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ABSTRACT Direction-of-arrival (DOA) estimation is a fundamental technique in array signal process-
ing due to its wide applications in beamforming, speech enhancement and many other assistive speech
processing technologies. In this paper, we devise a novel DOA technique based on randomized singular
value decomposition (RSVD) to improve the performance of non-uniform non-linear microphone arrays
(NUNLA). The accurate and efficient singular value decomposition of large data matrices is computationally
challenging, and randomization provides an effective tool for performing matrix approximation, therefore,
the developed DOA estimation utilizes a modified dictionary-based RSVD method for localizing single
speech sources under low signal-to-noise ratios (SNR). Unlike previous methods developed for uniform
linear microphone arrays, the proposed approach with L-shaped three microphone setup has no ‘left-right’
ambiguity. We present the performance of our proposed method in comparison to other techniques. The
demonstrated experiments shows at-least 20% performance improvement using simulated data and 25%
performance improvement using real data when compared with similar DoA estimation techniques for
NUNLA. The proposed method exploits frame-based online time delay of arrival (TDOA) measurements
which facilitates the proposed algorithm to run on real-time devices. We also show an efficient real-time
implementation of the proposedmethod on a Pixel 3 Android smartphone using its built-in threemicrophones
for hearing aid applications.

INDEX TERMS Hearing aid device, low SNR, non-uniform microphone arrays, randomized algorithm,
real-time implementation, singular value decomposition, smartphone, speech source localization.

I. INTRODUCTION
TheWorld Health Organization (WHO) reported that approx-
imately 466 million people worldwide have hearing loss,
and 34 million of these are children [1]. It is also projected
that one in ten people, which accounts for over 900 million,
will have disabling hearing loss in near future. In the US,
approximately 15% of adults report some difficulty hearing,
while around 50% of adults who are older than 75 have a
hearing impairment [2]. Though, only 28.8 million adults in
the US could benefit from using hearing aids [2]. Hearing
aid devices (HADs) and Cochlear Implants (CI) were specif-
ically developed to compensate for the loss in audibility.
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The performance of such devices can achieve close to normal
hearing performance in normal conditions. However, their
performance is compromised in the real world noisy envi-
ronment. This causes degraded performance of the speech
processing pipeline in real-world conditions and discomfort
to the Hearing Aid (HA) users.

Hearing aid manufacturers [3]–[5] and numerous
researchers have developed efficient signal processing algo-
rithms to advance the performance of HADs, such as noise
suppression, speech enhancement [6]–[8], acoustic feedback
cancellation (AFC) [9], [10], speech source localization
and beamforming [11]–[13], and speech-speaker recogni-
tion [16], [17]. From the psychoacoustics point of view,
speech perception can be improved notably with these algo-
rithms in noisy environments. Most of the aforementioned
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studies state that improving the signal-to-noise ratio (SNR) of
the received noisy speech leads to the enhancement of speech
with high perceptual quality.

Localizing sound sources is an important ability in daily
life since it helps speech perception in a noisy environ-
ment with spatial unmasking effects [18], [19]. The human
auditory system is fairly well known for the localization of
sounds, in which it uses inter-aural time differences (ITDs)
and inter-aural level differences (ILDs) [20], [21]. Hear-
ing impairment on source localization has been thoroughly
investigated [22]–[24]. Improving the SNR while preserving
the quality and intelligibility of desired speech for hearing
impaired people may not have a ’spatially natural’ outcome
because hearing loss hinders the localization ability. For
instance, in [25], they discuss that hearing-impaired peo-
ple have localization difficulties which are proportional to
the level of hearing impairment. HADs can be beneficial
for sound source localization, but they are not necessarily
designed with this function, perhaps due to the size and
processing power limitations. In [22] and [24], it is shown
that commercial HADs negatively affect speech source local-
ization (SSL) performance. In group conversations, the per-
son should be able to locate a new speaker instantaneously
when another speaker talks, otherwise, they can miss the
conversation. Therefore, SSL is a critical element for hearing
impaired people in real-world noisy conditions, and either
visual or voice indication can assist them. Moreover, the SSL
information can enhance the SNR of the desired speaker’s
speech for the listener [26].

Most HADs have limited computational power due to
their size, battery, and processor. For this reason, they are
not able to handle complex signal processing algorithms,
which makes implementing complex algorithms impractical
for advancing their performance. In addition, hearing aid
manufacturers have commercialized external microphones in
the form of auxiliary devices like necklaces, pens, and table
microphones to improve HAD’s performance. Although,
these devices are rarely used due to their limited power and
high price. As an alternative approach, popular smartphones
can be used either as stand-alone devices or together with
the application of HADs to help hearing aid users [15].
Smartphones are ubiquitous and most people including those
with hearing loss use it, therefore, it has no additional cost to
the HAD user. Smartphones with multi-core processors can
run complex signal processing algorithms in a cost-effective
and efficient way. Therefore, smartphones can be used as
an assistive platform to implement HAD signal processing
algorithms to improve the perceptual experience of HAD
users [13]–[15], [31], [43].

This work aims to analyze the non-uniform non-linear
‘‘L-shaped’’ arrays (NUNLA) of microphones; the built-in
microphones that are already available on most modern
smartphones. This paper presents a novel noise-robust DOA
method using the L-shaped microphone array structure avail-
able on modern smartphones to improve the experience of
HAD users under noisy conditions. Sound is often assumed

to originate from only one dominant speaker in various noisy
environments, such as meeting rooms, restaurants, class-
rooms, and lecture halls [27]. This assumption simplifies the
SSL algorithms. Therefore, we locate the speech source with
the highest energy by utilizing the sinusoidal modeling in [26]
for short overlapping speech frames. In the proposed setup,
the estimated DOA information can be shown through visual
information displayed on the smartphone panel or assisted via
voice by communicating with HADs. Then, HAD users can
reorient his/her position for optimum hearing reception or the
position of the smartphone to receive the maximum SNR in
the direction of the speaker.

In this paper, an L-shapedNUNLAgeometry that is closely
and unequally spaced by inter-element distances is investi-
gated to prove the advantages of the proposed method. The
proposed method extends the method in [55] and improves
the DOA angle estimation for different noise types. Thus,
the proposed method has superior accuracy performance and
lower computational complexity. The proposed method has
no left-right ambiguity compared to other methods [14], [31].
Our contributions can be listed as follows:
• We propose a TDOA SSL algorithm using randomized
singular value decomposition (RSVD) to localize single
speech sources under very low SNR levels.

• We also introduce a single-feature based, unsupervised
voice activity detector (VAD) [56] as our second con-
tribution. This improves the robustness and reliability
of the proposed algorithm for the non-stationary back-
ground noise types and non-diffused noise sources [48].

• The third contribution is the real-time implementation
of the proposed method on Android-based smartphones
using only their built-in microphones and no external
or additional hardware. Objective test results show that
the proposed DOA estimation method finds the source
direction with high accuracy.

The remainder of the paper is organized as follows.
In section II, we review the works related to this research
topic. In Section III, the SSL with respect to hearing aid (HA)
applications is explained, and a brief description of left-right
ambiguity and spatial aliasing is given. Section IV presents
the proposed source localization method, and Section V ana-
lyzes the experimental results. Also, the performance of
the proposed method is compared with other methods, and
an explanation of the real-time implementation on Android
smartphones is included in Section V. Last, Section VI con-
cludes the paper.

II. RELATED WORKS
Several approaches have been investigated for SSL to
improve speech perception for hearing aids over the last
decades. Popular methods can be categorized as: time
delay of arrival (TDOA) methods [28]–[31], decompos-
ing the auto-correlation matrix into signal and noise
subspace [32]–[36], computing the steered response
power to estimate DOA [37]–[40], using maximum like-
lihood(ML) [41], using sparse signal reconstruction [42] and
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TABLE 1. Summary table for recent works.

deep learning based methods [43]–[47]. The deep learning
based methods use the data-driven approaches trained on
a large dataset to compute the DOA for single/multiple
sources. These methods treat the DOA estimation problem
as a ‘regression’ or ‘classification’ problem and use extensive
training data to obtain estimation from deep-learning models.
The drawback is that these methods require training and
testing data to be hardware-matched for reliable real-time
implementation. Although, there are many more varieties
and variations of DOA estimation techniques, the above
mentioned classification describes majority of the DOA esti-
mation algorithms relevant to the current work. A compre-
hensive study of the state-of-art SSL algorithms can be found
in [48]–[51]. Additionally, a summary of the recent works can
be found in Table 1.

As stated earlier, SSL serves as an essential pre-processing
technique that can be utilized to improve the SNR, suppres-
sion of background noise, and speech enhancement with good
perceptual quality. Finding the direction of arrival (DOA) of
the source signal by using a microphone array and beam-
forming is a popular approach for SSL. There are many
factors that each affect the performance of this approach
such as the type and geometry of the microphone array, the
type of noise, the number of microphones, and the SNR
level. Depending on requirements, there are infinite possible
geometries and arrangements of microphone arrays. Over
the years, more attention has been drawn to uniform linear
microphone arrays (ULAs) and non-uniform linear micro-
phone arrays (NULAs), whereas few studies have focused
on the NUNLA [57]. Due to the infinite possible geometries,

analyzing the NUNLA is generally complex, and yet prior
methods [52]–[55] reported that it has significant advantages
over ULA and NULA. Reference [52] presents a compre-
hensive overview of the use of a V-shaped microphone array
structure, which is another geometry of NUNLA that uses
a t-coil component to communicate with the HADs. The
study suggests putting a microphone array on people’s necks,
which signifies the performance of the NUNLA. Specifically,
using it to reduce the acoustic feedback in HADs, shortening
the reverberation, and improving the SNR by 10 dB rela-
tive to omni-directional background noise. In [53], a three
microphone L-shaped geometry was proposed using TDOA
estimates. They calculated the location of the source from
the intersection of hyperbolic curves taken from the TDOA
estimations. Another L-Shaped microphone array structure
was suggested in [54] for impulsive acoustic source localiza-
tion. This method focuses on a TDOA estimation technique
that uses the orthogonal clustering algorithm. The method
can work in reverberant environments at low sampling rates.
In [55], ULA, NULA, and NUNLA(L-Shaped) geometries
are investigated under the effects of low SNR. Current
approaches have specific limitations, such as requiring large
data lengths for sufficient operation, computationally too
expensive, requiring a large number of microphones in the
array, or poor performance under low SNR.

III. SOUND SOURCE LOCALIZATION
Differences between captured signals from each micro-
phone in the array produce inter-microphone time and
level differences. This information can be effectively
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used in estimating the location of the source signal in
the DOA algorithms. In order to process this informa-
tion, there should be advanced signal processing algo-
rithms to handle the data created by microphone arrays.
For the current HADs, it is difficult to implement these
algorithms due to device design limitations. In contrast,
smartphones can coordinate with HADs by using their
built-in L-shaped microphone arrays shown in Figure 2(b)
with no external hardware, and carry out the high com-
putational algorithms. Real-time DOA applications on the
smartphone enable the HI individual to see the speech source
location on the smartphone screen and focus their attention
or re-orient the phone position to the desired speaker source.
Re-orientation of the phone increases the SNR, thus improv-
ing speech enhancement performance and speech clarity.

A. LEFT-RIGHT AMBIGUITY AND SPATIAL ALIASING
Left-right ambiguity is caused by the symmetry in micro-
phone arrays using two microphones and it also depends
on the spatial design of the microphone array and source
location. This problem generally occurs in ULA and NULA
structures due to the linear arrangement of themicrophones in
the array. Several microphone array configurations can solve
the left-right ambiguity issue such as L-shape, circular, and
spherical. In this work, the L-shape microphones array is
chosen for the proposed method.

Spatial aliasing arises if the distance d between ele-
ments in a microphone array is not small to ’spatially’
sample the sound waves [57]. Otherwise, DOA estimation
will have ambiguities due to the undesirable peaks in the
directivity pattern. Assuming the inter-element spacing of
two microphones d , the time difference τ is denoted by (1)
where θ is the estimated angle and the speed of sound c is
assumed 343 m/s in the air.

τ = d cos θ/c (1)

Inter microphone distance d between microphones is given
by:

d ≤
λmin

2
(2)

where λmin = c/fmax wavelength corresponding to the high-
est source frequency fmax . For instance, the functional band-
width of the source signal can be as much as fmax = 8.5 kHz
if d = 2 cm is chosen and c is assumed c = 343 m/s.
In general, the spatial distribution of the microphone arrays
is fixed, which makes identifying the functional frequency
bandwidth critical in accurately estimating the DOA.

The positioning of the microphones in NUNLA architec-
ture is not as linear as the previous case, which leads to
different time delay between the microphones [57]. NUNLA
architecture can provide more data and more precise SSL
outcomes as compared to the ULA and NULA architectures.
Depending on NUNLA orientation, it can handle a broader
range of source frequencies thanULA.Additionally, NUNLA
has an insignificant left-right ambiguity problem and less

FIGURE 1. L-shaped 3 microphone array on Pixel 3 smartphone.

FIGURE 2. (a) Uniform linear arrays (ULA) and (b) Non-uniform non-linear
arrays NUNLA where d and v are the inter-element microphone distances.

spatial aliasing [55]. Figure 1 shows a smartphone with three
element NUNLA arranged in an ‘L’ shaped geometry.

IV. PROPOSED METHOD
We use L-shaped three microphones, known as NUNLA,
which is available on most modern smartphones. These
microphones are located relatively close to each other as
shown in Figure 1 so that they can contribute to the theoretical
and practical aspects of our proposed method. Furthermore,
our approach can be implemented on any other smartphones
with three or more built-in microphones.

The goal of time-delay based DOA estimation is accu-
rately finding the position of the desired source signal using
microphone arrays with known geometry. All microphones
are assumed to be theoretically identical to each other in
this study. As stated previously, over-complete dictionary
based randomized singular value decomposition (OD-RSVD)
for SSL was developed. The premise of this algorithm is
localizing the principal source and is similar to [33] and [36].
The proposed algorithm is computationally much lower com-
pare to [42], [55], and performs better than [33], [55] under
noisy conditions. Our approach is distinctly different from the
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FIGURE 3. Block diagram of the real-time processing of the proposed DOA estimation method.

previous SSLmethods despite being inspired by some of their
elements.

In this section, the signal model for DOA estimation is
explained, and the algorithms used in the proposed method
is detailed in the next sections. The general block diagram of
the proposed method is shown in Figure 3, and a performance
comparison is presented further in the paper.

A. PROBLEM FORMULATION
Speech processing methods generally consider noisy speech
y(n) as clean speech s(n) and additive noise v(n). We denote
the signal model as:

yi(n) = s (n−1ηi)+ v(n) (3)

where yi(n) is the noisy speech signal, and i = 1, 2, . . . ,K for
each ith microphone. The received source signal at each ith
microphone is expressed as s (n−1ηi), and the time delay
at each microphone is denoted as1ηi. v(n) is the noise signal
and is uncorrelated with the speech signal.

As demonstrated in Figure 2b, inter-microphone distances
are denoted as d and v. The time difference 1tij is given by:

1t12 = l cos(α − ϕ)/c (4)

1t13 = d cosϕ/c (5)

1t23 = v sinϕ/c (6)

where ϕ = tan−1
( d
v

)
, l =

(
d2 + v2

)1/2
, and c is the known

speed of sound. The values for the Pixel 3 smartphone are
v = 2.8cm, d = 13cm, l = 13.29cm, and ϕ = 77.84◦.

B. DOA ESTIMATION
The estimation of DOA angle θ̂ assumes the following two
conditions: the microphone array geometry and speed of
sound (denoted as c) are known. The proposed DOA esti-
mation algorithm has 2 main steps: sinusoidal modeling of
speech using Auto-regressive (AR) model, and narrow-band
DOA estimation using RSVD and over-complete dictionary
matrix.

Figure 3 shows the general pipeline of the proposed
method. First, the microphone inputs are framed, buffered,
and Hamming window with 50% overlap is utilized to the
signal. Next, VAD is utilized to classify the incoming frames

FIGURE 4. Block diagram of speech modeling to obtain fscan.

as speech and noise. At the output of the VAD, we have the
input speech frames Yi(n), n = 1, 2, . . . ,L for each micro-
phone, i = 1, 2, 3 and L is the frame size. The speech frames
will be fed into the RSVD and AR modelling of speech for
further steps. In DOA estimation path, RSVD is performed
to obtain the subspace of the signal at each microphone and
using the over-complete dictionary matrix H the scanning is
performed to estimate the DOA angle. The general procedure
of the DOA estimation using OD-RSVDmethod is described
in detail in Algorithm 1.

As shown in Figure 4, the steps are used to handle speech
data before performing DOA estimation. First, band-pass
filter is utilized between 300Hz and 3400Hz since smaller fre-
quency bandwidth reduces the scanning complexity and also
more speech content can be found in this range. This filter
reduces bandwidth and avoids spatial aliasing caused by the
distance between microphones [55]. Next, AR modeling is
performed using the LPC coefficients to predict the sinusoidal
peaks in each k th frame. By utilizing this model for speech
data, the dominant components of speech can be represented
in noisy environments with exponentials [57]. These expo-
nentials will be used for DOA estimation. Estimation of the
dominant frequency, f0 in each frame can be found by peak
point in the AR model frequency spectrum. The fscan, fre-
quency vector scan, will be calculated by using f0. To decrease
the computational complexity of the algorithm, the range
of scanning frequency narrowed to fscan = f0 ± 1f Hz,
1f = 200 Hz. A single speech source is used in the method
because it is a non-stationary wideband signal. The broad-
band speech is transformed into a ‘dominant’ narrowband
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sinusoid. AR modeling using linear predictive coefficients is
utilized to handle speech sources under low SNR [27].

Algorithm 1 The DOA Estimation Procedure

Input: Obtained input signals yi(n) for each ith microphone
Output: Estimated DOA Angle θ̂
1: After picking the speech frames from the signal with

VAD, form the input speech signals as matrix Y3xL where
L is the frame length

2: Run Randomized-SVD(RSVD) algorithm and obtain the
estimated subspace signal at each microphone, YS3xL

3: Use the frequency scanning vector (fscan). Using RSVD,
calculate the reference signal si(n) = exp (j2π fscann) and
its subspace, SS3xL

4: Over-complete dictionary matrix is generated
H (i, θscan)3x360 for each fscan. For each microphone i, H
is a matrix of all corresponding signal vectors for each
fscan and θscan

5: Scan for each fscan and θscan:

RSVD (fscan, θscan) =
1

‖Ys − (HSS)‖2
(7)

6: Use the outcome of step 5 to find the peak and estimate
θ̂ :

NormRSVD (fscan, θscan) =
RSVD(fscan,θscan)

max(|RSVD(fscan,θscan)|)
(8)

7: return Estimated θ̂

In Algorithm 1, when θscan meets the estimated angle θ̂
in (8), the result of (8) yields to maximal value(unity) for the
far field scenario where θscan = θstart : θend . In (7), size of Ys
is 3× 1, H is 3× 1 and SS is 1 x 1 for each iteration.

The O(n) time complexity for the proposed method is
approximated as O(L2) with known f0 and H , where L is
the frame size. There is a clear advantage of our approach
in computational complexity as compared to [55].

C. RANDOMIZED SINGULAR VALUE DECOMPOSITION
Randomness has occasionally surfaced in the numerical lin-
ear algebra literature. It is standard to initialize iterative
algorithms for constructing invariant sub-spaces with a ran-
domly chosen point. Random sampling can identify a sub-
space that captures most of the action of a matrix [58].
In various cases, this approach exceeds in terms of accuracy,
speed, and robustness compared to classical methods [59].
There are several forms of approximation techniques based
on the randomization idea. The method follows the pattern:
re-processing the matrix, taking random samples from the
matrix, post-processing the samples, and computing the final
approximation.

The main assumption in this process is that the sources can
be considered as point sources. By using this assumption,
the underlying spatial spectrum will be sparse, and we can

resolve this matter utilizing the randomized singular value
decomposition (RSVD).

Algorithm 2 Randomized Singular Value Decomposition

Input: Y ∈ Rm×n, k singular vectors, j power iteration
Output: U ∈ Rm×k ,L ∈ Rk×k ,V ∈ Rn×k

First Stage:
1: � = randn(n, 2k)
2: Q = orth(Y�)
3: for i = 1, 2, · · · , j do
4: G = orth

(
YTQ

)
5: Q = orth(YG)
6: end for
Second Stage:

7: B = QTY
8: [U,L,V] = svd(B)
9: U = QU

10: U = U(:, 1 : k),L = L(1 : k, 1 : k),V = V(:, 1 : k)
11: return U,L,V

Y is the speech frame an m × n matrix as input and
k = 3 singular vectors. j is used to improve the accuracy of
the approximation and generally chosen 1 or 2 [58]. U and V
are the left and singular vectors, respectively. L is the diagonal
matrix of singular values. � is n × 2k Gaussian i.i.d matrix.

At the first stage, a low dimensional subspace that approxi-
mates the column space of Y is constructed. After calculating
the subspace’s orthogonal basis Q, we get an approximated
SVD of Y . Then, regular SVD is performed on the small
matrix B to get the approximated Y. The time complexity of
the algorithm is approximately O(mn log(k)).
For this algorithm, the objective is to use randomprojection

to identify the subspace of the signal capturing the dominant
actions. This method helps the calculation of the near-optimal
decomposition of Y.

D. VOICE ACTIVITY DETECTOR
In real life, people are exposed to different types of noise,
and the DOA estimation methods yield inaccurate decisions
in the presence of background noise. The existence of noise
leads to false peaks which indicates performance drops for
subsequent speech processing blocks. Therefore, the VAD
corrects the preliminary DOA and predicts θ̂ by differentiat-
ing noisy speech frames from only noise frames. As shown
in Figure 3, if the current frame has non-speech data, the
incoming frame does not pass through the system and the
DOA result is retained from the previous frame; otherwise,
the DOA estimate is updated as shown in (9):

̂̂θ i = {θ̂i−1, if VAD = 0(Noise)
θ̂i, if VAD = 1(Speech)

(9)

where ̂̂θ i represents revised DOA estimate for ith frame.
Consequently, the VAD tracks noise-only frames to smoothen
the DOA estimation. A single feature-based is utilized to
reduce the computational complexity for real-time operation.
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Spectral Flux (SF) feature-based VAD is preferred in our
approach [56]. The SF feature is defined by (10):

SF (k, i) =
1
N

∑
k

(|Xi(k)| − |Xi−1(k)|)2 (10)

for k th frequency bin and ith frame, k = 1, 2, ..,N .| • |
denotes the magnitude spectrum. A non-complex threshold-
ing method is used, followed by a decision buffer, to reach a
final VAD and is given by (11):

VAD(i) =

{
0(Noise), if SF(k, i) < 1

1(Speech), if SF(k, i) ≥ 1
(11)

where1 is the calibration threshold is calculated using cumu-
lative averaging from the T initial frames. T determines
how many frames are presumed as noise. The SF feature
performs sufficiently under stationary noise conditions [56].
For non-stationary noise types, D is defined as a decision
buffer and it is used for the VAD decision. The system waits
for D consecutive frames until the VAD outputs as speech.
Even though some delay is created in the output, VAD helps
with stabilizing the DOA estimation. If the noise condition
changes over time, the VAD will be re-calibrated, like previ-
ous VADs in [60].

V. EXPERIMENTAL SETUP, RESULTS AND DISCUSSION
In this section, the obtained results of the proposed robust
and faster DOA estimation method are presented. Several
experiments are conducted to highlight the advantages of
the proposed DOA estimation method for the NUNLA
structure. The performance comparisons with similar meth-
ods [33], [37], [55] are also presented. To analyze the perfor-
mance of the DOA methods, the average root mean square
error (RMSE) is calculated. Lower RMSE values show better
SSL performance.

RMSE(◦) =
√

1
NF

∑NF
i=1 (θi − θ̂i)

2 (12)

where (θi − θ̂i) is the estimation error between correct DOA
and the estimated DOA angle.

A. SIMULATED DATA
The simulated data is produced using clean speech from
TIMIT [61] and HINT [62] databases with additive noise.
The noise files are collected outdoors with smartphones.
The room impulse response (RIR) is simulated with
Image-Source Model [63]. The resolution of the simu-
lated dataset is set for 10 degrees. The sampling frequency
is 16 kHz for the simulated data due to the databases, how-
ever, the higher sampling frequency can also be used depend-
ing on the application. Based on the fixed geometry of Pixel
3’s microphones, the distances between the microphones are
v = 2.8cm and d = 13cm. The microphone array is
assumed to be in the center of the room and the room size
is 5m × 4m × 3m (W × L × H ). The distance between the
microphone array and the speaker is 1 meter. Noisy data is

simulated with Machinery, Traffic, and Babble at three dif-
ferent SNRs,−5dB, 0dB, and 5dB. Approximately ten hours
of noisy speech dataset for three-microphone is prepared for
the simulated data.

B. RECORDED DATA
Our goal is also implementing the proposed method on
the smartphone for people’s hearing improvement, thus real
recorded data is necessary to show the performance of the
method. The data is recorded in a room approximately the
same size that is used for the simulated data, and reverberation
time is 300ms for the room. Loudspeakers are placed apart
from each other so that the resolution is 20o for the real-time
recording, and speaker distance from Pixel 3 is again 1 meter.
Approximately, 36 minutes of audio data is recorded using
speech files from TIMIT and HINT datasets. The sampling
frequency is 48 kHz for the recorded data. For the noisy case,
another loudspeaker, which is placed at the corner of the
room, plays the noise files and the dataset is recorded with
Pixel 3 smartphone for analysis with Machinery, Traffic, and
Babble at three different SNRs, −5dB, 0dB and 5dB. These
data files are available at [64] upon request.

C. OBJECTIVE EVALUATION
The performance of the proposed method is evaluated using
simulated and real recorded data. The comparisons are tested
with the same dataset as the proposed method. The frame
length L is 20ms in all evaluations. Firstly, we present results
for the experiments using the simulated data. In addition,
we present the computational processing time of the algo-
rithm with different data lengths.

Our proposed method compared to the baseline meth-
ods such as [33], [37] and [55]. In [33], Multiple Signal
Classification (MUSIC) based DOA algorithm is presented.
In [37], a robust algorithm, Steered-Response Power Phase
Trans-form (SRP-PHAT) is performed. In [55], the Singu-
lar Value Decomposition (SVD) based DOA algorithm is
introduced. These methods are compared under Machinery,
Traffic, and Babble at three different SNRs, −5dB, 0dB,
and 5dB. Under high background noise, HAD users have
difficulty understanding speech coming from a certain direc-
tion. To demonstrate this case, the SNR values are varied
for the estimation of the DOA angle. The comparison of the
proposed method to the other DOA methods using simulated
data is illustrated in Figure 5. As it is seen from the figure,
our proposed method performs at least 20% among all other
methods under all conditions. Another observation is that
the performance gap between the MUSIC and SRP-PHAT
is less as SNR increases. Overall observation from the
result is that the performance of all methods increases with
increasing SNR.

Figure 6 shows the comparison of the proposed method
to the other two DOA methods using smartphone recorded
data under Machinery, Traffic, and Babble at three differ-
ent SNRs, −5dB, 0dB, and 5dB. As explained previously,
the data was recorded by placing loudspeakers around the
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TABLE 2. Comparison of processing times for different data lengths.

Pixel 3 smartphone with 20o resolution. Showing the real
recorded data makes the proposed method more powerful
to real-life noise and reverberation because the aim is to
use this method in a real environment for HAD users. The
proposed method shows a significant reduction in RMSE
over all noisy conditions compared to the other methods.
For recorded data, it can also be noted that the performance
of all methods improves as SNR increases. The difference
between results using the simulated and the recorded data can
be observed from the objective measures. This variance can
be caused by the three built-inmicrophones of the smartphone
which can have different characteristics from each other and
real-environment conditions. Overall, the results show that
the proposed method is sufficient for real-world conditions.
This proves that the application will be helpful as a visual
indicator for HI people.

In proposed method, an unsupervised SF based VAD is
employed to discriminate between speech and non-speech
segments in the incoming audio frame. VAD plays a signif-
icant role in the reliability and robustness of the proposed
DOA estimation algorithm for low SNR cases. Input signals
from three microphones are processed by the VAD. If the
input frame is speech then the VAD labels that frame as
speech and the method estimates the DOA. If the input frame
is determined as noise, the previously DOA estimation results
will be used. Figure 7 depicts the effect of VAD in the
proposed method at 0 dB SNR using simulated data, and this
shows VAD has a positive effect on our method since it tracks
noise-only frames to smoothen the DOA estimation.

Overall, the best results(lowest RMSE) are seen under
machinery, and the worst results(highest RMSE) are under
Babble noise as shown in Figures 5,6, and 7. This is caused
by the stationary property of machinery noise, and the
non-stationary property of babble noise due to its multi-
ple speech characteristics. Since this work considers only
using 3 microphones, the methods require more microphone
for better performance.

To show the complexity of the proposed algorithm, we pro-
filed the proposed method and compared it to other methods.
Table 2 shows the processing times at different data lengths.
In this table, audio frames at different data lengths are directly
fed to the system, and actual time taken by the algorithm
is provided. This evaluation has been done by profiling the
method onMATLABusing a PCwith i7-6700CPU. The table
shows that MUSIC and SRP-PHAT are not good candidates
for real-time processing. The reason is MUSIC-based meth-
ods require performing online eigenvaluewhich adds a signif-
icant amount of computations and SRP-PHAT has excessive
computation due to the grid search. Also, the table indicates
that the processing times are less than the frame length of

FIGURE 5. RMSE (◦) results for DOA estimation using simulated data
under machinery, traffic, and babble at −5dB, 0dB, and 5dB.

data for NU-SSL and the proposed method. Furthermore, the
proposed method has the least processing time among all four
methods which allows real-time implementation algorithm
without compromising the accuracy of the method. Last, data
length has a negative effect on the cost of deployment which
means larger data length leads to higher computational time.
Based on the processing times and average RMSE results
for the proposed method, there is a trade-off due to the data
length. There is an obvious performance improvement as the
data length increases, as the algorithm has more data to work.
For instance, RMSE values are 2.56◦, 1.6◦, and 0.7◦ for 20ms,
100ms, and 500ms in quiet room, respectively. Since the error
for 20ms is adequate for the DOA estimation method and has
a very low processing time, it is preferred for all objective
evaluations and real-time implementation.

To evaluate the RMSE(◦) results for certain different
angles, we carried out simulations for the proposed method.
Since the Figure 5 and 6 depicts average RMSE(◦) for
all angles, DOA estimation per angle has been done in
Table 3 using real recorded data. Table 2 shows the perfor-
mance evaluation of the proposed method with Babble noise
at three different SNRs. Babble noise is chosen because this
noise type generally has the lowest RMSE among others due
to its complicated characteristics. In this objective evaluation,
the real recorded data is used to show the real-environment
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FIGURE 6. RMSE (◦) results for DOA estimation using recorded data
under machinery, traffic, and babble at −5dB, 0dB, and 5dB.

FIGURE 7. RMSE results for DOA estimation with and without VAD.

performance of the proposed method. Due to the location of
the built-in microphones on Pixel 3, there is a slight increase
at 0◦ and 180◦. We can see that the method performs in
acceptable error levels for real-world conditions.

For further performance analysis, a linear directivity pat-
tern (LDP) plot is used as another metric. Figure 8 shows
the LDP of the source at 60◦ with babble noise with
three different SNRs since the babble noise is the most
challenging noise for the system. It can be seen that the

TABLE 3. RMSE(◦) results for different angles.

FIGURE 8. Linear directivity pattern (LDP) for the proposed method.

FIGURE 9. Screenshot of the developed application on android
smartphone.

decrease in SNR leads to a broader pattern in the plot.
The DOA estimation errors can also be decreased by increas-
ing SNR with the right orientation of the array to speaker
location and performing proper pre-filtering method on the
signal received atmicrophones. The figure indicates that there
is no left-right ambiguity in the proposed method. Addition-
ally, we can infer that when the SNR level is high, peaks that
indicate spurious peaks are much lower. These errors can be
referred to incorrect estimation of maxima in (8) inaccuracies
due to the high presence of noise.
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FIGURE 10. Snapshot of CPU (top), memory (middle) and energy (bottom)
consumption of the proposed method on android pixel 3 smartphone.

D. REAL-TIME IMPLEMENTATION ON ANDROID BASED
SMARTPHONE
In this work, our main goal is to present an especial three
microphone array architecture shown in Figure 2(b) and its
associated SSL method for real-time implementation on a
smartphone with three built-in microphones as an assistive
application for HAD users. In this section, the real-time
implementation of the proposed algorithm is presented.
Android operating system (OS) allows us to access the
three built-in microphones of the smartphone. The proposed
method is implemented on the Android Pixel 3 smartphone,
however, the method can be implemented on most modern
Android smartphones with 3 built-in microphones.

To achieve the lowest audio I/O latency on smartphones,
the sampling rate of 48 kHz is required. This latency is
related to the input/output of the smartphone. Therefore,
a frame-based structure is used for real-time implementa-
tion with the frame size of 20ms and sampling frequency
of 48 kHz. A snapshot of the developed application can be
seen in Figure 9. When the button shows ‘START’, the appli-
cation does not do any kind of signal processing. Switching
the button on the touch screen of the smartphone enables
the DOA algorithm to process the incoming audio frame by
applying the proposed algorithm. The application displays the
estimated DOA angle with a red marker and it shows the
estimated angle on the top right of the app. If the incom-
ing audio frame is estimated as not a speech, the marker

points to the last estimated DOA location. The application
has been pre-tuned to perform optimally under different noisy
conditions.

The Central Processing Unit (CPU), memory, and energy
usage of the application is also demonstrated in Figure 10 for
the Pixel 3 smartphone. As it can be seen from Figure 10, the
CPU usage of the app is around 50% when the application
starts processing audio frames at 25th second. The memory
utilization of the app after starting the application peaks
at 88.8 MB and stabilizes around 74 MB after initializing a
couple of frames. Modern smartphones in the market have a
memory of aminimum of 4-6GB, thus thememory consump-
tion is quite low. These consumption results show that the app
does not use massive CPU, memory, and energy resources
of the smartphone. Additionally, the energy consumption is
minimal, even though the CPU usage of the app is about 50%.

VI. CONCLUSION
This paper presented a new approach for accurately localizing
a sound source using especial L-shaped array with three
microphones and its implementation on a Pixel 3 Android
smartphone for hearing improvement. The proposed method
uses an SF based VAD to improve the performance of the
RSVD based DOA estimation. The work presented in this
paper provides an optimized framework for real-time speech
source localization using the three built-in microphones of a
smartphone and demonstrates the achievement of real-time
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implementation of the proposed method on a smartphone
under realistic noisy environments. The objective evaluation
of the proposed method was analyzed and compared with
other methods for different noise types at different SNRs.
Analysis with recorded data shows that the real world condi-
tions are more challenging due to the mixture of signal com-
ponents in real environments. The highlighted framework
was tested on a Pixel 3 smartphone with satisfactory results.
The CPU, memory, and energy consumption of the proposed
app were also evaluated. This method could also be extended
with different VAD methods since the better classification of
the incoming audio frames improves the performance of the
system.
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