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ABSTRACT This project aims to design a predictive maximum power point tracking (MPPT) for a proton
exchange membrane fuel cell system (PEMFC). This predictive MPPT includes the predictive control
algorithm of a DC-DC boost converter in the fully functional mathematical modeling of the PEMFC system.
The DC-DC boost converter is controlled by the MPPT algorithm and regulates the voltage of the PEMFC to
extract the maximum output power. All simulations were performed using MATLAB software to show the
power characteristics extracted from the PEMFC system. As a result, the newly designed predictive MPPT
algorithm has a fast-tracking of maximum power point (MPP) for different fuel cell (FC) parameters. It is
confirmed that the proposed MPPT technique exhibits fast tracking of the MPP locus, outstanding accuracy,
and robustness with respect to environmental changes. Furthermore, its MPP tracking time is at least five
times faster than that of the particle swarm optimizer with the proportional-integral-derivative controller
method.

INDEX TERMS MATLAB, FC, PEMFC, DC-DC boost converter, MPPT.

I. INTRODUCTION
It is well known that the Earth suffers from the depletion
of fossil fuels [1]. Thus, there is an urgent need to identify
alternative energy sources. Fuel cells (FC) are renewable
energy sources that are emerging to deliver clean and efficient
power. Its power efficiency can reach 45%, which is higher
than that of common electricity generation [2]. Fuel cells can
generate electrical power ranging from portable kilowatts to
multimegawatt stationary power plants [3]. This technology
is applied to residential, commercial, and industrial applica-
tions. Therefore, fuel cells can be considered as the top of the
desirable technologies for a broad spectrum of power gener-
ation applications. This is because it exhibits high efficiency,
negligible environmental emissions, and is non-site specific.

Among the fuel cell technologies, proton exchange mem-
brane fuel cells (PEMFCs) have been intensively studied.
PEMFCs are the most popular fuel cell types, which use
hydrogen gas as fuel. It converts hydrogen and oxygen from
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chemical to electrical energy. An interesting feature of PEM-
FCs is their high power density, fast start-up, and low oper-
ating temperature [4]. Therefore, it can be used in diverse
applications for terrestrial vehicles and rural power plants, but
fuel cells require a large investment.

Despite the relatively high efficiency of the fuel cell, the
power extracted from the fuel cell is not always optimal
because of the ever-changing internal variables [1]. A maxi-
mum power point tracking (MPPT) algorithm is required via
the power electronics interface to ensure maximum power
extraction. The proposed MPPT algorithm modulates the
DC-DC power converter to extract the maximum power from
the system and guarantee optimal resource usage [5].

II. LITERATURE REVIEW
There are various techniques for MPPT in the literature
such as, Perturb and Observe (P&O), Incremental Con-
ductance (IC), Extremum Seeking Control (ESC), Sliding
Mode Control (SMC), Fuzzy Logic Control (FLC), Parti-
cle Swarm Optimizer (PSO), Radial Basis Function Net-
work (RBFN), and as well, Salp Swarm Algorithm (SSA)
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methods. The MPPT algorithm has been widely applied to
solar photovoltaic (PV) systems to obtain the maximum out-
put power from a PV array. A similar technique can also
be used for the fuel cell to determine the maximum power
point (MPP) because both systems have similar power curve
characteristics.

Naseri et al. [6], Dharani and Seyezhai [7], and
Dargahi et al. [8] introduced a perturb and observe (P&O)
approach with a PEMFC to optimize the output power of
the fuel cell. This MPPT algorithm compares the rate of
change of power and current at each instant according to
the step perturbation chosen to generate the maximum power
output. This MPPT technique controls the boost converter by
regulating the duty cycle and maintains the maximum power
of the fuel cell.

Karami et al. [1] compared the incremental conductance
(IC) and P&O methods for MPPT embedded with FC to
enhance the output power with a synchronous DC-DC buck
converter. This IC method differentiates the fuel cell power
with respect to the current. Then, the maximum power is
located at the point when the differentiation result is zero.
Both the MPPT efficiencies of the P&O and IC MPPT algo-
rithms are the same. However, IC took less time in MPP
tracking, and it was more stable than the P&O method when
there were external variations of factors.

Luta and Raji [9] presented and compared fuzzy logic
control (FLC) and particle swarm optimizer (PSO)-based
MPPT for fuel cell stacks. Both FLC-and PSO-based MPPT
techniques control the DC-DC boost controller to extract the
maximumpower from the fuel cell. The FLCmethod contains
a fuzzy set as a rule consequence to determine the crisp output
using the ‘‘Centre ofGravity’’ of defuzzification. The concept
of PSO is a group communication behavior with a target.
This group of organisms represents a potential solution called
particles. Each particle has a position with a specified move-
ment to find the best solution. Then, each particle updates
the movement based on the previous best position until the
best solution can be determined. The results show that the
PSO algorithm was better than the FLC controller in terms
of convergence time and overshoot problem. On the other
hand, FLC performed better in terms of settling time and
undershoot problems.

Jiao and Cui [10] and Abdi et al. [11] introduced a slid-
ing mode control (SMC)-based MPPT with a DC-DC boost
converter for a fuel cell power system. In general, the sliding
mode design consists of the design of the sliding surface and
the selection of appropriate control law. The sliding function
regulates the duty cycle output control. The results show that
the SMC approach maintained the maximum output power
of the fuel cell, and it was robust to a variety of exterior
conditions.

Ahmadi et al. [12] improved the PSO-based MPPT using
a proportional-integral-derivative (PID) controller. Then, the
results are compared with the P&O and SMC methods. The
PSO-PID algorithm performed the best from the simulation
because it had high accuracy, fast time response, and very low

power fluctuations when tracking the maximum powerpoint
under variable conditions.

Derbeli et al. [13], [14] designed the current estimation
MPPT method for PEMFCs based on the estimation of the
current reference. The current corresponding to themaximum
power point represents the reference current. For different
operating temperatures and fuel cell pressures, the reference
current can be obtained using theMPP curve. The current ref-
erence estimation curve can then be constructed using a fitting
function. The backstepping technique regulates the duty cycle
of the boost converter. This MPPTmethod shows satisfactory
maximum power point tracking with a fast settling time, high
accuracy, and robustness toward external factor variations.

In [15], Derbeli et al. also improved the SMC method to a
robust high-order SMC based on the ‘‘Twisting Algorithm’’
(HOSM-TA). Because of its increased ability to combat the
chattering phenomenon and switching control signals, it is
an excellent solution for overcoming the disadvantages of
traditional SMC. This HOSM-TA is designed to improve the
power quality and to maintain the fuel cell operating at an
adequate power level. An experiment was conducted to com-
pare the conventional SMC and HOSM-TA methods. From
the results, the HOSM-TA method controlled the PEMFC to
generate electrical power with a lower power ripple.

Romdlony et al. [16] presented an extreme seeking con-
trol (ESC) for MPPT with a DC-DC boost converter in
a PEMFC system. The ESC traces the MPP of the fuel
cell during operation. It traces the MPP subject to fuel cell
parameter changes and external loads. Both simulation and
experimental results were reported. It can be concluded that
extremum-seeking control was effective in tracking the MPP
of the fuel cell. However, there was a 9%-10% of ripple in the
power generated by the fuel cell.

Reddy and Sudhakar [17] proposed a neural network
MPPT controller with a radial basis function network (RBFN)
algorithm for a fuel cell system. A three-phase high-voltage
gain interleaved boost converter (IBC) was used for electrical
vehicle applications. The RBFN consists of three layers: the
input, hidden, and output layers. For the fuel cell system,
the voltage and current of the fuel cell are the inputs of the
RBFN controller, hidden layer as the nonlinear radial basis
activation function, and duty cycle of the boost converter as
the output. The RBFN-based MPPT was compared with a
fuzzy logic controller. The results show that the RBFN-based
MPPT controller tracked the MPP of the fuel cell faster than
the fuzzy logic controller.

Srinivasan et al. [18] also proposed an artificial neural
networkMPPT controller with a radial basis function network
(RBFN) algorithm for PEMFCs. Three different types of DC-
DC boost converters were used to compare the maximum
power obtained from the PEMFC. These dc-dc boost convert-
ers were the boost converters, quadratic boost converters, and
reconfigured quadratic boost converters. This research also
compared the P&O, FLC, and RBFN-based MPPT methods.
From the simulation, MPPT by RBFN extracted the highest
power from the PEMFC. On the other hand, the reconfigured
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quadratic boost converter performed the best because it con-
verts the highest DC power to the load.

Fathy et al. [19] presented a salp swarm algorithm (SSA)-
based MPPT for a fuel cell with a PID controller to control
the duty cycle of a boost converter. The concept of SSA is
that a free-swimming marine leader salp leads its followers to
search for the best food at the bottom of the ocean. This SSA
with PID-based MPPT was compared with incremental resis-
tance, fuzzy-logic, gray wolf optimizer (GWO-PID), antlion
optimizer (ALO-PID), and mine-blast algorithm (MBA-PID)
for all studied cases [20], [21]. The results reveal that the
SSA-PID extracted the highest MPP from the fuel cell under
any operating condition.

The use of model predictive control (MPC) has the advan-
tage of predicting the future behavior of the controlled
variables in a model of the system. After that, the controller
determines the best actuation based on a predetermined opti-
mization criterion [22]. Pereira et al. [23] proposed a neu-
ral generalized predictive control (NGPC) for the PEMFC
system. A DC-DC boost converter was connected to the
PEMFC stack which having the current control loop with
a proportional-integral controller. It controlled the current
value that was determined by the NGPC algorithm. The
NGPC algorithm was designed for both maximum power
efficiency and maximum power point tracking. The pur-
pose of using a neural network was to model the non-linear
dynamics of the PEMFC so that the efficiency and power
predictions can be calculated. The algorithm also involved
the cost function minimization which was used to determine
the PEMFC output current. During the operation, both the
maximum power efficiency and maximum power point were
compared. The simulation results show the PEMFC output
power for maximum power point tracking algorithm was
higher than maximum power efficiency.

Derbeli et al. [24] introduced another high-performance
tracking method for PEMFC by MPC. This method is not an
MPPT but a stable performance tracking technique. It pre-
dicts the PEMFC output current for the next two sampling
steps. During the operation, a constant reference current
represents the PEMFC operational current which is used to
calculate the cost function. The best switching combination
will be chosen based on the cost function minimization. The
results show the MPC tracking method always selected the
best switching state. Although this method is not an MPPT
method, it proves that the tracking method by MPC main-
tained the PEMFC output current at the reference current.

An MPPT should be addressed with high priority for the
PEMFC system to operate at the highest output power. In this
paper, a new predictive MPPT method will be investigated
for the PEMFC system to generate the power at MPP. The
algorithm of the proposed predictive MPPT technique is
different from the method in [23]. However, it is similar to
the method in [24] with an MPPT algorithm that can track
the MPP. It predicts the PEMFC output current and power
for the next sampling step. Then, it compares the PEMFC
output power and determines the next switching state without

calculating the cost function. Therefore, no reference current
is required. The newly designed predictive MPPT method
may give prominence to the accuracy and fast-tracking time.

III. METHODOLOGY
This study investigates a predictive MPPT technique for a
PEMFC system. This predictive MPPT technique is expected
to exhibit fast convergence of the MPP locus, outstand-
ing accuracy, and robustness with respect to environmen-
tal changes. The entire simulation is implemented in the
MATLAB-SIMULINK environment because this environ-
ment is highly flexible in adjusting the operating condi-
tions [25]. First, a fully functional mathematical model of a
PEMFC was derived to represent a PEMFC system model.
Then, a DC-DC boost converter is designed to control the
voltage generated from the PEMFC system. The purpose of
controlling the fuel cell voltage is to maintain the fuel cell
power at the MPP. A predictive MPPT technique is designed
to command to insulated-gate bipolar transistor (IGBT) of the
DC-DC boost converter to control the fuel cell voltage. The
last step is to validate the newly designed predictive MPPT
technique by varying the parameters of the PEMFC system.

A. FULLY FUNCTIONAL MATHEMATICAL MODELING
OF PEMFC SYSTEM
The first step is to construct an accurate PEMFC model to
simulate the PEMFC system with the MPPT technique. It is
essential to study the mathematical modeling and character-
istics of PEMFC systems. The fuel cell output characteristics
are nonlinear and are affected by the cell temperature, oxygen
partial pressure, hydrogen partial pressure, and membrane
water content [12], [26]. On the other hand, changes in the
load also affect the output power of the PEMFC system.

The energy obtained from the fuel cell is the thermody-
namic energy produced from the electrochemical reactions
released from the enthalpy of formation, 1H [27]. This
energy can be divided into two thermal energies, which
are represented by the Gibbs free energy, 1G and specific
entropy,1S in (kJ mol−1). The Gibbs free energy is affected
by changes in the partial pressures of the reactance in a
specific volume inside the fuel cell. The equation for this
relation can be represented as [14]:

1G = 1G
◦

− RT
(
lnPH2 +

1
2
lnPO2

)
(1)

where1G
◦

= −237.17 kJ mol−1 is the Gibbs free energy in
the standard condition [27], R = 8.3143 J (mol K )−1 is the
gas constant, T is the operational temperature (K ) and F =
96485C is the Faraday constant, PH2 and PO2 are the partial
pressure of hydrogen and oxygen in (atm), respectively. The
potential given by the fuel cell with the effect of changing
temperature is defined as [27]:

1E =
1S
nF

(
T − Tref

)
(2)
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where 1G = −164 J mol−1K−1 is the specific entropy,
n is the number of electrons released from the anode in the
reaction, and Tref = 298.15◦K is the standard temperature.
For each fuel cell chemical reaction, there are 2 electrons
released from the hydrogen gas, so n is equal to 2. Therefore,
the electric potential of the cell, also known as the Nernst
equation, is given by:

ENernst = −
1G

◦

nF
+
1S
nF

(
T − Tref

)
+
RT
nF

lnPH2P
0.5
O2

(3)

By substituting all the constants into the equation, the
Nernst equation can be simplified as:

ENernst = 1.229− 8.5× 10−4 (T − 298.15)

+ 4.308× 10−5T lnPH2P
0.5
O2

(4)

The hydrogen and oxygen partial pressures, PH2 and PO2

can be rewritten in the time domain as follows [12]:

PH2 (t) =
1
kH2

2kr IFCe

(
−

t
τH2

)
+ qinH2

− 2kr IFC

 (5)

PO2 (t) =
1
kO2

kr IFCe
(
−

t
τO2

)
+ qinO2

− kr IFC

 (6)

where t is the time (s), kH2 and kO2 are the hydrogen and
oxygen valve molar constants (kmol atm−1 s−1) respectively;
kr = N/

4F is the modeling constant (kmol s−1 A−1),
τH2 and τO2 are the hydrogen and oxygen time constant (s)
respectively; qH2 and qO2 are the molar flow (kmol−1 s−1) of
hydrogen and oxygen, respectively.

This Nernst equation is the theoretical reversible ther-
modynamic potential in (V ) and it also represents the
open-circuit voltage of the fuel cell [12]. However, in prac-
tice, the fuel cell will lose the voltage due to the rate of
reactions on the electrodes, the resistance of proton flow
in the electrolyte, and the reduction in the concentration of
gases. Therefore, the output voltage of a single cell can be
defined as:

Vcell = Enerst − Vact − Vohm − Vconc (7)

where Vcell is the output stack voltage (V ), Vact is the voltage
loss (V ) due to the rate of reactions on the electrodes, Vohm is
the voltage drop (V ) from the resistance of proton flow in the
electrolyte, Vcon is the voltage loss (V ) from the reduction in
the concentration of gases.

The voltage loss at the rate of reactions on the electrodes
can be considered as the ignition spark at the beginning of
the reaction [27]. Therefore, it is known as the activation
overvoltage described by the Tafel equation [12]:

Vact = ξ1 + ξ2T + ξ3T lnCO2 + ξ4T lnIFC (8)

where ξ1, ξ2, ξ3 and ξ4 are parametric coefficients of the fuel
cell model, IFC is the fuel cell output current (A) and CO2

is the concentration of dissolved oxygen (mol cm−3) on the
catalytic interface using the following equation:

CO2 =
PO2

(5.08× 106)e
−498
T

(9)

The voltage loss resistance of proton flow in the electrolyte
is known as ohmic overvoltage, which represents the voltage
drop due to the resistance of the polymer membrane during
proton and electron transfer. The equation is similar to Ohm’s
law equation, which is defined as:

Vohm = IFCRm (10)

where the resistance (�) of the electrode Rm can be expressed
as

Rm =
rmtm
A

(11)

From the equation, tm is the length of the electrolyte (cm)
that proton flow, A is the area (cm2) of the electrolyte that
the proton can flow and rm is the resistivity (� cm) of the
electrolyte, which can be expressed as [12]:

rm = 181.6
1+ 0.03

(
IFC
A

)
+ 0.0062

( T
303

)2 ( IFC
A

)2.5
λm − 0.634− 3

(
IFC
A

)
e
4.18

(
T−303
T

)
(12)

where λm is the membrane water content, which varies
between 0 and 14. This value represents a relative humidity
between 0% and 100%. Under ideal conditions, this param-
eter may have a value range of 14-20 [10]. The maximum
possible value of λm can be as high as 23 under supersaturated
conditions [28].

The voltage loss from the reduction in the concentration of
gases is known as the concentration overvoltage. This voltage
drop is due to the concentration gradient of the reactants
consumed in the reaction. This equation can be expressed
as [12]:

Vcon = −
RT
nF

ln
(
1−

IFC
iLA

)
(13)

where iL is the limiting current density (A cm−2) of the fuel
cell.

Lastly, the output voltage of the fuel cell can be obtained by
merging all the equations above. However, the voltage of one
cell is very small. Therefore, many cells must be connected
to a bipolar plate to increase the output voltage. Therefore,
the output voltage (V ) of the PEMFC is proportional to the
number of cells, N . The equation is given as:

VFC = NVcell (14)

The output power (W ) of PEMFC is defined as:

PFC = VFC IFC (15)

The fully functional mathematical PEMFC model is pro-
grammed in MATLAB software.
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B. DC-DC BOOST CONVERTER
Power electronics is a necessary component to track the
MPP of PEMFCs because it allows the output voltage to be
changed [1]. In this research, a DC-DC boost converter is
used to regulate the output voltage of the PEMFC. A DC-DC
boost converter is an electronic system used to increase the
DC electrical voltage level to a higher level [13]. The rela-
tionship between the input and output voltages is controlled
by the switch duty cycle, D, using the equation below [13]:

Vout =
Vin

1− D
(16)

The main components of a DC-DC boost converter are
the inductor (L), switch (S), diode (D), and capacitor (C).
Figure 1 shows the circuit diagram of the DC-DC boost
converter.

FIGURE 1. DC-DC boost converter.

In this research, the DC-DC boost converter is assumed to
be an ideal converter. Therefore, there is no power loss at the
diode or switch. By applying Kirchhoff’s voltage law, when
the switch is OFF, the equation can be described as:

S = 0, Vin (t) = L
dIin (t)
dt
+ Vout (t) (17)

When the switch is ON, the equation can be described as:

S = 1, Vin (t) = L
dIin(t)
dt

(18)

where t is the operation time.

C. PREDICTIVE MPPT TECHNIQUE
The MPPT control process is crucial for achieving good
efficiency in a PEMFC power system. From themathematical
modeling of the PEMFC, either the changes in load or the
parameter of the fuel cell can significantly affect the output
power of the fuel cell. For example, changes in the operational
temperature of the fuel cell will result in a change in the
MPP of the fuel cell. Figures 2 and 3 shows the V-I and P-I
polarization curves of the PEMFC at different operational
temperatures.

From Figure 3, the P-I polarization curves show that
increasing the operating temperature will increase theMPP of
the PEMFC. For differentMPPs, themaximumpower voltage
and current are also different. Therefore, MPPT control is
necessary to force the PEMFC system to generate the highest
output power under all conditions. The P-I polarization curve
of PEMFC has a similar shape to the P-V polarization curve

FIGURE 2. PEMFC V-I polarization curve with different operation
temperature.

FIGURE 3. PEMFC P-I polarization curve with different operation
temperature.

of the solar panel. The existing MPPT methods such as P&O
and IC can track the MPP for PEMFC and solar panels. How-
ever, these methods do not have outstanding performance in
accuracy and tracking time. The proposed predictive MPPT
technique is only specialized for PEMFC. For every sampling
step, it reads the parameter of the PEMFC such as operational
temperature, membrane water content, and partial pressure
of reactant gases. This is because different parameters give
different MPPs. The predictive MPPT algorithm involves the
parameters of the PEMFC in the calculation to select the best
switching state for the DC-DC boost converter.
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FIGURE 4. Predictive MPPT method flow chart for PEMFC system.

In this study, a predictive MPPT technique was designed
and applied to the PEMFC system. The MPPT algorithm is
required to work together with the DC-DC boost converter.
The MPPT algorithm controls the switch of the boost con-
verter and regulates the output voltage of the fuel cell to
a maximum power voltage. The relationship between the
fuel cell output voltage, converter input, and output voltage
needs to be defined first to develop the predictive MPPT
algorithm. When the DC-DC boost converter is connected to
the PEMFC, the output voltage of the fuel cell becomes the
input voltage of the DC-DC boost converter. Therefore, the
equations can be simplified as:

S = 0, VFC (t) = L
dIFC (t)
dt

+ Vout (t) (19)

S = 1, VFC (t) = L
dIFC (t)
dt

(20)

Then, the final equation can be concluded as:

VFC (t) = L
dIFC (t)
dt

+ S̄Vout (t) (21)

This predictive MPPT technique involves the model pre-
dictive control (MPC) strategy in the DC-DC boost converter
introduced in [29]. The critical feature of MPC is the predic-
tion of the future behavior of the controlled variables [22].
Therefore, the equation must be expressed as a discrete-time
model. Then, the predictive MPPT algorithm can calculate
the fuel cell output voltage and current in the next sampling
step. Thus, a one-step prediction of fuel cell power can be
computed. In a discrete-time model, the predicted fuel cell
current can be expressed as:

IFC (k + 1) =
Ts
L

(
VFC (k)− S̄Vout (k)

)
+ IFC (k) (22)

where k is the number of discrete sampling steps and Ts is
the sampling time. This equation includes two conditions:
ON switching state and OFF switching state. Therefore, two
predicted fuel cell currents were calculated under both con-
ditions.

After the fuel cell currents are predicted in both switching
states, the predicted fuel cell voltages can also be calculated
by substituting the predicted current into (4)-(14). The fuel
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TABLE 1. PEMFC system parameters.

cell power for the ON and OFF switching states can be
computed by multiplying the predicted current and voltage in
the ON and OFF switching states, respectively. The last step
of the predictive MPPT is to compare the fuel cell power in
both switching states and determine the switching state with
higher output power. Once the MPPT algorithm determines
the switching state, it sends a signal to control the switch of
the boost converter. Therefore, the switch will either switch
ON or OFF based on the command given by the MPPT
controller. Finally, the boost converter regulates the output
voltage of the fuel cell and maintains the maximum output
power.

Figure 4 shows a flowchart of the predictive MPPT tech-
nique used in the PEMFC system. The MPPT control process
is described in the flowchart step by step.

D. MODELING OF PEMFC SYSTEM
Because fully functional mathematical modeling of the
PEMFC system, dc-dc boost converter, and predictive MPPT
control are designed, the entire PEMFC system with MPPT
control can be constructed. The DC-DC boost converter is
the main power electronic that is connected between the
PEMFC system and the load. The predictiveMPPT controller
is directly connected to the switch of the DC-DC boost
converter and manipulates the switching state. Therefore,

the output voltage of the fuel cell is regulated by the
DC-DC boost converter according to the MPPT algorithm.
Figure 5 shows the configuration of the PEMFC system with
the predictive MPPT controller.

IV. SIMULATION RESULTS AND DISCUSSION
In this research, the entire simulation is performed using
MATLAB/Simulink. As mentioned in (4)-(15), the fuel cell
parameters significantly affect the output voltage, current,
and power. The parameters of PEMFC are set and tabulated
in Table 2.

The proposedMPPT technique is simulated on the PEMFC
system using the parameters listed in Table 2. The simulations
are divided into several cases. The first case is to simulate the
proposed MPPT on the PEMFC system with the exact value
of the fuel cell parameters listed in Table 1. Then, the sim-
ulations are proceeded with varying operational temperature
and membrane water content to validate the robustness of the
MPPT technique. Finally, the proposed MPPT technique is
validated by changing the load resistance.

A. SIMULATION WITH CONSTANT OPERATIONAL
TEMPERATURE AND MEMBRANE WATER CONTENT
In Table 2, the operational temperature and membrane water
content were 343 K and 14, respectively. In Figure 6, the P-I
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FIGURE 5. PEMFC system and predictive MPPT controller configuration.

TABLE 2. PEMFC system parameters.

curve shows that the maximum fuel cell output power gen-
erated is 8628 W with a current of 355.6 A. Therefore, after
the predictive MPPT controller is applied to the PEMFC sys-
tem, the output power of the fuel cell should be approached
to 8628W. Figure 6 shows the simulation results of the output
voltage, current, and power of the fuel cell.

From the simulation results, the FC output power
achieves 8628 W within 0.015 s after starting the operation.
This FC power curve resembles a first-order systemwith zero
overshoot. At the same time, the fuel cell achieves an output
voltage of 24.27 V and current 355.6 A. This output voltage is
the maximum power voltage regulated by the DC-DC boost
converter to achieve the highest power that can be extracted
from the fuel cell. However, the output power of the fuel cell
is decreased slowly with time.

This is because the partial pressures of hydrogen and
oxygen also decreased with time during the operation. From
equation (5), the initial partial pressure of hydrogen is

qinH2

/
kH2

, which is decreased by 2kr IFC − 2kr IFCe

(
−

t
τH2

)/
kH2

with time. After a period, the final partial pressure of hydro-
gen becomes q

in
H2
− 2kr IFC

/
kH2

. The same occurrence occurs
for the partial pressure of oxygen, which decreases with time,
as shown in (6). This phenomenon was proven in [12] using

FIGURE 6. P-I characteristic of PEMFC (T = 343K, λm = 14).

FIGURE 7. PEMFC output voltage for constant fuel cell parameter.

a graph. Figure 10 shows the PEMFC P-I polarization curve
with different partial pressures of reactance gases.

In Figure 10, higher partial pressure of reactance gases
results in a higher MPP. During fuel cell operation, the partial
pressure of the reactance gases is decreased with time. This
causes the MPP to move to a lower position with different
voltages and currents.

The proposed MPPT technique has a very fast tracking
time. The simulation results are compared with the results
in [12] to evaluate the performance of the proposed MPPT
technique. In [12], the proposed PSO-based MPPT is a
proportional-integral-derivative (PID) controller, which was
compared with the P&O and SMC techniques. The results
in [12] proved that the PSO-PID method had the fastest MPP
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FIGURE 8. PEMFC output current for constant fuel cell parameter.

FIGURE 9. PEMFC output power for constant fuel cell parameter.

TABLE 3. MPPT technique comparison.

tracking time. Table 3 shows a comparison of the proposed
predictive MPPT method with the PSO-PID, P&O, and SMC
techniques in [12].

Table 3 shows the fuel cell achieved the maximum power
current within 0.07 s when using the PSO-PID method. How-
ever, the proposed predictive MPPT technique can achieve
a maximum output power within 0.012 s. Its MPP tracking
time is at least five times faster than the PSO-PID method.
If the MPP tracking time is fast, less time taken is required
to achieve the PEMFC power at MPP. It reflects less energy
loss because the power extracted from the PEMFC achieving

FIGURE 10. PEMFC P-I polarization curve with different partial pressure
of reactance gases.

the MPP is fast. In addition, the proposed predictive MPPT
technique has the highest tracking accuracy, which achieves
99.13% of the maximum power. It extracts the highest output
power from the PEMFC. Therefore, the proposed MPPT
technique performs best in terms of MPP tracking accuracy
and tracking time.

The proposed predictive MPPT technique has the advan-
tage of having the fastest MPP tracking time with the highest
maximumpower extracted from the PEMFC system. The pre-
dictive MPPT technique can predict the power extracted from
the PEMFC in the next step. Then, it selects the best switching
state so that the DC-DC boost converter can regulate the
DC voltage to the maximum power voltage. Switching state
selections are straightforward and do not require iterative
calculation. Thus, the predictiveMPPT controller will always
command the PEMFC system to generate higher electrical
power within a very short time.

Another difference between the predictive MPPT tech-
nique and the existing MPPT technique is that the exist-
ing MPPT technique always regulates the duty cycle of the
DC-DC boost converter to maintain the power of the fuel cell
at its maximum. However, the predictive MPPT technique
determines the switching state of the switch in the DC-DC
boost converter. At each sampling time, the predictive MPPT
controller can send a signal to change the switching state.
Therefore, the switching state is not constrained by the duty
cycle. This shows the advantage of having fewer power oscil-
lations and ripples. The shorter the sampling time, the smaller
the ripples produced. Therefore, a very small sampling time
may result in negligible ripple. This advantage also led to a
fasterMPP tracking time. Figure 11 shows the switching state
selected by the predictive MPPT algorithm.

From the operation time 0 s to 0.012 s, there are two
switching cycles to track the MPP. For a conventional
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FIGURE 11. Switching state controlled by predictive MPPT algorithm.

dc-dc boost converter, the inductor stores the energy when
the switch is switched ON and it releases the energy when
the switch is switched OFF.When the operation is started, the
switch is switched ON for a period to increase the PEMFC
output current until it achieves the current at MPP. At the
same time, the energy is stored in the inductor. After that, the
switch of the boost converter starts to switch ON and OFF
continuously. The inductor will store or release the energy
adequately and maintains the PEMFC output current at MPP
current. The power extracted from the PEMFC will be the
maximum power if the current is kept at MPP.

Figure 11 also shows the switching cycle from 0.012 s to
0.013 s is 23. It means that the switching frequency is around
23 kHz. In [30], an experiment analysis for the conventional
DC-DC boost converter is carried out by using a metal-
oxide-semiconductor field-effect transistor (MOSFET) as the
switch. The switching frequency is set to be 100 kHz which
is much higher than the switching frequency in Figure 11.
Most of the MOSFET and IGBT available in the market can
handle the switching frequency at 23 kHz. Therefore, the
issue of temperature rises will not occur. In the market, there
is an IGBT named SKM800GA176D, which can handle the
current as high as 830 A. It is suitable to be applied as the
switch in the boost converter for the PEMFC system. Even
though there are spike occurred in a short time, the IGBT will
not be damaged.

For the existing MPPT technique, the algorithm does not
have a predictive function. Instead, it regulates the duty
cycle of the DC-DC boost converter based on the present
situation. Moreover, because its algorithm regulates the duty
cycle, it requires more time for the oscillation to become
stable. In addition, existing MPPT techniques may require
more iterations to track the MPP. Therefore, the proposed
predictive MPPT has the best performance compared to the
MPPT technique in [12].

FIGURE 12. Time variations of operating temperature.

FIGURE 13. Time variations of operating membrane water content.

B. SIMULATION WITH VARIABLE OPERATIONAL
TEMPERATURE AND MEMBRANE WATER CONTENT
The simulation is also performed under fast variations of
the operational temperature and membrane water content to
validate the performance of the proposed MPPT technique
under varying parameters. In this simulation, the initial oper-
ating temperature is set to be 323 K, and the membrane
water content is set to be 16. The operating temperature
increases from 323 K to 343 K and then to 363 K in the
first 1.5 seconds. After that, the membrane water content
decreased from 16 to 14 and then to 12 in the last 1.5 seconds.
Figures 12 and 13 show the time variations of the operational
temperature and membrane water content during operation in
this simulation.

Figure 14 shows the P-I polarization curves with constant
membrane water content but different operational tempera-
tures. When the operating temperatures are 323 K, 343 K,
and 363 K at a constant membrane water content (λ = 16),
the maximum power points of the fuel cell are 8154 W,
9601 W, and 10970 W, respectively. During fast variations
in the operational temperature, the maximum power that can
be extracted from the fuel cell is increased. On the other
hand, the P-I polarization curves with a constant operational
temperature but differentmembranewater contents are shown
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FIGURE 14. PEMFC P-I polarization curve with different operational
temperature.

FIGURE 15. PEMFC P-I polarization curve with different operational
temperature and membrane water content.

in Figure 15. When the membrane water contents are 16, 14,
and 12 at a constant operational temperature (T = 363K ), the
maximum power points of the fuel cell are 10970W, 9940W,
and 8765 W, respectively. Therefore, the maximum power
of the fuel cell decreases when the membrane water content
decreases.

Figure 16 shows the simulation result for the output power
extracted from the PEMFC. The output power achieves the
MPP within 0.015 s when the fuel cell operation is started.
After that, the output power is increased at 0.5 s and 1.0 s
due to the increase of operational temperature. Then, it is
decreased at 2.0 s and 2.5 s due to the decrease of mem-
brane water content. However, during the fast variation of
the fuel cell parameter, the output power extracted by the
fuel cell is slightly lower than the theoretical MPP, as shown
in Figures 14 and 15. This is because the partial pressure of

the reactance gases decreases with time, as discussed in the
previous case. This simulation result shows that the proposed
predictive MPPT technique is robust to parameter changes.
It can track the new MPP of the PEMFC within 2 ms under a
fast variation of the parameter.

C. SIMULATION WITH VARIABLE LOAD RESISTANCE
In this simulation, the PEMFC system still follows the param-
eters listed in Table 2, but there is a fast variation in the load
resistance. This simulation aims to investigate the robustness
of the proposedMPPT technique for load changes. The initial
load resistance is 10 �. After 1 s, a parallel load with 10 �
resistance is switched on. Therefore, the total resistance is
decreased to 5 �. Another load with 1.25 � resistance is
switched on at 2 s. The final total resistance is turned to 1 �.
Figure 17 shows the simulation results for the output power
extracted from the PEMFC.

The PEMFC system reaches the maximum output power
with zero overshoot. Then, it maintains the maximum out-
put power even though there is a fast variation in the load
resistance. Therefore, there is sufficient evidence to prove
that the proposed predictive MPPT technique is robust to
load changes. Figures 18, 19, and 20 show the load voltage,
current, and power consumed by the load. When the load
resistance is decreased, the power consumed by the load is
maintained at the maximum power produced by the PEMFC.
However, there are changes in the load voltage, current, and
power. The electrical circuit must fulfill Ohm’s Law, V = IR
and the formula of power P = VI . Although the power
absorbed by the load remains at the same value, the load
voltage and current are changed because of the different
resistances.

From Figures 18 and 19, the output voltage, Vo is changed
from 290 V to 205 V and then to 91 V but the output current,
Io is increased from 29A to 41A and then to 91A. In addition,
there are two power transients, as shown in Figure 20. These
power transient states occurred precisely when the parallel
loads were switched on. This is because the sudden change in
the total load resistance causes the load current to overshoot.
A similar occurrence was also presented in [15].

At 1s, the total load resistance is changed from 10 � to
5�, but the output voltage is not directly reduced from 290 V
to 205 V. It takes approximately 0.2 s to regulate the output
voltage because the capacitor in the DC-DC boost converter
releases energy and slows down the voltage drop. During the
output voltage regulation, the electrical circuit still follows
Ohm’s law. Therefore, when the total resistance suddenly
decreases while the voltage is maintained at a high level, the
changes will fall on the current.

The current waveforms in Figure 19 shows the output
current is overshoot when the total load resistance changes
from high to low. The current raised can be estimated from
the ratio of the resistance changes. For example, when the
load resistance changed from 10 � to 5 � at 1 s, the current
increased by 2 times which from 29 A to 58 A. Furthermore,
at 2 s, the load resistance changed from 5 � to 1 �, causing
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FIGURE 16. PEMFC output power with fast variation of operational temperature and membrane water content.

FIGURE 17. PEMFC output power with fast variation of load resistance.

the current to increase by five times. Therefore, the power
transient at 2 s was much higher than the power transient at
1 s. However, if the load resistance changes from low to high,
the current will be undershooting. It is concluded that this
sudden change in the output current causes a power transient
at the load side.

One of the ways to solve the overshooting problem is
to include an inductor at the load side. The characteristic
of the inductor is to prevent the rapid changes of electric
current. This is because the inductor changes the electric
current into the magnetic field. The magnetic field induces
an electromotive force when there is changing in current flow.
The electromotive force is the inductor voltage which has a
polarity. It opposes any changes in current that flow through
the inductor. Therefore, an inductor can be used to reduce the
overshooting current. Figures 18, 19, and 20 also show the
comparison results with a 10 mH inductor and without using
the inductor. Figure 19 shows the overshooting current at 2 s
is reduced from 200 A to 130 A when a 10mH inductor was

FIGURE 18. Load voltage with fast variation of load resistance.

used. Figure 20 also shows the overshooting power is reduced
from 40 kW to 20 kW. It proves that the inductor can cut down
the high power transient to half of the original value. Thismay
protect the dc-dc converter when there is any changing of load
resistance.

Another difference between the two power transients is the
time taken for the load power to restore its steady state. At
1 s, the DC-DC boost converter takes 0.2 s to regulate the
output voltage from 290V to 205V. However, it only takes
0.04 s to control the output voltage from 205 V to 91 V at
2 s. This shows that it is faster to achieve a steady state at 2 s.
This is because the time constant for the capacitor to release
energy is reduced based on the resistance. The equation for
the capacitor discharge voltage can be expressed as:

VC (t) = Vd × e−
t
RC (23)

where VC is the capacitor voltage, Vd is the capacitor voltage
to be discharged, R is the resistance value, and C is the
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FIGURE 19. Load current with fast variation of load resistance.

FIGURE 20. Load power with fast variation of load resistance.

capacitance value. The capacitor time constant is equal to the
product of the resistance and capacitance value. Therefore, a
lower resistance value will result in a lower capacitor time
constant and cause the time to achieve the steady state to
become faster.

V. CONCLUSION
In this study, a predictive MPPT technique is designed for a
PEMFC system. The predictive MPPT technique is investi-
gated by comparing its performance with that of other MPPT
techniques. The results prove that the proposed predictive
MPPT technique has the fastest MPP tracking time. There-
fore, the proposed predictive MPPT technique exhibits the
best performance when compared with the PSO-PID, P&O,
and SMC-based MPPT methods. The predictive MPPT tech-
nique was validated by changing the fuel cell parameters

and load resistance. It is confirmed that the predictive MPPT
technique can lead the PEMFC system to reach the new
MPP in a very short time. In conclusion, the proposed MPPT
technique exhibits fast tracking of theMPP locus, outstanding
accuracy, and robustness to the environmental changes.
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