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ABSTRACT Development of new methods and tools for formalization and representation of complex
knowledge in the context of the creation of intelligent systems remains in the scope of scientific research.
Modern trends aim to automate the knowledge formalization and representation by using various sources
of information, in particular, spreadsheets. This paper proposes a novel approach to the semi-automatic
formalization and representation of the engineering knowledge in the form of conceptual models and
knowledge base codes from spreadsheet data. Our approach comprises three phases: (I) rule-driven data
transformation source spreadsheet tables to a specific canonical form (data preprocessing), (II) domain
knowledge formalization and representation via the extraction and aggregation of conceptual model frag-
ments from canonicalized tables, (III) model-driven synthesizing knowledge base and source codes from
a domain model. The approach is implemented by our tools: TABBYXL provides the development of a
software application for the spreadsheet data canonicalization; Personal Knowledge Base Designer is used
to build and aggregate conceptual models fragments, as well as to construct a target knowledge base and to
generate source codes. Our case study on the industrial safety inspection (ISI) demonstrates that the approach
is fully suitable for prototyping knowledge bases containing decision-making rules.

INDEX TERMS Spreadsheet, conceptual model, data transformation, domain model generation, knowledge
base engineering, industrial safety inspection.

I. INTRODUCTION
Currently, development of new methods and tools for
formalization and representation of the complex engineering
knowledge in the context of the creation of domain-specific
knowledge-based systems for solving various practical
engineering problems remains in the scope of scientific
research [1]. Such systems are actively used in design [2],
diagnostics and forecasting conditions of complex technical
systems [3], selection of design materials [4], risk analy-
sis [5], etc.

The main elements of intelligent systems are knowledge
bases and their research remains of high importance [6].
In recent years, there has been an increasing trend to automate
knowledge formalization and representation by using a semi-
automated transformation of various sources of information
(texts, documentation, databases, spreadsheet tables, web
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resources, etc.), as well as the principles of visual, conceptual
and cognitive modeling [1], [2], [7].

Spreadsheets are one of the most convenient ways to
structure and represent statistical and other data. For this
reason, they are widely distributed and their number reaches
150 million only on the Internet [7]. Spreadsheets contain
useful knowledge in many domains (e.g., engineering, busi-
ness, etc.), and can be a valuable knowledge source. In the
last decade, new approaches to automating the development
of knowledge bases have emerged. They are based on the
analysis of spreadsheets in CSV and Excel format, as well
as web tables [8], [9]. These approaches focus on automated
extraction of knowledge from tabular data and, as a rule, they
target a specific structure (model) of the table. Moreover,
raw tabular data do not always contain the experience and
expert knowledge that are important when solving subject
tasks. Besides, knowledge bases require a detailed descrip-
tion, confirmation, and verification by experts. In this regard,
ontology and conceptual modeling methods are used to help
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build complete and consistent knowledge bases, when the
spreadsheets are a source of knowledge at the terminological
and essential levels.

This paper presents a novel three-phase approach to a
semi-automatic formalization and representation of the engi-
neering knowledge in the form of conceptual models and
spreadsheet data, and covers the following tasks:

(I) extracting source arbitrary tables from a spread-sheet
and transforming them to an original canonicalized form;

(II) formalization and representation domain model frag-
ments extracted from canonicalized tables and aggregating
them into a complete domain model;

(III) synthesizing source codes of a knowledge base in a
target knowledge representation language from a complete
domain model.

To demonstrate the applicability of the approach proposed,
we develop and integrate our two tools:

(I) TabbyXL [10], which is used for canonicalization of
source arbitrary tables to a canonicalized form;

(II) PKBD (Personal Knowledge Base Designer) [11],
which is used for formalization and representation of knowl-
edge in the form of domain models and source codes of
knowledge bases.

Thus, our contribution includes the following results. For
the first time, we proposed the approach for formalization
and representation of the complex engineering knowledge
in the form of conceptual models and knowledge bases
that utilizes the rule-driven spreadsheet data extraction. Our
approach facilitates formalization, representation, and cod-
ification of knowledge and data represented in the form of
spreadsheets. We carried out experiments to demonstrate
that the approach is a feasible way for generating frag-
ments of a conceptual model (ontology) in the Industrial
Safety Inspection (ISI) area (which is our case study).
As a result, conceptual models for the ISI tasks were
developed. It is important to highlight that the resulting
conceptual models were used to synthesize source codes
and high-level specifications for knowledge bases. We also
illustrated such a synthesis by generating a knowledge
base represented as a source code in CLIPS (C Language
Integrated Production System), DROOLS, and PHP
(Hypertext Preprocessor).

The paper is organized as follows. Section 2 considers
the related works. Section 3 contains the preliminaries.
Section 4 explains our three-phase approach including a
description of the implementation. Section 5 illustrates a
case study of our approach for solving an ISI task includ-
ing an illustrative example and the experimental evaluation.
Section 6 discusses the results, while Section 7 presents
concluding remarks and future work.

II. RELATED WORKS
Analyzing and transforming data from spreadsheets to for-
malize and represent knowledge is a popular area of research.
At the same time, solutions in this area can be divided into two
large groups of approaches that implement:

- end-to-end or full transformation [12]–[18]: provides
transformation of source spreadsheets directly into some
knowledge structures, in most cases it is the Resource
Description Framework (RDF) or Web Ontology Lan-
guage (OWL) files;

- partial or step-by-step transformation [19]–[23]: provides
partial solutions using intermediate forms of data and knowl-
edge representation, for example, in the form of concep-
tual models; they separately solve problems of transforming
spreadsheets and conceptual models (mainly in the form of
UML class diagrams).

Next, we present some examples of these studies.

A. END-TO-END AUTOMATED TRANSFORMATION OF
SPREADSHEET DATA INTO KNOWLEDGE
Currently, the most popular way to represent domain knowl-
edge is knowledge graphs (semantic networks) or ontolo-
gies [6], [7]. For this reason, most of the studies aimed at
obtaining machine-interpreted knowledge structures based
on understanding tabular data (including solving tasks of
detection, analysis, and transformation of tables) are focused
on the RDF and OWL formats.

From the methodological point of view, they pro-
vide the extraction of separate knowledge fragments (or
mini-ontologies [9] which do not go beyond the context
of a separate table) with their subsequent aggregation into
one expanding domain model. An example of such a study
is the TANGO approach [9]. There are also examples of
research and commercial software: RDF123 [13], Owli-
fier [24], Datalift [16], Any2OWL [17], Spread2RDF, Any23,
TopBraid Composer, etc.

The main disadvantages of the end-to-end spreadsheet data
transformation studies are the following:

- Orientation to well-structured data, which implies using
either a specific table layout (usually ‘‘entity’’ tables contain-
ing descriptions of instances of a particular entity, with all
columns being its attributes, i.e. tables of the one dimension)
or specific data sets (for example, the Gold standard1);
- Orientation to a specific way of presenting tables, for

example, HTML;
- High qualification requirements when describing trans-

formations (in cases where it is possible to configure
systems);

- Lack of validation and representation of the knowl-
edge obtained using visual domain-specific or system-wide
notations;

- Lack of code generation in a specific knowledge represen-
tation language that allows one to directly use and integrate
the obtained codes in applications.

Despite significant progress in this area and the growing
popularity of integration of spreadsheet data and semantic
technologies, the studies aimed at analyzing and transform-
ing spreadsheet data into other knowledge representation

1T2Dv2 Gold Standard for Matching Web Tables to DBpedia,
http://webdatacommons.org/webtables/goldstandardV2.html
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formalisms are poorly presented. The exception is associative
rules [18], which are part of data mining methods and are not
considered in these studies as an element of knowledge-based
or expert systems.

In general, the trend of weak support for other knowledge
representation formalisms can be explained by their possi-
ble equivalent transformation; however, this does not solve
the issue of code generation for a particular programming
language. In turn, rule-based knowledge representation lan-
guages (such as DROOLS, JESS, CLIPS) are still useful
when developing industrial intelligent and knowledge-based
systems [1], [3]. Knowledge bases with rules attract develop-
ers by their visibility, high modularity, simplicity of making
additions and changes, and the straightforward logical infer-
ence mechanism.

B. PARTIALLY AUTOMATED TRANSFORMATION OF
SPREADSHEET DATA INTO KNOWLEDGE
As an example of studies that can provide partial trans-
formation of spreadsheet data into knowledge, we can high-
light studies that provide solutions of two different tasks, from
which it is possible to build a step-by-step transformation
chain or a pipeline:

- transforming spreadsheet data to conceptual models,
- transforming conceptual models to knowledge bases and

source codes.
Although conceptual models can be used to represent

ontologies and some researchers identify them with knowl-
edge graphs and semantic networks, in most cases they reflect
only one of the specific aspects of ontologies, for example,
structural or behavioral. In this regard, there are studies aimed
at obtaining certain types of conceptual models from spread-
sheet data.

In particular, we can distinguish the following studies,
which consider the solution of the first task.

Hung et al. [8] propose TRANSHEET, an approach for
transforming spreadsheet data to a structured target model
in the XML format. TRANSHEET enables users to per-
form mappings via a familiar and expressive spreadsheet-like
formula language. This language is designed for specifying
mappings between spreadsheet data and the target schema.

Hermans et al. [27] present a systematic approach called
GYRO for the automation of the extraction of UML class
diagrams from spreadsheet data. GYRO automatically trans-
forms spreadsheet data in Excel format by exploiting the
commonality in tables, like the two-dimensional patterns.
These patterns are located within a spreadsheet table using
a combination of parsing and pattern matching algorithms.

Cunha et al. [21] suggest an approach called
CLASSSHEETS based on searching for functional depen-
dencies between data cells when results of the transformation
are relational models. The authors of [21] also show how to
systematically transform extended CLASSSHEETS models
to UML class diagrams enriched with constraints expressed
in OCL (Object Constraint Language). UML class diagrams
are generated under the notation of the USE framework.

Amalfitano et al. [20] describe a heuristic-based reverse
engineering process for inferring conceptual data models in
the form of UML class diagrams from spreadsheet tables in
the Excel format. This process is fully automatic and has been
defined in an industrial context and validated by an experi-
ment involving three different spreadsheet-based information
systems from the considered automotive industrial domain.

Most of the studies in this group also have some limitations
related to the support of certain specific predefined models
of source spreadsheets with a mixed logical and physical
structure, and they are almost all focused on obtaining UML
class diagrams.

The second task is usually solved independently of the first
one. The existing solutions focus on analyzing specific for-
mats of conceptual models and generating knowledge bases
in the form of ontologies or logical rules presented in specific
knowledge representation languages.

In particular, Zedlitz and Luttenberger [22] present an
approach for transforming UML class diagrams into OWL
2 ontology using the QVT-r language from OMG standard.

Albert and Franconi [19] proposed an integrated
method and ORM2OWL tool for transforming concep-
tual domain models in the Object Role Modelling (ORM)
format into OWL ontology. eXtensible Stylesheet Lan-
guage Transformations (XSLT) was used at the first stage
of transforming conceptual models from XML format
to ORM.

Starr and Oliveira [23] proposed a method using Cmap-
Tools conceptual maps as the main means for expressing
expert knowledge, as well as a set of formal transformations
applied to thesemaps to transform them into domain ontology
in the OWL format.

Other examples of solving the task of automated trans-
formation of UML models into ontologies are presented
in [24]–[26].

These approaches and software have several drawbacks,
in particular:

- Absence or limitation of the code generation of knowl-
edge bases in different knowledge representation languages;

- Limited set of supported formats of conceptual models,
as well as the complexity of describing the models for code
generation.

- Complex implementation of transformations, which,
in turn, causes a variety of software used by researchers
within each separate transformation (sometimes a separate
software is used at each stage of the transformation).

Thus, the problem of developing methods and software for
extracting and transforming data from spreadsheets with an
arbitrary layout and data sets into ontologies and knowledge
with subsequent validation of results by subject specialists,
as well as generation of source codes and the integration
of them into applications, remains a relevant task. At the
same time, it appears quite promising to use an intermediate
representation of knowledge in the form of conceptualmodels
that reflect the generated knowledge at the terminological
level (T-Box) level.
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In this paper, to overcome the drawbacks mentioned above,
we propose a new approach to the semi-automated formaliza-
tion and representation of the complex engineering knowl-
edge in the context of the creation of knowledge bases. The
key features of our approach are the following:

- The main source of knowledge is spreadsheets with the
arbitrary layout (structure);

- Spreadsheet data is represented with the use of a special
canonical form;

- Conceptual models are an intermediate means to formal-
ize and represent the knowledge extracted from canonicalized
spreadsheets and the basis for synthesizing source codes of
knowledge bases.

III. PRELIMINARIES
A. SPREADSHEET SOURCE AND CANONICALIZED TABLE
Here, we formally introduce tables and their types. A table
is a grid of cells arranged in rows and columns. Such tables
are used as visual communication patterns, as well as data
arrangement and organization tools. In this paper, we primar-
ily focus on spreadsheet tables, i.e. tables embedded in vari-
ous documents and reports. Such spreadsheet tables typically
contain data from various dimensions or named entities and
are presented in the Excel format (XLSX or CSV). Below,
we define elements of a spreadsheet table denoted as ST.
Spreadsheet table headings, STH , is a set of labels defin-

ing a general meaning of each spreadsheet table row or/and
column. Headings are typically located in the first row or/and
column in a spreadsheet table.

A spreadsheet table cell, ST[i,j] is specified with the row
index i and the column index j. Spreadsheet cells hold values
(entries) and are considered as atomic units in a spreadsheet
table. These cells can also be empty. A spreadsheet table
column STCj is a set of spreadsheet table cells lying vertically
in column j of a spreadsheet table. A spreadsheet table row
STRi is a set of spreadsheet table cells lying horizontally in
line i of a spreadsheet table.
Such spreadsheet tables are defined as arbitrary in [10],

since they may have a different layout and design style due to
the specifics of domain data.

Another type of tables is a relational one. Relational tables
contain high-quality relational data [30]. Therein, relation
spreadsheets can be converted into a relational model. Rela-
tional tables contain a set of entities that could exist in
rows (horizontal) or columns (vertical), the remainder of cells
contain their descriptive attributes.

To represent extracted tabular data, we propose a canonical
form that corresponds to relational tables by a layout. The
special canonical form we use is formally defined as follows:

CF = (D,RH ,CH ) (1)

whereD is a data column that contains only entries (i.e. values
of a source table), RH is a column of paths of row labels (i.e.
headings addressing the values by rows), CH is a column of
paths of column labels (i.e. headings addressing the values by
columns). A path of labels can express either a separation of a

category into subcategories or reading order. In the examples,
we use the vertical bar to denote separated labels in a path.
Our approach uses the canonical form as an intermediate data
representation between source spreadsheet tables and target
conceptual models.

B. CONCEPTUAL MODEL AND MODEL
TRANSFORMATIONS
A model is an abstraction of a system under study that
makes it possible to have a better understanding of and to
reason about it [31]. Models can be divided into different
categories, in particular, mathematical models, graph mod-
els, etc. According to [32], models are divided into three
levels, namely: conceptual models, specification models, and
implementation models. A conceptual model represents con-
cepts (entities) and relationships between them, and it is
mainly built to formalize and represent the static character-
istics of some system.

The recently created numerous conceptual modeling tech-
niques can be applied across multiple disciplines to increase
the user’s understanding of the system to be modeled [33].
Various visual and text notations, universal modeling lan-
guages, and standards, in particular, UML class diagrams,
IDEF1x and others, are widely used in designing conceptual
models.

Typical usage of conceptual models is to build various
information systems, for example, knowledge-based systems.
Conceptual models can be used as a basis for generating
domain ontologies and knowledge bases. The model trans-
formation aims at converting source models to target ones.

IV. APPROACH
Our approach consists of three phases: (I) extracting data
from source tables and transforming them to the canonical
form, (II) formalization and representation of knowledge
extracted from canonicalized tables, (III) synthesizing source
codes of a target knowledge base from the conceptual model.
The workflow diagram of this process is shown in Figure 1.

A. OBTAINING SPREADSHEETS
The source data we are interested in can be found in document
tables. To begin with, such tables should be extracted from
digital media like web-pages and PDF documents. Note that
we do not determine this process here. However, it can be
realized by using data scraping tools (e.g. Tabula or Tab-
byPDF) with additional manual verification and correction.

Phase 1 starts with extracting spreadsheet tables as shown
in Figure 1. Tables that we are interested in typically have
an arbitrary layout and not a relational one. Phase 1 aims
at transforming them to the canonical form (e.g. Figure 2).
We consider this process in terms of the table understand-
ing [9] with the following steps: (I) role analysis, i.e. recover-
ing data items (entries and labels) from cells, (II) structure
analysis, i.e. recovering relationships between data items,
(III) interpretation, i.e. separating labels into named or anony-
mous categories.
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FIGURE 1. Diagram of the workflow for formalization and representation of engineering knowledge extracted from spreadsheet data.

FIGURE 2. An example of transforming spreadsheet data from a source
table of Form 1 (left) to its target table in the canonical form (right).

In our case, extracted tables are represented by two source
forms resulted from our case study. The first of them (Form 1)
hasmerged cells expressing either data repeating or hierarchi-
cal relationships between headings. An example of a source
table in Form 1 is illustrated in Figure 2 (left). The target
table in the canonical form corresponding to the source table
is shown in Figure 2 (right).

To develop rules for analysis and interpretation of source
tables in Form 1, we use the following assumptions. A corner
cell s started from 1-row and 1-column contains a stub head.
The corner covers all head rows and all stub columns. A head
cell contains one column label (e.g. h1, h2, . . . , hn). They can
compose hierarchical (parent-child) relationships expressed
by spanning and nested cells. A child label should be placed
in a nested cell while its parent label is in the corresponding
spanning (e.g. h3 and h4 are children of h2 parent in Figure 2).
Each path of column labels belongs to the category CH

(e.g. ‘‘ColumnHeading’’ column of the canonicalized table in
Figure 2). A cell of a stub part contains one row label (e.g. s1,
s2, . . . , sm). A multicolumn stub expresses hierarchical paths
of parent-child relationships. Each path is read in a row from
a left column (parent) to the right one (child). Any path of
row labels belongs to the category RH (e.g. ‘‘Row Heading’’
column of the canonicalized table in Figure 2).

A body part is a data block placed below the head and
to the right of the stub. A body cell contains one entry
(e.g. d1, d2, . . . , dk ). A merged cell should be considered as
a set of repeated entries with the same value (e.g. d3, d4,
and d8 in Figure 2). Each entry is addressed by one path of
column labels and one path of row labels. For example, d9 is
addressed by a (h2|wh4) path of column labels, and a (s|s3)
path of row labels.

These assumptions allowed us to develop a ruleset for
canonicalization of source tables. It was expressed in CRL,
our domain-specific language for table analysis and interpre-
tation rules [34].

It should be noted that the transformation rules depend
only on the structure of canonical tables. However, when
processing new source spreadsheet table layouts, we need
to create a new set of transformation rules in CRL to get
canonical tables. The rules that we used in this case are listed
below.

Rule 1 creates column labels from cells placed in a head.
If there exists a cell c0 in the left top corner (line 02) and a
cell c1 is located in the same rows and right columns (line
03), then a label is created in c1 (line 05) and this label
is associated with the category “Column Heading” (line
06) as shown in the listing below:

01 when
02 cell c0: rt == 1, cl == 1
03 cell c1: rb <= c0.rb, cl > c0.cr
04 then
05 new label c1

06 set category “Column Heading” to c1.label

Rule 2 creates parent-child pairs from labels placed in a
head. If there exists a pair of labels l1 and l2 originated
from the head determined by a corner cell c0 and the cell of
l1 spans the cell of l2 by columns (lines 02-05), then the
parent label l1 is associated with the child label l2 (line 07)
as shown in the listing below:

01 when
02 cell c0: rt == 1, cl == 1
03 label l1: cell.cl > c0.cr, cell.rb < c0.rb
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04 label l2: cell.rt == l1.cell.rb + 1,
05 cell.cl >= l1.cell.cl,

cell.cr <= l1.cell.cr
06 then

07 set parent l1 to l2

Rule 3 creates row labels from cells placed in a stub. If a
cell c1 is located in the same columns of the corner cell
c0 (lines 02-03), then a label is created in the cell c1
(line 05) and this label is associated with the category “Row
Heading” (line 06) as shown in the listing below:

01 when
02 cell c0: rt == 1, cl == 1
03 cell c1: cr <= c0.cr
04 then
05 new label c1

06 set category “Row Heading” to c1.label

Rule 4 creates parent-child pairs from labels placed in a
stub. If there exists a pair of labels l1 and l2 originated from
the stub determined by a corner cell c0 and the cell of l1
spans the cell of l2 by rows (lines 02-05), then the parent
label l1 is associated with the child label l2 (line 07) as
shown in the listing below:

01 when
02 cell c0: rt == 1, cl == 1
03 label l1: cell.rt > c0.rb, cell.cr < c0.cr
04 label l2: cell.rt >= l1.cell.rt,
05 cell.rb<=l1.cell.rb, cell.cl ==l1.cell.cr + 1
06 then

07 set parent l1 to l2

Rule 5 creates parent-child pairs from a label placed in a
stub head and labels placed in a stub. If a labell1 is originated
from a cell located below the corner cell c0 and in the 1st
column (lines 02-03), then the parent label originated from
c0 is associated with the child label l1 (line 05) as shown
in the listing below:

01 when
02 cell c0: rt == 1, cl == 1
03 label l1: cell.rt > c0.rb, cell.cl == 1
04 then

05 set parent c.label to l1

Rule 6 splits merged cells placed in a body. If a cell c1
is located in the body determined by the corner cell c0 on
several rows (lines 02-03), then it is a split (line 05) as
shown in the listing below

01 when
02 cell c0: rt == 1, cl == 1
03 cell c1: rt > c.rb, cl > c0.cr, rt < rb
04 then

05 split c1

Rule 7 creates entries from cells placed in a body. If a cell
c1 is located in the body determined by the corner cell c0
(lines 02-03), then an entry is created in c1 (line 05) as
shown in the listing below:

01 when
02 cell c0: rt == 1, cl == 1
03 cell c1: rt > c0.rb, cl > c0.cr
04 then

05 new entry c1

Rule 8 associates entries with labels by the same rows
and columns. If there exists a triplet of an entry e and two
terminal labels l1 and l2 located in the same columns and

FIGURE 3. An example of transforming spreadsheet data from a source
table of Form 2 (left) to its target table in the canonical form (right).

the same rows of the cell of e respectively (lines02-07), then
both labels l1 and l2 are associated with the entry e (lines
09-10) as shown in the listing below:

01 when
02 cell c0: rt== 1, cl == 1
03 entry e
04 label l1: cell.rb == c0.rb,
05 cell.cr >= e.cell.cl, cell.cl <= e.cell.cr
06 label l2: cell.cr == c0.cr,
07 cell.rb >= e.cell.rt, cell.rt <= e.cell.rb
08 then
09 add label l1 to e

10 add label l2 to e

The second form (Form 2) is a list with only two columns.
Each row puts together a heading and data, i.e. a label si and
an entry di. It also merges cells for repeating headings and
data. Figure 3 depicts an example of a source table Form 2
(left) and its target table (right). Form 2 does not have column
headings. The ruleset expressed in CRL intended for the data
canonicalization from source tables of Form 2 is listed below.

Rule 1 creates labels from cells placed in a left column.
If a cell c is located in the 1st column (line 02), then a label
is created in c (line 04) as shown in the listing below:

01 when
02 cell c: cl == 1
03 then

04 new label c

Rule 2 creates entries from cells placed in a right column
and associates them with labels originated from the same
rows. If a cell c is located in the 2nd column (line 02) and
a label l is originated from a cell in the same row of c (line
03), then an entry is created in c (line 05) and the label l
is associated with this entry (line 06) as shown in the listing
below:

01 when
02 cell c: cl == 2
03 label l: cell.rt == c.rt
04 then
05 new entry c

06 add label l to c.entry

B. FORMALIZATION AND REPRESENTATION OF
KNOWLEDGE
A canonicalized table is transformed into one fragment of
knowledge formalized and represented as a conceptual model
that describes a limited subset of domain concepts and rela-
tionships. Its paths of labels are interpreted as some hierar-
chy domain concepts (classes or attributes). This process is
driven by a set of transformation rules taking into account the
five cases of canonicalized table records described in [35].
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FIGURE 4. Generating conceptual models fragments from a canonicalized
table (Cases 1-2).

FIGURE 5. Generating conceptual models fragments from a canonicalized
table (Case 3).

Cases 1-4 originate from source tables of Form 1 and are
described below.

In Case 1, each of both paths in a record (a row heading and
a column heading) has only one label as shown in Figure 4
(UML is used just for visualization). In Case 2, a record
contains a path of two row labels and a path of only one
column label, as also shown in Figure 4. In the latter case,
the labels originated from a stub of a source table can be read
as hierarchical (parent-child) relationships.

In Case 3, each of both paths in a record contains a pair of
labels (Fig. 5). The paths of labels can be read as hierarchical
relationships.

In Case 4, a path of row labels in a record has only one
label, while a path of column labels in the record contains
two or more labels (Fig. 6). In this case, the labels originated
from a head of a source table can be read as multiple parent-
child relationships.

Case 5, the final one, originates from the source tables of
Form 2. We assume that a record contains only one path with
only one row label, as shown in Figure 7. In all Cases 1-5,
each record contains only one entry.

We define a transformation algorithm for processing paths
of row labels RL as follows:

01 Create new RL class
02 New RL class name = first RL label
03 If count of RL labels == 1 then
04 Create new property of new RL class
05 New property name = “Name”
06 If count of RL labels == 2 then
07 Create new property of new RL class

08 New property name = second RL label

We also define a transformation algorithm for processing
paths of column labels CL as follows:

01 If count of CL labels == 1 then
02 Create new property of new RL class

// created on the step 1 of
// the row heading analysis algorithm

03 New property name = first CL label
04 If count of CL labels == 2 then

05 Create new CL class
06 New CL class name = first CL label
07 Create a new property of new CL class

// created on the previous step
08 New property name = second CL label
09 Create new relationship
10 New relationship name = “has a” + first CL label
11 New relationship right entity = New RL class

// created on the step 1 of
// the row heading analysis algorithm

12 New relationship left entity = New CL class
// created on the step 5 of
// the column heading analysis algorithm

13 If count of CL labels == 3 then
14 Create new property of new RL class
15 New property name = first CL label
16 Create new CL class
17 New CL class name = second CL label
18 Create new relationship
19 New relationship name = “has a”

+ second CL label
20 New relationship right entity = New RL class

// created on the step 1 of
// the row heading analysis algorithm

21 New relationship left entity = New CL class
// created on the step 16 of
// the column heading analysis algorithm

22 Create a new property of new CL class
// created on the step 16 of
// the column heading analysis algorithm

23 New property name = third CL label

All extracted parent-child relationships from canonical-
ized tables are interpreted as associations without cardinality.
The generalization relationships are not processed, since the
transformations were considered in the context of creating
knowledge bases containing logical rules, in particular, for
CLIPS and DROOLS that do not have these relationships.

All values of class attributes are formed using entries from
the data column. At the current stage, all entries are denoted
by a string datatype. As a result, each canonicalized table is
transformed into a conceptual models fragment.

The diagram fragments extracted from tables are merged
into a complete domain model. This process applies rules
for merging extracted classes and clarifying their names,
attributes, and associations as follows.

Rule 1: Merge two classes when they have equal names
from duplicate fragments of class diagrams.

Rule 2: Merge two classes when they have the same struc-
ture, i.e. when sets of attributes are equal. In this case, only
the first class with this structure stays in the model.

Rule 3: Merge two classes when they have similar names.
The fragments of class diagrams can describe the same
objects or processes. We suggest using a simple string com-
parison method based on the Levenshtein distance [36] to
determine the similarity between the two names of classes.
If the distance is less than or equal to three, then we assume
the classes to be similar. Note that this is not enough, so we
also look at the structure of classes (names of attributes must
partly match).

Rule 4: Create a new association between two classes if
homonymous classes and attributes exist. In this case, a name
in one class is equivalent to the attribute name in another
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FIGURE 6. Generating conceptual models fragments from a canonicalized
table (Case 4).

FIGURE 7. Generating conceptual models fragments from a canonicalized
table (Case 5).

class. At the same time, the attribute of the same name is
removed.

Rule 5: Remove duplicate associations between classes.

C. SYNTHESIZING RULE-BASED KNOWLEDGE BASES
The final phase generates source codes of a target knowledge
base from a conceptual model obtained at the previous phase.
The synthesis algorithm is based on the generalized method
for transforming a conceptual model to a knowledge base
presented in [37]. This method implies the application of
metamodels and a domain-specific declarative language for
describing correspondences between source elements of a
conceptual model and target elements of a rule-based model.
The algorithm includes the following main steps:

Step 1: Serialize a complete conceptual model represented
in a UML class diagram to the XML format using the OMG
XMI standard.

Step 2: Extract constructions of a rule-based model from
the structure of a UML class diagram serialized in XML.

Step 3: Modify the obtained rule-based model by using
Rule Visual Modeling Language (RVML) [37], which is a
UML extension designed for rule-based engineering.

Step 4: Generate source codes of the target knowledge base
by transforming the rule-based model.

Note that the rule-based model we used can be considered
as a universal tool for the intermediate representation of
extracted knowledge in the form of logical rules. It does not
depend on a certain knowledge representation language. This
algorithm is discussed in detail in [37]. Our software provides
source code generation for the following languages: CLIPS,
DROOLS, and PHP.

V. IMPLEMENTATION
The approach was implemented by integrating two tools:
TABBYXL [10] that extracts relational data from source
spreadsheet tables, and PKBD [11] that generates and aggre-
gates conceptual models from canonicalized tables.

TABBYXL2 enables software development for rule-driven
data extraction from arbitrary spreadsheet tables. Such

2https://github.com/tabbydoc/tabbyxl

software converts tabular data to a canonical form. Both a
source (arbitrary) form and a target (canonical) form are
determined by user-defined rules. The two scenarios for the
implementation of these rules are described below.
Scenario 1: The transformation rules are expressed in

a domain-specific language CRL. They automatically can
be translated to the Java source code of an executable
application.
Scenario 2: The transformation rules are expressed in

a general-purpose rule-based language (e.g. DROOLS or
JESS). They can be executed by an appropriate rule engine
compatible with ‘‘Java Rule Engine API’’.

PKBD3 provides prototyping knowledge bases by using
logical rules and visual modeling based on the RVML nota-
tion. It supports various data sources including mind maps,
class diagrams, and spreadsheet tables. To integrate both
tools, we developed a plug-in module for PKBD that real-
izes rules for transforming spreadsheet cell values and their
relationships to the resulting domain entities (taxonomical
fragments). The module also aggregates the fragments into
a complete domain model by using the rule-based operations
for clarifying entity names, merging, and separation.

VI. CASE STUDY
The developed method and tools are used when solving tasks
in the field of Industrial Safety Inspection (ISI) [38]. Now let
us consider our case study and evaluation in detail.4

A. INDUSTRIAL SAFETY INSPECTION
ISI is a procedure required to confirm the compliance of the
technical equipment state with industrial safety requirements.
There are national standards and normative acts for regulating
this procedure [38]–[40]. They define the composition and
stages of ISI in a general form. In most cases, implementation
details depend on the technical abilities and experience of
inspecting organizations [41]. Our case study relies on the
experience of the Irkutsk Research and Design Institute of
Chemical and Petrochemical Engineering (IrkutskNIIhim-
mash) to demonstrate some details of the ISI procedure.
This organization accumulated a large amount of informa-
tion on technical state evaluation and risk assessment in the
form of printed and electronic documents. Note that they
mainly use word processors and spreadsheets without involv-
ing specialized software to prepare their ISI reports. However,
representation of this information in the form of semantic
structures, such as conceptual models and knowledge bases,
can improve the efficiency of the technical condition evalua-
tion and residual life and risk assessment. A substantial part
of this information is represented as tables in ISI reports. They
are of particular interest for knowledge-based engineering
due to their high degree of structurization and formalization.

We carried out an experiment involving domain experts
in ISI to demonstrate the usefulness of our approach.

3https://bitbucket.org/j80/pkbd/src/master/
4 https://github.com/tabbydoc/tabbyxl/wiki/Industrial-Safety-Inspection
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FIGURE 8. Examples of source tables from ISI reports.

FIGURE 9. Fragments of the canonicalized tables derived from source
tables presented in Figure 8.

We considered the area of the industrial equipment safety
management that includes the tasks of monitoring, diagnos-
ing, and forecasting technical conditions and risk assessment.
Only the complete and adequately formalized and repre-
sented knowledge in the form of domain models provides the
proper solution to these tasks.

B. SEMI-AUTOMATED FORMALIZATION AND
REPRESENTATION OF THE ENGINEERING KNOWLEDGE
FOR INDUSTRIAL SAFETY INSPECTION TASKS
1) OBTAINING CANONICALIZED TABLES
We used a dataset of 216 spreadsheet tables extracted from 6
ISI reports, 173 of them have a unique layout and content
5817 cells. We selected 161 tables and transformed them
to the canonical form by executing the transformation rules
described above. These tables accompanied by the transfor-
mation rules are referred to as an ISI-161 dataset (ISI-161).5

Figure 8 shows some examples of these tables containing
information about elements of the inspected object and results
of hardness measurement. Figure 9 depicts the correspond-
ing canonicalized tables obtained from the source ones via
TABBYXL.

5[dataset] A.Yu. Yurin, A.O. Shigarov, N.O. Dorodnykh, V.V.
Khristyuk, ISI-161: Spreadsheet tables, Mendeley Data, v1, 2019.
http://dx.doi.org/10.17632/8zdymg4y96.1

TABLE 1. Examples of matching entities from datasets ISI-161 and
ISI-Models.

TABLE 2. Examples of matching relationships.

2) FORMALIZATION AND REPRESENTATION OF
KNOWLEDGE
The canonicalized tables of ISI-161 were transformed with
the aid of PKBD. A total of 429 entities, including 59 classes
(concepts), 338 attributes (properties), and 32 associations
(relationships), were allocated depending on the activated
aggregation rules. Note that the experts estimated that only
about 56% of 429 entities were useful for further process-
ing. The aggregation of the taxonomical fragments into a
complete conceptual model reduced them to 242 entities,
including 25 classes, 196 attributes, and 21 associations.

The obtained fragments were verified by the domain
experts and compared with the existing ISI-models dataset
provided by the IrkutskNIIhimmash (ISI models).6 In the
context of comparing models, the domain experts found that
17% (69 out of 400) of concepts from ISI-models dataset have
concepts identical to the concepts from the models obtained
as a result of the analysis of the ISI-161 dataset, including
entities (Table 1), properties, and relationships (Table 2).
Figure 10 presents a fragment from the ISI-model dataset
(01.mdl file) and the corresponding concepts from the trans-
formation results.

6[dataset] A.Yu. Yurin, N.O. Dorodnykh, O.A. Nikolaychuk,
A.F. Berman, A.F. Pavlov, ISI models, Mendeley Data, v1, 2019.
http://dx.doi.org/10.17632/f9h2t766tk.1
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FIGURE 10. A fragment of the ISI-model dataset (01.mdl file) and the corresponding concepts from the transformation results.

The model validation revealed the need to use additional
information sources, for example, conceptual models for
describing the dynamics of technical states (ISI models) to
build useful knowledge bases, in particular, for solving diag-
nostic and forecasting issues. These models were obtained
from a survey of experts in the IrkutskNiiHimmash.

Moreover, the coincidence reaches 24% (106 of 400) when
we complement the concepts from the ISI-model dataset with
the relevant properties of the corresponding concepts from the
ISI-161 dataset. Table 3 shows the quantitative characteristics
of the compared datasets.

As a result, the processing of 161 spreadsheets from 6
ISI reports provided 24% of elements of the ISI domain
model. This confirmed that the approach can be applied to
the conceptual model construction.

3) SYNTHESIZING RULE-BASED KNOWLEDGE BASES
The resulting conceptual models were transformed into
knowledge base structures using PKBD. Figure 11 shows
examples of the resulting refined structures in RVML.

It should be noted that the resulting structures were used
as prototypes or drafts for ontology and knowledge bases,
in particular, for the software supporting ISI [41]. For this
purpose, we used the feature of our software to synthesize
syntactically correct source codes that include descriptions

TABLE 3. Quantitative characteristics of datasets.

of template facts and rules for PHP, DROOLS, è CLIPS
(Figure 12).

C. EXPERIMENTAL EVALUATION
TabbyXL and PKBD implement (a) the transformation from
arbitrary tables to canonicalized ones, (b) the transforma-
tion from canonicalized tables to conceptual models, and
(c) the transformation from conceptual models to source
codes. To evaluate the performance of our implementation,
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FIGURE 11. Examples of the resulted elements of the knowledge base: a
rule template and a specific rule (an instance of a rule template) in the
RVML notation.

TABLE 4. The results of the performance evaluation.

we use the well-known measures: recall and precision. For
the first transformation, they were adopted as follows:

recall =
|R ∩ S|

|S|
, precision =

|R ∩ S|

|R|
,

where R is a set of entities in the resulting table, and S is a set
of cell values in the corresponding source spreadsheet.

For the second transformation, they are calculated as
follows:

recall =
TP

TP+ FN
, precision =

TP
TP+ FP

,

where TP is a set of correctly transformed entities (cell val-
ues), FP is a set of incorrectly transformed entities, and FN
is a set of untransformed entities that could be transformed.
Table 4 enumerates the results of the evaluation for transfor-
mations of the ISI-161 dataset containing 161 tables from 6
ISI reports.

VII. DISCUSSION
The performance evaluation showed that using this approach
we managed to transform most of the arbitrary and canonized
tables. Note that the transformations were evaluated only for-
mally taking into account the syntactic aspect of the problem
and leaving the semantic one out. However, in the context of
our case study, the ISI reports tables we’re not quite suitable
(estimated as 17% and 24%) from a viewpoint of qualitative
(semantic) content evaluation of the utility of the obtained
models.

An analysis of the concept features obtained from the
ISI-161 and ISI-models datasets showed a difference in the
emphasis of these models. While the ISI-161 dataset contains
information mainly about the results of technical diagnos-
tics of equipment, the ISI-models dataset is focused on the
description of the entire ISI procedure, including such tasks
as development of an ISI program, analysis and interpretation
of the diagnostic results, as well as making decisions for
the repair and forming a conclusion (report) for ISI. For this
reason, 173 concepts from ISI-161 were not further used.

We define themain reasons that cause decrease in the recall
and precision for both transformation stages. The failed cases
of the first stage (the table canonicalization) were mainly
caused by the following reasons: (I) new layout of source
tables not supported by the transformation rules we devel-
oped, (II) erroneous assignment of a certain cell type for
the resulting data (e.g. the date data type is assigned to a
cell with the numeric data type). The errors of the second
stage (tables-to-conceptual models) occurred mostly due to
the following reasons: (I) imperfection of the transformation
rules for processing an embedded hierarchy of concepts,
in particular, skipping the third hierarchy level of concepts for
row headings, (II) imperfection of the aggregation strategies
for conceptual model fragments (e.g. the merging of ‘‘gt_20,

TABLE 5. A qualitative comparison of approaches.
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FIGURE 12. Examples of synthesized source codes for a) PHP; b) DROOLS; c) CLIPS.

MPa’’ and ‘‘gb_20, MPa’’ concepts that are syntactically
similar but different semantically), (III) invalid cell type in
the input spreadsheet data.

Wemade a qualitative comparison of our approach in terms
of generating conceptual models from spreadsheets (Table 5).
Each of the considered methods fails to process the table
layouts from ISI reports. Therefore, the use of our approach
and software (TABBYXL and PKBD) is promising in this
aspect. In particular, it helps generate higher-level abstrac-
tions (e.g., specification and a source code of rule-based
knowledge bases) based on the formalized and represented
knowledge.

PKBD synthesizes syntactically correct source codes
based on extracted knowledge, while the internal represen-
tation of rules (ensuring its independence from a specific
programming language) provides generation of fairly simple
rules that do not support such specific elements as variables,
calculated expressions, functions, etc. However, such struc-
tures can be added after the synthesis of the codes in their
debugging and integration.

VIII. CONCLUSION
We propose a novel three-phase approach based on the
spreadsheet data and conceptual model extraction and trans-
formation to automate the formalization and representa-
tion of complex engineering knowledge in the context of
the construction of knowledge bases. Our approach was
implemented by the data-level integration of the two tools:
TABBYXL and PKBD. TABBYXL is used to extract spread-

sheet data from arbitrary spreadsheets and to transform them
into the canonical form. PKBD generates a conceptual model
from the canonicalized tables and synthesizes a rule-based
knowledge base.

We used the ISI-161 dataset to conduct the experimental
evaluation of our approach. The experiments revealed that the
approach is suitable for processing spreadsheet data from ISI
reports and generating domain models and a source code of
knowledge base in the ISI area. However, there is a need to
improve a set of rules for aggregating fragments of conceptual
models. For example, semantic similarity can be used to
improve merging classes and individual attributes. It should
also be noted that the thematic connectivity of source spread-
sheet tables is important for obtaining useful domain models.

The novelty of our approach is justified as follows:
(I) an original canonical form of tables, providing an inter-
mediate representation and automated processing of arbi-
trary tables with different layouts, (II) the use of CRL,
a domain-specific language for expressing rules for the trans-
formation of spreadsheet tables from ISI reports, (III) the
algorithms for converting canonicalized tables to fragments
and aggregating them to a conceptual model, (IV) the use
of our tools (TABBYXL and PKBD), (V) ISI-161, the new
dataset of source tables and conceptual models for the ISI
procedure.

Our approach is considered solely in the context of semi-
automated formalization and representation of knowledge,
while only spreadsheet tables are used as source data,
without additional information. The proposed solution can
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support development of knowledge-based systems in differ-
ent domains.

In our future work, we plan to enhance the accuracy by
clarifying and involving layout properties of source tables,
improving rules for aggregating and converting canonicalized
tables. Table transformations can also be improved by using
external taxonomies (ontologies) and annotating techniques.
It is also interesting to find out whether our approach can be
applied in other domains, not only ISI. However, it should be
highlighted that a meaningful rather than formal evaluation of
the results requires the simultaneous existence of both tabular
data and conceptual models for a certain domain, which is
quite rare.
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