in electrical and computer engi-
neering from the University of Tehran, in 1994,
and the Ph.D. degree in electrical and com-
puter engineering from the University of Toronto
(UofT), in 2009. He is currently the Principal
Technology Architect at TELUS Communications
Inc. He is responsible for TELUS network soft-
warization strategy. He has led a team of architects
and developers to design and implement TELUS

Intelligent Network Analytics and Automation (TINAA) open ecosystem
leveraging most recent advances in open source, big data, AI, SDN, and
NFV to enable closed-loop intent-based automation and innovative service
composition paving the road to realize self-driving networks dream in 5G
world. In the academic side, he has designed a graduate course—Service
Provider Networks—to bridge the gap between understanding of networks
in academic area and service provider’s domain. He is currently teaching
this course with the Department of Electrical and Computer Engineering,
UofT. Moreover, he is a Senior Researcher at UofT focusing on smart
city applications. His research interests include span SDN, intent-based
networking, end-to-end multi-layer orchestration, smart city applications,
and applications of AI in networking.

ALBERTO LEON-GARCIA (Life Fellow, IEEE)
is currently a Professor in electrical and com-
puter engineering with the University of Toronto.
He authored the textbooks, such as Probability
and Random Processes for Electrical Engineering
andCommunication Networks: Fundamental Con-
cepts and Key Architecture. He was the Founder
and the CTO at AcceLight Networks, Ottawa,
from 1999 to 2002. He was the Scientific Director
of the NSERC Strategic Network for Smart

Applications on Virtual Infrastructures (SAVI) and a Principal Investigator
of the project on Connected Vehicles and Smart Transportation. SAVI
designed and deployed a national testbed in Canada that converges cloud
computing and software-defined networking. CVST designed and deployed
an application platform for smart transportation. He is the Co-Founder
and the CTO of StreamWorx.ai which offers massive-scale, real-time
streaming analytics, and machine learning software for network operations
and cybersecurity applications. He is a Life Fellow of the Institute of
Electronics an Electrical Engineering ‘‘For contributions to multiplexing and
switching of integrated services traffic.’’

VOLUME 9, 2021 159907

