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ABSTRACT Assistive tools that recognize impaired speech due to neurological disorders are emerging
and its a fairly complex task. An Intelligent Impaired Speech Recognition system helps persons with
speech impairment to improve their interactions with outside world. Impaired speakers have difficulty in
pronouncing words which results in partial or incomplete speech contents. Existing Automatic Speech
Recognition systems are not effective for Impaired Speech Recognition due to the speaker specific variations
which depend on the severity of the neurological disorders. In this work, we have investigated two important
approaches namely, Deep Neural Network-Hidden Markov Model and Lattice Free Maximum Mutual
Information approach for effective recognition of impaired speech in Tamil language. The training and testing
samples are collected from persons with different neurological disorders at varied intelligibility levels such
as high, medium, low and very low. The recognition accuracy is evaluated and compared using two datasets
namely 20 acoustically similar words and 50 words Impaired Speech Corpus in Tamil.

INDEX TERMS Assistive technology, DNN-HMM, impaired speech recognition, lattice free maximum
mutual information, neurological disorders.

I. INTRODUCTION
Developing an assistive system for speech impairment due
to neurological disorders is one of the complex pattern
recognition tasks. According to the Global Burden of Dis-
eases (GBD) Injuries and Risk Factors report [1], the neu-
rological disorders are considered as the global cause for
different types of disabilities around the world. The speech
production system is mainly affected by various neurological
diseases such as stroke, brain injury, tumors, Parkinson’s
disease and multiple sclerosis. Dysarthria [2] is a motor
speech disorder in which the muscles involved in speech
production are damaged or weakened. Cerebral palsy is a
kind of disability which affects the speech articulation and
the affected people find difficult to speak, write and move
without any assistance. The impaired speech is character-
ized by mispronunciation, low precision, poor articulation,
omissions, distortions, and substitutions of phonemes and
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consonants, slow speaking rate, hypernasality, hoarseness,
mono loudness, mono-pitch, slurry speech, distorted vowels,
and consonants that degrade the intelligibility of speech [4],
[5]. People with speech impairment feel depressed and isolate
themselves from the outside world. The impaired speakers
usually communicate with the help of keyboard or other
input devices. To improve their quality of life, there is a high
demand to develop a robust Assistive Speech system that can
recognize impaired speech.

Every impaired speaker produce their own phonetic pat-
terns which are incomplete leading to lot of variations
in speech utterances. Hence, existing Automatic Speech
Recognition (ASR) techniques applied to Impaired Speech
Recognition provides poor performance. The ASR systems
are ineffective in mapping the impaired speech signals to
phonemes correctly. Impaired speech recognition (ISR) con-
verts impaired speech to text [6]–[8]. This text is then synthe-
sized to normal speech in a speech assistive system. Another
important challenge is the availability of limited amount of
training data. Collecting huge amount of impaired speech

168840 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-4723-1984
https://orcid.org/0000-0002-7542-4356


Vishnika Veni S, Chandrakala S: Investigation of DNN-HMM and LF-MMI Approaches for ISR

samples from neurological disordered person is quite chal-
lenging task as it makes the impaired speakers to feel stressed.
Handling insufficient dysarthric speech data and issues in
pronunciation modeling for impaired speech are addressed
in [9]–[13].

Recently, deep model based approaches outperform tra-
ditional machine learning approaches for Automatic Speech
Recognition. DNN-HMMs are proved to be effective for
Automatic Speech Recognition [16], [17] and [18]. DNN-
HMM combines the sequential modeling ability of HMM
and the representational ability of the deep neural network.
Output units of DNN are trained to determine the posterior
probabilities of HMM. Though the DNN-HMM is advanta-
geous over the traditional Gaussian Mixture Model- Hidden
Markov Model (GMM-HMM), DNN-HMM gives moderate
performance only for Impaired Speech Recognition. A bidi-
rectional Deep Recurrent Neural Network (biRNN) based
DNN-HMM is used for phoneme recognition [15]. In a recent
work [19], the authors used a phonetic posterior feature space
for matching and verifying the impaired speech with the
control speakers data. Several parameters such as Linear Dis-
criminant Analysis (LDA), context dependent states, Feature
space Maximum Likelihood Linear Regression (FMLLR)
are used with Teacher-Student network [20] to increase the
accuracy.

In [22], DNN pretraining with sequence discriminative
training is performed and experimented using a 300-hour
switchboard telephone conversation data. The different sets
of features such as the FMLLR, 40-LDA, LDA + Semi-
Tied Covariance (STC)+ Feature-space Maximum Likeli-
hood Linear Transformation (FMLLT), and single STC over
LDA features obtained with various transformations are stud-
ied. Another improvement over the DNN-HMM is aligning
transcripts using a two-step alignment process [23]. The
preprocessed input is aligned in first step. The next step
performs insertions, deletions, and substitutions to iden-
tify the correct word with the help of National Institute
of Standards and Technology (NIST) sclite utility. Reduc-
tion in WER is achieved using sequential discriminative
training with regularization techniques [24]. In another
work [25], the phone posterior along with the regular-
ization techniques such as L2 regularization is used to
differentiate among the dysarthric severity levels. It mainly
handles the mismatch between the normal and the dysarthric
speech.

To address lack of sufficient training data, augmenta-
tion [26] is performed by perturbing the data with respect to
time and tempo which resembles the dysarthric data. Then
DNN-HMM is trained on the synthesised dysarthric speech.
In [27], authors proposed a two-step adaptation. The first step
is adapting anASRmodel tomultipleDysarthric speakers and
then further adapted to target dysarthric speaker. The authors
used the Connectionist Temporal Classification (CTC) [28]
based recognition system and proposed a voice conversion
system to synthesize the new set of speech samples from the
existing set of samples.

In recent literatures, DNN-HMM is proved to be effec-
tive in complex acoustic modelling, discriminative feature
extraction, pronunciation error correction and knowledge
transfer between normal speech and impaired speech. In this
paper, we focus on investigating DNN-HMM approach and
a Lattice Free Maximum Mutual Information (LF-MMI)
approach for Impaired Speech Recognition. Section II deals
with DNN-HMM based ISR. Section III presents the Lattice
Free-Maximum Mutual Information approach. Experimental
studies and performance analysis are discussed in Section IV.

II. DEEP NEURAL NETWORK-HIDDEN MARKOV MODEL
(DNN-HMM) BASED IMPAIRED SPEECH RECOGNITION
In a generative model based HMM approach, the observa-
tion sequence is generated by a sequence of state transitions
where each state is modeled using a GMM. DNN is capable
of learning any arbitrary distribution. In DNN-HMM, the
temporal characteristics of impaired speech utterances are
modeled using HMM and the observational probabilities are
estimated using DNN and hence DNN-HMM is termed as
a hybrid model. A DNN is a feed-forward, artificial neural
network that has more than one layer of hidden units between
its input and output layers as shown in Figure 1. At each
hidden layer, a hidden unit typically maps the weighted sum
of its inputs from the layer below to a deterministic value
using a nonlinear activation function and passes it to the layer
above.

A single DNN is used tomodel posterior probabilities of all
states. But in case of GMM-HMM, a separate GMM is used
to model each state. Deep Neural Network (DNN) is used to
estimate the posterior probabilities of the context dependent
tied triphone HMM states. The DNN outputs the posterior
probabilities that are scaled using the class wise prior proba-
bilities. The likelihood probability of triphone feature vector
are estimated using the posterior probability given by DNN
and the prior probability of states given by HMM. The cross
entropy criterion is used during the DNN training. Usually,
each impaired speech utterance is divided into 9 to 13 frames
and the features extracted from these frames are fed as input to
DNN. For recognition, the sum of log-likelihood probabilities
of triphone feature vectors of impaired speech utterance is
used.

Given a feature vector x, the output of the DNN specified
by the model parameters {W,b} = {W`,b`}, 0 < ` ≤ N
can be calculated by computing the activation vectors from
layer 1 to layer N − 1 [31]. The model parameters W,b can
be learned with the back propagation algorithm. The model
parameters can be improved based on the first-order gradient
information as

W`
t+1←W`

t − ε1W`
t (1)

and

b`t+1← b`t − ε1b`t (2)
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FIGURE 1. The hybrid DNN-HMM architecture.

whereW`
t and b

`
t are the weight matrix and the bias vector at

layer ` after the t th update.

1W`
t =

1
Mb

Mb∑
m=1

∇W`
t
J (W,b; xm, ym) (3)

and

1b`t =
1
Mb

Mb∑
m=1

∇b`t
J (W,b; xm, ym) (4)

are the average weight matrix gradient and the average bias
vector gradient at iteration t estimated from the training batch
ofMb samples, ε is the learning rate parameter, x is the feature
vector and the corresponding output vector y is the probability
distribution.

For an utterance with T frames, the state sequence is given
by

Q = q0 q1 q2 . . . qT (5)

where q0 is the initial state. The probability of such a state
sequence Q can be written as

P(Q | λ) = πq0aq0q1aq1q2 . . . aqt−1qt (6)

where π (q0) and aqt−1qt are the initial state probability and
state transition probability, respectively, determined by the
HMM. The embedded Viterbi training algorithm minimizes
the average cross- entropy, which is equivalent to the negative
log likelihood

JNLL(W,b; x,q) = −
T∑
t=1

log p(qt | xt ;W,b) (7)

where Q is the state sequence. If the new model (W′,b′)
improves the training criterion over the old model (W,b) we
have

−

T∑
t=1

log p(qt | xt ;W′,b′) < −
T∑
t=1

log p(qt | xt ;W,b)

(8)

The score of the aligned utterance

logp(x | w;W′,b′)

= log π (q0)+
T∑
t=1

log (aqt−1qt )

+

T∑
t=1

[log p(qt | xt ;W′,b′)− log p(qt )]

> log π (q0)+
T∑
t=1

log (aqt−1qt )

+

T∑
t=1

[log p(qt | xt ;W′,b′)− log p(qt )]

= log p(x | w;W,b) (9)

The new model improves the likelihood score of the utter-
ance given the correct word sequence.

During the decoding process, we convert the posterior
probability to the likelihood

p(xt | qt = s) = p(qt = s | xt ) p(xt ) | p(s) (10)

where p(s) = Ts
T is the prior probability of a state estimated

from the training samples, Ts is the number of frames labeled
as state s, and T is the total number of frames, p(xt ) is
independent of the word sequence and hence can be ignored.

The decoded word sequence ŵ is

ŵ = argmaxw p(x | w) p(w) (11)

where p(w) is the probability given by the language model,
and

p(x | w) =
∑
q

p(x | q,w) p(q | w) (12)

≈ max π (q0)
T∏
t=1

aqt−1qt

T∏
t=0

p(qt | xt )/p(qt ) (13)

is the acoustic model probability, where p(qt | xt ) is com-
puted from the DNN. The final decoding path is determined
by

ŵ = argmaxw[log p(x | w)+ λ logp(w)] (14)

where λ is the weight of the language model.
DNNs are powerful in modeling any arbitrary mapping

between inputs and outputs. However, it is difficult to train
a DNN with many hidden layers. After initializing the
DNN weights, supervised fine-tuning is conducted using
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FIGURE 2. Lattice free-maximum mutual information based impaired speech recognition.

back-propagation to adjust the weights which leads to overfit-
ting. To avoid overfitting, weight decays and dropout regular-
izations are used. Weight decay is applied when the training
set size is small compared to the number of parameters in the
DNN. Dropout is used to randomly omit a certain percentage
of the neurons in each hidden layer for each presentation of
the samples during training. During the training each random
combination of the remaining hidden neurons need to per-
form well in the absence of the omitted neurons.

III. LATTICE FREE-MAXIMUM MUTUAL INFORMATION
(LF-MMI) APPROACH
Maximum mutual information (MMI) is used to achieve
discriminative training of sequences and to maximize the
probability of the reference phonetic transcription of a word
sequence while minimizing probability of other transcrip-
tions. In MMI training, the HMMs of all the words classes
are considered simultaneously. The parameters of the correct
word model are updated to maximize its contribution while
the parameters of the other word models are updated to
minimize its contribution. The training thus provides high
discriminative ability leading to improved performance.

Hence, we explore Lattice Free-Maximum Mutual
Information(LF-MMI) approach for impaired speech recog-
nition where there is a need for better discrimination among
incomplete utterances of different word classes. The dia-
grammatic representation of Lattice Free-Maximum Mutual
Information based Impaired Speech Recognition is shown
in Figure 2. In LF-MMI, the output of Deep Neural Net-
work (DNN) corresponds to tied biphone or triphone HMM
states, where the state tying is done using a context-
dependency tree. Biphone is used to represent a mono-
phone with left or right context dependent monophones.
This context-dependency tree is constructed using the GMM-
HMM alignments.

The objective function of Maximum Likelihood (ML) esti-
mation [29] is given as

fML =
U∑
u=1

log pλ(x(u)|M(u)
w ) (15)

where x(u) is the uth speech utterance with transcription w(u),
U is the total number of training utterances and λ is the set of
all HMM parameters. The composite HMM graph is denoted
byM(u)

w . The objective function of MMI is given as

fMMI =
U∑
u=1

log
pλ(x(u)|M(u)

w )
pλ(x(u)

(16)

The denominator can be estimated as

pλ(x(u) =
∑
w

pλ(x(u)|Mw ≈ pλ(x(u)|Mden) (17)

where Mden is the HMM denominator graph which includes
all possible sequences of words and Mw is the numerator
graph. The previously trained cross entropy model or GMM
generates the denominator lattices. It compactly encodes a
small set of likely alternative word sequences for a training
utterance.

The full denominator graph with Deep Neural Net-
work (DNN) based model is used in Lattice Free MMI
(LF-MMI) approach. Its similar to lattice based MMI except
that LF-MMI uses a numerator graph which makes use of
alignment information and a common denominator graph
instead of utterance based lattices. The LF-MMI numer-
ator graph is a special acyclic graph that makes use of
the GMM-HMM alignments as the time constraints on the
phones. It is a finite state acceptor(FSA) where each phone
can occur at some number of frames earlier or later than its
actual occurrence in the corresponding alignment.

The two forward-backward passes are used to calculate the
derivatives of the LF-MMI objective function (i.e) one on
the denominator graph and the other on the numerator graph.
To make the efficient forward backward pass of the denomi-
nator graph, all the utterances are split into a fixed 1.5 second
chunks based on the alignment information and training is
carried out on these mini batches. The pruned phone level
language model trained on the previous GMM-HMM model
alignments. In this work, we have used LF-MMI training
in the DNN-HMM model with full denominator graph. The
LF-MMI based discriminative training is expected to provide
better performance than the DNN-HMM approach.
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TABLE 1. Vocabulary of tamil 20 words (classes).

IV. EXPERIMENTAL STUDIES
A. DATASETS
The Impaired speech corpus in tamil is formed from
18 impaired speakers of both male and female with various
neurological disorders like cerebral palsy, multiple sclero-
sis, mental retardation, brain and spinal cord injury, muscu-
lar dystrophy and stroke. The speakers of all intelligibility
levels ‘‘High’’, ‘‘Medium’’, ‘‘Low’’ and ‘‘Very Low’’ are
involved in Impaired speech sample collection. The speech
samples are recorded using lavalier collar microphone in a
laboratory environment. Each Impaired speaker has uttered
50 unique isolated words and repeated those 50 words for
5 times in different sessions. Thus, each speaker has uttered
50*5 = 250 unique examples. The corpus also contains the
speech data collected from 6 healthy speakers. We have used
two dysarthric speech datasets namely 50 words impaired
speech corpus and the other 20 words dataset formed from
50 words impaired speech corpus by picking utterances of
word classes that are acoustically similar. First dataset con-
tains 6000 utterances and second dataset contains 2400 utter-
ances. The selected 20 words are listed in the Table 1. For
both datasets, 75% utterances were used for training and 25%
used for testing. All the training and the testing utterances are
selected at equal proportion from all the four intelligibility
levels. MFCC features were used as basic features, which are
extracted using 25 ms frame size, 50% frameshift with Ham-
ming window. HMM,DNN-HMMand LF-MMI experiments
are done in Kaldi [30] toolkit.

B. HMM FOR IMPAIRED SPEECH RECOGNITION
To model impaired speech utterances, due to co-articulation
effects, context-dependent triphone units are used as the
basic units. In conventional HMM training, the number of
states and mixtures are fixed based on the lexicons, silence,
phoneme related files and text. The text file contains the
utterance-ids and the corresponding word. With the help of

TABLE 2. Performance (%) of the HMM approach for impaired speech
corpus in tamil.

TABLE 3. Performance (%) of the DNN-HMM approach for impaired
speech corpus in tamil.

these files, the HMM topology is fixed and different align-
ments are performed by considering the phoneme as a basic
unit. Triphones significantly increase the number of parame-
ters to be estimated. The performance of the HMM evaluated
using monophones and four different triphone models tri1a,
tri2a, tri3a and tri4a for 20 acoustically similar words and
50 words impaired speech corpus in tamil datasets are shown
in Table 2. HMM gives poor performance due to challenges
in impaired speech such as missing vowels and consonants
and overlaps in acoustically similar word classes.

C. DNN-HMM APPROACH
In DNN, various parameters like number of hidden layers,
number of neurons in each hidden layer and batch size are
fixed based on the HMM aligned data, Weighted Finite state
Transducer (WFST) and lexicon file. The maximum num-
ber of states that can be active at one time is controlled
by the max-active parameter is fixed during the decoding
process. The different triphone alignments are studied to
achieve better word recognition accuracy even with over-
lapped and missing phonemes. The DNN-HMM shows slight
improvement in performance than that of HMM by 1.01% for
20 acoustically similar words dataset and 11.2% for 50 words
impaired speech corpus in tamil dataset. Slight improvement
for Impaired speech recognition is due to the limited amount
of training data when compared to large datasets available for
Automatic Speech Recognition (ASR) task. The performance
of DNN-HMM of two datasets are shown in Table 3.

D. CONVOLUTIONAL NEURAL NETWORK APPROACH
Convolutional Neural Network (CNN) is used to learn
high level features from Spectrograms. Spectrograms are
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generated by applying FFT over the preprocessed impaired
speech signal with the help of hamming window. Then the
Mel filter bank is applied for converting the spectrum to the
Mel spectrum. The dimension of the generated spectrogram is
1368× 864 pixels. The generated spectrograms are discrimi-
native even for acoustically similar word classes. These spec-
trograms are fed as input to CNN to output the word label of
impaired speech samples. The architecture of CNN is as fol-
lows: The network is composed of four sets of convolutional
layers andmax pooling layers with pool of size 2×2. Initially,
the filter of size 16 is used for convolution operation and
gradually increased to 128. Batch normalization and Dropout
regularization are applied to avoid overfitting. The rate of
dropout is set to 50% in all the layers. The categorical cross
entropy and adam optimizer is used to optimize 42,879,892
trainable parameters. The Tensorflow and keras package are
used to implement the CNN architecture. The performance of
CNN with two datasets is shown in Table 6.

E. LATTICE FREE MMI APPROACH
The steps followed in LF-MMI experiment is explained as
follows. In this work, MFCC features are extracted and com-
putationally efficient Cepstral Mean and Variance Normal-
ization (CMVN) is applied to the extracted MFCC features.
These are used as basic features to train a monophone acous-
tic model. The triphone model tri1a was trained by fixing the
number of Gaussians to 9000. The tri2a model was trained
using delta and delta-delta features. Once the tri2a model is
trained, Linear Discriminant Analysis (LDA) and Maximum
Linear Likelihood Transformation (MLLT) is applied on the
features and maintained the same number of Gaussians to
form Triphone tri2b model. Then we applied MMI on the
top of tri2b model to form tri2b MMI model and a boosting
of 0.05 was applied on the tri2b model to check the effect
of boosting. The Maximum phone error (MPE) is applied on
the top of LDA+MLLT. Additionally, the Speaker Adaptive
Training (SAT) was used along with LDA + MLLT to form
tri3b model. Finally, the tri3b MMI training is done with the
LDA +MLLT + SAT +MMI feature transforms.

LF-MMI gives slightly better performance than that of
DNN-HMM for impaired speech recognition as shown in
table 6. LF-MMI approach shows improvement by 3.38%,
2.33% and 22.93% than that of HMM, DNN-HMM and
CNN in 20 acoustically similar words impaired speech corpus
in tamil respectively. In case of 50 words impaired speech
corpus in tamil dataset, the LF-MMI approach shows better
improvement by 25.5%, 11.18% and 35.15% than that of
HMM, DNN-HMM and CNN respectively.

F. FIXED DIMENSIONAL REPRESENTATION USING
CEPSTRAL FEATURES
The raw impaired speech signal is fed as input to extract
Mel Frequency Cepstral Coefficients(MFCC). MFCC is a
dominant feature extraction technique which extracts the
speaker specific parameters from the impaired speech. The
steps involved in MFCC feature extraction are as follows:

TABLE 4. Performance (%) of fixed dimensional representation using
MFCC features for impaired speech corpus in tamil.

TABLE 5. Performance (%) of Gammantonegram representation for
impaired speech corpus in tamil.

preprocessing, framing and windowing, Fast Fourier Trans-
form (FFT), processing using Mel Filter bank and Discrete
Cosine Transform (DCT). The long windows are used to
obtain better frequency resolution and short windows are
used for better time resolution. Support Vector Machine is a
discriminative classifier proved effective for complex recog-
nition tasks even with small amount of training data. SVM
accepts a fixed dimensional feature vector and so the number
of windows are fixed by varying the window size for each
impaired speech utterance. 39 MFCC features extracted from
every overlapping window are concatenated to form fixed
dimensional feature vector. The number of windows are var-
ied from 100, 200, 400 and 600 to form different dimensions
of the MFCC feature vectors. The MFCC feature vector
dimensions for 100, 200, 400 and 600 windows are 100*39,
200*39, 400*39 and 600*39 respectively. The performance
of this approach is shown in the Table 4.

G. VISUAL REPRESENTATION USING GAMMATONEGRAM
We explored another fixed dimensional representation using
Gammatonegrams which perform better than the spectro-
grams [35]. Gammatonegram is a visual time vs frequency
representation of energy of speech signal obtained using
Short Time Fourier Transform (STFT) and Gammatone fil-
terbank. Gammatonegram, the visual representation on gam-
matone filterbank. The gammatonegram generation is quite
simple and requires only matrix multiplication and Discrete
Fourier Transform (DFT). It is more robust than traditional
spectrogram, since the gammatone bandpass filter’s magni-
tude gain is proportional to the bins of the DFT.

The key difference between the spectrogram and the gam-
matonegram depends on the bandwidth. In spectrogram, the
input speech signal is processed by bandpass filter with same
bandwidth. But in case of gammatonegram representation,
the bandwidth of the bandpass filter changes with the central
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FIGURE 3. Sample gammatonegram’s of acoustically similar words ‘‘Vendaam’’ and ‘‘Venum’’ belonging to ‘‘Very Low’’ intelligibility.

FIGURE 4. Sample gammatonegram’s of acoustically similar words ‘‘Kaayam’’ and ‘‘Kashtam’’ belonging to ‘‘Very Low’’ intelligibility.

frequency. It implies that the difference in frequency is not
observed strongly in high frequency region than at low fre-
quency. The input speech signal is divided into n number
of frames and the gammatonegram representation y(t, fc) is
formed by concatenating the output response of the frame x(t)
with the gammatone filterbank g(t, fc ) [35].

g(t, fc) = at
n−1
e−2πbtcos(2π fct + φ) (18)

y(t, fc) = x(t) ∗ g(t, fc) (19)

where each column of gammatonegram is the filterbank
response at time t , central frequency fc(inHz), a is the ampli-
tude which is kept constant that controls the gain and n
denotes the order of the filter. The bandwidth of the filter
is determined by the impulse response duration and decay
factor b.

The gammatonegram’s generated for acoustically similar
words ‘‘Vendaam’’, ‘‘Venum’’ and ‘‘Kaayam’’, ‘‘Kashtam’’
uttered by the ‘‘Very Low’’ intelligibility speaker is depicted
in Figure 3 and 4. It shows how the interest points are spread
over the gammatonegram image and proves the represen-

FIGURE 5. Speaker wise WRA (in %) for ‘‘HIGH’’ intelligibility.

tational power of gammatonegram. But in case of spectro-
gram, the interest points are localized in low frequency. The
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FIGURE 6. Speaker wise WRA (in %) for ‘‘MEDIUM’’ intelligibility.

FIGURE 7. Speaker wise WRA (in %) for ‘‘LOW’’ intelligibility.

generated gammatonegrams show better discrimination even
for two acoustically similar words. The dimension of the
generated gammatonegram is 875 × 656 and to reduce the
computational complexity it is resized to 100× 100 pixels.
The robust features like Scale Invariant Fourier Trans-

form (SIFT) and Binary Large Object (BLOB) are extracted
from the gammatonegrams. The dimension of BLOB and
SIFT feature vector is 30000. The performance of this repre-
sentation using Auditory Image features for 20 acoustically
similar words and 50 words impaired speech corpus in tamil
dataset is shown in the Table 5.

H. MULTIVIEW REPRESENTATION USING CEPSTRAL
FEATURES AND GAMMATONE IMAGE FEATURES
The cepstral features are combined with the auditory image
features to form the multi view representation. The fea-
ture dimensions of the Multiview representation is 30000
(blob feature dimensions) + 3,900 (MFCC features with

FIGURE 8. Speaker wise WRA (in %) for ‘‘VERY LOW’’ intelligibility.

100 windows). These combined features are fed as input
to the discriminative classifier SVM and an improved per-
formance is obtained when compared to fixed dimensional
MFCC representation and Gammatonegram representation.
The word recognition accuracy of the multi-view representa-
tion is shown in Table 6.

I. PERFORMANCE ANALYSIS
1) OVERALL COMPARISION
We have compared the LF-MMI approach with the con-
ventional HMM, DNN-HMM, Fixed dimensional MFCC
representation, gammatonegram representation, multiview
representations and CNN respectively. The word recognition
accuracy (WRA) is calculated for all the experiments to
evaluate the performance.

Accuracy =
Number of correctly predicted words
Total number of words per class

∗ 100

(20)

The overall performances of HMM, DNN-HMM, Fixed
dimensional MFCC representation, Gammatonegram rep-
resentation, Multiview representations, CNN and LF-MMI
approach are given in Table 6. Though the performance of
DNN-HMM is better than HMM, Fixed dimensional MFCC
representation, Gammatonegram representation, Multiview
representations and CNN, the LF-MMI approach attains a
better recognition accuracy even in the presence of high
overlapping word classes like ‘‘Kaayam’’ and ‘‘Kashtam’’,
‘‘Paal’’ and ‘‘Paapa’’, ‘‘Saapadu’’ and ‘‘Saapdu’’, ‘‘Venum’’
and ‘‘Vendaam’’.

2) PERFORMANCE ANALYSIS WITH VARIED INTELLIGIBILITY
LEVELS
The performance of LF-MMI approach for different speak-
ers belonging to different intelligibility levels of Impaired
speech corpus in Tamil is evaluated. The words uttered by
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TABLE 6. Comparision of performance (%) of the HMM, DNN-HMM,
Fixed dimensional MFCC, Gammatonegram, Multiview, CNN and LF-MMI
approach for impaired speech corpus in tamil.

speakers belonging to ‘‘Very Low’’ and ‘‘low’’ intelligibility
levels are correctly recognized by LF-MMI approach than
other conventional approaches. Even with limited amount of
training dataset, high overlapping word classes and missing
phonemes, the LF-MMI approach provides better perfor-
mance than HMM based approach and improved the perfor-
mance by 2.56%, 3.68%, 20.54% and 7.35% for ‘‘High’’,
‘‘Medium’’, ‘‘Low’’ and ‘‘Very Low’’ intelligibility levels
respectively. The Figures 5, 6, 7 and 8 shows speaker wise
word recognition accuracy of varied intelligibility levels
‘‘High’’, ‘‘Medium’’, ‘‘Low’’ and ‘‘Very Low’’ respectively.
For the purpose of demonstration, four out of six impaired
speakers of each intelligibility levels are shown.

V. CONCLUSION
We have investigated the performance of DNN-HMM
approach and LF-MMI approach for Impaired Speech Recog-
nition in Tamil language. LF-MMI approach provides an
improved discrimination among impaired speech utterances
of acoustically similar word classes with missing vowels and
consonants. The performance of the LF-MMI approach was
evaluated using 20 acoustically similar words and 50 words
dataset of Impaired speech corpus in Tamil. The LF-MMI
approach shows better performance than the conventional
HMM, DNN-HMM, CNN and MVR representation. Though
DNN-HMM and LF MMI approaches are promising for
healthy speech recognition systems, studies show that there
is still a need for robust methodologies to improve the perfor-
mance of impaired speech recognition task.
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