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ABSTRACT This paper proposes simulated annealing (SA) assisted deep learning (DL) based sparse array
selection approach. Conventional DL-based antenna selectors are primarily data-driven techniques. As a
result, the required dataset is generated by listing all possible combinations of selecting M sensors given
N uniform array, which is computationally expensive. A simulated annealing algorithm is proposed to
assist dataset generation as an initializer to circumvent the above limitation. The SA algorithm sequentially
samples and optimizes the subarrays that constitute the training data samples while retaining specific array
characteristics. Hence, it simplifies the dataset annotation as most array configurations generated contain
desired properties, thereby reducing the computation complexity of the overall data annotation processes.
Therefore, the initializer reduces computation costs related to data generation considerably. Simulation
examples show that using the dataset generated by the proposed method improves the DL-based array
selector’s accuracy compared to the one generated by the conventional random sampler. Moreover, the
realized sparse arrays show better sparse array configuration characteristics and enhanced DOA estimation
performance.

INDEX TERMS Antenna selection, direction-of-arrival estimation, deep learning, simulated annealing,
sparse arrays.

I. INTRODUCTION
The design of optimum sparse arrays via machine learn-
ing (ML) for direction-of-arrival (DOA) and beamform-
ing (BF) has recently received tremendous attention [1]–[15].
This is the case as ML-based arrays design approaches
have low computation complexity compared to their com-
binatorial and convex optimization counterparts [6]–[9]. For
instance, [10] proposed a support vector machine (SVM)
in connection with an artificial neural network (ANN)
to predict sparse linear array configurations for adaptive
beamforming. The approach employs sensing environmental
features extracted from capon-beamformer to select the
array that maximizes the adaptive beamforming signal-to-
interference-plus-noise ratio (SINR). Furthermore, a deep
learning-based antenna selection approach was proposed
in [11] to predict planar or two-dimensional (2D) sparse
arrays using covariance matrix as input.

Structurally, the ML-based selectors are designed so that
once the optimal sensors are selected, any DOA estimation
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technique can be applied for DOA estimation. Typical
methods include subspacemethods, such asMUSIC [12], and
compressive sensing methods, such as orthogonal matching
pursuit (OMP) [13], [14]. As such, further application of [11]
to compressive sensing techniques and multiple sources
scenarios was presented in [11]. Furthermore, transfer
learning over the source and the geometry domains were also
evaluated over the exact formulation of [10] in [12]. Finally,
[17], [18] presents the application of the technique to linear
arrays and performance analysis of the same under various
DOA estimation situations.

A closer comparison of [11], [15]–[19] shows that these
DL-based methods were proposed based on the benchmark
work in [11]. Since the main limitation of the benchmark
work in [11] is the use of enumeration and exhaustive search
algorithms to generate and label the dataset, then [15]–[19]
exhibit the same limitation. Typically, antenna selection
problems involving 2D arrays yield combinatorial solutions
of the order of 106, and higher [18]. As such, enumeration
of all combinations and annotating such a large solution
set is costly and often limits the size of the 2D array per
problem [16]. To overcome the limitations above, in [11],
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[15], a random sampling approach was suggested to replace
the enumeration method. The technique involves random
enumeration of a portion of all combinations instead of
using all the possible combinations. However, the method
often leads to sub-optimal solutions as the randomly sampled
batches may not statistically represent the distribution of
subarrays in the actual combination set [19].

Notwithstanding the limitation above, the ML-based
optimization approaches are still desirable for a wide range
of applications in wireless communication, aside from
the design of sparse arrays. For example, the ML-based
techniques are becoming instrumental in resource allocation
in the unmanned aerial vehicle (UAV) [4], [5], beam
selection, and management in MIMO systems. Such is
the case because once trained; the model requires less
matrix multiplication time to converge to a near-optimal
solution than combinatorial or convex optimization-based
algorithms [6]–[9]. Moreover, the ML-based techniques are
robust to uncertainties, and they can transfer features between
two models or tasks [16], [20].

On the other hand, most conventional antenna selection
techniques employ heuristic or population-based optimiza-
tion methods. Although practical, they are computationally
expensive and prone to local minima [6]. However, they
have been proven effective when dealing with a small,
well-defined set of problems. The commonly used methods
include simulated annealing (SA) and genetic algorithm
(GA) [21]. Therefore, to circumvent the use of enumeration
of all possible combinations, we propose an SA-based
algorithm to assists in the generation of the training dataset.
Although, in specific settings, GA can outperform the SA
algorithm. In this work, we opted for SA since, unlike the GA
algorithm, it starts with only one solution and tries to enhance
it. Hence, it simplifies the selection of instances at the
outset [21].

This paper presents simulated annealing assisted DL-based
antenna selection approach for 2D sparse array selection. The
proposed technique is a hybrid two-stage approach for the
generation of the dataset, and sparse array selection using
features extracted from DOA estimation environment [19].
The first stage involves the generation of training samples
where the M -element 2D subarrays associated with the
antenna selection problem are sequentially and randomly
sampled. Then, the sampled 2D subarrays are optimized to
spread the sensors while maintaining the maximum aperture.
The second stage consists of training data labeling and sparse
array selection processes. The stage employs a simple search
algorithm to sift through the subarrays rendered in stage one
for best subarrays to designate class labels or ground truth.
Then, the realized dataset is used to train a convolutional
neural network (CNN) model for sparse subarray multi-
classification purposes [11]. Numerical results show that the
proposed method improves the DL-based antenna selector’s
accuracy and reduces computation costs related to training
data generation and annotation. Furthermore, the results show
that the rendered 2D sparse arrays have improved DOA
estimation resolution compared to the parent 2D array and
other 2D sparse arrays.

In general, the main contributions of this paper are
summarized as follows.

i) We proposed a deep-learning-based antenna selection
approach with a simulated annealing initializer. The
proposed hybrid approach has improved sparse array
estimation accuracy and reduced computation com-
plexity compared to the conventional deep learning-
based methods and traditional SA-based antenna opti-
mization approach.

ii) Furthermore, detailed theoretical and numerical simu-
lation results are presented to demonstrate the superior-
ity of the proposed antenna selection method in terms
of realized antenna characteristics, DOA estimation
performance, and computation complexity.

The remainder of this paper is outlined as follows.
In section II, we consider preliminaries of antenna selection
and corresponding conventional dataset generation approach.
The proposed simulated annealing-based antenna selection
technique is discussed in section III. Then, numerical
simulation experiments are carried out to test the advantages
of the proposed antenna selection approach under various
scenarios in section IV. Finally, section V concludes the
paper.

Throughout the paper, we use lower-case and upper-case
bold characters to denote vectors and matrices, respectively,
i.e., IK represents the K × K identity matrix. Operators (·)T

and (·)H stand for transpose and the conjugate transpose
of a vector or matrix in that order. And, vec(·) denotes
vectorization operator and diag(·) represents a diagonal
matrix. Moreover,� and E

[
·
]
denote the Khatri-Rao product

and statistical expectation operator.

II. PRELIMINARIES
In this section, we briefly introduce the conventional deep
learning-based antenna selection approach.

A. PROBLEM FORMULATION
The problem of selecting a subarray with M–elements
from a uniform array with N–elements yields Q possible
combinations where

Q =
(
N
M

)
=

N !
M !(N −M )!

. (1)

From a machine learning perspective, (1) is considered
as the number of possible classes. Assumming that H
contains all the possible classes in (1), and that h ∈ H
is a sparse subarray associated with sensor position set
Zh=[z1, z2, z2, . . . , zM ]. Then, all the sparse subarrays in H
can be expressed as

H =
[
Z1,Z2,Z3, . . . ,ZQ

]
. (2)

Following (2), [11] proposed a convolutional neural
network (CNN) model to classify the best sparse subarray
configuration that offers better DOA estimation performance.
Since CNN is a data-driven approach, the core component
of the method in [11] is the well-labeled dataset. Therefore,
per [11] the annotated dataset can be generated from H
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using a two-step process. Firstly, a set of target DOA are
sampled, and corresponding received signal realizations for
all h ∈ H are generated. Secondly, using a performance
metric, the subarray configurations with the best performance
values are designated as labels [11], [13]–[15]. We review the
procedures above in the subsequent sections.

B. REALIZATION OF TRAINING DATASET
In this section, we briefly review the procedures for
generating and annotating the training dataset. In general, the
process involves the following key steps:

1) REALIZATION OF SUBARRAY CONFIGURATIONS
The first step involves realization of sample subarray
configurations according to (1) and (2).

2) REALIZATION OF RECEIVED SIGNALS
Next, the received signals for each sample subarray realized
in step I are calculated. Therefore, suppose that K uncorre-
lated narrowband sources from directions 21,22, . . . ,2K
are impinging on h−th subarray with M -elements where
2k = (θk , φk ) such that θk and φk are k−th elevation and
azimuth angles for k = 1, 2, . . . ,K . Then, the received signal
at h−th subarray can be defined as

xh(t) = Ah(2)sh(t)+ nh(t), (3)

where Ah(2), sh(t) and nh(t) denote the h−th subarray
manifold, received signal vector and noise vector respec-
tively. Assuming that the source and the noise vectors
are statistically independent and uncorrelated [17]–[19], the
corresponding covariance matrix can be expressed as

Rh=E
[
xh(t)xHh (t)

]
=Ah(2)RsAHh (2)+ σ 2

n IM , (4)

where Rs = diag(σ 2
1 , σ

2
2 , . . . , σ

2
K ), σ

2
k and σ 2

n are signal and
noise powers respectively.

3) COMPUTATION OF PERFORMANCE METRIC VALUES
Here, the performance of each subarray is determined using
a specific performance metric. Like [11], this work assumes
CRB as a performance metric. Therefore, from (4), the partial
derivative of Ah(2) with respect to θ and φ can be expressed
as b(θi) = ∂

∂θi
Ah(θi) and b(φi) = ∂

∂φi
Ah(φi) respectively for

i = 1, 2, . . . ,K such that Bθ =
[
b(θ1), b(θ2), . . . , b(θD)] and

Bφ =
[
b(φ1), b(φ2), . . . , b(φD)] respectively. As such, the

CRB of the h−th subarray with respect to θ and φ can be
defined as

Cθ,h=
σ 2
n

2T
<

[
Iθ �

(
RsAHh (2)R−1h Ah(2)Rs

)T ]
, (5)

Cφ,h=
σ 2
n

2T
<

[
Iφ �

(
RsAHh (2)R−1h Ah(2)Rs

)T ]
, (6)

where

Iθ =BHθ
[
I − Ah(2)(AHh (2)Ah(2))−1AHh (2)

]
Bθ ,

Iφ =BHφ
[
I − Ah(2)(AHh (2)Ah(2))−1AHh (2)

]
Bφ,

in that order [10], [17]. Hence, the CRB of the h−th subarray
can be expressed as

C(2,Zh)=
1
√
2

[
Cθ,h2 + Cφ,h2

] 1
2
, (7)

assuming that the signal-to-noise ratio (SNR) is defined as
10 log10(σ

2
s /σ

2
n ). Thus, using (7) one can determine the CRB

of DOA estimation of any h ∈ H given information related
to the DOAs of signals [19].

4) SELECTION OF THE BEST SUBARRAYS (OR LABELS)
Lastly, we comb through the calculated CRB values and
select the subarrays with the best performance. Therefore,
through a simple search method, the best subarrays which
minimize (7) are singled out as labels. Thus, set U is
constructed which consists of subarrays that minimize the
following problem

u = arg min
h=1,2,3,...,Q

C
(
2,Zh

)
, (8)

for u = 1, 2, 3, . . . , |U |. As observed in [11], [19], the set
U is much smaller than H due to the similarities in array
configurations and responses to various DOAs.

Note that the input data is N ×N × 3 real-valued matrices
{H}3i=1 whose (i, j)−th entry consists of [H1]i,j = 6 [R̂]i,j,
[H2]i,j = Re[R̂]i,j and [H3]i,j = Im[R̂]i,j denoting the phase,
real and imaginary components of a sample covariancematrix
R̂ [10]. Hence, the input-output data pairs are computed as
(H, u) where u ∈ U is the output label denoting the best
subarray sensor indices given R̂ as input [11], [19].
As mentioned in the introductory section, the enumeration

ofH coupled with optimization task in (8) is computationally
expensive [11] bearing the fact that |U | � |H|. Therefore,
in the subsequent section, we introduce an alternative
approach to realizing sample subarray configurations and the
labels. This approach requires less expensive computation
costs than the use of H.

III. PROPOSED SIMULATED ANNEALING BASED
TRAINING DATA GENERATION APPROACH
In this section, we introduce a simulated annealing-based
algorithm as an initialization step to the DL-based selector.
The primary purpose of the algorithm is to generate the
training dataset instead of enumeration of the whole H set
as in (1) or a partition of H as in [11].

A. PROPOSED SA-BASED APPROACH
Simulated annealing has been used countless times to design
optimum arrays [21]. The approach was used in [19] to
optimize sensor positions of the hourglass array while
minimizing the mutual coupling between the sensors. Thus,
given an initial array as Zinit , the optimized array ZSA can be
obtained by minimizing

ZSA= arg min
Zinit

ko =
M∑
i=1

M∑
j=i+1

1
||mi − mj||2

,

such that ||mi − mj||2 6 B, (9)
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wheremi,mj ∈ Zinit ,M is the number of sensors, || · ||2 is the
l2-norm of a vector and B is the mutual coupling coefficient
upper-bound. Note that, apart from the distribution of sensor
positions for a 2D sparse arrays, the SA-based optimization
method can be turned to operate under the fixed physical
aperture [19], [21].

This work utilizes the SA algorithm as an initialization step
for the deep learning model. Mainly, the SA algorithm is used
to generate sparse subarrays with large physical apertures and
well-distributed sensors instead of an enumeration approach.
Specifically, the SA optimization stage follows the steps
below:
(a) Firstly, an initial random M -element 2D sparse subar-

ray is generated out of a full N -element 2D array i.e
Zinit .

(b) Then, at each iteration it perturbates the Zinit while
maintaining the corner sensors, i.e., M\Zψ . Here, Zψ
defined as

Zψ =
[
(0, 0), (0,My − 1), (Mx − 1, 0), . . .

(Mx − 1,My − 1)
]

(10)

contains all corner sensors. Also, the number of
permited missing virtual sensors η in the difference
coarray (DCA) of Zinit is set zero [19]. Using the
current temperature β, we defined the acceptance
probability function ρ(1κ, β) as

ρ(1κ, β)=

{
e−1κ/β , if 1κ > 0
1, otherwise

(11)

such that 1κ = κn − κn−1 where κn and κn−1
denote objective functions of the new and the previous
solutions. Thus, if the new κ is smaller than the
preceeding one, the solution is accepted.
Finally, at the end of the iteration the temperature
is decreased to block poor solutions from being
accepted [21]. This is done using a cooling schedule
which is determined by a factor α. Therefore, using βo,
at i-th iteration the temperature becomes

β = βo · α
i. (12)

And, the temperature is reduced at each iteration
until the algorithm converges. Note that the smaller
the 1κ , the higher the temperature. Furthermore,
by cooling down the temperature slowly, it slows down
the convergence rate. Therefore, it is essential to select
a higher value of βo to escapes from the local minimum
and an optimal value of α to increase chances of
obtaining a global optimum [6], [19], [21].

(c) Lastly, steps (a)–(b) are repeated until a reasonable
number of subarrays are realized to construct a solution
setHsa.

Figure 1 summarizes the above steps into a generalized flow
diagram. Note that this SA-based approach can be extended
to any planar array configuration, and the same applies to the
whole SA-based initialization method [19], [21]. Following
labeling approach in step (4) of section (II-B), we select the
best subarrays fromHsa with the lowest CRB values as labels.

FIGURE 1. Improved simulated annealing algorithm for random 2D
sparse subarray generation and optimization.

The above steps are summarized in Algorithm 1. In Algo-
rithm 1, the inputs are as follows: the total number of given
antennas N , the number of antennas to be selected M , the
number of snapshots T , the number of different DOA angles
K , the number of signals and noise realizations P and the
SNR. Moreover, the elements of V in step 5 are selected
from Hsa which is calculated using the proposed SA-based
optimization method as shown in Fig. 1 rather than the
enumeration of the entire combinationsH. The SNR used for
calculation of the covariance matrices in step 4 is denoted as
SNRTRAIN.

Algorithm 1 Proposed Training Dataset Generation Method
Input: Given N , M , T , K , P and SNRTRAIN
Output: Training dataDTRAIN
1: Generate Hsa as shown in Fig. 1.
2: Sample K DoA angles {2k}

K
k=1.

3: Compute P different realizations of subarray output,
{X i

k}
P
i=1 for k = 1, . . . ,K

X i
k = [x ik (1), x

i
k (2), . . . , x

i
k (T )],

where x ik (t) = a(k)s(i)(t)+ n(i)(t),
s(i)(t) ∼ CN (0, σ 2

s I) and n
(i)(t) ∼ CN (0, σ 2

n )
4: Calculate sample covariance matrix R̂ and M × M

covariance matrices R(i,k)hs for hs = 1, 2, . . . , H̄sa.
5: Compute C

(
2,Zhs

)
for all hs ∈ Hsa and select subarrays

following (8).
6: Create input-output data pairs as (R̂

(i,k)
, u(i)k ) for

k = 1, 2, . . . ,K and for i = 1, 2, . . . ,P.
7: Connect the input-output pairs to form the training

dataset as
DTRAIN =

[
(R̂

(1,1)
, u(1)1 ), (R̂

(2,1)
, u(2)1 ), . . .

, (R̂
(P,1)

, u(P)1 ), (R̂
(1,2)

, u(1)2 ), . . . , (R(P,K ), uPK )
]

where the size of the training dataset is R = PK .
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B. APPLICATION TO 2D DOA ESTIMATION
Following the selection of 2D sparse arrays, the received
signal on the selected sparse array can be expressed as

x̄(t) = Ā(2)s(t)+ n̄(t), (13)

such that Ā(2) is the sub-matrix of a N × N covariance
matrix A(2) whose entries are constructed based on the
sensor locations in the selected sparse array [11], [19]. Then,
a new covariance matrix is computed as

Rx̄ =E
[
x̄(t)x̄H (t)

]
= Ā(2)RsĀ

H
(2)+ σ 2

n IM . (14)

By vectorizing (14), we obtain the following coarray
model

z=Acp+ σ 2
n r, (15)

where Ac = Ā
∗
� Ā, p = [p1, p2, . . . , pK ]T and

r = vec(IM ) [20]. Here, Ac is the extended array
manifold whose sensor locations are given by a difference
coarray (DCA) which can be expressed as Zco = {m1 −

m2|m1,m2 ∈ Z}. By carefully deleting the repeated rows, Ac
yields a new array manifold representing a virtual uniform
rectangular array (URA) structure with enhanced degrees of
freedom [21]–[24]. Therefore, if the signal model in (13) is
used directly, the proposed method can estimate K < M
sources only. However, if the coarray signal model as in (15)
is exploited, the proposed method can estimate more sources
than the number of sensors, i.e., K > M [21], [23].

IV. NUMERICAL EXAMPLES
This section examines the performance of the proposed
SA-assisted DL-based antenna selection approach for 2D
sparse array selection. We train and test the CNN model
using the data generated by the conventional method [19] and
the proposed method. The problem of selecting 16 sensors
(M ) out of a 42−sensor URA is considered throughout the
section. Later, we evaluate the realized enhanced DL-based
2D sparse array in terms of array structure characteristics and
root-mean-square-error (RMSE) of 2D DOA estimation.

In the subsequent paragraphs, we employ subscripts
(·)TRAIN and (·)TEST to indicate parameters used for training
and testing modes, respectively. Moreover, based on [11]
the training data is obtained by sampling the DOA space
with Kθ,φ directions whereas the DOAs in the test data
are randomly selected. Also, for performance comparison
purposes we consider (a) the conventional DL-based 2D
sparse array [11], (b) a 16-element SA-optimized sparse
array [21], (c) a 16-element URA and (d) the original
42-element URA [1]. Note that all the 2D sparse arrays
consist of M = 16 sensors, and the same aperture except for
the parent 42-element URA.

A. CNN ARCHITECTURE
For objective comparison, we adopt a general CNN structure
consisting of 8 layers as in [11]. In general terms, the
first layer (1st layer) accepts the 2D input and the last

TABLE 1. Realized training data for various techniques.

output layer (8th layer) is a classification layer with h
units where a softmax function is used to obtain the
probability distribution of the classes [19]. The second
(2nd layer) and the fourth (4th layer) layers are max-
pooling layers with 2 × 2 kernel to reduce the dimen-
sion whereas the third (3rd layer) and the fifth (5th

layer) layers are convolutional layers with 64 filters of
size 2× 2.
Finally, the seventh (7th layer) and the eighth (8th layer)

layers are fully connected layers with 1024 units. Note, the
rectified linear units (ReLU) are used after each convolu-
tional and fully connected layers such that ReLU(x) =
max(x, 0) [11]. During the training phase: 90 % and 10 %
of the data are allocated for training and validation purposes.
The stochastic gradient descent with momentum (SGD) is
used with a learning rate of 0.03, and a mini-batch of 500 for
50 epochs [20].

B. TRAINING DATA GENERATION
In this section, using a URAwith 42 sensors, we generate two
distinct training datasets using the conventional method [11]
and the proposed method. For the former, we randomly
sample 10000 subarrays, whereas, for the latter, we employ
the proposed SA-based optimization method. To realize
classes Hsa using proposed SA-based algorithm, we assume
the following parameters: η = 0, β = 1000, βo = 0.0001 and
κo is as in (9). We sample Kφ = 120 DOAs uniformly
within the range of [0◦, 360◦) whereas Kθ was fixed at 90◦.
Furthermore, for each dataset, we assume 10 dB SNRTRAIN
and 100 snapshots.

Table 1 shows the realized data samples and their
corresponding labels. As shown in Table 1, the number of
labels generated by the proposed method almost tally with
those realized using the conventional method despite using
a small number of samples as compared to the conventional
approach. Thus, the proposed initialization step achieves
large label samples from a small predefined generated dataset
compared to the conventional method. Thus, the proposed
approach considerably reduces computation costs.

C. ESTIMATION PERFORMANCE AND ACCURACY
This section evaluates the estimation accuracy of the
proposed method compared to the conventional approach
using the CNN models trained using the datasets generated
in the previous section. In the first example, we test the
CNN model with the data generated using parameters as
shown in the second column of Table 2 to predict sparse 2D
arrays. Figure 2 shows the array configuration of predicted
2D sparse arrays. Particularly, Fig. 2 (a) illustrates the parent
42−element URA whereas Fig. 2 (b)–(c) show the realized
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TABLE 2. Simulation parameters for estimation performance evaluation.

FIGURE 2. The array configurations of (a) parent 42−sensor URA, (b) the
conventional DL-based array (16−sensors), (c) the conventional SA-based
array (16−sensors) and (d) the proposed DL-based array (16−sensors).
Note that the dots denote physical sensors.

16-element DL-based 2D sparse array using the conventional
and the proposed method respectively. It can be observed
that the proposed method yields a sparse array with a larger
aperture compared to the conventional DL-based sparse array.

In the second example, we evaluate the proposed method’s
DOA estimation performance compared to the conventional
method using parameters as shown in the third column of
Table 2. The realized sparse arrays from CNN are fed to a
MUltiple SIgnal Classification (MUSIC) algorithm [11] for
DOA estimation. In this case, the SNRTEST is varied from
−20 dB to 10 dB over 100 number of trials. Figure 3 (a) shows
the RMSE of DOA estimation as function of SNRTEST.
Namely,

RMSE=

√√√√ 1
T K

T∑
i=1

K∑
k=1

(φ̃ik − φk )
2, (16)

where φ̃ik and φk denote the estimated and true k−th DOAs
in the i−th trial, respectively. Note that the best subarray
as indicated Fig. 3 (a) represents the subarray with the
lowest CRLB value or the label. As a result, we compare
the best subarray’s DOA estimation performance with the
predicted arrays, i.e., CNN generated sparse arrays by both
the conventional and the proposed method. Moreover, it can
be observed that the proposed method follows and converges
quickly with the best subarray performance compared to the
conventional method.

In the third example, we evaluate the proposed method’s
sensor selection accuracy compared to the conventional
method using parameters as shown in the fourth column of
Table 2. The realized sparse arrays from CNN are compared
to the best subarrays or labels to evaluate the classification
performance [12]. Similarly, during the testing stage the
SNRTEST is varied from −20 dB to 10 dB over 100 number
of trials. Figure 3 (b) shows the accuracy of sensor selection

FIGURE 3. Comparison of (a) DOA estimation of the conventional and
proposed method for different array configurations, and (b) performance
of the conventional and proposed method for different SNRTEST values.

as a function of SNRTEST, i.e.,

Accuracy=
D
F
× 100 %, (17)

whereD is the total number of input data in which the model
identifies the best subarray correctly F times [16]. As a
result, we observed that the proposed method has more than
90% accurate for SNRTEST ≥ −8 dB when the network is
trained by the dataset with SNRTRAIN ≥ 10 dB. Compared
to the conventional method, it has less than 90% accurate for
SNRTEST ≥ −8 dB when the model is trained with the same
parameters. Hence, the proposed method shows improved
performance compared to the conventional method.

D. 2D DOA ESTIMATION PERFORMANCE
In this section, we evaluate the performance of the realized
2D sparse array in section IV-B using the proposed method
in comparison to the parent 42−sensor URA and other 2D
sparse arrays. In particular, we explore the behavior of the
RMSE as a function of SNR and the number of snapshots.
Here, the RMSE is defined as

RMSE=

√√√√ 1
T K

T∑
i=1

K∑
k=1

[
(φ̃ik − φk )+ (θ̃ ik − θk )

]2
, (18)
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TABLE 3. 2D DOA estimation simulation parameters.

where φ̃ik , θ̃
i
k and φk , θk denote the estimated and true k−th

DOAs in the i−th trial, respectively.
Table 3 lists the parameters used to compute RMSE

with respect to SNR (Example #4) and the number of
snapshots (Example #5), respectively. Moreover, the 2D-
ESPRIT algorithm is used to estimate the sources [19], [24].
However, if the DCA of the realized 2D arrays has holes in
the coarray, the resulting virtual 2D array becomes irregular.
Therefore, the spatial-smoothing DOA estimation method
such as 2D-ESPRIT cannot be applied. This is the case as
the 2D-ESPRIT algorithm requires a URA array structure for
spatial smoothing pre-processes [24]. As a result, a nuclear
norm minimization (NNM) approach is applied to fill the
holes [21] to restore a standard 2D configuration.

Figure 4 shows the DOA estimation performance of the
realized DL-based 2D sparse array compared to the parent
URA and other 2D sparse arrays. It can be observed in
Fig. 4(a) that the URAwith 42 sensors has better performance
overall due to the large physical aperture. In contrast, the
performance of the DL-based 2D sparse array realized
using the proposed method has better than a URA with
16 sensors and slightly lower than that of the parent URA.
Besides, the proposed 2D sparse array performs better
than the conventional SA-based sparse array. Moreover, the
conventional DL-based performed poorly as compared to
both the proposed array and 16−sensor URA.

In Fig. 4(b), we can observe a similar trend where
the performance of the proposed array is bounded by the
parent URA and the 16−sensor URA as the number of
snapshots increases. The parent URA has the lowest RMSE
values, whereas the 16−sensor URA has higher RMSE
values than the proposed array. Also, the conventional
DL-based array performs better than the 16−sensor URA
in lower numbers of snapshots. However, the RMSE values
degrade as the number of snapshots increases. The examples
demonstrate that the proposed method can thin 2D arrays
cognitively to a manageable size without considerable loss
of DOA estimation resolution. Moreover, compared to other
conventional methods such as SA, the realized sparse arrays
exhibit enhanced DOA estimation performance.

E. COMPUTATION COMPLEXITY
The enumeration method used to generate H has a com-
putation complexity of O

(
( N !
M !(N−M )! )M

)
. On the other

hand, the SA-based algorithm requires O(M ) to generate

FIGURE 4. RMSE performance versus (a) SNR and (b) number of
snapshots for the realized DL-based sparse array compared to URA,
conventional DL-based array and SA-based array.

FIGURE 5. A summary of computation time of the DL-based antenna
selection approach against the conventional SA-based optimization
technique..

M -element array and almost O(MN 2) to optimize the ran-
domly generated 2D array. Thus, the computation complexity
can be approximated as O(MN 2

+ M ). Although the SA-
based algorithm has to be run several times, i.e.,J , to realized
a specific number of samples. The product of J and
O(MN 2

+ M ) leads to O
(
J (MN 2

+ M )
)
, which is still

reasonable compared to the computation complexity of the
conventional method. Table 4 summarizes the computation
complexity of the two methods above [16].
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TABLE 4. A summary of computation complexity of the DL-based antenna
selection approach.

In Fig. 5, we compare the computation time required for the
proposed DL-based approach and the SA-based optimization
method to estimate a single optimal 2D sparse array per
100 iterations. We run the models in MATLAB using a PC
with Intel(R) Core (TM)-i5 at 2.60 GHz with 4GB RAM.
As indicated in the table, the proposed method requires
less computation time to yield a 2D sparse array given
a N−element 2D parent array than the computation time
required for the SA-based optimization technique to optimize
an M−element 2D sparse array [21].

V. CONCLUSION
The paper presented a novel two-stage DL-based sparse array
selection approach. The first stage is an initialization step that
uses the SA algorithm to generate sparse array configurations
with key target features. As a result, it enables data labels
to be realized using few data samples, which reduces
computational costs and time. The final dataset is then
used to train a CNN model in the second stage. Simulation
results indicate that the proposed method yields sparse arrays
with enhanced DOA estimation performance. Moreover, the
results showed that the proposed approach realizes many
labels from small data samples. More importantly, the
CNN model requires less computation time to converge
at an optimum solution (almost 10 times less) than the
conventional SA-based optimization approach upon training
and deployment.
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