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ABSTRACT Intelligent video surveillance is important to ensure production safety in coal mines, while
cloud-edge cooperation is an effective means to improve the performance of intelligent video monitoring.
However, in edge layers, incorrect resource allocation of computing and network resources will result in
the waste of resources and low real-time performance. In this paper, a DDPG-Based (Deep deterministic
policy gradient-based) edge resource allocation method for cloud-edge cooperation framework is proposed.
Firstly, the cloud-edge cooperation framework is designed for different tasks. Secondly, the joint minimizing
problem of latency and bandwidth usage caused by edge computing is modeled. To quickly solve the joint
optimization problem, we convert it to MDP (Markov Decision Process). In addition, ESPN (Edge status
perception network) is proposed, which enhances the ability of feature perception and action output of
DDPG. Finally, DDPG-ESPN is proposed to solve the joint optimization problem. Simulation results show
that compared with other methods, DDPG-ESPN improves the real-time performance and bandwidth usage
by up to 18.88% and 42.81% respectively.

INDEX TERMS Edge resource allocation, intelligent video surveillance, deep deterministic policy gradient,
edge status perception network.

I. INTRODUCTION
Intelligent video surveillance plays an important role in coal
mine safety production. For example, when workers are too
close to the equipment in operation, the intelligent video
surveillance system can promptly issue an alarm or shut down
the equipment to ensure the safety of the personnel. Currently,
the ANN-Based (Artificial Neural Network) AI model is an
effective method to process surveillance video. However, the
ANN-Based model for the video process usually needs a
large number of parameters and calculations. Therefore, the
traditional method of coal mine intelligent surveillance needs
to transmit the monitoring video to cloud server for intelli-
gent analysis, and then return the results to the monitoring
terminal. This process causes serious latency, and occupies
network congestion. It makes the intelligent processing of
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surveillance video lose the ability of real-time response, and
cannot effectively guarantee safety in coal mines.

Edge computing [1] can improve the real-time perfor-
mance of intelligent processing and reduce network con-
gestion by performing operations close to the data source.
Meanwhile, with the continuous development of embed-
ded microprocessors, the computing and storage capabili-
ties of edge computing have been improved to a certain
extent, which enables the edge to complete more intelligent
processing tasks. Processing surveillance video at the edge
can improve the real-time performance of intelligent video
surveillance, which is of great significance to the safety of
workers in coal mines.

To solve the problems of large-scale parameters and cal-
culations required for intelligent video processing based
on ANN, various neural network lightweight technologies
have been proposed. Google effectively reduces the amount
of calculation and the number of parameters required for
convolution operations by adopting depthwise separable
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convolution [19]. Model pruning deletes the neurons that
have little effect in neural networks. Weight quantization
reduces the number of bits of the parameter by quantifying
the weight in AI models [20].Wang et al. used layer-level and
channel-wise pruning methods to prune the YOLOv3 (You
only look once verson3) model, which effectively enhanced
the calculation speed of the YOLO model and reduced the
number of its parameters [21]. The above methods can reduce
the size and computational complexity of AI models from
different aspects, and enable intelligent video processing
to be implemented on embedded platforms. However, the
compression of the neural network will result in a loss of
accuracy. Moreover, the real-time performance of intelligent
computing supported by the currently embedded platform is
still insufficient because of computing capacity.

Cloud-Edge cooperation [2]–[7] combines the advantages
of cloud computing and edge computing. Cloud computing
has rich computing and storage resources, which can support
AI models inference and training, but its real-time perfor-
mance is limited by various environments. Edge computing
has fewer computing and storage resources, but deploying
lightweight AI models on edge can improve real-time per-
formance and reduce network bandwidth usage. Therefore,
in the cloud-edge cooperation framework, cloud computing
is usually used to provide non-real-time services such as
model training and data storage, while edge computing is
used to process tasks with high real-time requirements such
as inference.

Coal mine surveillance video intelligently processed by
edge computing can improve the real-time performance and
reduce bandwidth usage caused by video transmission. The
deployment density of video surveillance in coal mines is
greater than that on the ground. However, the pedestrians
in coal mines are sparse, and fewer areas require high-real-
time intelligent surveillance. Moreover, considering the dis-
tributed arrangement of edge nodes in coal mine, the network
and computing resources need to be allocated and managed
for real-time surveillance video processing. Traditional man-
agement methods of edge computing and network resources
usually include average allocation or non-allocation. Those
methods resulting in insufficient real-time performance in
‘‘busy’’ areas with pedestrians, and too high real-time per-
formance in ‘‘idle’’ areas without pedestrians. Hence, the
edge resource is wasted by the traditional methods, and it
is necessary to propose an edge resource allocation method
to optimize the latency and bandwidth occupation of edge
computing. To reasonably allocate edge layer computing
and network resources, appropriate edge resource allocation
methods must be adopted.

DQN (Deep Q-Learning) is a DRL-Based (Deep Rein-
forcement Learning Based) method, which is often used in
various resource allocation fields [11]–[18]. However, DQN
is difficult to handle continuous action space. Hence, the
DDPG-Based method which can output continuous action
is used in some fields that require higher fine-graininess.

The Actor and critic network of the traditional DDPG algo-
rithm is constituted by FCN (Fully Connected Network).
However, there are two drawbacks of Fully Connected Net-
work. The first is the requirement of a large of amount param-
eters, which makes it difficult to store. Secondly, the feature
perception ability of Full Connected Network for a larger
matrix is weaker than that of CNN (Convolutional Neural
Network).

Traditional cloud-edge cooperation frameworks do not
consider the full use of computing resources of the edge layer,
and the cooperation between edge nodes and edge nodes.
These methods may cause a waste of resources and reduce
the real-time performance of the system. However, the way
of cooperation between edge nodes is also a problem. It is a
big challenge to make edge computing resources adjust with
the location and quantity of ‘‘busy’’ area, while maintaining
the real-time performance of ‘‘idle’’ area, and minimizing the
network bandwidth usage by video transmission as much as
possible.

To solve the abovementioned problems, we proposed a
DDPG-Based edge resource allocation method in the cloud-
edge computing environment. In the Cloud-Edge framework,
cloud computing is used to train various edgemodels and pro-
vide data storage services, while edge computing is used to
provide real-time intelligent inference for surveillance video.
To the problem of joint minimizing the latency and bandwidth
usage in edge layer, we first convert it into MDP (Markov
Decision Process), and solve it in continuous action space by
the use of DDPG. Meanwhile, we built ESPN (Edge Status
Perception Network) with fully convolutional network and
residual structure, to improve the edge environment feature
perception ability of DDPG. The main contributions of this
paper are as follows.

(1) The framework of Cloud-Edge cooperation is designed.
The non-real-time tasks are handed in by cloud computing.
Edge computing is responsible for real-time surveillance
video inference.

(2) Based on the edge resource of coal mine environment,
the latency and bandwidth usage problem has been modeled.
In addition, the problem of minimizing latency and band-
width usage is converted to MDP.

(3) The improved DDPG algorithm DDPG-ESPN is pro-
posed. The ability of edge feature perception and action
output is promoted by ESPN.

The remainder of this paper is organized as follows.
Related work about Cloud-Edge cooperation and DRL-
Based resource allocation method is introduced in Section II.
In Section III, a Cloud-Edge cooperation framework is pro-
posed. In Section IV, We model the problem of joint min-
imizing latency and network usage. Section V converts the
minimizing problem to MDP. Meanwhile, the ESPN and
DDPG-ESPN method is proposed to quickly solve the joint
minimizing problem. Section VI gives simulation and com-
parison of the proposed method. Section VII concludes this
article.
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II. RELATED WORK
A. CLOUD-EDGE COOPERATION
Edge computing solves the problems of high latency and
network congestion caused by cloud computing [1], [23].
It greatly improves the real-time performance by performing
operations close to the data source. However, due to the
constraint resources, single edge computing is not suitable
for large-scale services that require an amount of comput-
ing and storage resources, such as model training and data
storage. Therefore, in the field of intelligence monitoring,
Cloud-Edge cooperation is a hot topic to promote real-time
performance and accuracy. Wang et al. proposed to use
the Cloud-Edge computing framework in Cyber-Physical-
Social. They push the long-term and large-scale tasks to cloud
server, while edge computing is used to process small-scale
and short-term tasks [2]. Cloud-Edge cooperation provides
a smoothly environment for intelligent video surveillance.
Wang et al. [3] proposed a CNN-Based intelligent visual
sorting system in cloud-edge computing framework. The
cloud server is used as a model training and algorithm design
platform, and edge computing is used to process monitoring
video for quickly sorting productions. Wang et al. proposed
a smart surface inspection system in cloud-edge computing
environment. Based on the advantages of cloud computing
and edge computing, this paper builds an SPSS architecture,
which can complete video detection tasks with high accuracy
and high detection speed [5]. Ahn et al. proposed a new cloud-
side interaction framework for IoT video analysis, which
improved the efficiency of cloud-side computing and the
real-time performance of edge tasks [4]. Rajavel et al. [6]
proposed a Iot-Based smart healthcare video surveillance sys-
tem, it incorporate the edge computing in the gateway level
for minimizing network usage and response time between
edge and cloud. However, the method they proposed is not
considered the task offloading between edge nodes and edge
nodes, it may waste the edge resources and increase the
response time. Jayaram and Prabakaran [7] use the edge-
cloud system to protect personal privacy of patients in the
remote healthcare monitoring system. The edge layer is used
for secure data processing and filtering data, to minimizing
the response time and bandwidth usage, while the cloud is
used for prediction and rehabilitation of remote patients. But
the network environment of the system they proposed is
smoothly, it is not suitable for coal mine environment. It can
be seen that Cloud-Edge cooperation can integrate the advan-
tages of cloud computing and edge computing to improve
service quality. The abovementioned cloud-edge cooperation
method is proposed to solve practice problem. However,
the edge environment in those papers did not consider the
cooperation between edge nodes, which may lead to the
waste or shortage of edge computing capacity in monitoring
area.

Surveillance video processed intelligently by edge com-
puting can improve real-time performance and accelerate the
ability to respond to emergencies. Lightweight processing

of neural networks and deploying them in edge environ-
ments has become a hot topic of current research work.
Ren et al. [24] provide real-time object detection services at
edge based on edge computing. He et al. [25] prune the con-
volutional filter of the model by the ASFP method, to solve
the information loss caused by typical pruning algorithms.
Li et al. [26] proposed a compression method for CNN to
reduce the cost of computation. Jian-Hao et al. [27] pro-
posed Thinet framework to realize compress and speedup of
CNN models. Although the lightweight model deployed on
the edge platform reduces the requirements for computing
capacity, it is difficult to maintain the accuracy of the model
by pruning themodel and quantifying the parameters. In order
to improve the efficiency of the edge cloud and minimize the
delay of mobile devices, Ren et al. [8] studied the collabora-
tion between cloud computing and edge computing. By solv-
ing the resource allocation problem, they greatly reduced the
processing delay of the task. However, the cloud computing
have not been fully applied to improve the quality of edge
computing. Yang et al. [9] proposed an online video qual-
ity and computing resource allocation algorithm to enable
low-latency and high-accuracy analysis of urban surveillance
video, but the edge intelligent model cannot be evolved and is
difficult to adapt to a variety of environments. Hung et al. [10]
proposed VideoEdge architecture. In this paper, the best bal-
ance point between the resources and accuracy of surveillance
video processing is found in the cloud-side collaboration
environment. Meanwhile, they proposed the ‘‘Pareto band’’
method to reduce the video time search space, and ultimately,
greatly improve the processing speed and accuracy of urban
surveillance video. However, the method they proposed did
not consider the cooperation between nodes with computing
power. The above cloud-edge collaborative video processing
methods have improved the real-time and accuracy of surveil-
lance video to a certain extent. However, these methods are
difficult to be practically applied in coal mines with limited
communication and computing environments. Moreover, the
above method does not take into account the cooperation
between edge devices. When performing video processing,
the computing capacity of single edge device cannot support
higher real-time performance, or the computing power of the
edge device is wasted.

B. DRL-BASED RESOURCE ALLOCATION
Real-time processing of surveillance video through edge
computing has been applied in various fields. However, due
to the characteristics of video surveillance in coal mines,
the deployment of the above-mentioned methods on edge
computing devices will result in insufficient real-time per-
formance in areas that need to be monitored, and waste
computing power in areas that do not require high real-time
performance. Meanwhile, a large number of video transmis-
sions in the edge network will cause network congestion.
Therefore, the computing and network resources of the edge
layer need to be allocated reasonably.
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DRL fits the action function or value function through
deep neural networks, so that it can achieve better results in
strategy optimization. Hence, the DRL method has a wide
range of applications in edge resource allocation. DQN is
a Value-Based RL method [35]. Cao et al. [11] used the
method of combining BPNN and DQN to allocate resources
to the MINO-NOMA system, and achieved better results
in bandwidth utilization using this method. However, this
resource allocation method did not consider the computing
latency of edge device. Wu et al. [12] proposed the pure-
DQNmethod and the hybrid DQNmethod to solve the mixed
integer problem of MEC resource allocation. Experiment
results show, the hybrid method combines the advantages of
QL and convex optimization. But from another perspective,
this method is not suitable for fine-grained tasks such as edge
video process. Sun, et al. use the DQN method to balance
the energy consumption and user satisfaction issues in the
C-RANs system [13]. By improving DQN, [14]–[17] allocate
network resources and computing resources for edge com-
puting, so that the delay in the system is lower. DQN-Based
resource allocationmethods enable edge resources to bemore
reasonably allocated to different tasks. The monitoring video
processed by edge devices requires Fine-grained allocation of
edge computing resources. However, it is unable to allocate
resources in a more Fine-grain, because DQN is difficult to
perform actions in continuous action space.

DDPG [22] is a policy-based RL method. Compared with
DQN, DDPG has the ability to output continuous actions.
At the same time, the convergence of DDPG is also better
than that of DQN. Chen et al. enhanced the timing feature
extraction capabilities of DDPG through TFEN, and at the
same time used rPER to optimize the empirical playback pool
to accelerate and stabilize the convergence of the model [28].
But on the other hand, the TFEN composed of Conv-1D
and LSTM has a weak situational awareness of large scale
edge environment. Wu et al. [29] use Lyapunov optimiza-
tion to convert CMDP to MDP, and then use DDPG-Based
method to solve the optimization problem, so that the real-
time and long-term accuracy of IoT devices can be guaran-
teed. Peng et al. [30] use the DDPG-Based method to manage
the available spectrum, computing and buffer resources of
base stations and UAVs, which can achieve lower delay and
quality of service compared to random solutions. However,
the UAVs have strong mobility, therefor they did not consider
the movement of users. Zhang et al. [31] use the DDPG
method to manage the communication mode and resources
of the heterogeneous cellular network, which improves
the energy efficiency of the D2D heterogeneous network.
However, the computing latency and accuracy of edge devices
is not considered in this paper. Based on the DDPG method,
Qiu et al. [32] manage the energy and data transmission
of field wireless sensors, which improves the life and data
transmission rate of field wireless sensors. As a policy-based
RL method, A3C (Asynchronous-Advantage-Actor-Critic)
is also used in various resource allocation environment.
J. Zou et al. [33] use the A3C algorithm to control YACs for

managng the network structure of MEC (Mobile Edge Com-
puting). This method is proposed to minimizing the task exe-
cution latency and power consume. However, in the coal mine
environment, this method is difficult to optimize the fixed
network structure and mobile service object. Tuli et al. [34]
use the quickly adapt dynamic scenarios advantage of A3C
to reduce the power consume of MEC, and the Residual
Recurrent Neural Network is also used to quickly update
the model parameters. However, the algorithm they proposed
require a large amount of calculations, it is not suitable for
edge environment with constrained resources. The policy-
based RL method has achieved a wide range of applications
and excellent results in edge computing resource manage-
ment. However, for the real-time intelligent processing of
surveillance video in coal mines based on edge computing,
the above methods are difficult to adapt to the actual envi-
ronment of coal mines. Moreover, the above articles did not
consider the computing latency caused by video processing
at edge. In addition, the traditional DDPG method has insuf-
ficient ability to perceive environmental characteristics, and
cannot be applied to the areas with densely arranged edge
nodes and large random distribution of personnel such as coal
mines.

III. CLOUD-EDGE COOPERATION FRAMEWORK
A. REAL-TIME EDGE SERVICE
Surveillance video is transmitted and processed by edge
nodes. Compared with the cloud server, it has better real-time
performance and can reduce the bandwidth usage occupied
by video transmission. On the one hand, the real-time edge
service performs real-time intelligent analysis of surveillance
video, which can respond to emergencies in coal mines more
quickly. On the other hand, computing resources are allocated
to the ‘‘busy’’ area to improve real-time performance by edge
services. When performing real-time intelligent surveillance
at the edge, the system dispatches the computing resources
in the ‘‘idle’’ area to the ‘‘busy’’ area. Meanwhile, in order
to ensure the system’s ability to respond to emergencies, the
‘‘idle’’ areas still need to retain a certain amount of computing
power. In short, the ‘‘busy’’ areas set the upper limit of the
real-time performance, while the ‘‘idle’’ areas set the upper
limit of real-time performance.

In this paper, the edge nodes are composed of embedded
microprocessors. For the sake of simplicity, we assume that
each edge node processes the data of a camera, and the edge
node can control the surrounding equipment, alarms, etc.
Considering that the construction time of different roadways
in coal mines are different, the computing power of edge
nodes are also different. We choose the edge node with
the strongest computing power as the management node.
In addition to completing the work of general nodes, the
management node also needs to run a resource allocation
algorithm to schedule the computing resources of other nodes
within a certain range. The framework of the edge layer is
shown in Fig. 1.
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FIGURE 1. The framework of edge layer. All edge nodes are connected to
the industrial ethernet. The management node is used to run the resource
allocation model for managing the edge nodes.

B. NON-REAL-TIME CLOUD SERVICE
Cloud server has abundant computing and storage resources.
However, the cloud-centric computing model needs to trans-
mit data to cloud server for processing, and then return
the result. This process cause severe latency and network
congestion. Therefore, Cloud computing is difficult to meet
the tasks that require high real-time performance. Although
it is difficult for a cloud server to handle high-real-time
tasks, its abundant resources can provide non-real-time tasks
such as data storage and model training. Performing model
training in the cloud and deploying the trained model on the
edge for real-time inference can combine the advantages of
cloud computing and edge computing. In this paper, cloud
computing is not only used to train the AI model for video
inference, but also responsible for training the DDPG-ESPN
model. Meanwhile, a large amount of status-action data is
transmitted to the cloud server for composing experience
replay buffer. In addition, the DDPG-ESPN approach only
needs to deploy the actor network at the edge. The functions
of non-real-time cloud service are shown in Fig. 2.

The Edge-Cloud cooperation framework divides the tasks
in the system into real-time tasks and non-real-time tasks.
The real-time tasks are processed by the edge computing.
In the proposed system, surveillance video is processed by
edge devices in real-time. Therefore, edge devices only need
to send the intelligent processing results and the emergency
video to the cloud server for monitoring. Moreover, the intel-
ligent models, such as object detection and edge resource
allocated model, are trained by cloud server and then trans-
mitted to edge devices through Industrial Ethernet. In the
proposed Edge-Cloud cooperation framework, the data inter-
action between the cloud and edge is delay tolerable. Hence,
the performance of the edge layer for intelligent surveillance
video processing is not affected by the data transmission
latency between cloud and edge.

FIGURE 2. The functions of non-real-time cloud service. The trained AI
model and actor network are transmitted to the edge layer through
industrial ethernet for AI inference and resource allocation at the edge
layer, and the edge layer provides the data required to train models.

FIGURE 3. The work schematic diagram of roadway edge nodes. Where,
the yellow area denotes that the edge node has detected pedestrian by AI
model, otherwise the area is represented in gray. Edge nodes with
pedestrian areas are represented in red, otherwise they are represented
in green, and management nodes are represented in black. The above
nodes are all connected to the Industrial Ethernet.

IV. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM DESCRIPTION
The edge layer of coal mine video surveillance system
mainly responsible for the real-time processing of surveil-
lance video. In this paper, the edge resource is allocated by the
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management node with an allocation algorithm. The work
schematic diagram of roadway edge nodes is shown
in Fig. 3.

In the roadway environment shown in Fig. 3, edge nodes
are all powered by wired. In the traditional method, even if
there are no pedestrians in the ‘‘idle’’ area, all the computing
power of the edge node is still used to process the surveillance
video in the area. However, the real-time performance is
usually insufficient because the limited computing capac-
ity of the edge nodes which deployed on the ‘‘busy’’ area
with pedestrian. Meanwhile, there is still a serious delay in
transmitting the video in this area to the cloud server for
processing, and it will take up a lot of bandwidth. Therefore,
we use the remaining computing power of idle nodes to assist
busy nodes in intelligent analysis. At the same time, ‘‘idle’’
nodes also need to leave a certain amount of computing power
to maintain intelligent surveillance of ‘‘idle’’ areas, so as to
deal with the pedestrians that may appear in the ‘‘idle’’ area.
In addition, it is necessary to minimize video transmission on
the network to prevent network congestion.

In this system, we need to set the upper and lower limits
of the intelligent surveillance latency. We assume that when
there are pedestrians in a surveillance area, the latency of
intelligent video surveillance in this area is not higher than
Dbusy. When there are no pedestrians in the surveillance area,
the latency is not higher than Didle. The main parameters and
symbols used in this paper are summarized in Table 1.

B. NETWORK MODEL
When the edge layer process the surveillance video, it is
necessary to allocate the computing resources of each edge
node. In case the computing power of ‘‘busy’’ nodes is not
enough to support the real-time demand in areas with pedes-
trians, a part of the video that cannot be processed in time
by ‘‘busy’’ nodes needs to be transmitted to ‘‘idle’’ nodes
through Industrial Ethernet.

We define matrix B(t) as the video transmission matrix in
time slot t:

B(t) =


0 bt

12
. . . bt1k

bt21 0 . . . bt2k
. . . . . . . . . . . .

btk1 btk2 . . . 0

 (1)

where, btij (i, j ∈ [1, 2, . . . , k], k is the total number of edge
nodes) represents the percentage of video frames transmitted
from the surveillance video of the i-th surveillance area to the
j-th edge surveillance node. According to the actual scene of
video transmission in the system, the diagonal element of the
matrix is 0, and when btij 6= 0, btji = 0.
For the sake of simplicity, we only consider the video

transmission in the Industrial Ethernet of the system, and
the video of each monitoring area is transmitted through
Industrial Ethernet when transmitting between nodes, so the

TABLE 1. Table of parameters and symbols.

video transmission delay of the i-th monitoring area is:

dbi =

k∑
j=1

btij.fi

S
I (2)

where, fi is the total number of video frames of the
i-th monitoring area, fi = 1/

di. di denotes the latency of
intelligent video processing of i-th surveillance areas. I is the
data volume of each frame of video, and S is the network
transmission speed.

C. COMPUTING MODEL
1) LOCAL COMPUTING
The intelligent processing of coal mine surveillance video
can be divided into two parts. The first part is processed by
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local edge nodes. While the second part will be processed
by other edge nodes if the computing capacity of local edge
nodes is insufficient. We define the computing distribution
matrix C(t) to represent the percentage of surveillance video
computing power undertaken by each edge node:

C(t) =


ct11 ct12 . . . ct1k
ct21 ct22 . . . ct2k
. . . . . . . . . . . .

ctk1 ctk2 . . . ctkk

 (3)

where, ctii represents the percentage of computing power used
by the i-th edge node when processing the monitoring video
of itself. ctij represents the percentage of computing power
used by the i-th edge node to assist the j-th edge monitoring
node.

Therefore, the computing delay caused by the local com-
puting of the surveillance video of the i-th surveillance area is:

dclocali =
I · Hm
ctii · Hi

(4)

where, Hm denotes the amount of calculation required for the
model to process the data of each byte image. Hi represents
the calculation speed of the i-th node.

2) OFFLOADING COMPUTING
When transmitting video frames to other nodes for intelligent
inference, not only the network transmission delay and com-
puting latency must be considered, but also the computing
tasks of the offloaded node itself. Regardless of whether
there are pedestrians in the area monitored by the offloaded
node, the node needs to perform calculations on the local
surveillance video and the offloaded video of other nodes.
Therefore, when an edge node is processing video frames
sent by other nodes, it must first process the video frames that
it needs to analyze, and cross-process the local surveillance
video frames and other video frames in a certain proportion.
In this way, the real-time performance of local video and
offloaded video can be ensured at the same time. The process
is shown in Fig. 4.

FIGURE 4. The edge node processes the offload video and the local video.

The ratio of the video frame that needs to be inference
when the i-th node is offloaded to the j-th node and all
the video frames that need to be inference by the i-th node

itself is:

ct
ij
=

btji · fj

fi +
k∑
j=1

btji · fj

(5)

Therefore, the average computing latency for the i-th node
to process the video frame sent by the j-th node is:

dcoffji =
I · Hm
ctij · Hi

(6)

From the above, the transmission latency of the j-th node
transmitting each video frame to the i-th node is:

dbji =

k∑
j=1

btji.fj

S
I (7)

Therefore, when the j-th node transmits the video frame
to the i-th node for calculation, the total latency of each
frame is:

doffji = dcoffj + dbji (8)

For node j, when the computing resources cannot meet the
real-time requirements, a part of the surveillance area video is
analyzed locally, while the other part needs to be transmitted
to other nodes for inference. Therefore, the average delay for
video frame processing is:

dj = dclocalj +

k∑
i=1

btjid
off
ji (9)

We define the latency matrix D(t) to represent the latency
state of the edge layer:

D(t) =


d t1 0 . . . 0

0 d t2 . . . 0

. . . . . . . . . . . .

0 0 . . . d tk

 (10)

where, d ti denotes the latency of intelligent video surveillance
if i-th area in time slot t .

D. PROBLEM FORMULATION
To improve the real-time performance of surveillance video in
‘‘busy’’ areas for ensuring the safety of personnel. Coal mine
edge nodes process the surveillance video in real-time, and it
needs to quickly schedule the edge layer resources according
to the edge computing and network environment. Meanwhile,
for the ‘‘idle’’ area, a certain degree of real-time should
also be maintained so that the area has the ability to deal
with emergencies. However, due to the limited computing
capacity of the edge layer and the pursuit of lower latency,
it is necessary to set a higher weight to the ‘‘busy’’ area while
also taking into account the ‘‘idle’’ area. In addition, in order
to allow more network resources to transmit important infor-
mation, the amount of video broadcast on the network should
be as small as possible. Therefore, in the time slot t , for the
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resource allocation problem of intelligent video surveillance
nodes, we describe it as a joint minimizing problem of latency
and bandwidth usage:

min[
k∑
i=1

α(t)(Dbusy − di)2 +
k∑
i=1

β(t)(Didle − dj)2

+ δ

k∑
i=1,j=1

btij
di
] (11)

s.t. C1 : btij ≥ 0 (11.a)

C2 :
k∑
j=1

btij < 1 (11.b)

C3 :
k∑
j=1

ctij ≤ 1 (11.c)

C4 : di < Dbusy (11.d)

C5 : dj < Didle (11.e)

C6 :
k∑
i=1

I · Hm
di
≤

k∑
i=1

Hi (11.f)

In (10), When there are pedestrians in area i at time slot t ,
α(t) = e−(di−Dbusy), otherwise α(t) = 0. When there are no
pedestrians in area i at time slot t , β(t) = 0.5e−(di−Didle),
otherwise β(t) = 0. δ is the weight of the video transmission
bandwidth in the network, we set δ = 0.5. C1 and C2 denote
that the surveillance video cannot be completely transmit-
ted to other nodes for processing. C3 denotes that the task
assigned to the edge node will not exceed its computing
capacity. C4 and C5 represent that the real-time processing of
surveillance video needs to reach the upper and lower limits.
C6 denotes that the total computing power used for video
operations cannot exceed the actual total computing capacity
of edge layer.

V. DDPG-BASED EDGE RESOURCE ALLOCATION
A. MDP FORMULATION
In order to quickly solve the joint minimization problem,
we first convert it to MDP, and then use the DDPG-Based
method to solve it. The agent deployed with DDPG-Bsed
method generates an action a(t) based on the edge layer status
s(t) via a policy function π (t). Each action will generate a
reward to evaluate the action.

1) STATUS SPACE
Each edge node sends its computing state, network state, and
pedestrian state to the management node at every time slot.
Where, the computing state of each node is converged into
computing power distribution matrix C(t) and latency matrix
D(t). The network state of each edge node is represented
by B(t). Pedestrian status is used to represent whether there
are pedestrians in each monitoring area in time slot t , which
denoted by matrix P(t). Matrix P(t) is a diagonal matrix,
if a pedestrian is detected in i-th area, the diagonal element

p(t)ii = 1, otherwise p(t)ii = 0. The status of edge layer is
acquired by management node in the time slot t . We define
the status matrix s(t) ∈ S:

s(t) = {C(t),D(t),T (t),P(t)} (12)

where, the dimension of status matrix is 4 × k × k .

2) ACTION SPACE
According to the actual state of the edge layer, the agent
selects and executes actions based on policy π . When
the pedestrian state changes, the computing and network
resources of the edge layer need to be reallocated. The agent
allocation computing and network resources of edge layer by
execute actions. Action matrix A(t) is defined to represents
the actions taken by the agent in time slot t:

A(t) =


a11 a12 . . . a1k
a21 a22 . . . . . .

. . . . . . . . . . . .

ak1 ak2 . . . akk

 (13)

where, aij represents the increase in the percentage of the
frame number that the i-th node assists in the j-th area for
video inference. When aij > 0, aij percentage video frames
of j-th node will be added to i-th node for inference. When
aij < 0, |aij| percentage video frames of j-th node which
analyzed by i-th node will be reduced.

3) REWARDS
When the management node takes action A(t) according to
s(t), the management node will immediately get the reward
value r(t) according to the edge layer state. In the training
phase, policy π continues to iterate according to the reward
value until it converges. In order to minimize the latency
of intelligent video surveillance and bandwidth usage, the
reward is defined as:

r(t)

=
1

[
k∑
i=1
α(t)(Dbusy−di)2+

k∑
j=1
β(t)(Dfree−dj)2 + δ

k∑
i=1,j=1

tij
di
]

(14)

The reward function indicates that the lower the latency and
bandwidth usage, and the restriction conditions (11.a-11.f)
are met, the higher the feedback reward value. However, if the
system cannot meet the restriction conditions (11.a-11.f) after
allocation, r(t) = 0.
The Markov Decision Process is shown in Fig. 5.

B. EDGE STATUS PERCEPTION NETWORK
In part A, the problem of joint minimizing latency and band-
width usage is converted to MDP. Then, the DDPG-Based
method is used to quickly solve the MDP. The DDPG-Based
method needs to perceive the status of the edge layer and
select the optimal action for this status. In the status space
of MDP, a status matrix with the dimension of 4 × k × k
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FIGURE 5. Markov decision process of the proposed system. The agent
obtains the status and rewards value from the edge environment, and
executes actions based on the status. Then, the status transitions to the
next state according to the actions performed, and return the rewards
value of the action. The rewards value is calculated by (14).

is used to describe the edge layer environment. Meanwhile,
we define action matrix as the outputs of actor network.
Therefore, the 4 × k × k dimensional state matrix can be
regarded as the input of the actor network. In addition, the
5× k × k dimensional state-action matrix can be seen as the
input of the critic network.

Fully convolutional network is used to constitute actor
network and critic network in the traditional DDPG method.
However, fully convolutional network needs to store a large
number of parameters when processing large-dimensional
input and output tasks, which is not conducive to deployment
at the edge. At the same time, fully convolutional network is
less able to perceive the features of matrix data compared to
convolutional neural networks.

In order to overcome the above drawbacks, ESPN (Edge
Status Perception Network) is proposed to extract the status
feature of the edge layer. ESPN is divided into ESPN-actor
and ESPN-critic. ESPN-actor is composed of fully convo-
lutional network and deconvolutional neural network. Fully
convolutional network is used to extract the status features
of edge layer and input the feature information to the decon-
volutional neural network. While the deconvolutional neural
network is used to output actions. ESPN-critic is used to eval-
uate the actions generated by ESPN-actor. The first 10 layers
of ESPN-critic have the same structure as ESPN-actor, but the
second half of ESPN-critic also uses fully convolutional net-
work for feature analysis to obtain a value estimate. In order
to improve ESPN’s ability to perceive high-dimensional fea-
tures, we use a residual structure in the convolution layer of
ESPN. The structure of ESPN is shown in Fig. 6.

The output layer of ESPN-actor uses the tanh activation
function, while the output layer of ESPN-critic uses the sig-
moid activation function to fit the reward value. In order to
enable ESPN to extract the input features exhaustively, we use
the LeakyRelu (α = 0.1) function as the activation function
of the hidden layers.

C. DDPG-ESPN ALLOCATION METHOD
To the problem (11), we convert it to MDP, and use ESPN
for edge layer status perception and action output. Com-
pared with the DQN-Based methods, DDPG-Based methods
can output continuous actions. Therefore, the DDPG-Based
method can reduce the output dimension of the action output
network and improve the efficiency of algorithm operation.

The training process of the DDPG-ESPN model is divided
into ESPN-actor and ESPN-critic. The actor network is used
to output actions, while the critic network is responsible
for evaluating actions based on the feedback environment.
We define π (s|θπ ) and Q(s, a|ωQ) represent ESPN-actor and
ESPN-critic network respectively. θπ is the parameters of
actor net, while ωQ denotes the parameters of critic network.
π ′(s|θπ

′

) and Q′(s, a|ωQ
′

) denote the ESPN-actor target net-
work and ESPN-critic target network respectively. The struc-
tures of these two target networks are the same as those of
the ESPN-actor and ESPN-critic networks. The framework
of DDPG-ESPN is shown in Fig. 7.

When the DDPG-ESPN model starts to train, it is neces-
sary to build ESPN-actor network and ESPN-critic network
separately, and initialize its parameters randomly. Then clone
these two networks and parameters as the ESPN-actor target
network and ESPN-actor target network. Finally, the agent
uses the ESPN-actor to generate actions based on the edge
environment and generate rewards r(t). Meanwhile, the edge
environment enters the next states s(t + 1), (s(t), a(t), r(t),
s(t + 1)) is stored in the experience replay buffer. After
a certain number of samples are stored in the experience
replay buffer, the agent samples mini-batch samples from the
experience replay buffer.

When the samples are sampled, the ESPN-actor target
network first predicts the action a′(t + 1) based on s(t + 1).
Then Q′(s(t + 1), a′(t + 1)|ωQ

′

) is fitted by the ESPN-critic
target network, and the target Q value is calculated:

y(t) = r(t)+ γQ′(s(t + 1), a′(t + 1)|ωQ
′

) (15)
where, γ is the discount rate.

In each mini-batch, the critic network is updated according
to the target Q value. The loss function is:

loss(ωQ) =
1

Nmini

Nmini∑
t=1

(y(t)− Q(s(t), a(t)|ωQ)) (16)

where, Nmini denotes the number of mini-catch samples.
Update the parameters of the ESPN-actor network through

the policy gradient:

∇θπ ≈
1

Nmini

Nmini∑
t=1

∇aQ(s(t), a(t)|ωQ)|s=s(t),a=π(s(t))

×∇θππ (s(t)|θπ ) (17)
In order to ensure the stability of training, the parameters

of target network need to be soft updated:

θπ
′

= δθπ + (1− δ)θπ
′

(18)
ωQ
′

= δωQ + (1− δ)ωQ
′

(19)
where, δ is the update rate.

The training algorithm is shown in Algorithm 1.
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FIGURE 6. The structure of ESPN-actor and ESPN-critic.

FIGURE 7. The framework of DDPG-ESPN. The entire DDPG-ESPN needs
training four networks, including ESPN-actor network, ESPN-actor target
network, ESPN-critic network, and ESPN-critic target network.

D. THE TIME COMPLEXITY OF ESPN
DDPG-ESPN is proposed to allocation the edge computing
resource. The whole method is deployed on the Cloud servers
for training. When it deployed on the management nodes
at edge environment, only the ESPN-actor is used to per-
ceive the edge status and make decisions. Therefore, the time
complexity of DDPG-ESPN for edge resources allocation is
mainly influenced by the time complexity of ESPN-actor.
Hence, we only analyze the time complexity of ESPN-actor
for simplicity. The time complexity of ESPN-actor is ana-
lyzed by calculating FLOPs (Floating Point Operations)
during inference.

The time complexity of convolutional is shown in (20):

FLOPconv =
M2K 2NCin

S
(20)

Algorithm 1 Training Process of DDPG-ESPN
1. Initialize the ESPN-actor and ESPN-critic network π (s|θπ ) and

Q(s, a|ωQ) respectively. Randomly initialize the weights θπ and ωQ
respectively.

2. Initialize target net π ′(s|θπ
′
)Q′(s, a|ωQ

′
) and by clone ESPN-actor

and ESPN-critic respectively.
3. Initialize replay buffer R
4. for episode = 1 to max _episode do
5. Reset environment randomly;
6. for t = 1 to max_time_slot do
7. Obtain s(t) from edge environment;
8. Get action a(t) from actor network and carry out it in manage

node;
9. Obtain reward r(t) and state s(t+1) from environment;

10. Store (s(t), a(t), r(t), s(t+1)) to R
11. if R is full then do
12. Get action a(t+1) by target action network;
13. Get Q’ value from s(t+1) and a(t+1) by target critic network
14. Get y by (15)
15. Update ωQ by (16) with Adam [37] optimizer;
16. Update θπ by (17) with Adam optimizer;
17. Update the weights of target networks in the critic and actor

networks by (18)(19).

where,M is the size of input feature map; K denotes the size
of filter; Cin is the number of input channels; N is the number
of filters.

The time complexity of deconvolution is shown in (21):

FLOPdeconv = M2K 2NCin (21)

By (19), the time complexity of the first layer of the
ESPN-actor can be calculated as follows:

FLOPconv1 = 4M2K 2N (22)

where, Cout1 represents the output channels of the first con-
volutional layer.

The time complexity of the Resblock is shown in (23):

FLOPRes = 3.5M2Nresconv1 (23)

where, Nresconv1 is the number of the first convolutional layer
of Resblock.
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From (20) to (21), the time complexity of ESPN-actor can
be calculated as follows:

FLOPESPN−actor = 92M2N 2
+ 44.875M2N (24)

By (24), the time complexity of ESPN-actor (the details
is shown in TABLE 3) is 0.392GFLOPs for an input size of
4 × 64 × 64. The time complexity of ESPN-actor is much
smaller than that of YOLOv3-tiny [36] object detect model.
Hence, the time complexity of ESPN is not the main factor
that causing the computing latency of edge nodes.

VI. PERFORMANCE EVALUATION
A. EXPERIMENTAL SETUP
1) PARAMETERS SETTING OF EDGE COMPUTING
ENVIRONMENT
In an edge environment, we set up 50 edge computing nodes
and divide them into three levels according to their com-
puting capabilities, as shown in Table 2. We choose a node
with the highest computing power level as the management
node. We set the Industrial Ethernet bandwidth connected
to the edge node to 1000Mbps, and the video resolution to
720p. The DNN object detection model YOLOv3-tiny needs
38.97 GFLOPS for each frame of picture processed [36].
We set Dbusy = 40ms, Didle = 200ms, and select
1-20 pedestrians at the beginning of each training iteration,
and randomly distribute these pedestrians to 50 monitoring
areas. Each time slot will randomly increase or decrease a
pedestrian, but the number of pedestrians is always main-
tained at 1-20. We assume that only video is transmitted in
the edge network, and only object detection and resource
allocation algorithms are run in edge nodes. The latency
caused by memory access is ignored, and personnel detection
is regarded as the task goal.

TABLE 2. The computing capacity level of edge nodes.

2) PARAMETERS SETTING OF ESPN
The input shape of ESPN-actor is set to 4 × 64 × 64, While
the input size of ESPN-critic is 5 × 64 × 64. The details of
ESPN are shown in Table 3.

When deploying DDPG-ESPN at the edge, and only the
ESPN-actor network needs to be deployed at the edge node
for resource allocation. The computational complexity of the
ESPN-actor network is the main part of the computing cost
of edge node resource allocation. By analysis, the computa-
tional complexity of ESPN-actor is 0.392 GFLOPS, which
is much smaller than that of the target detection model.
Meanwhile, considering that the edge management node per-
forms resource allocation tasks when pedestrians cross the

monitoring areas. Therefore, the computing latency of ESPN-
actor is ignored for simplicity.

3) PARAMETERS SETTING OF DDPG
The parameters setting of DDPG is shown in Table 4.

The hardware and software environments used in this paper
is shown in TABLE 5.

B. PARAMETRIC ANALYSIS
The convergence of the DDPG-ESPN is highly dependent on
the training parameters. Reasonable parameters can not only
make the model converge faster, but also get higher rewards.

During the training process of the DDPG-ESPN, its
convergence is easily affected by the learning rate of the
ESPN-actor network. In this paper, the learning rate of ESPN-
critic network is fixed, and we investigated the convergence
performance of DDPG-ESPN by changing the learning rate
of the ESPN-actor network. As shown in Fig. 8, if the learning
rate is too large, the convergence process of DDPG-ESPN
will become unstable and the rewards will be lower. Mean-
while, if the learning rate is too small, the training process
of DDPG-ESPN will fall into local optimization, which will
slow down its convergence speed and make it difficult to
increase rewards. When we set lr_a = 0.0001, the conver-
gence performance of DDPG-ESPN is outstanding, and the
model obtains a higher average rewards.

The long-term rewards and short-term rewards of DDPG-
ESPN are affected by the discount factor. The larger the
discount factor, the more DDPG-ESPN focus on long-term
rewards, while the smaller the discount factor, the more
DDPG-ESPN focus on short-term rewards.

As shown in Fig. 9, the large discount factor allows the
model to focus on long-term rewards, resulting in low average
real-time in ‘‘busy’’ areas and low bandwidth usage for video
transmissions, while the excessive real-time performance of
the ‘‘idle’’ region causes a waste of computing resources.

When the discount factor is set to 0.99, the model is more
sensitive to short-term rewards, resulting in high average real-
time performance in ‘‘busy’’ areas, and low real-time per-
formance in ‘‘idle’’ areas. Meanwhile, the bandwidth usage
by video transmission is higher, which is likely to cause
interference to the transmission of other information.

When the discount factor is set to 0.995, the system allo-
cates computing resources to the edge layer more reasonably.
This discount factor avoids computing resources wasted and
poor real-time performance, which is caused by the excessive
or low allocation of computing power in the monitoring area.

C. SCALABILITY TEST
In order to verify the scalability of DDPG-ESPN, we set
a different number of edge devices based on the optimal
parameters in the previous part. The input size of ESPN-actor
is 4 × 64 × 64. Therefore, the maximum number of nodes
that can be managed by DDPG-ESPN is 64. The relationship
between the average reward obtained after ESPN conver-
gence and the number of edge nodes is shown in Fig. 10.
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TABLE 3. Details of ESPN.

TABLE 4. The parameters setting of DDPG-ESPN.

TABLE 5. The hardware and software environments.

As shown in Fig. 9, the fewer the number of nodes,
the fewer resources the system can schedule. Therefore, the
rewards for DDPG-ESPN after convergence are less with the
decrease of the number of edge nodes. However, the edge
environment will be complex when the number of edge nodes
is too large. At this time, the ability of edge environment
perception and action output are insufficient, which leads to a
reduction in rewards. Therefore, the optimal number of edge
nodes is between 40-60 based on Fig. 10.

D. PERFORMANCE COMPARISON
In order to verify the performance advantage of the proposed
method for edge computing resource allocation, we com-
pare DDPG-ESPNwith the A3C-Based method. A3C (Asyn-
chronous advantage actor-critic) is a Policy-based method,
which can output continuous actions like DDPG.We combine
A3C [33], [34] and ESPN to form the A3C-ESPN algorithm.
Meanwhile, an FCN is designed to construct DDPG-FCN and
A3C-FCN.We compare the performance of the four methods

FIGURE 8. The training process of DDPG-ESPN under different learning
rates of ESPN-actor. The lr_a denotes the learning rate of ESPN-actor.

by observing the latency and bandwidth usage of the edge
layer in different numbers of ‘‘busy’’ areas.

The more number of ‘‘busy’’ areas, the more edge comput-
ing power the system needs to allocate to the ‘‘busy’’ areas
for maintaining high real-time performance. Meanwhile, the
real-time performance of ‘‘idle’’ areas is also maintained.
As shown in Fig. 11, with the increasing number of ‘‘busy’’
areas, the latency has risen to vary degrees. The environment
feature perception ability of the agent is enhanced by ESPN.
Therefore, A3C-ESPN and DDPG-ESPN are able to extract
deep features of the edge layer for selecting a better resource
allocation policy. Compared with ESPN, the feature percep-
tion ability of FCN is weaker, and it is difficult for FCN
to deal with the high-dimensional output. It results in poor
resource allocation effect of A3C-FCN and DDPG-FCN.
However, as the number of ‘‘busy’’ areas rises, the computing
resources of edge layer are gradually depleted. At this time,
the impact of resource allocation methods on computing
latency is no longer significant, and the real-time perfor-
mance can only be improved by accessing more computing
resources.
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FIGURE 9. The performance of DDPG-ESPN influenced by different
discount factor. (a) The latency of ‘‘busy’’ areas (b) The latency of ‘‘idle’’
areas (c) The bandwidth usage.

To intuitively show the advantages of the proposedmethod,
the performance of different methods is represented by
numerical values. Considering the performance of each

FIGURE 10. Curve of the average convergence rewards and the number of
edge nodes.

TABLE 6. The average performance value.

method varies with the number of ‘‘busy’’ areas, the overall
performance of the method cannot be expressed as a certain
point value in the curve. Therefore, we used average perfor-
mance values to represent the performances of thosemethods.

The average performance values can be calculated by (25):

Pa =

Nn∑
s=1

Ps

Nn
(25)

where, the number of nodes is represented by s. Nn denotes
the maximum number of nodes. Ps represents the perfor-
mance index when the number of busy nodes is s. In this
paper, Nn is set to 30.
By (25), the average performance values of Average

latency of busy areas (Fig. 11 (a)), Average latency of idle
areas (Fig. 11(b)) and Bandwidth usage (Fig. 11(c)) are sum-
marized in TABLE 6.

As shown in TABLE 6, the performance of DDPG-ESPN
has a great improvement compared with other methods.
Compared with A3C-ESPN, the DDPG-ESPN’s Average
latency of busy area, Average latency of idle area and Band-
width usage are 9.11%, 10.75%, 20.28% lower respectively.
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FIGURE 11. The performance comparison of DDPG-ESPN, DDPG-FCN,
A3C-ESPN, and A3C-FCN. (a) The comparison of average latency of ‘‘busy’’
areas (b) The comparison of average latency of ‘‘idle’’ areas (c) The
comparison of bandwidth usage.

This result shows that the DDPG-based method is more
suitable for resource allocation in the edge environment pro-
posed in this paper. Compared with DDPG-FCN, the DDPG-
ESPN’s Average latency of busy area, Average latency

of idle area and Bandwidth usage are 14.72%, 17.72%,
33.47% lower respectively. The results show that ESPN
has stronger edge environment perception ability than FCN.
For A3C-FCN, the average performance value is the high-
est of the four methods. Compared with DDPG-ESPN, the
A3C-FCN’s Average latency of busy area, Average latency of
idle area and Bandwidth usage are 18.88%, 22.13%, 42.81%
higher respectively.

VII. CONCLUSION
In this paper, we propose DDPG-ESPN to allocate edge
resources of coal mine intelligent video surveillance system
in a cloud-edge cooperation environment. First, we designed
a cloud-edge cooperation framework in coal mine. Edge
computing is used for real-time intelligent surveillance video
analysis, and cloud computing provides model training and
data storage services for edge computing. Then, we analyzed
the latency problem caused by the intelligent inference at the
edge, and modeled the problem of joint minimizing latency
and bandwidth usage. Finally, the joint minimizing problem
is converted to MDP. To quickly solve the problem, the
DDPG-ESPN is proposed. In the future, we will research
the problems of latency and bandwidth usage caused by the
increased number of ‘‘busy’’ areas.

Although the edge resource can be allocated by DDPG-
ESPN, the processing latency still increase quickly with the
increase number of ‘‘busy’’ area. The reason for this may be
the insufficient computing resources of the edge. Meanwhile,
the resources of cloud server are not fully utilized. In the
future, we will optimize the cloud-edge computing environ-
ment to make full use of cloud computing resources. In addi-
tion, the resources of edge computing are still constrained,
therefore how to offload tasks to cloud servers and reduce the
latency as much as possible is the next research goal.
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