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ABSTRACT Determining the number of clusters in a data set is a significant and difficult problem in cluster
analysis. In this study, a new model-based clustering approach is proposed for the estimation of the number
of clusters. In the proposed method, the number of components in each variable is determined by using
univariate Gaussian mixture models. The number of alternative cluster centres and mixture models was
determined according to the number of components in heterogeneous variables. In this study, appropriate
Gaussian mixture models were determined with the help of ‘‘mixture model soft computing method’’ for
the first time. Vector arrays showing the number and addresses of clusters in appropriate Gaussian mixture
models were created, and according to the parameter estimations of these models that fit the arrays, the best
model was obtained through information criteria. The clustering success achieved with the proposed mixture
model soft computing method was compared with the results of Gaussian mixture model clustering methods
namely, mclust, clustvarsel, varselLCM, selvarMix and vscc model selection methods in R package. All
respective methods analyse and determine the number of clustering for the data sets, synthetic-1, synthetic-2,
Iris, and Landsat Satellite Image data sets, respectively and evaluate the correct classification rate. The results
revealed that the proposed method shows better results for the determination of number of clustering as well
as correct classification rate. The novelty of the study is that a newmodel-based dimension reduction method
is proposed for the estimation of the number of clusters. A deterministic clustering approach is proposed for
clustering and classification success on reduced data.

INDEX TERMS Model-based clustering, variable selection, mixture model soft computing method, appro-
priate Gaussian mixture models, information criteria, components of heterogeneous variable.

I. INTRODUCTION
Model-based clustering is widely used in cluster analysis for
clustering data from the mixture of Gaussian distributions.
McLachlan and Rathnayake, Bozdogan, Scrucca and Raftery,
and McNicholas are some of those who use the mixture of
multivariate Gaussian distributions in cluster analysis [1]–[4].

In model selection studies for the perspective and strate-
gies of mixture models, Celeux et al. proposed using cluster
analysis based on mixture models to determine the number
of components (g) in the finite mixture models [5]. In mul-
tivariate data, components in the heterogeneous variable are
used to determine the number and the location of clusters in
the mixture model [6]. Each sub-group (component) in the
variables corresponds to at least one cluster in the mixture
model [7]. In model-based clustering, mixture models are
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created according to the number of components in the vari-
ables or subsets of variables. When the number of compo-
nents in variables is for g < 2, it is called a homogeneous
variable, and because this variable does not have any effects
in creating a subset, it is excluded from calculations [8].
Galimberti and Soffritti obtained multiple cluster structures
in mixture models, depending on the number and location
of subgroups in variables [9]. Galimberti et al. presented the
mixture components of heterogeneous variables as variable
sub-vectors in their study, and they defined how the compo-
nents in variables affect clustering in model-based clustering.
In this study, it was explained that each sub-vector in the
variables has information on at least one set [10]. Akogul
and Erisoglu proposed a model-based clustering method that
uses Analytic Hierarchy Process (AHP) to reveal clustering
in the data set. The proposed AHP method was used to
determine the best model among the conditions based on
certain criteria [11]. A variable/feature selection approach,
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which is based on Bayesian factors, was used to select the
best model among the subsets that will occur in model-based
clustering. The most appropriate model is determined among
the candidate sub-clusters according to the assumption based
on the Bayesian Information Criterion (BIC) difference [12].
It is very important in clustering analysis to prevent informa-
tion loss within the variables that are reduced while variable
selection occurs. There are subspace learning feature selec-
tion methods that improve learning performance by using
the local discriminant information and geometry information
found in the original data. [13], [14]. In multivariate data,
mixture models were created based on the numbers and
volume of the components in the variables [15]. Fop and
Murphy generalized variable selection methods according to
the related and unrelated variables in model-based clustering.
They named the variables that did not affect cluster formation
in model-based clustering and did not contain useful informa-
tion in terms of groupmembership as ‘‘Redundant variables’’.
In their paper, the methods based on mclust namely, mclust,
clustvarsel, varselLCM, selvarMix and vscc were applied on
a synthetic data and compared results [16].

The choice of assignment algorithms is important when
assigning observations to components in variables. The
chosen distance function is important when assigning the
observations to the components in the variables. There-
fore, an adapted similarity measure is used in the cluster
analysis [17]–[20]. Components in heterogeneous variables
are assigned observations based on their means. Since the
volume of each component in the variables is different,
k-means algorithms assign a different number of obser-
vations to the components according to their means. Dif-
ferent observation numbers assigned to the components
of the variables provide suitable solutions for EVI-VVV
types from parsimonious models with a different covariance
matrix structure. Covariance matrices, which are obtained
from different number and size components of variables,
significantly affect the number and location of clusters in
mixturemodel clustering [21]. Finite mixturemodels in a grid
structure based on the number of components are obtained
from multivariate Gaussian mixture distributions. Among
the mixture models obtained according to the determined
cases, the best models are selected based on information
criteria [22].

In this study, a new model-based approach is pro-
posed for cluster number estimation of multivariate data
based on Gaussian mixture models (GMM). The algo-
rithmic method, developed based on soft computing, con-
sists of variable/feature selection, creation of mixture
models and selection of the best model. The proposed
method was applied on two synthetic datasets and two real
datasets namely, Iris (UCI), Landsat satellite Image dataset.
The results obtained from the application were compared
with the well-known methods namely mclust, clustvarsel,
varselLCM, selvarMix and vscc. All obtained results show
that the proposed clustering algorithm outperforms existing
approaches.

The contributions of this paper are as follows:
(1) The variable/feature selection method was developed

with univariate mixed models for the data set.
(2) By defining the grid structured mixed models based on

the component numbers in the variables, the model numbers
in the search space were obtained.

(3) Appropriate-GMMs were obtained according to the
number of components falling into the variables in the
reduced data. Vector representations were defined for
A-GMMs and the parameters of the models were calculated
from linear models.

(4) Information criteria for finite mixed models are calcu-
lated and the best model is obtained based on information
criteria.

The study is organized as follows. In Section 2, MMSCM
and model-based clustering stages are explained for the pro-
posed number of clusters estimation approach. In Section 3.1,
all steps are explained on the synthetic-1 and fifteen-variable
synthetic-2 data sets, which are simple and comprehen-
sive, respectively, to facilitate the understanding of the opti-
mum cluster number estimation method with MMSCM.
In Section 3.2, the recommended method (MMSCM) was
applied on two real data sets and the results are comparedwith
well-known methods of GMM based clustering. In Section 4,
the results of the study are discussed and compared and the
success of the method is presented.

II. MATERIALS AND METHODS
A. THE MODEL-BASED CLUSTERING
Grid structured models are created with the components of
each variable in multivariate data. The number of AGMMs
among mixture models with grid structure is determined by
using ‘‘MMSCM’’ model-based clustering. The number and
volume of components of the variables in the mixture model
reveal the number and structure of clusters in multivariate
data. An algorithmic clustering method, which consists of
five steps, is proposed for the estimation and clustering of the
cluster number. Model-based clustering assumes that a data
set consists of several clusters with different distributions.
All variables in the data set are modelled by the mixture of
these distributions. The model-based clustering assumes a set
of n observations with p-dimensions, such that an observed
random sample is expressed as x =

(
xT1 , . . . , x

T
n
)T [23]. The

probability density function of finite mixture distributions are
as follows;

f
(
xj;9

)
=

∑g

i=1
πifi

(
xj; θi

)
(1)

where fi
(
xj; θi

)
are probability density functions of the com-

ponents and πi indicates the mixing weight (volume of clus-
ters in the mixture model) in cases of 0 < π i < 1 and∑g

i=1 πi = 1(i = 1, . . . , g). The parameter vector 9 =

(π, θ) contains all of the parameters of the mixture models.
Here, θ =

(
θ1, . . . , θg

)
denotes unknown parameters of

the probability density function of the ith components in the
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mixture models. In Equation (1), the number of components
or clusters is represented by g.

The mixture density function of the multivariate normal
distribution is given as;

f
(
xj;9

)
=

∑g

i=1
πi8i

(
xj;µi, 6i

)
(2)

where8i
(
xj;µi, 6i

)
are assumed to bemultivariate Gaussian

densities of the form

8i
(
xj;µi, 6i

)
=

1

(2π)
P
2 |6i|

1
2

e

{
−

1
2 (xj−µi)

T
6−1i (xj−µi)

}
(3)

where µi and 6i for i = 1, . . . , k indicates the mean vector
(locations of clusters in mixture model) and the covariance
matrix (shapes of clusters in the mixture model), respec-
tively [24]. All unknown parameters of the model are shown
as 9 =

(
π1, . . . , πg−1, ξ

T
)T , where ξ obtained from com-

pound vectors of µ =
(
µ1, . . . , µg

)
and 6 =

(
61, . . . , 6g

)
.

B. DETERMINATION OF NUMBER OF COMPONENTS IN
VARIABLES
In finite mixture models, the correct determination of the
number of components in each variable provides the cor-
rect calculation of the number of clusters of mixture mod-
els [25]. Some well-known clustering algorithms such as
GMM, K-means, K-Nearest Neighborhood (K-NN), Support
Vector Machines (SVM), Decision Trees (DT), etc., are used
to determine the number of components in mixture mod-
els. In the proposed method, U-GMMs were used as the
unsupervised clustering method to determine the number of
components in the variables.

The number of components in U-GMMs corresponds to a
component in each variable. U-GMM is shown as;

f (x; θ) =
∑g

i=1
πifi

(
xj;µi; σi

)
(4)

where f (x; θ) denotes density function of univariate
Gaussian mixture distributions, g denotes the components of
Gaussian mixture distributions, πi denotes mixing weights,
and fi

(
xj;µi; σi

)
denotes component probability density

function. The component probability density function is
shown as;

fi
(
xj;µi; σi

)
=

1
√
2πσi

exp

{
−
1
2

(
x − µi
σi

)2
}

(5)

where µi denotes the mean and σi denotes the standard devi-
ations of Gaussian distribution. Log-likelihood (logL) and
BIC [26] values obtained from U-GMMs are used to deter-
mine the components in the variables. Expectation and Maxi-
mization (EM) algorithms are used to estimate the parameters
ofπ ,µ and, σ in U-GMMs. Parameters are estimatedwith the
EM algorithm to determine the optimum component numbers
inmixturemodels. The likelihood value is calculated by using
estimated parameters. The BIC value is calculated depending
on the likelihood. The numbers of components in each vari-
able are determined according to the information criteria. The
mixing weights and covariance matrices in the mixture model

are indirectly affected by the number of observations in the
components. The covariance matrix structure for multivariate
GMMs corresponding to the clusters of components of the
GMMs in the grid structure is shown as follows;

6i =


σ 2
1 ρ1,2σ1σ2

ρ2,1σ2σ1 σ 2
2

. . . ρ1pσ1σp

. . . ρ2pσ2σp
...

ρp,1σpσ1 ρn,2σpσ2

. . .
...

. . . σ 2
p

 (6)

for i = 1, . . . , g, where g represents the number of com-
ponents and p represents the number of dimensions of
the data set. σ1, . . . , σp represent standard deviations of
p-dimensions.
Correlations between components of the variables

are defined as ρ1,2 = Corr (X1,X2) , . . . , ρp,p−1 =

Corr
(
Xp,Xp−1

)
.

This type of covariance matrix is used due to the existence
of different sizes of components in variables. The geometric
standard spectral decomposition of a covariance matrix can
be interpreted as follows;

6k = λkDkAkDTk (7)

where the scalar constant λk denotes volume, the orthogonal
matrix of eigenvectors Dk denotes orientation, and the diag-
onal matrix Ak denotes the shape of the covariance matrix,
respectively, with the formDiag

{
α1k , . . . , αpk

}
where α1k ≥

α2k ≥ . . . ≥ αpk ≥ 0. Utilising this decomposition of
the covariance matrix 6k , geometric characteristics of the
distributions can be imposed and a suitable model can be
generated, where, k and p denote the number of components
and dimensions of mixture models, respectively. For more
detailed descriptions of parsimonious covariance matrices
family and mixture model types, see [27].

The mixture weights (πi) of the models obtained from
the covariance matrix shown in (7) are calculated from the
number of elements in the component. Probability weights
in the mixture model are the most important parameters for
determining the number and structure of the cluster. Unsu-
pervised clustering algorithms such as GMM and k-means
can be used to assign observations to the components from
U-GMM. The mean of the observations is used to determine
the cluster centres of the mixture models. While determining
the components to which the observations belong, their dis-
tance from the cluster centre is used. The k-means assignment
algorithm is used to assign different numbers of observa-
tions to the components according to their distance from the
cluster centres. In this study, ‘‘ mclust [28], clustvarsel [29],
varselLCM [30], selvarMix [31] and vscc [32], ‘‘ packages of
R software were used to determine the number of components
onmodel-based clustering in the synthetic-1, synthetic-2, Iris,
and LSI data sets. MATLAB R© 2018b software was used to
determine the model selection method. The best model can
be obtained by using statistical information criteria for model
selection after fitting the models to the data set with the Like-
lihood estimation method. Variable selection and assignment
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of observations to components are shown in Algorithm 1 as
follows.

Algorithm 1 Variable/Feature Selection and Assignment of
Observations to Components

Input: ℵd → R; ki: components of Xi (variables), d : dimen-
sion of dataset
Output: Determination of Homogeneous (ki = 1), and
Heterogeneous (ki ≥ 2) variables. Assigning all observations
to variable components with k-means algorithm.
1. For k=1,. . . ,4, U-GMM f (x; θ) =

∑g
i=1 πifi

(
xj;µi; σi

)
(4) is applied to each variable Xi.
2. In U-GMMs, the number of components (ki) is determined
based on log-L and BIC values.
3. Homogeneous variants (ki = 1) are eliminated, the algo-
rithm continues with heterogeneous variables (ki ≥ 2).
4. The ki component numbers in the variables are considered
preliminary information for the k-means algorithm. Accord-
ing to the known k numbers, the observations are assigned to
the components they belong to.

C. MIXTURE MODEL SOFT COMPUTING METHOD BASED
ON THE COMPONENTS OF VARIABLE
The minimum and maximum numbers of clusters in the
mixture model are denoted as Cmin and Cmax and are defined
as follows;

Cmin = max {ks} (8)

Cmax =
∏p

s=1
ks, s = 1, . . . , p (9)

where p represents the dimension of data and ks represents
components of the heterogeneous variables. The number of
GMM based on the components in heterogeneous variables
represented by MTotal can be calculated as follows;

MTotal = 2
∏p
s=1 ks − 1 (10)

where the term ‘‘-1’’ in Equation (10) represents the null
model.
Theorem 1: The number of cluster ways to form k clusters

in variables with m components where k ≤ m and k 6= 0 is
given by

s (m, k) =
∑m

i=0
(−1)i

(
m
i

)
(k − i)m (11)

Proof: Odell and Duran (1974, p.26) [33].
Definition 1: A function is defined as f :D (f ) → R (f )

between the cluster centres corresponding to the components
of the variables, and the AGMMs obtained by the orienta-
tions of the cluster centres. This function defines a ‘‘one-
to-one and onto’’ relationship between the components of
variables, and the number of AGMMs. Where, D (f ) =[
max {ks} ,

∏p
s=1 ks

]
,∀ks ∈ {Cmin,Cmax} is the domain of

the function corresponding to the number of components in

the variables. The number of AGMMs are obtained as the
range set of the function, R (f ), as follows;

R (f )=


∑j1,...,jk

i1,...ik=0
(−1)

∑k
r=1 ir

(
j1
i1

)(
j2
i2

)
· · ·

(
jn
in

)
×(

(j1 − i1) (j2 − i2) · · · (jk − ik)
c

)

(12)

where jk and ik correspond to the components inmultivariable
data for p dimensions and clusters in mixture models, respec-
tively. The number c indicates the minimum and maximum
clusters that can occur in mixture models.

D. STRUCTURE OF GRID-BASED POSSIBLE MIXTURE
MODELS
In this study, a novel clustering method is proposed to calcu-
late the number of mixture models in the grid structure based
on the components in heterogeneous variables according to
the soft computing method. Mean, covariance matrix, and
probability weights were calculated from the population for
each component of the variables that make upmixture models
in multivariate data. Each model that corresponds to the
appropriate model is defined as;

f u =
(
x, µu, 6u)

=

∑g

i=1
πui fi

(
x, µui , 6

u
i
)

(13)

for u = 1, . . . , k , where πu = πi
g∑
s=1

πs

are mixing proportions,

µui =


µ1
µ2
...

µp


are mean vectors, and

6u
i =


σ 2
1 ρ1,2σ1σ2

ρ2,1σ2σ1 σ 2
2

. . . ρ1pσ1σp

. . . ρ2pσ2σp
...

ρp,1σpσ1 ρp,2σpσ2

. . .
...

. . . σ 2
p


are variance-covariance matrices for component Gaussian
density functions for i = 1, . . . , g. Each possible mixture
model corresponds to a vector representation. The vector
representation of the model, for example, ‘‘10110100’’, cor-
responds to each mixture model in determining the mixture
models in the grid structure according to the soft computing
method. The number of clusters in the models is shown in the
structure blocks in the GMM with o (H), which is called the
degree of subset, as follows;

o (H) =
∑g

i=1
ci, (14)

where ci represents ‘‘0’’ and ‘‘1’’ in elements of vector arrays.
Another structure block corresponding to the orientation

of the clusters in the GMM is the length of the subset and
is denoted as δ (H). The distance between the specific first
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Algorithm 2Grid StructureMixtureModels and Vector Rep-
resentations
Input: The variables and components (ki ∈ Xi) that will
create the dimensions of the models in the grid structure are
placed in the grid-based model.
Output: Grid structure mixture models and vector represen-
tations
1. For ∀k i ∈ Xi, the variables and components selected in the
data set are determined in the grid-based model.
2. With Cmin = max {ki} and Cmax =

∏p
i=1 ki, min and

max ranges are obtained for the number of clusters in grid
structured mixture models.
3. The number of mixture models in grid structure is calcu-
lated with MTotal = 2

∏p
s=1 ks − 1.

4.Vector representations consisting of ‘‘0’’ and ‘‘1’’ digits are
created for mixture models in the grid structure.
5. The number of components in each mixture model is
obtained by o (H) =

∑g
i=1 ki.

cluster and the positions of the last cluster in the subset are
shown as;

δ (H) = argi,j
∥∥ci − cj∥∥ , i, j = 1, . . . ,Cmax (15)

where ci and cj represent the first and the second cluster centre
of vector, respectively.

The number of clusters in the vector representation of mix-
ture models is equal to the number obtained by the degree of
the subset (o (H)) in GMM. Besides, the location of the ‘‘1’’
in the vector sequence of the mixture model is shown with the
location determined by the length of the subset (δ (H)) in the
block structure of GMMs.

The introduced concept of vector representation is that the
structure blocks represent the clusters in the GMM model.
While the cluster corresponding to each component is repre-
sented by ‘‘1’’, the null cluster in components is indicated by
‘‘0’’. A vector representation corresponds to each appropriate
model obtained from mixture models. The creation of grid
structuredmixturemodels and their vector representations are
shown in Algorithm 2 as follows.

E. INFORMATION CRITERIA FOR APPROPRIATE MIXTURE
MODELS IN GRID STRUCTURE
logL functions of GMMs in grid structure are calculated as
follows;

logL (π, µ,6) =
∑n

j=1
log

(∑k

i=1
πifi

(
xj, µi, 6i

))
(16)

BIC is calculated as follows depending on the logL func-
tion, the number of independent parameters d , and the num-
ber of observations n;

BIC = 2logL (π, µ,6)− dlogn (17)

where n and d represent the number of observations and the
number of free parameters in the model, respectively. The
model that maximises BIC is selected.

Based on the variables of the data set, the mixture clus-
tering algorithm, which determines the number of clusters
appropriate for the data structure from the components and
the structure of the clusters, was developed by applying sev-
eral methods step by step as stated in the sections above. The
determination of appropriate mixture models by MMSCM
and the best model selection are shown in Algorithm 3 as
follows.

Algorithm 3 Determination of AGMMs With MMSCM,
Parameter Estimation and Best Model Selection
Input: Grid structure mixture models and their vector repre-
sentations
Output: Parameter estimations of AGMMs, and selection of
the best mixed model.
1. Among MTotal mixture models, AGMMs are determined
by (12) based on MMSCM according to the locations of
variable components.
2. Parameter estimation of mixture models is obtained by EM
algorithm.
3. The information criteria of the mixed models (16) and (17)
are calculated using vector sequences for f

(
xj;9

)
=∑g

i=1 πi8i
(
xj;µi, 6i

)
and AGMMs.

4. The best model is selected from AGGMs based on infor-
mation criteria.
5. The algorithm terminates.

In summary, U-GMMs were used to determine the number
of components in the variables. While the k-means algorithm
was used to assign observations to the components in the
variables, the soft computing method in the resulting models
was solved with the GMM. In the last step of the cluster-
ing algorithm, the best model was obtained by using the
vector representation of GMMs for model-based clustering.
In Figure 1, the proposed approach is described to determine
the number of clusters of a data set in the mixture model soft
computing-based clustering.

The proposed method will be applied to the synthetic-1,
synthetic-2, Iris [34] and 3D LSI data sets [35].

F. MIXTURE MODEL SOFT COMPUTING METHODS FOR
OPTIMISATION
In this section, an effective optimization algorithm for
MMSCM is introduced by determining the objective
function. The proof of convergence of the algorithm is also
presented. For time complexity, we define information com-
plexity. The objective function basically consists of two parts:
variable selection with univariate normal mixture models and
the number of estimations with soft computing method.

A computer consists of Intel(R) Core(TM) i7-8700
CPU@3.20GHz and 8-GB RAM, Intel UHD Graphics 630
running on Windows 10 with a 64-bit R XX compiler was
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FIGURE 1. The proposed approach for determining the number of
clusters.

used for this study. Each step of the study was done in the R
sotfware development environment.

1) OBJECTIVE FUNCTION
The aforementioned univariatemixedmodels and the variable
selection method reduce the variables that have no effect
on clustering. Therefore, it preserves the information on the
variables in the data set, the geometric structure and volume
of the clusters to be formed. In the reduced data, information
complexity is minimal since there are no iterative processes
when calculating the number of clusters and mixed models of
grid structured models based on variable components.

The objective of the proposed method is to determine the
best mixture model among the reduced total mixture models
with the minimum number of variables. To achieve that, the
proposed method minimizes not only the number of variables
but also number of total mixture models.

2) CONVERGENCE ANALYSIS
This section discusses the convergence of GMM with
MMSCM. The purpose of the proposed clustering is to sep-
arate theRdxn data set into clusters different from each other
as 2 ≤ k ≤ n.

The problem can be solved using a two-stage deterministic
method to identify components in a data set with multivariate
normal mixture distributions. In the first step, the dimension
reduction takes place by selecting the variable (dxn ≥ lxn).
In the last step, the mixed models obtained from the variables
are updated to minimize the problem from convergence to the
best model selection.

3) TIME COMPLEXITY
In this section, the time complexity is analyzed to present the
effectiveness of the MMSCM algorithm. In MMSCM, run
time is mainly spent in U-GMM based variable selections,
determining vector representations of AGMMs, and calculat-
ing information criteria for each grid based mixture models.

n: number of observations, d: number of variables (dimen-
sion), and m: the number of components (clusters) in the
model, while the information complexity of the Em algorithm
is O

(
nd2

)
[36] in multivariate models, for variable selection

in univariate models information complexity is O (nd).The
information complexity of calculating model numbers to
obtain vector representations of AGMMs is O (md). Finally,
the information complexity is O

(
d2n+ dmn

)
to obtain the

information criteria for each AGMMs.

TABLE 1. log-L and BIC values for all variables in the data set.

III. RESULTS AND DISCUSSION
A. APPLICATION OF THE PROPOSED MIXTURE MODEL
CLUSTERING ON THE SYNTHETIC DATA SETS
In this section, the proposed method for the estimation of
the number of clusters is applied on the synthetic-1 data
set produced to explain the simple and clear steps of the
study. To measure the performance of the proposed method,
it was applied on Synthetic-2 dataset with more variables
(15 variables). Results, which are gathered from the analysis
of Synthetic-1 and Synthetic-2 data sets, were compared with
the results of mclust, clustvarsel, varselLCM, selvarMix and
vscc methods. In Table 1, the number of variables/features,
number of observations and number of components/clusters
of the data sets used are given.

1) APPLICATION OF THE PROPOSED CLUSTER ESTIMATION
METHOD ON SYNTHETIC-1 DATASET
In this section, the principles of the proposed MMSCM are
explained on the synthetic-1 data set. In order to determine the
number of clusters with univariate approaches, a multivariate
synthetic-1 data set was produced by simulation.

The synthetic-1 data set was generated from the mixture
of Gaussian distributions using mean vectors and covariance
matrices, with three variables and four clusters. It is designed
to have 1, 2, and 3 components in the variables, respectively,
to demonstrate the availability of different numbers of com-
ponents in the variables and a different number of observa-
tions in each component. While creating the synthetic-1 data
set, the parameters that make up the variables are given as
follows:

The mean and standard deviation values for variable X1
are µ1 = [29.55] and σ1 = [4.97]. Mean and covariance
matrices for variables X2 and X3 are

µ2 =

[
14.43
44.69

]
, 62 =

[
25.12 1.104
1.104 26.43

]
and

µ3 =

 9.64
50.29
77.19

 , 63 =

 23.294 1.358 −1.266
1.358 24.94 0.335
−1.266 0.335 23.227


respectively.

According to the information criteria obtained from the
U-GMMs, there are 1, 2, and 3 components in variables
X1,X2, and X3 respectively. logL and BIC values obtained
from U-GMMs to determine the components in variables
X1,X2 and X3 are given in Table 2 below.
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TABLE 2. log-L and BIC values for all variables in the data set.

TABLE 3. Components and size for X1, X2 and X3 variables of the
synthetic-1 data set.

The components in the synthetic-1 data set and the number
of observations per component are given in Table 3.

The cluster number ranges, Cmin = max {ks} =
max {1, 2, 3} = 3 and Cmax =

∏p
s=1 ks = 1.2.3 = 6, of the

mixture model to be created in the grid structure were calcu-
lated according to the components in the variables.

Thus, the minimum and maximum clusters in the
synthetic-1 data set resulted as 3 and 6 respectively. Variable
components and cluster centres are illustrated in Figure 2.

In the synthetic-1 data set, the variable X1 is called as
‘‘redundant variable’’ because it has a homogeneous struc-
ture, and the variable selection is made so that the reduced
data set consists of variables X2 and X3. Total mixture mod-
els for clusters obtained from variable components of the
synthetic-1 data set. MTotal was computed as MTotal = 26 −
1 = 63 for Cmax = 6. The cluster numbers, the number of
total models, and the number of appropriate models of the
synthetic-1 data are shown in Table 4.

For the three-dimensional synthetic-1 dataset, the mean
vector and covariance matrix structure are in the form of

µui =

µu1µu2
µu3


and

6u
i =


(
σ u1

)2
ρu1,2σ

u
1 σ

u
2 ρu1,2σ

u
1 σ

u
3

ρu2,1σ
u
2 σ

u
1

(
σ u2

)2
ρu2,3σ

u
2 σ

u
3

ρu3,1σ
u
3 σ

u
1 ρu3,2σ

u
3 σ

u
2

(
σ u3

)2
 ,

where i = 1, . . . , k respectively. Here σ1, σ2 and
σ3 corresponds to the components of X1,X2 and X3,
respectively.

The vector representation of appropriate mixture models
corresponds to 25 appropriate mixture models. The general
form of the mixture model having vector representation by

FIGURE 2. Variable components in X1, X2 and X3 forms and clusters in
synthetic-1 data set.

TABLE 4. The number of clusters, Alternatives mixture models, and
possible mixture models.

k component and number of components were expressed as
follows:

f u =
(
x, µu, 6u)

=

g∑
i=1

πui fi
(
x, µui , 6

u
i
)
, for u = 1, 2, 3

where πu = πi
3,4,5,6∑
s=1

πs

are mixing weights, for i = 1, . . . , k and

k = 1, . . . , 25.
After dimension reduction, the corresponding cluster cen-

tres of the components in variables X2 and X3 and grid
structures of appropriate models were obtained.

Component density function is the probability density
function for bivariate Gaussian distribution.
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TABLE 5. logL and BIC for the best mixture model.

The logL and BIC of the best model obtained from the
parameters calculated based on the components in the vari-
ables of the synthetic-1 data set are shown in Table 4.

The best mixture model that fits the 3D synthetic-1 data
set, which is determined bymodel-based clustering among 25
appropriate models, was the four-component mixture model.
Information criteria and vector representation of the model
obtained from mixture density functions for determining the
best model are shown in Table 5. According to the centres
presented in Figure 2, the structure blocks of the best model
was obtained as o (H) = 4 and δ (H) = {1, 3, 4, 6}.
The results obtained from MMSCM are compared to the

results of mclust and mclust based model selection methods
for synthetic-1 data set in Table 6.

The illustration of BIC values and number of components
for synthetic-1 data set is shown in Figure 3.

The GMM results were compared with the proposed
MMSCM to estimate the number of clusters and the correct
classification ratio on the synthetic-1 data set. According to

FIGURE 3. The number of components in multivariate the synthetic-1
data set according to different covariance structures.

FIGURE 4. Scatter plot created by variables X1, X2 and X3 in the data
reduced by variable selection.

FIGURE 5. 3D surface graph of the best mixture model with four
components.

the general CCR values, the recommended soft computing
clustering method is approximately 15% more successful
than mclust based methods. For the full data in the synthetic
data set, the scatter plot obtained from mclust is shown in
Figure 4.

The 3D surface graph of the model, which has ‘‘101101’’
vector representation with MMSCM, is illustrated in
Figure 5.

According to the classification success values obtained
from Table 6 for the Synthetic-1 dataset, MMSCM achieved
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TABLE 6. Results of comparison MMSCM and mclust based methods on the synthetic-1 data set.

an average of 15%higher success than themclust basedmeth-
ods. In the graph of the number of components in Figure 3,
it was seen that the best covariance model was the full type.

2) NUMBER OF COMPONENT ESTIMATION AND BEST
MODEL SELECTION FOR SYNTHETIC-2 DATA SET WITH
MMSCM
The synthetic-2 data set was generated by simulation with
the proposedMMSCM for dimension reduction and selection
of the best model. In the data set with 15 variables, the 1st

and 2nd variables were produced as 2 components and the
other variables were homogeneous. The parameter values
used while generating the variables in the data set are as
follows;

The mean vector and covariance matrix parameter values
for the variables X1 and X2 are

µ1 =

[
21.3
57.1

]
, 61 =

[
84.38 −1.67
−1.67 119.88

]
and

µ2 =

[
21.4
61.1

]
, 62 =

[
92.42 5.39
5.39 80.81

]
,

respectively. The mean and standard deviation values for
other homogeneous variables are

µ3,4,...,15 =

[
27.5, 32.3, 18.8, 23.5, 30.3, 56.8, 64.3,
20.7, 44.3, 39.1, 36.2, 28.1, 50.1

]
and

σ3,4,...,15=

[
9.9, 9.6, 9.8, 10.03, 10.1, 10.08, 10.3, 10.29,
10.06, 9.52, 10, 9.76, 9.68

]
.

The component numbers of each variable in the 15-variable
data set are revealed with U-GMM. Homogeneous and het-
erogeneous variables are determined and redundant variables
are excluded for the number of cluster estimations. U-GMM
values for 15 variables are shown in Table 7.

According to the logL and BIC values presented in Table 6,
X1 and X2 are heterogeneous two-component variables in the
15-variable data set. Others are homogeneous variables with
a single component. The number of observations assigned to
the components of the variables is shown in Table 8.

The number of components was determined with U-GMM
for the variables and dimension reduction was made by
eliminating homogeneous variables. X1 and X2 are used as

FIGURE 6. Components of variables X1 and X2 and their corresponding
cluster centres.

heterogeneous variables to estimate the number of clusters,
and other homogeneous variables are eliminated as redun-
dant.
max {2, 2} = 2 and Cmax = 2.2 = 4 are obtained for

alternative cluster numbers in the mixture model based on the
component numbers of the variables. The components of the
variables and possible cluster centres in the reduced data set
are shown in Figure 6.

Mixture models obtained from the components of the vari-
ables X1 and X2 in the reduced data set and the logL, BIC
values, and vector sequences of the models are shown in
Table 9.

The model with 3 components and ‘‘1110’’ vector array
representation according to logL and BIC values was deter-
mined as the best mixture model among the AGMMs.

The results obtained from MMSCM are compared to the
results of mclust and mclust based model selection methods
for synthetic-2 data set in Table 10.

Although the classification successes are the same, mclust
and vscc methods could not determine the redundant
variables.

The number of components and BIC value graph obtained
through mclust according to different covariance types are
shown in Figure 7.

The comparison of the performance of GMM with the
correct classification rate of the synthetic-2 data set according
to the clusters and locations obtained by MMSCM is given in
Table 9. The surface plot of the best mixture model obtained
by MMSCM is shown in Figure 8.
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TABLE 7. The number of components, logL and BIC values in variables with U-GMM for 15-variable data set.

FIGURE 7. The number of components and BIC values according to
different covariance types with mclust.

According to the results in Table 10 for the Synthetic-2
data set, the success of the proposed method and the mclust
based methods are the same. While MMSCM used VVV full
covariance for the number of component estimation, other
methods used EVI covariance type as seen in Figure 7.

FIGURE 8. Cluster centres and surface plot corresponding to components
of variables X1 and X2 in the best mixture model.

B. TESTING OF THE PROPOSED MIXTURE MODEL
CLUSTERING FOR THE REAL DATA SETS
While the principles of the proposed method for model-
based clustering in the grid structure on the synthetic-1 and
synthetic-2 data sets were explained in the previous section,
the clustering algorithm of the proposed method was applied
on Iris and LSI real data sets one after another in this section.
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TABLE 8. In the 15-variable data set, the number of observations falling
on the components of variables X1 and X2 and the number of
observations of other homogeneous variables.

1) APPLICATION OF THE PROPOSED CLUSTERING METHOD
FOR THE IRIS DATA SET
The steps of the proposed method (MMSCM) is explained on
the Iris data set (UCI Machine Learning Repository), which
is widely used for clustering and classification analysis. Iris
data set, presented by Fisher in 1936 and widely used in clus-
tering, is a multivariate data set with three clusters (Setosa,
Versicolor, and Virginica), four variables (Sepal length, Sepal
width, petal length, and petal width), and 150 observations.

In the finite mixture models, it has always been a difficult
problem to correctly determine the number of components
in the variables. In the proposed method, the number of
components of the heterogeneous variables in the Iris data
set is determined with the U-GMM. logL and BIC values
were obtained from U-GMMs to determine the components
in variables X1,X2,X3 and X4 (Sepal length, Sepal width,
petal length, and petal width) and are given in Table 11.

Applying U-GMMs to the 4 variables in the Iris data set
show that there was no (homogeneous) component in the
Sepal width variable (X2) according to the findings obtained
from the values in Table 6. Thus, the variable X2 was deter-
mined as a ‘‘redundant variable’’ and a variable selection was
made. While determining the number of clusters is based
on the number of components in the variables, according to
MMSCM assumptions, homogeneous variables do not affect
the number of clusters and clustering. Variable selection was
made by removing homogeneous variables, so dimension
reduction was applied to the data. Sepal length (X1), Petal
length (X3) and Petal width (X4) variables is used to determine
the clusters and also the number of clusters in the Iris data set.

Components of variables X1,X2,X3 and X4 of the Iris data
set and assigned observations are given in Table 12.

The range is calculated as Cmin = max {ks} =
max {2, 1, 2, 2} = 2, andCmax =

∏p
s=1 ks = 2×1×2×2 = 8

for the number of clusters, which are determined based on
the components in heterogeneous variables. Thus, Cmin ≤
k ≤ Cmax cluster intervals were obtained according to the
component numbers s = 1, 2, s = 1, s = 1, 2, and s = 1, 2
for variables X1, X2, X3, and X4 in the Iris data set.
The grid structure model consisting of the components

in variables X1,X3 and X4, the clusters in the model,
and the components forming each cluster are shown in
Figure 9.

The multivariate data set is converted into mixture models
in grid structure according to the number of components in
the variables and the cluster centres that may occur. Com-
ponents of variables that fit cluster centres are shown in
Figure 9.

FIGURE 9. Components of variables X1, X3 and X4 in reduced Iris data set.

2) SOFT COMPUTING FOR APPROPRIATE MIXTURE MODELS
AMONG TOTAL MIXTURE MODELS
According to the maximum number of clusters from
Equation (9) obtained from the components in the variables,
the total number of mixture models from Equation (10) is
obtained as MTotal = 28 − 1 = 511. The null model without
any set is deducted from the calculation.

Under the assumptions of the proposed clustering algo-
rithm, the number of models, which can occur according to
the components of each variable, and mixture models that fit
the assumptions from these models are calculated as shown
in (12) with the MMSCM.

In the soft computing method, where j1 = 2, j3 = 2, and
j4 = 2 correspond to components variables X1,X3 and X4,
i1, i3, and i4 indices are used to denote the number of clusters
and c ranges from 2 to 8 to show the number of clusters in the
mixture model.

The number of clusters, the number of models, and the
number of possible mixture models are given in Table 13.

3) VECTOR REPRESENTATION AND INFORMATION CRITERIA
OF BEST MIXTURE MODEL FITTING TO IRIS DATA IN GRID
STRUCTURE
In this section, the soft computing method, which was
expressed in Section 2, was proved that it could obtain the
number and locations of the cluster in the Iris data set.

According to the information criteria, the best model was
chosen from the appropriate mixture of multivariate Gaussian
densities. The logL and BIC values of the best mixture mod-
els for the Iris data set are given in Table 14. The three
cluster-centred mixture model was seen as the best model
that fits the data among the mixture models in the Iris data
set.

For the Iris data set, the number of components’ plots for
complete and reduced data obtained from mclust are shown
in Figure 10 and Figure 11, respectively.

As it can be seen on the Figures 10 and 11, mclust
based methods result 2 components for complete data. Since
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TABLE 9. AGMM numbers, logL, BIC values and vector array representations according to the component numbers of the variables.

TABLE 10. Results of comparison MMSCM and mclust based methods on the synthetic-2 data set.

TABLE 11. -logL and BIC values for all variables in Iris data set.

they cannot reduce the number of variables, real number
of components could be achieved. On the other hand, the
variables, which are determined by the proposed MMSCM,
are applied on mclust based methods, the real number of
component, 3, is obtained.

The 3D scatter plot of the best mixture model obtained
from the proposed clustering method is shown in Figure 12.

The vector representation of the best model, which fits
the data set among the mixture models from the AGMMs,
is ‘‘10010010’’. The cluster centres in the best-mixture model
are the 1st (Setosa), 4th (Versicolor) and 7th (Virginica) cen-
tres as shown in Figure 9. According to the centres in Figure 9,
the structure blocks of the best model are obtained as o (H) =
3 and δ (H) = {1, 4, 7}. 1st center (X11,X31 and X41),

TABLE 12. Variable components and their observations for Sepal length
(X1), Sepal width (X2), Petal length (X1) and Petal width (X1) of Iris data
set.

4th centre (X12,X32 and X41) and 7th centre (X11,X32 and X42)
are composed of components.

The results obtained from MMSCM are compared to the
results of mclust and mclust based model selection methods
for Iris data set in Table 15.
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TABLE 13. The number of clusters, total mixture models, possible
mixture models, and free parameters.

TABLE 14. log L and BIC values for the best mixture model for Iris data
set.

FIGURE 10. The number of components (2) and covariance types for
complete data with 4 variables.

For the Iris dataset, MMSCM’s variable selection and
component count estimation is 22% more successful than
other methods. While Mclust-based methods could not select
variables, the estimation of the number of clusters was wrong
and low success rate was obtained. However, when the vari-
able selection determined by MMSCM was applied to the
compared methods, they were able to correctly estimate the
number of clusters.

According to the CCRs calculated for the mclust based
methods and MMSCM and shown in Table 14, a higher
success rate with 32%, in other words, better model fit
was achieved as a result of components determined by
MMSCMand dimension reduction, whilemclust basedmeth-
ods directed a wrong number of components as 2.

4) APPLICATION OF THE PROPOSED MIXTURE MODEL
CLUSTERING FOR THE LANDSAT SATELLITE IMAGE DATA SET
The proposed clustering method was applied to the remote
sensed LSI data. Pixel values in the 3rd, 4th, and 5th bands

FIGURE 11. The number of components (3) and covariance types for
reduced data with 3 variables after the variable selection.

FIGURE 12. The 3D scatter plot of the best mixture model fitting the Iris
data set.

were used among seven variables of LSI data. There are 5
components in the three-variable LSI dataset: Wheat, Potato,
Vegetable Garden, Citrus and Bare Soil [24]. The components
of each variable in the LSI data set corresponded to those in
the U-GMMs are given in Table 16.

There were three components in variables X1,X2 and
X3 according to the information criteria obtained from the
U-GMMs. The components in variables of the LSI data set
and the number of observations per component are given in
Table 17.

The cluster number ranges, Cmin = max {3, 3, 3} = 3
and Cmax = k1k2k3 = 3.3.3 = 27, of the mixture model
to be created in the grid structure were calculated according
to the components in the variables. Thus, the minimum and
maximum clusters in the LSI data set were 3 and 27, respec-
tively. Variable components and cluster centres are illustrated
in Figure 13.

Total mixture models for clusters were obtained from vari-
able components of LSI data set. MTotal can be computed as
MTotal = 227 − 1 = 134217727 for Cmax = 27.
The clusters, grid-based total mixture models, and appro-

priate mixture models for components are given in Table 18.
The vector representation of appropriate mixture models

corresponds to 131.964.460 appropriate models.
The best mixture model, which fits the 3D LSI data

set and was determined by MMSCM among 131.964.460
appropriate models, is the five-component mixture model.
Information criteria and vector representation of the model
obtained from mixture density functions for determining the
best model are shown in Table 19. The structure blocks of
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TABLE 15. Results of comparison MMSCM and mclust based methods on the Iris data set.

TABLE 16. The number of free parameters, logL and BIC values for all variables in the data set.

FIGURE 13. Variable components and cluster centres of LSI data set.

TABLE 17. Variable components and size for variables X1, X2 and X3 of
LSI data.

the best model are shown in Figure 13 as o (H) = 5 and
δ (H) = {1, 6, 13, 18, 20}.
The results obtained from MMSCM are compared to the

results of mclust and mclust based model selection methods
for LSI data set in Table 19.

TABLE 18. Clusters, total mixture models, and appropriate mixture
models.

Runtime analysis ofMMSCM, the four datasets mentioned
above are listed in Table 21. It can be seen from Table 21 that
the processing time is longer when the size of the dataset is
large. Table 20 also shows the acceleration and high-quality
clustering results of MMSCM.
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TABLE 19. logL and BIC for the best mixture model.

FIGURE 14. The number of components and BIC values according to
different covariance types with mclust for LSI data set.

With respect to the values shown in Table 20, mclust
based methods determine 9 components for VVV covariance
types. Moreover, low CCR percentages for mclust based
methods yield that the number of components are determined
wrongly. The BIC values as well as number of components
with respect to the different covariance types are presented in
Figure 14.

It could observed on Figure 14 that the optimum number
of components for VVV covariance type on LSI data set is 5.
The results of the 5-component model obtained from mclust
method are as follows: BIC = 786830.9, CCR = 62.9%,
and ARI = 0.44. The scatter plot of the components and the
positions of the components are shown in Figure 15.

FIGURE 15. Cluster centres and scatter plots in three-variable and
5-component LSI data set.

The correct classification table for LSI data set is given in
Table 22.
whereW:Wheat, P: Potato, VG: Vegetable Garden, C: Citrus,
BS: Bare Soil, RT: Row Total, CT: Column Total. The overall
CCR is 0.95 for the proposed method from Table 22.

The image data of 5 clusters and their colours separated as
a result of the clustering method proposed in the LSI data set
are shown in Figure 16.

For LSI dataset, MMSCM achieved more than 50% suc-
cess compared to mclust based methods. Existing methods
of cluster estimation are quite unsuccessful in big data with
a small number of variables but a large number of obser-
vations. With the univariate grid structure mixture models
approach, MMSCM has shown a very high success not
only in the number of clusters and CCR, but also in time
complexity.

TABLE 20. Results of comparison MMSCM and mclust based methods on the LSI data set.

TABLE 21. Running time of different algorithms (seconds).
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FIGURE 16. Five components and their colours separated as a result in
the LSI data set.

TABLE 22. Results of the MMSCM with the correct classification ratio
matrix of the LSI data set.

IV. CONCLUSION
In this study, based on the components of heterogeneous
variables in the data according to the mixture model soft
computing method, a novel method was proposed for deter-
mining the clustering in GMM. The developed clustering
algorithm was applied to the synthetic-1, synthetic-2, Iris and
LSI data set, and it was observed that the variable cluster and
number of clusters made an accurate clustering compared to
the studies in the literature.

The dimension reduction method proposed by MMSCM
has been important preliminary information in accurately
estimating the number of components for mclust based
methods.

In conclusion, the proposed MMSCM yields %15 bet-
ter CCR results for synthetic-1 data set. Moreover, for
synthetic-2 data set, MMSCM is better than mclust and
vscc methods with respect to the variable selection. Further-
more, the proposed method gives better results for number
of cluster estimation and variable selection as well as higher
CCR regarding to Iris data set. Finally, for the LSI data set,
MMSCM not only estimates number of cluster better, but
also results a higher CCR value. It is clear that the proposed
MMSCM performs better on the variable selection and the
number of cluster estimation in comparison with the mclust
based models.

The disadvantage of the proposed algorithm is that the
number of elements of the search space increases exponen-
tially when the number of variables increases and there are
toomany components in each variable. DeterminingAGMMs

and obtaining vector representations among mixture models
in the search space increases the time complexity. In order
to overcome this problem, solutions for parallel computation
can be studied in the proposed algorithm.

In addition, the proposed method gives faster and more
accurate results than existing methods in terms of variable
selection and cluster number estimation in big data.

In future studies, it is aimed to combine the mixture
model soft computing method with deep learning methods
in estimating the number of clusters of big data within the
framework of variable selection. In addition, it is expected to
combine the proposed method with multi-criteria decision-
making methods and test it in different application areas.
Besides, the variable selection, number of cluster estimation
and classification success approaches of the proposedmethod
should be developed as a package in R software.
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