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ABSTRACT Nowadays, the discrete algebraic matrix Riccati equation (DAMRE) is widely used in control
system theory, engineering application, etc. In order to solve the problem with the high accuracy of DAMRE,
a large number of researchers have achieved great success in theoretical analysis and actively explored
methods. In addition, they have achieved great success in both theoretical analysis and practical investigation,
and some actively explored methods or practical investigations have been very effective. However, since
previous research has not considered noise tolerance, this may cause unacceptable results and unsatisfactory
effectiveness in practical utilization scenarios. To this end, inspired by the traditional Newton-Raphson
iterative (NRI) algorithm, a modified Newton integration (MNI) algorithm is proposed with excellent noise
tolerance ability. Through theoretical analyses, the proposed MNI algorithm is confirmed to retain the
fast convergence property of the NRI algorithm and also possess strong noise tolerance. The numerical
experiment results demonstrate that the proposed MNI algorithm has advantages in accuracy and noise
tolerance compared with other algorithms.

INDEX TERMS Discrete algebraic matrix Riccati equation (DAMRE), modified newton integration (MNI)

algorithm, noise tolerance ability.

I. INTRODUCTION
The discrete algebraic matrix Riccati equation (DAMRE)
is widely encountered in a variety of mathematics, physics,
control and system theory, engineering calculation [1]-[5].
In recent years, there have been two main types of meth-
ods for solving the DAMRE, such as numerical algorithms
and their related modifications as well as Hilbert space
methods.

In terms of the numerical algorithms, the most common
method for solving the DAMRE is the Newton-Raphson
iterative (NRI) algorithm [6]. For example, Guo et al. early
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employed the NRI algorithm to research the DAMRE and
obtain some valuable results [7]. In addition to Guo et al.’s
research, Feitzinger et al. provide an inexact Kleinman-
Newton method for solving the DAMRE [8], which possesses
better global convergence performance and lower computa-
tional cost. Furthermore, Benner et al. improve the Kleinman-
Newton method [9] by modifying the Lyapunov method
[10]-[12] with a low-rank structure, which avoids some nec-
essary assumptions via the Lyapunov method. Moreover,
Valeria provides a novel method combined with the projec-
tion technique [13] for the DAMRE, which has the accurate
line search capability, and its steady-state error is mono-
tonically decreasing. However, for these above-mentioned
methods, the traditional iterative algorithm does not consider

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

156680

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 9, 2021


https://orcid.org/0000-0002-9585-306X
https://orcid.org/0000-0003-0426-4356
https://orcid.org/0000-0003-0896-5192
https://orcid.org/0000-0001-8725-6719

S. Liao et al.: MNI Algorithm With Noise Tolerance for DAMRE

IEEE Access

noise tolerance and its solution accuracy requires further
improvement.

For reducing errors and increasing operation speed in solv-
ing the DAMRE, Isfahani et al. provide the implementation
of optimal control theory problems in Hilbert space [14] in an
iterative manner with less computational time. Besides, based
on fuzzy differential equation on Hilbert space, Arqub et al.
present a novel solving method to the DAMRE [15], which
can attain more accurate results with more minor error and
faster convergence. Next, in light of the above research [15],
Arqub et al. further furnish another computational algorithm
for the DAMRE with a reproducing kernel Hilbert space [16],
which can improve the accuracy of the DAMRE solution, but
the calculation process is complicated. Furthermore, inspired
by Arqub ef al.’s research, Sakar [17] also take into account
the difference between constant and variable coefficients of
the DAMRE and construct a more extensive and convenient
solving method, whose steady-state error becomes signifi-
cantly smaller, and its numerical solution is more precise.
To sum up, the Hilbert space methods can be well employed
in the DAMRE, while they have some drawbacks that the
Hilbert space methods cannot ignore. Mainly, the Hilbert
space methods are more complex and inconvenient for prac-
tical engineering calculation and application.

Nevertheless, the aforementioned studies do not consider
the effect of noise on the solution procedure. But, in prac-
tical applications, noise from external sources or internal
computing equipment can cause difficulty in solving the
DAMRE [18], [19]. For this reason, it is quite critical to
design a computational algorithm with noise tolerance and
good convergence. Therefore, in this paper, a modified New-
ton integration (MNI) algorithm is proposed for solving the
DAMRE, which is constructed in a discrete form and com-
bines the advantages of the above methods. The proposed
MNI algorithm not only possesses the fast convergence speed
like the numerical algorithms, but it also has the same high
precision solution as the Hilbert space method. Furthermore,
by numerical experiments, the proposed MNI algorithm
exhibits fast convergence performance and excellent noise
tolerance compared to the zeroing neural network (ZNN)
algorithm [20]-[22], the gradient neural network (GNN)
algorithm [23], [24], and the NRI algorithm [25].

The rest of this article is composed of four parts.
It is expressed as follows: In Section II, the derivation
process of the proposed MNI algorithm is presented and
compared to other algorithms. Subsequently, in order to ver-
ify that the proposed MNI algorithm is superior to different
algorithms, Section III lists the corresponding theoretical.
Moreover, in Section IV, through comparative numerical
experiments, the proposed MNI algorithm is verified to
possess the fast convergence and strong robustness perfor-
mance with different sampling periods, whether in noisy or
noise-free environments. Finally, Section V summarizes the
full article. The main contributions of this article can be
summarized as
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1) The proposed MNI algorithm is an important improve-
ment on the NRI algorithm [25] for solving the DAMRE
with fast convergence and strong robustness.

2) The proposed MNI algorithm significantly improves the
accuracy of the steady-state error from O(7) to 0(?)
without the use of any time difference information,
where t denotes the sampling period.

3) The proposed MNI algorithm handles the DAMRE in
noisy environments with a discrete-time form, which
facilitates practical implementation on digital devices.

Il. PROGRAMMING AND FORMULA DERIVATION
Without loss of generality to solve the DAMRE [26], the

problem can be stated as
ALXy 4 XiAr — Xk UnXe + Cr = 0, (1)

where superscript T denotes the transpose of a matrix or a
vector, factor matrices Ay, Uy, and C; € R"*". Giving the
definition of the updating index k = ¢/t, where ¢ denotes the
instant time and t denotes the sampling period.

Then, the error function of equation (1) can be written as

Ex = A} Xi + XiAr — Xx U Xy + Cy, )

with unknown matrix X;€ R"*". In order to use the NRI
algorithm [25] to find X, thus, the derivative of E; with
respect to Xy is as follows:

oE
SE QAT+ AT R — (UiX) " ® 1
0X
~1® (GUY eR™, (3)
where symbol ® denotes Kronecker product and matrix /
denotes identity matrix. Let equation (3) equals W, that is
Wi =I1Q®A; +A; @1 — (UkX)' @1
1 ® (X Up) € R

Then, using the NRI algorithm [25] to solve the
DAMRE (1), the iterative formula is

-1
Xpr1 =xp — W, e, “4)
where superscript ~! represents the inverse operation of a
square matrix. In addition, defined
2
er = vec(Er) € R™,
2
x; = vec(Xy) € R™,
where vec(-) denotes the matrix vector operator. Thereafter,
dividing both sides of the equation (4) by 7, it can be rewritten

into .
Xep1 — Xk Wioer

T T

According to the definition of derivative, the above equation
can be rewritten as in the limit as ¢ — 0

. I _
xkz—;Wk lek. 5)
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In order to facilitate theoretical derivation of the following
formula, the Euler forward difference formula [27], [28] can
be written as

Xkl — X
i = % +0(0). (6)
Adding an integration feedback term to improve the robust-
ness [29] of formula (5) and combining the Euler forward dif-
ference formula (6), the proposed modified Newton integra-
tion (MNI) algorithm for solving DAMRE (1) is expressed as

k
Xep1 =X — W (ek +¢ Ze,), )
i=1

where ¢ = 12 € (0, 1) denotes the coefficient of integration
term.

Remark 1: Itis worth noting that from the automatic control
theory point of view, the NRI algorithm (4) can be regarded
as a proportional control algorithm. It is well known that the
proportional control action is proportional to the deviation
of the system [30], [31]. Once the system has deviated, the
proportional regulation immediately generates a regulating
action to reduce the deviation. However, this control action
has no noise tolerance, which means that any slight distur-
bance in the system will have a considerable impact. There-
fore, the MNI algorithm (7) proposed in this paper is designed
to overcome the shortcomings of the NRI algorithm (4) and
eliminate the steady state error by introducing an integral
term in the controller. The integral term is integral to the
error depending on the time, and the value of the integral
term increases as the time increases. Thus, even if the error
is small, the integral term increases with time, and it drives
the output of the controller to increase so that the steady-state
error is further reduced until it equals zero. This is equivalent
to converting proportional control to proportional-integral
control, making the NRI algorithm (4) noise tolerance.

In order to better compare the superiority of the proposed
MNI algorithm (7), the gradient neural network algorithm
(GNN) [23] is subsequently introduced as

Xp41 =X — o - Vey, (8)

where o € R* denotes the step size; the gradient of error
matrix Ve can be constructed as follows:

VEy = 2AcHy + 2H AT — QH XU + 2F Hy),
Fy = Xi Uk,
H, = C, —i—Asz + XA — Fi Xk.

Besides, the zeroing neural network algorithm (ZNN) [20]
to solve the DAMRE (1) is provided as

X1 = (LM + Dxy — Li(ck — Aey), 9
with

Li = 1By + Sp)~! e Rx7,
My = Dy — G € anxnz,

where A € RT is a coefficient.
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Remark 2: To make the equation (2) more concise,
the following matrices are constructed using Kronecker
product as

Bi =1 ® AT — X(Up) € R,
Sp = (Ar — UpXp) @ 1 € RTX7
De =1® (X Ui — AT) € R™ >
Gy :AE ®1I € anxnz’
Jo=AT®I R,

2
where the vector ¢, = vec(Cy) € R™.

Ill. ANALYSES AND PROOFS
In this section, the corresponding theoretical analyses and
proofs of the MNI algorithm (7) are provided, which illustrate
its high accuracy and strong robustness under different noise
environments.

Theorem 1: With the formula (6), the proposed MNI algo-
rithm (7) can be converted into

k
ert1+¢) ei+0?) =0, (10)

i=1

where O(t?) represents the second-order error.
Proof The proposed MNI algorithm (7) can be
expressed as followed directly by (11).

k
Wi@s1 — xp) = —(ek +¢ Zm)- (11)
i=1

Concurrently, on the basis of the derivative definition of the
discrete time function, it has

. . €kl — €k
e = lim ———
T—>0 T
— i WeXitt + ) — Wxe + i)
- =0 T
= Wiy, (12)

Thus, based on the above inference, dividing both sides of
the equation (11) simultaneously by 7 can obtain:

k
e = WG = xi0) = —%<€k +¢ Zei>. (13)
i=0

T

whereafter, by virtue of the Euler forward difference for-
mula (6), the above equation (13) can be formulated as

k
1 1
—(ex+1 —ex) + 0(7) = ——(ek +¢ Zei).
’ ’ i=0

Evidently, the above formula can be turned into

k
i1+ ) e+ 0 =0. (14)
i=1
The proof is thus complete. |
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To verify that the MNI algorithm (7) globally converges
to O(z?) under the zero-noise environment, the next theorem
will be given as below.

Theorem 2: The steady-state error klim lex ||2 of proposed

— 00

MNI algorithm (7) is equal to 0(z?), where ||-||2 denotes the
L» norm operation.

Proof: Based on the Theorem 1, taking any m"" element
from ej as a subsystem generates

k
el +e Y e+ 0(?) =0. (15)
i=0
Letting the subsystem of the (m)th element of matrix Ej; at
(k — 1)t time instant, it has
k—1
ey e+ 0(?) =0. (16)
i=0
Next, subtracting formula (16) from formula (15) can
generate

el = pefl + 0(t?), (17)

where p = 1 —¢ € (0, 1). It is natural to develop the iterative
procedure (17) as follows:

ey = pefl +0(),
o = pe_y +0(),

ey = pel' + o(t?).

Afterward, both sides of the above equation multiplying
—pk" where n denotes the nM equation of the iteration
formula (17). Last, using the cumulative method to add up

above equations can produce
el = pkel + o). (18)
When £ tends to infinity, it has
: : k 2 2
klingo ey = klinolo (,o el'+ 0t )) = 0(t7). (19)

Due to ¢ and e; possess the same property, the steady-
state error klim |lex |2 is equal to 0(12) under the zero-noise
— 00

environment. That is to say, the proposed MNI algorithm (7)
globally converges to O(t?) for solving the DAMRE (1)
under the zero-noise environment.

The proof is thus complete. g

To further make a thorough inquiry into the theoretical
solution of the proposed MNI algorithm (7) in the case of
constant and linear noisy environments, the next theorem is
given.

Theorem 3: Assuming the linear noise is ¢, = @kt + v,
which ¢ € an is a coefficient vector, and v € R" is
a constant vector. The steady-state error klim llex |2 of the

— 00

proposed MNI algorithm (7) is |l@/B7|l2 + O(t?). When
¢ = 0, g, is transformed into the constant noise. At this point,
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the steady-state error klim llex |2 of the MNI algorithm (7) is
— 00

O(<?), no matter q, = v is.

Proof: When the linear or constant noise components
exist in the system, the noise can be divided into two parts.
One is the main noise g, = @kt + v and the other residual
noise is O(z2). According to Theorem 1 and considering the
main noise, it has

k
ecr1+¢ ) et okt +v=0. (20)
i=1
Taking any the m™ element of matrix e; as a subsystem,
the above equation (20) is presented as

k
e+ et "kt + 0" = 0. @)
i=1
Performing Z-transformation of formula (21) can generate
Zé‘m(Z) Z(ﬂmT ZUm
ze"(2) + + =0. 22
@ gz—l -1 z-1 22)

After formulating and simplifying, the above formula is re-
expressed as

29"t + z2(z — D™
G- DEH+c -7

Obviously, poles of ¢”(z) are z; = 0,20 = 1 and z3 =
1 — ¢. Utilizing the final value theorem for formula (23), the
result is

e"(z) = (23)

lim ¢}
k— 00

lin}(z — De™(z)
—
—z¢"t — z(z — D™
—1 2+iz—1
m
= (24)
Bt
Afterwards, to prove residual noise in the formula (7) that
can be written as ex41 + ¢ Z?:l e; +0(z%) = 0.1tis simple
to find that the proof method is the same as Theorem 2.
Therefore, the steady-state error of the residual noise is equal
to O(r2). In summary, the steady-state error klim llex |2 of the
—00

proposed MNI algorithm (7) is |l@/Bt|2 + o(x?).

The proof is thus complete. ]

On top of that, the robustness with respect to random
noise of the proposed MNI algorithm (7) is furnished in next
theorem.

Theorem 4: Supposing the random noise g, = &
€ R”z, the steady-state error klim llex|l2 of the pro-

(e.¢]

posed MNI (7) algorithm is less _t)han the upper bound
2 sup|E/E + O
1<i<k, 1<m<n?

Proof: According to the Theorem 3 the steady-state error
of MNI algorithm (7) has two parts, in this theorem, that
is q; = & and O(t?). With the derivation process of the
Theorem 2, using the formula of (17), similarly, the formula
can be written as

ey = pep + (& — &L )). (25)
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Let&" —&" | = &{'. The formula (25) is transformed into

ey = pey +ep. (26)

Then, using the same method, multiplying —p*~" on both
sides of equation (26), the formula (26) can be produced

k—1_m

el =—p el — (o e+ + plel + 0. (27)

When k tends to infinity, p* tends to zero. Consequently,
using scaling method, the formula (27) can be transformed as

lim €', = lim (— kem — k_lgm - OSm
om ey = m (—ptel = (p I+ p0e)
k=1

1— lim p
— max 8m<'H—°°)
l—p

(28)

Adding the remnant noise O(z?), the steady-state error of
the MNI algorithm (7) under random noise environment is

m
lim [exl> < 2n® sup 74l +0(z?). (29)
k— 00 lgigk
1<m<n?
The proof is thus complete. ]

IV. SIMULATION EXPERIMENTS

In this section, the corresponding numerical simulation
experiments are conducted to show the superiority of the
proposed MNI algorithm (7) in solving the DAMRE (1).

A. EXAMPLE OF MATRIX

Specifically, the DAMRE (1) is given as AZXk + XiAp —
XU Xy + Cr = 0, where Xj is an unknown matrix and the
other matrices are given below [32],

A — 5+ sin(kt) cos(kT)
k= | —costkt) 5+ sinkr) |’

Yr 0 | x O
Leala-lbal
Y = (4 +e kT — cos(kr))z,

=2+

Uy

2
)

ot sm(kr))

LV 4 inik 3
Xk_(kr+l> + sin(kt) + 3,
or = (24 e*7)? — cos(kt) + 6.

B. ANALYSIS THE EXPERIMENT

To better evaluate the proposed MNI algorithm (7), the max-
imum steady-state residual error (MSSRE) and the average
computing time per iteration (ACTPI) are selected as perfor-
mance indexes. In addition, the total time studied in this paper
ist = kt = 20 s. These metrics are recorded in Table. |
and the corresponding visual results on MSSRE are presented
in Figs. 1-4.
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1y

2)

3)

Zero Noise Environment: The MSSRE of all four algo-
rithms in zero noise environment that is the case free
from external interference, can be clearly demonstrated
in Fig 1, which is arranged in descending order as GNN
algorithm (8), ZNN algorithm (9), NRI algorithm (4)
and MNI algorithm (7). In fact, Table 1 illustrates the
specific MSSRE of the four algorithms. It can be demon-
strated here that when the sampling interval T = 0.01 s,
the MSSRE of the MNI algorithm (7) proposed in this
paper is 1.9211 x 1072, while the MSSRE of the NRI
algorithm (4) is 4.3523 x 1072, which reflects that the
MNI algorithm (7) has better noise tolerance than the
NRI algorithm (4). Of course, since the difference in
MSSRE between the two is not obvious at the sampling
interval of ¢ = 0.01s, another experiment with sam-
pling interval T = 0.001 s is done, and as shown in
Fig. 1(b), the NRI algorithm (4) obviously has a higher
MSSRE than the proposed MNI algorithm (7). It can be
specifically seen in Table 1 that the NRI algorithm (4)
is 10 times higher than the proposed MNI algorithm (7).
Moreover, the orders of magnitudes of MSSRE of ZNN
algorithm (9) as well as GNN algorithm (8) are 10° as
well as 10!, which are different from the proposed MNI
algorithm (7).

Constant Noise Environment: Due to having inter-
ference noise added, the MSSRE of each algorithm
increases than that in the interference-free condition,
except for the MNI algorithm (7) proposed in this paper.
It still maintains good noise tolerance, and its MSSRE is
1.9211 x 1072 at sampling interval T = 0.01 s, which
is comparable to the zero noise environment. But the
GNN algorithm (8) is another extreme, with the worst
noise tolerance in the case of constant noise ¢, = 10.
The MSSRE grows from 1.3947 x 10! in the zero noise
environment to 1.3413 x 10° in the constant noise envi-
ronment. Further, the noise tolerance of each algorithm
is more evident at the sampling interval 7 = 0.001 s.
Overall, the MNI algorithm (7) proposed in this paper
performs the best, and the GNN algorithm (8) performs
the worst in the constant noise g; = 10 environment.
Linear Noise Environment: Consider the linear noise
q; = 10 x (kT 4+ 1), which is the noise whose noise
interference is enhanced as the number of iterations
increases. Therefore this has a more tremendous test
for different algorithms. Figure 3 clearly shows that
the MSSRE of the NRI (4) and GNN (8) algorithms
tends to infinity as the noise intensifies, which is enough
to reflect that these two algorithms cannot resist the
interference of strong noise. Moreover, it is surprising
that the ZNN algorithm (9) also can not resist the prop-
erty of strong noise, and it exhibits strong oscillation.
However, the MNI algorithm (7) proposed in this paper
maintains excellent noise tolerance regardless of the
sampling interval t = 0.01 sor t = 0.001 s, with MSS-
REs of 8.0229 x 10° and 8.0012 x 10!, respectively.
From Theorem 3 proposed above, it is known that the
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steady-state error of the proposed MNI algorithm (7) is
ll@/B7|l24+0(t?), which is almost a constant. Therefore,
the result of the proposed MNI algorithm (7) in Fig. 3 is
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FIGURE 1. Zero noise g, = 0 steady-state error convergence of four different algorithms, the proposed MNI
algorithm (7), ZNN algorithm (9), NRI algorithm (4), and GNN algorithm (8). (a) = = 0.01 s. (b) r = 0.001 s.
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FIGURE 2. Constant noise g5 = 10 steady-state error convergence of four different algorithms, the proposed MNI
algorithm (7), ZNN algorithm (9), NRI algorithm (4), and GNN algorithm (8). (@) = = 0.01 s. (b) = = 0.001 s.

o llenllz

0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 02 04 06 08 1 12 14 16 18 2

(a) (b)

FIGURE 3. Linear noise g, = 10 x (kt + 1) steady-state error convergence of four different algorithms, the proposed
MNI algorithm (7), ZNN algorithm (9), NRI algorithm (4), and GNN algorithm (8). (@) = = 0.01 s. (b) = = 0.001 s.

noise compared to the other algorithms.

a straight line, which also shows that the proposed MNI
algorithm (7) is extremely noise tolerance to the linear
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1010

10°

1010,

10°

1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

(a)

lexl2

(b)

x10*

FIGURE 4. Random noise g € 10 +2 x [-1, 1] steady-state error convergence of four different algorithms, the proposed
MNI algorithm (7), ZNN algorithm (9), NRI algorithm (4), and GNN algorithm (8). (@) = = 0.01s. (b) = = 0.001 s.

TABLE 1. MSSRE and ACTPI (shown in parentheses) for the proposed MNI algorithm (7), ZNN algorithm (9), GNN algorithm (8), and NRI algorithm (4) for

different sampling and noise environment.

MSSRE and ACTPI (s) in parentheses with different kinds of noises

T(8) Algorithm Zero noise Constant noise Linear noise Random noise
= . =1 qi, = 10x(kT+1) qr €10 +2 x [—1,1]
MSSRE ACTPI MSSRE ACTPI MSSRE ACTPI MSSRE ACTPI
ZNN (9) 5.7323 x 107 4.0114 x 10~ © 5.3600 x 107 1.5255 x 10~ © 1.3736 x 107 1.6458 x 10~ © 5.3965 x 107 1.5280 x 10~ ©
0.01 GNN (8) 1.3947 x 10! 1.6570 x 10~6 1.3413 x 106 9.8906 x 107 NA! 8.8233 x 1077 1.5528 x 107 9.7581 x 107
MNI (7) 1.9211 x 1072 2.7447 x 10~%  1.9211 x 102 1.9696 x 10— 6 8.0229 x 100 1.9178 x 10~%  4.8502 x 10—2  1.8332 x 106
NRI (4) 4.3523 x 1072 1.8573 x 106 2.0084 x 10! 1.2704 x 106 NA! 1.6850 x 10~ 6 3.7662 x 101 1.2158 x 10~ 6
ZNN (9) 5.7329 x 100 1.6216 x 10~ ° 5.3606 x 100 1.5018 x 10~ ° 1.2748 x 107 1.5314 x 10~ ° 5.3687 x 100 1.5030 x 10~
0.001 GNN (8) 1.3947 x 10' 9.4135 x 10~6 2.2402 x 108 9.1687 x 10— 6 NA! 8.6334 x 10—6 6.4647 x 107 9.1958 x 10—6
: MNI (7) 2.1951 x 1074 1.9635 x 107°  2.1952 x 104  1.8748 x 10> 8.0012 x 10~'  1.8665 x 10~°  4.3088 x 10~3  1.8685 x 10—°
NRI (4) 4.3655 x 1073 1.2195 x 10~° 2.0008 x 10! 1.1836 x 10~° NA! 1.4453 x 10—° 3.6887 x 10! 1.1689 x 10—°

I “NA" denotes that this value tends to infinite.

4) Random Noise Environment: In real life, random noise
is frequently encountered. Therefore, it is important to
investigate the influence of four algorithms under the
random noise environment. Because of the properties
of random noise, it is possible for the MSSRE to take
the form of an oscillation. Theorem 4 proves that its
steady-state error ||e||> tends to infinity when the number
of iterations increases to infinity, which is confirmed in
Fig. 4. In addition, Fig. 4 demonstrates the excellent
noise tolerance of the proposed MNI algorithm. In terms
of specific values, in Table 1 the MSSRE of the proposed
MNI algorithm (7) in this paper is 4.8502 x 10~2 and
4.3088 x 1073 fort = 0.01 sand T = 0.001 s, respec-
tively, which is considerably higher than the MSSRE
of the remaining algorithms. Although there are some
oscillations of the MSSRE generated by the MNI algo-
rithm (7) under random noise ¢q;, € 10 + 2 x [—1, 1]
environment, it still conforms to the conclusion drawn
in Theorem 4.

Based on the above experiments, the following conclusions
can be derived. First of all, the proposed MNI algorithm (7)
performs better under three different noise environments
compared to the NRI algorithm (4), GNN algorithm (8),
and ZNN algorithm (9). Second, MSSRE is the measure
that reflects the accuracy of each algorithm in a zero noise
environment. And the MNI algorithm (7) proposed in this
paper possesses a low MSSRE. As a result, the proposed MNI
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algorithm (7) not only possesses a high accuracy for solving
the DAMRE (1), but also has the strong robustness against
various noise perturbations.

V. CONCLUSION

In this paper, in order to solve the discrete algebraic matrix
Riccati equation (DAMRE), a modified Newton integra-
tion algorithm (7) has been proposed from the control
theory perspective, which differs from the conventional
continuous-time algorithm to solve the DAMRE. Compared
with the other three algorithms, the NRI algorithm (4), GNN
algorithm (8), and ZNN algorithm (9), the proposed MNI
algorithm possesses excellent noise tolerance ability under
various noise environments. In general, the proposed MNI
algorithm is not only more accurate than other algorithms, but
also with a faster convergence speed. In the future, different
matrices of the DAMRE will be tried to verify the validity of
the proposed MNI algorithm. In the future, researchers will
investigate some faster and higher precision methods to solve
the DAMRE.
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