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ABSTRACT Applications supporting businesses, smart systems, social networks, and advanced video
applications such as eXtended Reality (XR) require large amounts of data processing to be provided in real-
time. Therefore, the processing speed of big data systems is more important than ever. On the other hand,
protecting a big data system is not easy, as various types of nodes and clusters are supported by various wired
and wireless networks. Commonly security procedures slow down the response time of big data networks,
and therefore, enhanced security and performance speed techniques need to be co-designed into the system.
In this paper, a trusted streaming adaptive failure-compensation (TSAF) scheme is proposed that uses a trust
management scheme to identify malicious nodes in Spark big data systems, exclude them from job/task
processing, and calculate the number of nodes that can satisfy the process’s object completion time. The
TSAF scheme shows an improved processing performance when there are attacks on the big data system
compared to other existing real-time big data processing schemes. For the case of no security attack, the
results show that the processing time of TSAF is faster by about 1 ∼ 2% compared to the existing big data
processing schemes when the process completion object time is set to 0.5 s. Even when the ratio of malicious
nodes performing security attacks on worker nodes reaches 0.5, the results show that TSAF can satisfy over
75% of the tasks within the object time, which is significantly higher compared to the existing big data
processing schemes.

INDEX TERMS Trust management, big data, time bound optimization, real-time processing, security.

I. INTRODUCTION
Considering the significant increase of internet of things (IoT)
devices, drones, autonomous driving vehicles, and various
interactive video services and systems, such as eXtended
Reality (XR), the amount of data that needs to be processed
in real-time is rapidly increasing. Because big data systems
need to collect massive amounts of structured and unstruc-
tured data, big data systems are interconnected with many
diverse networks, servers, blockchain databases, and clouds.
As there are many interfaces to a big data system network,
the possibility of a security attack is very high.

The associate editor coordinating the review of this manuscript and
approving it for publication was Tai-hoon Kim.

To protect a system in which various types of nodes
and wired/wireless networks are combined, various security
methods have been proposed. Among them, trust manage-
ment technology has been very effective. Trust management
can help maintain the security level by granting trust to
members based on previous activities. Trust management
technology has shown good protection results in systems
where heterogeneous nodes and networks were used.

Several methods have been proposed to utilize trust man-
agement in big data systems. In [1]–[4], the security of
big data systems are maintained by calculating the trust for
data collected from the IoT sensors, unmanned aerial vehi-
cles (UAVs), autonomous driving vehicles, and IIoT net-
work. In [5]–[7], algorithms to manage user or data trust
levels using blockchains and authentication were proposed.
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However, in these studies, trust of the worker nodes for big
data processing is not considered. In [8], when big data is
processed on the cloud platform, a trust level is assigned
to the data, task, and big data processing resources. The
scheme proposed in [8] maintains the security level of the
data by allowing tasks to be processed differently according
to the assigned trust level. In [9], when multiple clouds are
connected to a big data system, trust of the corresponding
clouds are determined, and an example of parallel big data
processing is suggested. However, in this study, the cloud
to which worker nodes are connected is not adapted in ref-
erence to the security situation, so the scheme may be vul-
nerable to varying attacks and have issues in computational
complexity.

In this paper, a trusted streaming adaptive failure-
compensation (TSAF) scheme is proposed that uses trust
management to identify malicious nodes in Spark big data
systems, exclude them from job/task processing assignments,
and calculate the number of nodes that can satisfy the process-
ing object time.

The contributions of TSAF are as follows.
• TSAF is a novel trust-based security technique for

Apache Spark big data processing systems that can satisfy
predefined object times even when the ratio of malicious
nodes performing security attacks on worker nodes is very
high.
• TSAF reduces the recovery time caused by malicious

nodes being assigned as worker nodes along with errors
that occur during the communication and execution process
considering past records.
• TSAF minimizes the computational complexity of deter-

mining the trust level of worker nodes through clustering.
This approach focuses on the concept that parallel clustering
based on divided big data nodes can enable faster big data
processing.

In section II, the big data processing system model for
TSAF is described. In section III, the TSAF scheme is pro-
posed, where details on the trust management process and
data processing time estimation are provided along with the
trust management scheme’s computation complexity anal-
ysis. The operational flowchart of TSAF is described in
section IV. Furthermore, the performance of TSAF and other
real-time big data processing schemes are compared through
simulation in section V and the conclusion of this paper is
provided in section VI.

II. SYSTEM MODEL
The big data system and network model investigated in
this paper is described in Fig. 1. It is assumed that the
worker nodes supporting the big data process are connected
to a cloud. To process real-time streaming big data, the big
data system has one master node and several worker nodes.
Worker nodes are divided into several clusters and managed,
and each cluster has one cluster head (CH). The master node
communicates directly with the user and distributes the data
coming into the system to each cluster. The CH performs the

FIGURE 1. Real-time big data processing system model of TSAF, which
includes one master node that manages several worker nodes and is
assisted by a trust level database. Worker nodes can be divided into
multiple clusters and each cluster is managed by a cluster head.

role of the master node in the cluster and also the role of
the worker node at the same time. The system processes the
streaming data in parallel using multiple clusters to satisfy
the object time Tobject, and the result is reported to the user
through the CH and master node [10].

Malicious nodes also exist among the worker nodes of the
cloud system. Malicious nodes intentionally degrade the sys-
tem performance inside the cloud (e.g., data export, no com-
munication response, reduction in data processing speed,
etc.).

The master node maintains a separate trust level database
to manage the trust evaluation of all worker nodes. The
trust level database stores the trust-related information of the
existing worker nodes and verifies the trust information of
the worker nodes reported by the CH based on synthesizing
the trust level data (in the database) and the trust information
reported by the CHs. In addition, when it is necessary to
adjust the clusters (due to a changes in the number of worker
nodes), the trust level database is used to designate nodes with
the highest trust level to serve as CHs.

III. TRUSTED STREAMING ADAPTIVE
FAILURE-COMPENSATION
The TSAF scheme is divided into two parts. In part 1,
calculation of the optimal number of clusters is conducted
while considering the trust calculation of the worker nodes in
the system and the computational complexity. In part 2, the
scheme calculates the number of worker nodes required to
satisfy the object time based on the cluster and honest worker
nodes derived from the trust management process.

The trust management process (using the optimal cluster
size) and the real-time big data process (that satisfies the
object time) are performed simultaneously while the system
is running.

A. TRUST MANAGEMENT PROCESS
GlobalTrust [11], [12] was used to calculate the trust level of
the worker nodes, where all worker nodes report a local trust
opinion (LTO) to the cluster head (CH) for trust evaluation.
The reported behavior is observed based on the big data

VOLUME 9, 2021 156373



S. Seo, J.-M. Chung: Adaptive Trust Management and Data Process Time Optimization

TABLE 1. Variables and expressions for the trust management process.

processing time for a certain period. TABLE 1 summarizes
the variables and expressions used in the trust management
process. LTOj,k is the LTO measured by worker node j for
worker node k , which is calculated as

LTOj,k =
pj,k

pj,k + nj,k
(1)

where p is the number of times that data is normally processed
as a positive event, n counts negative events, which increases
whenever an abnormal behavior (e.g., exceeding the object
time required for processing or an error occurs) in the data
communication process occurs.

Based on the collected LTOs, the CH calculates the trust of
the nodes in the cluster. First, the subjective reputation (SR)
is calculated from

SRw,u =
∑
j∈Su

LTOj,u
HRjsim(w, j)∑
j∈Su HRjsim(w, j)

(2)

where sim(w, j) is the cosine similarity of the LTO reported
by worker nodes w and j.HRj represents the hierarchical rank
of node j in which non-CH worker nodes are 1, and CH nodes
have a higher value.

Based on the created SR, the CH creates a trusted quorum
(D). Using the SR information of the nodes belonging to
D, the behavior reputation (BR) for each node is calculated
using (3).

BRCHi,u =

∑
w∈D SRw,u
|DCHi |

(3)

Using the generated BR, the credibility reputation (CR) can
be obtained using (4). CR measures the similarity between
the LTO reported by a specific node u and the calculated BR,
where the more similar the opinion is, a higher CR value is
assigned

CRCHi,u = 1−

√∑
j∈N(LTOu,j − BRCHi,j)2

|j ∈ N|
(4)

where N is a group of nodes that LTOu,j 6= null.

The global reputation (GR) can be obtained from the BR
and CR using

GRCHi,u = ρBRCHi,u + (1− ρ)CRCHi,u (5)

where ρ is a value between [0,1].
The trust information of the clusters is reported to the

master node. The master node verifies the trust information
of each cluster and performs its role such as excluding poten-
tially malicious nodes from the data processing.

B. TRUST MANAGEMENT SCHEME ANALYSIS
When performing trust management, TSAF calculates the
number of clusters that minimizes the time it takes to cal-
culate the trust level. Lemma 1 calculates the computational
complexity of the trust management process, and Lemma 2
calculates the number of clusters kopt that minimizes the
calculated computational complexity, which will effectively
minimize the time consumed in the trust calculation process.
Lemma 1:The computational complexity of calculating the

trust of the entire big data system is O(dN/ke3 + k3). �
Proof: When calculating the trust of worker nodes, the

master node divides allN worker nodes into k clusters. At this
time, there will be a maximum of dN/ke worker nodes in at
least one cluster (where dxe refers to an integer greater than
or equal to x).

The computational complexity inside the cluster is derived
as follows. The trust scheme used in this paper creates a trust
quorum to judge the trust levels [11], [12]. When all clusters
simultaneously compute trust values, the computational com-
plexity of the cluster with the largest number of worker nodes
will be O(dN/ke2). Since the accuracy of all trust values
inside the cluster is determined through the created trusted
quorum, the computational complexity inside the cluster will
be O(dN/ke2 × dN/ke) = O(dN/ke3)

The master node performs the accuracy judgment on the
k trust values reported from the CH once more as if it was
performed inside the cluster, and the computational complex-
ity at this time is O(k3). Therefore, the overall computational
complexity is O(dN/ke3 + k3). �
Lemma 2: The number of optimal clusters kopt that mini-

mizes the computational complexity is nint(
√
N ). �

Proof: According to Lemma 1, the trust computational
complexity of TSAF is O(dN/ke3 + k3). The value k ′ that
minimizes computational complexity can be obtained as fol-
lows.

k ′ = arg
k

[
∂

∂k
O

(⌈
N
K

⌉3
+ k3

)
= 0

]

= arg
k

[
−
3N 3

k4
+ 3k2 = 0

]
(6)

The k ′ values that satisfies (6) is ±
√
N . Since N > 0, k

must be greater than 0, so k ′ =
√
N minimizes the computa-

tional complexity.
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FIGURE 2. Computational complexity (Ctotal) graph based on number of
worker nodes (N) and clusters (k). For a given N value, Ctotal decreases
from k = 1 to k = kopt and increases steadily after k = kopt.

The second derivative of the computation complexity equa-
tion is presented in (7).

∂2

∂k2
O

(⌈
N
k

⌉3
+ k3

)
=

12N 3

k5
+ 6k (7)

Since N > 0 and k > 0, the second derivative of the
computational complexity is always greater than 0, so it is
a convex function.

Since the number of clusters k is a positive integer, the
number of clusters that minimizes the computational com-
plexity is kopt = nint(

√
N ) (where nint(x) is the nearest

integer to x). �
Fig. 2 is a graph showing the change of computational

complexity according to the change of k and N . At the same
k , the computational complexity increases as N increases.
At the same N , the computational complexity continues to
decrease until k reaches kopt, and has a minimum value at kopt.
After passing kopt, the computational complexity continues to
increase.

C. DATA PROCESSING TIME
Based on the previously calculated number of optimal clus-
ters kopt, the master node divides the worker nodes into kopt
clusters to process the data. The big data processing time (TP)
can be divided into two parts. The first is the time consumed
by the master node to transmit data to the CHs (Tm), and
the second is the time (T kc ) to process the data inside the k
clusters. TABLE 2 summarizes the variable and expressions
used in the data processing time analysis.

TP = Tm + T kc (8)

The master node transmits the real-time data to be pro-
cessed to each CH. The transmission time (Tm) is

Tm = Tm
vs + T

m
comm + T

m
add

= kiA+
Bs
k
+ Pecomm

Bs
k

(9)

TABLE 2. Variables used in the data processing time analysis.

where A = θvsT baseline
vs , B = θcommT baseline

comm , Tm
vs is the

variable sharing time, Tm
comm is the data communication time,

and T baseline is the time it takes to transmit unit-sized variables
and data. In the variable sharing process, variables necessary
for data processing are transmitted to k CHs. In the data com-
munication process, data is transmitted as much as the ratio
of honest worker nodes that belong to each cluster among all
honest worker nodes. Tm

add is the time it takes to recover a
communication error that occurs when data is transmitted to
the cluster and is restored by retransmitting the data.

The CH distributes the received data to honest worker
nodes. The time it takes to process data in cluster k (T kc ) is

T kc = T kvs + T
k
comm + T

k
exec + T

k
add (10)

where T kvs is the variable sharing time, T kcomm is the data
communication time, T kexec is the execution time, and T kadd
is the recovery time of errors that occurred during data pro-
cessing. Errors can occur in the communication process and
data processing inside the cluster. The data processing time of
cluster k (T kc ) with nk worker nodes, that also considers the
recovery time caused by an error, can be expressed as follows.

T kc = T kvs + T
k
comm + T

k
exec + T

k
add

= nk iA+
Bs nkn
nk
+
iMa

nk
n

nk
+ Pecomm

Bs nkn
nk

+Peexec

(
nk iA+

Bs nkn
nknk

+
iMa

nk
n

nknk

)
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= nk iA+
Bs
n
+
iMa

n
+ Pecomm

Bs
n

+Peexec

(
nk iA+

Bs
nnk
+
iMa

nnk

)
(11)

The total big data processing time (Tp) is as follows.

TP = Tm + T kc

=
(
Tm
vs+T

m
comm+T

m
add
)
+

(
T kvs+T

k
comm+T

k
exec+T

k
add

)
= kiA+

Bs
k
+ Pecomm

Bs
k
+ nk iA+

Bs
n
+
iMa

n

+Pecomm

Bs
n
+ Peexec

(
nk iA+

Bs
nnk
+
iMa

nnk

)
(12)

Lemma 3: the optimal number of worker nodes Nopt is
Nopt = {dmin(ni)e |ni > 0, ni ∈ R, i = 1, 2, 3}. �

Proof: The number of worker nodes to process the data
within the object time can be obtained by deriving the n that
satisfies (13).

TP = Tm + T kc ≤ Tobject (13)

TP =
(
Tm
vs+T

m
comm+T

m
add
)
+

(
T kvs+T

k
comm+T

k
exec+T

k
add

)
= kiA+

Bs
k
+Pecomm

Bs
k
+nk iA+

Bs
n
+
iMa

n
+Pecomm

Bs
n

+Peexec

(
nk iA+

Bs
nnk
+
iMa

nnk

)
≤Tobject (14)

Using nk ' n/k and rearrangeing for n, the following can
be obtained

n
(
1
k

(
1+Peexec

)
iA
)
+

(
kiA+

Bs
k
+Pecomm

Bs
k
−Tobject

)
+
1
n

(
Bs+iMa+PecommBs

)
+

1
n2
(
kPeexec(Bs+iMa)

)
≤0 (15)

where n is the number of worker nodes, so n > 0.
In addition,

n3
(
1
k

(
1+Peexec

)
iA
)
+n2

(
kiA+

Bs
k
+Pecomm

Bs
k
−Tobject

)
+ n

(
Bs+ iMa + PecommBs

)
+ kPeexec (Bs+ iMa)

= xn3 + yn2 + zn+ w ≤ 0 (16)

where x = 1
k

(
1+ Peexec

)
iA, y = kiA+ Bs

k +Pecomm
Bs
k −Tobject,

z = Bs + iMa + PecommBs, w = kPeexec (Bs+ iMa). The
solutions of the above cubic equation are n1, n2, and n3, which
are given below

n1 = −
y
3x
−

1
3x

9 + {92
− 4(y2 − 3xz)3

} 1
2

2


1
3

−
1
3x

9 − {92
− 4(y2 − 3xz)3

} 1
2

2


1
3

(17)

n2 = −
y
3x
+
1+ i
√
3

6x

9 + {92
− 4(y2 − 3xz)3

} 1
2

2


1
3

+
1− i
√
3

6x

9 − {92
− 4(y2 − 3xz)3

} 1
2

2


1
3

(18)

n3 = −
y
3x
+
1− i
√
3

6x

9 + {92
− 4(y2 − 3xz)3

} 1
2

2


1
3

+
1+ i
√
3

6x

9 − {92
− 4(y2 − 3xz)3

} 1
2

2


1
3

(19)

where 9 = 2y3 − 9xyz+ 27x2w.
The optimal number of worker nodes Nopt is the smallest

real number among n1, n2, and n3, therefore,

Nopt = {dmin(ni)e |ni > 0, ni ∈ R, i = 1, 2, 3} (20)

where min(x) is the minimum number of x. �

IV. OPERATIONAL FLOWCHART OF TSAF
The operational flowchart of the TSAF scheme, which finds
the optimal number of clusters (kopt) needed to manage
the trust level, as well as the number of worker nodes
(N ) to satisfy real-time data processing, is presented in
Fig. 3. In Fig. 3, the input includes the total number of
worker nodes (n), the target time to process the received
data (Tobject), and the input data segment size (s) that is
used as the unit level of data processing in Spark DStream.
The parameters n, s, and Tobject can be changed by the
administrator at the beginning or during the DStream data
processing.

When TSAF starts, the big data scheme first checks
whether the parameters have changed by comparing it with
the previous parameters. If the parameters have changed,
the value of kopt is recalculated. Next the master node dis-
tributes the task and data to the worker nodes of the kopt
clusters. The master node selects the worker nodes with
the highest trust level to serve as CHs. Then the trust level
management process and the big data processing are per-
formed simultaneously. In the big data processing, the total
number of required worker nodes Nopt is calculated using
Tm (the time for the master node to distribute data to each
cluster), T kc (the time to process data inside the cluster), and
Tobject. In the trust level management process, as described in
Section III-1, the CH calculates the trust level of the worker
nodes in the cluster based on the events that occurred dur-
ing recent big data processing. The calculated trust level of
worker nodes is reported to the master node. The master node
performs the process of verifying the reported trust level.
Afterwards, the worker nodes are divided into honest nodes
and malicious nodes, and the number of honest nodes in the
system (NH) and the number of malicious nodes (NM) are
identified.

The obtained Nopt is compared with NH, which is the esti-
mated number of honest worker nodes that can be assigned to
data processing. If NH

≥ Nopt, the data is processed by Nopt
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FIGURE 3. Operational flowchart of the TSAF scheme.

nodes. However, if NH < Nopt, all NH nodes will be used to
process the data.

The number of Nopt can change as the input data size
changes. As explained in section II, TSAF considers not only
directly connected worker nodes, but also external worker
nodes connected through the cloud. Therefore, if the number
of honest worker nodes required to satisfy the object time is
insufficient, the master node will also use worker nodes in
the external cloud. However, when new worker nodes in the
cloud are connected, there may be changes in the clusters of
the Spark big data processing system due to a change in the
total number of worker nodes in the overall system.

V. SIMULATION AND DISCUSSION
In this section, real-time big data processing technologies
OptEx [13], Spark adaptive failure-compensation (SAF)

TABLE 3. Simulation parameters.

FIGURE 4. Comparison of processing time based on big data processing
techniques according to the number of DStreams. The proposed TSAF
always shows a lower processing time than the other reference big data
models.

scheme [14], Spark real-time streaming adaptive failure-
compensation (SRSAF) scheme [15], and TSAF scheme are
compared using MATLAB 2020a based simulation. Most
of the simulation parameters were performed according to
the basic environment of Apache Spark Streaming. The big
data targeted object time was set to 0.5 seconds, which is
the shortest output sequence time for Apache Spark Stream-
ing systems. The number of worker nodes in the Spark
big data system is 75 and the error rate of the communi-
cation process and execution process was assumed to be
0.05. The batch size of DStream was chosen to satisfy
the object time limit of 0.5 based on an errorless status
condition.

Fig. 4 shows the data processing time for each scheme
according to the number of DStreams when there are no mali-
cious nodes. In this case, no recovery time due to malicious
nodes is needed. However, recovery time due to errors occur-
ring in the communication and data processing is needed.
In the case of OptEx, it was found that the object time
could not be satisfied for any case when errors occur. In the
case of SAF and SRSAF, a performance close to the object
time is obtained, however, SRSAF and SAF each experi-
ence an object time violation when the number of DStreams
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FIGURE 5. Probability of successful processing within Tobject according to
the ratio of malicious nodes among the worker nodes. The proposed TSAF
shows a significantly higher probability of satisfying Tobject by using a
trust management scheme that defends against malicious node security
attacks.

are 4 and 5, respectively. The results show that the TSAF
scheme can satisfy the targeted object time for all cases tested,
and the processing time was consistently 1 ∼ 2% lower than
that of OptEx, SAF, and SRSAF.

In the case of SAF, SRSAF, and TSAF, there is a section
where the processing time suddenly decreases, which is
due to a change in the number of worker nodes (which
are positive integers) used by the schemes. In the case
of TSAF, the change occurs more frequently than in the
case of SAF or SRSAF, because more error recovery con-
trol variables are considered internally when calculating the
data processing time based on changes in the number of
DStreams.

Fig. 5 shows the probability of processing data within the
object time Tobject when malicious nodes exist. In this simu-
lation, conflicting behavior attacks (CBAs) are applied [11].
In CBA, malicious nodes have a probability of 0.5 to per-
form wrong behavior on half of the honest nodes and pre-
tend to be correct for the other honest nodes. In addition,
the malicious nodes report LTOs as 1 for half of the hon-
est nodes and report LTOs as 0 for the remaining honest
nodes.

If there are no malicious nodes, all schemes satisfy the
processing object time. However, as the ratio of malicious
nodes increases in the OptEx, SAF, and SRSAF big data sys-
tems, the ratio that satisfies the object time rapidly decreases.
This is because data processing is delayed by the malicious
nodes, which takes more time to enter the recovery process
and re-process the DStream.

Fig. 5 shows that when the ratio of malicious nodes per-
forming security attacks on worker nodes increases, the prob-
ability of satisfying the object time decreases as there is a
lack of honest nodes (i.e., the NH < Nopt case) to complete
the data process in time. When the ratio of malicious nodes
performing security attacks on worker nodes reaches 0.5,

Fig. 5 shows that the TSAF scheme can still satisfy over
75% of the tasks within the target object time, which is
significantly higher compared to the other big data processing
schemes. TSAF can perform at this level because malicious
nodes are identified in advance and only honest nodes are
used to process the DStreams.

If the ratio of malicious nodes is larger than 0.5, the pro-
cessing success probability of TSAFmay drop sharply. Glob-
alTrust was used to make trust decisions in the simulation
experiments [11], [12], and when the ratio of malicious nodes
exceeds 0.5, the opinions of the malicious nodes become a
majority, and when they collude, the efficiency of the trust
management scheme drops sharply, making it impossible to
distinguish malicious nodes.

VI. CONCLUSION
Network security procedures commonly slow down the
response time of big data systems. To overcome this issue,
in this paper a scheme to enhance the security and processing
speed in networks with errors and malicious nodes is pro-
posed. The proposed TSAF scheme is effective in identifying
malicious nodes among the worker nodes and helps to satisfy
the targeted object time of real-time big data processing jobs.
The TSAF scheme first computes the number of clusters that
results in the lowest trust computational complexity, and then
the optimal number of nodes is derived and used to process
the data within the targeted object time. When compared
to OptEx, SAF, and SRSAF, in the case of no malicious
nodes, the TSAF scheme shows a superior performance in
satisfying the targeted object time. In addition, when the big
data network has malicious nodes conducting CBA attacks,
the TSAF scheme results in a significantly higher probability
of satisfying the job processing object time compared to the
other schemes.

When there are changes in the input data size and security
attacks in the Spark big data processing system, TSAF can
respond by immediately adjusting its system configuration
and number of required worker nodes according to the mon-
itored system circumstances.

In this paper, the proposed TSAF system can only make
optimized adjustments corresponding to errors occurring dur-
ing the communication and data processing of the Spark
big data system. However, errors occurring during the initial
setup time where Spark system configuration changes are
made, and other related initial communication adjustments
are conducted, were not considered. In future work, a more
comprehensive optimized error recovery scheme needs to be
developed so that accurate processing times can be predicted
during the initial setup time as well.
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