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ABSTRACT Lung cancer is reported to be the second most common cancer disease. This paper proposes
a comprehensive and comparative global and local feature extraction framework for lung cancer detection
using CT scan images. This framework consists of three main phases: data collection, global training and
testing, and local training and testing. A set of 1000 CT scan images is used in this study. During the global
training and testing phase, the collected images are preprocessed through image warping and cropping.
Global features are then extracted from images to represent each image with feature vectors, using ten
different image feature types. The feature vectors are then used to build detection models with six different
machine learning algorithms. In the local training and testing phase, each image is divided into a set of local
blocks. Those feature types that performed well in the global phase are then extracted from each of these
blocks, to represent each block with feature vectors. These feature vectors are then used to build detection
models for all of the image blocks, using the learning algorithms that performed well in the global phase. The
results show that the Gabor Filter, the Histogram of Oriented Gradients (HOG), and the Haar Wavelet feature
types outperformed the other seven feature types. The results also show that Support Vector Machine (SVM)
outperforms the other five learning algorithms. Of most importance, the proposed local feature extraction
approach outperforms the traditional global one. In the local phase, using SVM with Haar Wavelet features
achieved 90% accuracy, 88% sensitivity, and 91% specificity. Using SVM with HOG features achieved 88%
accuracy, 85% sensitivity, and 89% specificity. Finally, using SVM with Gabor Filter features achieved the
best accuracy, sensitivity, and specificity rates of 97%, 96%, and 97%, respectively.

INDEX TERMS CT scan, lung cancer, global feature extraction, local feature extraction, SVM, Gabor filter.

I. INTRODUCTION
Cancer is one of the most common and dangerous human
diseases. It involves the growth and the spread of abnor-
mal cells within the human body. It can be successfully
treated if discovered and diagnosed in its early stages [1].
In the normal biological process, older cells that become
damaged are replaced by new cells. Cancer occurs when this
process breaks down, and damaged cells are not replaced.
These abnormal cells can metastasize into other organs of the
body [2].

Lung cancer is one type of cancer that starts in the lung
tissue [5]. It is reported to be the second most common
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cancer [3]. Statistics for the 2011-2015 period showed that,
on average, 439.2 per 100,000 people were diagnosed with
cancer each year in the USA, and 163.5 per 100,000 people
died each year from that cancer [3]. In 2021, about 235,760
new cases and 131,880 deaths are expected in USA. In the
UK, about 44,500 people are diagnosed with lung cancer
every year [7]. In 2008, 1.37 million deaths were caused by
lung cancer [8], and in 2012, 1.6 million deaths [9], with an
increased rate of about 17% between 2008 and 2012.
Unfortunately, lung cancer often does not show any symp-
toms in its early stages. Symptoms appear in the later stages
of the disease [5], [7]. In the USA, only 17.4% of people
survive for 5 years after diagnosis without treatment, and
the percentage is lower in developing countries [3]. How-
ever, early detection and diagnosis of lung cancer leads to
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quicker recovery, makes the treatment less complex and less
expensive and (most importantly) increases the recovery rate
from the disease. In the USA, early diagnosis and treat-
ment can increase a patient’s 5-year survival time from 15%
to 65-80% [6].

Several methods are available to diagnose and detect lung
cancer, including blood tests, radiology tests, endoscopy pro-
cedures and biopsies. Each type of test has some advantages,
disadvantages, and some special applications. CT (Computed
Tomography) scanning can provide a fast test result without
pain, and it provides information about the tumor shape,
size, and location [4]. A CT scan is a 3-D image of the
inside of the body, produced by an x-ray machine that takes
multiple images of the same anatomical location from dif-
ferent angles [10]. In addition, a CT scan helps to evaluate
intrathoracic pathological conditions [11]. To detect lung
cancer, specialists typically perform a CT scan with a contrast
enhancing medium injected into the blood. This shows the
details in the lung more clearly [7]. Such a CT scan provides
detailed images of the patient’s chest, to allow for better
detection of lung cancer. [12].

Computer Aided Diagnosis (CAD) systems help a radiol-
ogist detect cancer in the images. These systems use image
processing and machine learning techniques to detect sus-
picious regions in radiograph images. Detection of these
regions helps doctors and specialists, who provide the final
interpretation of the images [13].

Researchers have proposed many different CAD systems
to detect and classify lung cancer within CT scan images [61].
A survey of these systems is provided in the next section.
These systems use several types of image features and
machine learning algorithms in an attempt to provide accurate
detection and classification. This raises the question of what
combination of image feature types and machine learning
methods works best.

This paper proposes a comprehensive and compara-
tive framework for evaluating and comparing computerized
global and local feature extraction methods for lung can-
cer detection in CT scan images. This framework compares
the effectiveness of ten different types of extracted image
features. It also compares six well-known machine learning
algorithms: Support Vector Machines (SVM), Neural Net-
works, K-Nearest Neighbors (KNN), Decision Tree, Random
Forest, and Naive Bayes. The purpose of building such a
framework is to determine the type of feature extractor, and
the learning method that provide the most accurate detection
system.

The rest of this paper is organized as follows. Section II
provides some background information and surveys the liter-
ature and related work. A theoretical framework for the pro-
posed research is presented in Section III. Section IV presents
the methodology of the proposed framework, providing a
step-by-step procedure that highlights the main contributions
of this work. Section V presents and discusses the results.
Finally, Section VI concludes the paper and presents some
future work directions.
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Il. BACKGROUND AND LITERATURE REVIEW

In this section, some background and information about lung
cancer is presented. Then, some related research studies in
lung cancer detection are briefly reviewed.

A. LUNG CANCER

Metabolic processes in the body use oxygen, which is
acquired through gas exchange between the air inside the
lungs and the blood. The lungs are spongy organs that take
in oxygen from outside. Because they are the first line
of defense, they are vulnerable to diseases, including lung
cancer [5].

Lung cancer starts when cells in the lungs grow abnor-
mally. It can start anywhere in the lungs, and it can spread
to other parts of the body. Smoking is one the main
causes of lung cancer, and it is the leading cause of cancer
deaths [5].

Unfortunately, lung cancer often does not show any symp-
toms in the early stages. Symptoms appear in the late stages
of the disease. These symptoms include coughing (especially
continuous coughing, and coughing with blood), shortness of
breath, chest pain, bone pain, and headache [5], [7].

There are two main types of lung cancers: Small Cell
Lung Cancer (SCLC) and Non-Small Cell Lung Cancer
(NSCLC) [5].

SCLC is less common and appears among heavy smokers.
It is also known as oat cell cancer. This type spread faster
than NSCLC, and thus, it is treated using chemotherapy and
radiation therapy [5].

NSCLC is more common and includes several types of
lung cancer such as squamous cell carcinoma, adenocarci-
noma, and large cell carcinoma. These subtypes are grouped
together because they are usually use the same treatment
procedure [5].

Doctors can distinguish these various types of lung cancer
through a microscope. Based on that diagnosis, they can
select an appropriate treatment [5].

Annual lung cancer screening (using low-dose CT scans)
is highly recommended for those with higher risk, such as
smokers and elderly people [5]. Additional tests are war-
ranted if the patient has symptoms. These tests include a
breathing test using spirometer device, a blood test, and a
chest X-ray. These tests help determine if the symptoms
are from other possible diseases, such as a chest infection.
A chest X-ray can also detect the cancer as a white-grey
mass [7].

Once the patient is diagnosed with cancer, a CT (Computed
Tomography) scan is employed to get a clear image of the
inside of the body, and the location and size of the tumor. This
CT scan is a 3-D image of the inside of the body, taken with
an X-ray machine that takes multiple images, from different
angles, of the same anatomical location [10]. In addition,
a CT scan can reveal other intrathoracic pathological condi-
tions [11]. To detect lung cancer, a specialist uses a CT scan
with a contrast enhancing medium injected into the blood,
which shows the details of the lung more clearly [7]. The
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CT scan images the patient’s chest, allowing for detection of
cancerous tissues [12].

More background information about lung cancer can be
found in [5] and [7].

To sum up, early detection and diagnosis of lung cancer
leads to quicker recovery, makes the treatment less com-
plex and less expensive and (most importantly) increases the
recovery rate from the disease. Thus, the focus of this work
is to use CT scan images, along with image processing and
machine learning techniques, to provide earlier detection of
lung cancer.

B. LUNG CANCER DETECTION USING CT SCAN IMAGES
To detect lung cancer, researchers have implemented many
different techniques to process the images, extract features
and apply machine learning algorithms.

For example, Jin et al. [37] proposed a CAD system that
used image segmentation to extract the regions of interest
from CT scan images, and then used a convolution neural
network as a classifier, to detect pulmonary nodules. Their
system achieved an accuracy of 85%.

In [54], the authors developed a CAD system to detect
lung nodules using a genetic algorithm. First, they segmented
the CT images to detect the regions of interest (ROIs) based
on the density values of pixels within the image. Then they
employed various thresholds to scan the pixels in all direc-
tions. After reducing the number of ROIs (based on upper
and lower slices) they used a genetic algorithm to classify
each nodule. A sensitivity of 93.4% on 276 CT scan images
was achieved.

Shafiei and Fekri-Ershad [55] used textural features and
morphological operations to detect lung cancer in CT scan
images. They used the super pixel algorithm to cluster the
images, followed by morphological operations. Then, they
used the active contour algorithm to identify the tumors in the
images. Their system achieved a Dice Similarity of 84.88%.

In [39], the authors proposed a new methodology to detect
nodules in lungs. They relied on 128 features, based on
intensity, shape, texture, and context features. They achieved
a sensitivity of only 80%. They compared the performance of
SVM against the K-Nearest Neighbor classifier, and the Near-
est Mean classifier. Based on their work, SVM outperformed
the other methods.

Gonzalez and Ponomaryvo [40] proposed a CAD system
to classify lung cancers into benign or malignant. The pro-
posed system included four steps: (1) preprocessing, (2) lung
segmentation, (3) nodule detection, and (4) classification.
In the preprocessing step, they calculated several masks,
using thresholding techniques and morphological operations.
To determine the Region of Interest (ROI), they used priori
information and the Hounsfield Unit (HU) scale, which uses
area, eccentricity, circularity, and fractal dimension as fea-
tures. For classification, the system uses the SVM algorithm.
They reported an accuracy of 78.08%.

In [41], the authors developed a new CAD system. They
randomly selected 420 cases from LIDC-IDRI database. The
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system used the Watershed technique to detect possible nod-
ules and to distinguish them from other structures. The His-
togram of Oriented Gradients (HOG) technique was used
for feature extraction. To reduce false positives, it used a
rule-based classifier and SVM. Using 10-fold cross valida-
tion, they achieved a 93.9% sensitivity.

Silva et al. [22] developed a CAD system to detect lung
nodules. SVM was used as a classification method, which was
applied to 33 exams. Their proposed methodology achieved
an accuracy of 95.21%.

The authors in [42] used the Random Subspace
Method (RSM) to build a CAD system. They used a
two-step supervised learning system, which employed RSM
to detect pulmonary nodules in lungs. From a database
of 125 samples, they extracted 216 features, and built a
classifier based on RSM, and genetic-algorithm-based fea-
ture selection. Their proposed system achieved an accuracy
of 88.9%.

Mean clustering was used in [43] to detect lung cancer.
The authors used EK-Mean clustering to detect and classify
lung tumors. First, they removed the noise using a median
filter. Then, they used a K-means algorithm for clustering
and segmentation. They then used a gray-level co-occurrence
matrix (GLCM) method to extract features, such entropy,
correlation, homogeneity, PSNR, and SSIM. Their system
achieved an accuracy of 90.7%.

Aggarwal et al. [38] used Linear Discriminate Analy-
sis (LDA) to classify nodules in lungs, and to distinguish them
from normal anatomy. They used thresholding and gray-level
characteristics for segmentation. An accuracy of only 84%
was obtained using this system.

Marker-controlled watershed segmentation was used
in [44] to detect lung cancer from CT scan images.
To enhance the image quality, it used Gabor filters as a
preprocessing step. A 90% accuracy was achieved in their
system.

A thresholding algorithm was used as a segmentation
method in [45]. The authors used a 3-step process to detect
lung nodules. First, they used a thresholding algorithm to
segment the lung region in CT data. Second, they removed
the lung vessels by using an active contour model (ACM).
Then, they detected the nodules using a selective shape filter.
Finally, they used a classifier to distinguish true or false
positive nodules, depending on features. This system had an
85% detection rate.

Liu et al. [56] used a thresholding and region growing algo-
rithm. They used pulmonary parenchyma for segmentation
and a circle shape descriptor for ROI extraction. The system
had 85.6% sensitivity and a 13.4% false positive rate.

Wook-Jin Choi and Tae-Sun Choi [47] developed a CAD
system to detect solitary pulmonary nodules. They used
optimal thresholding and neighborhood for segmentation.
To detect the nodule, they used multi-scale dot enhancement
filtering, and angular histograms. SVM was used for classi-
fication. The system produced a 97.5% sensitivity. However,
no other performance measures were reported.
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A deep learning approach was used in [48] to develop a
CAD system. The authors evaluated a deep belief network
(DBN), a convolutional neural network (CNN) and a scale
invariant feature transform (SIFT). The specificity of the
three methods were 82.2%, 78.7% and 66.8% respectively.

Shenglin Ma MD et al. [49] used data from 844 lung cancer
patients in their work. Four serum proteins were found with
high concentrations in the patients, compared to the normal
health conditions. This work obtained a 98.25% specificity.

C. OTHER CANCER DETECTION USING CT SCAN IMAGES
In [46], the authors proposed a novel Multiple Instance Learn-
ing (MIL) algorithm to detect gastric cancer with their CAD
system. Bag-level features (which look at characteristics of
the whole image) and instance-level features (which look
at the intensity and texture characteristics within the gastric
wall) were extracted as two-level features. The accuracy in
the system was 76.9%.

In [50], the authors used a decision tree technique to detect
breast cancer with their CAD system. In their system, they
used 24 features to discriminate malignant breast-cancers.
Their accuracy was 95.50%.

D. SUMMARY

Several CAD systems have been proposed in the literature for
cancer detection and classification within CT scan images.
Many different image feature types, as well as learning algo-
rithms, have been used. This raises the question of what
combination of feature types and learning methods works
best.

Moreover, CT scan images (like other medical images)
are special types of images, which are interpreted and diag-
nosed by radiologists based on anatomical regions within the
images. Normal content in some anatomical regions might
be abnormal in other regions, and vice versa. This suggests
that building local models for each anatomical region within
the images might be useful. However, there has been no
focus within the literature on anatomically-based local fea-
ture extraction and model learning.

This leads to our research question:

What image features and learning methods would be most
useful for building localized learning models for lung cancer
detection within CT scan images?

lll. THEORITICAL FRAMEWORK
In this section, the key concepts and terms of this work are
identified and explained.

A. CT SCAN IMAGES

There are several types of medical images. CT scan images
are commonly used in lung cancer detection. To build a suc-
cessful computer-aided cancer detection system, a balanced
data set that contains both normal and abnormal images is
needed. This allows the machine to learn the borders between
normal images and abnormal ones.
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B. IMAGE WARPING

Each CT scan image is captured by a particular type of CT
scanner. This produced a variety of different sizes and orien-
tations - each referenced to its own scanner’s x-y coordinate
system. For consistency, there is a need to align the results
of all the CT scans with a common reference anatomical
coordinate system, which replaced the original x-y coordinate
system unique to each CT scanner. The purpose of image
warping is to align the anatomical features in each image with
a common reference anatomical coordinate system.

C. IMAGE CROPPING

Since each CT scan image is captured differently, each image
could have some unwanted regions, such as regions that fall
outside the body. The purpose of image cropping is to remove
all such unwanted regions in images.

D. FEATURE EXTRACTORS

Several feature extraction methods are proposed in the lit-
erature [57], [58]. Candidates include intensity histogram,
histogram of oriented gradients, Gabor filter, entropy
filter, grayscale contrast, grayscale correlation grayscale
energy, grayscale homogeneity, standard deviation, and Haar
wavelet.

1) INTENSITY HISTOGRAM

This feature shows how often each pixel intensity value is
repeated within the image [30]. Thus, this feature depends on
the number of pixel intensity repetitions, without taking into
account the pixel locations within the image.

2) HISTOGRAM OF ORIENTED GRADIENTS (HOG)

This feature is computed as follows. The image is divided
into cells. Then the orientation of the gradient within each
cell is computed. Finally, a count is taken of each gra-
dient orientation, and a histogram is created from those
counts. [31].

3) GABOR FILTER
The image’s local spatial frequency content (i.e. texture) is
analyzed using a Gaussian window with a Gabor filter. [32].

4) ENTROPY FILTER
This feature is a statistical measure of the randomness of the
pixel values within an image. It is given by Equation (1) [33].

Entropy = — ) _ (plogy(p)) (1)
where:

p is the normalized histogram counts for the image.

5) GRAYSCALE FEATURES
Each of these features describe the image with a sin-

gle number. These parameters can be calculated using
Equations (2)-(5).

Contrast = Zjvg ZJNg (i —)?p ) (2)
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gives the intensity difference between a pixel and its neigh-
borhood. [33]

i9 ) — .
Correlation = Z Z P (4,J) — Urowlhcol 3)
HrowMcol

measures how a pixel is correlated to its neighborhood pix-
els. [33]

Energy =3 p (0.}’ @)
provides a measure of the uniformity of pixels. [33]
, p@.))
Homogeneity = e 5
8enei =D Tl ] ©)

measures the closeness of the elements within the gray level
co-occurrence matrix to its diagonal. [33]

where:

p (i, ) is the value of the pixel in row i and column j.

Irow 18 the mean of data across a row.

Icol 18 the mean of data across a column.

N is the total number of the pixels.

6) STANDARD DEVIATION
This feature is used in statistics to represent the variation or
dispersion of the data [34]. It is given by Equation (6).

00 ) — w?
N —1

Standard Deviation = \/ 2 (6)

where:
p (i, ) is the value of the pixel in row i and column j.
W is the mean of a set of data.
N is the total number of the pixels.

7) HAAR WAVELET

The 1D discrete signal of Haar Wavelet is defined using
Equation (7) below [35]:

1
1, for0<x < =

VO=11 for s =x<i )

0, otherwise

When applying the transform to 2D images, Equation (8)
is used [36].

fn @) =229 (22 ,) . i=H.V.D) @)

where H is the Horizontal components, V is the vertical
components and D is the Diagonal components.

E. LEARNING METHODS

Once image features are extracted, some method must be
found to learn the normal and abnormal regions in the
images. Several machine learning algorithms are available in
the literature. Well-known methods include Support Vector
Machines (SVM), Neural Networks, K-Nearest Neighbors
(KNN), Decision Tree, Random Forest, and Naive Bayes.
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1) SUPPORT VECTOR MACHINE (SVM)

The Support Vector Machine (SVM) method [14] classifies
our feature vectors into two separate groups (in this case
abnormal and normal) [15]. Classification is learnt by ana-
lyzing a set of labeled vectors, and the resulting learning is
then used to label unlabeled vectors, as being in one of two
classes [16].

Given training data (i.e. feature vectors for each image)
(xi, yi), where x; € R", and y; € {1, —1} [17], and the
two classes to be separated using SVM, this classifier finds
the best hyper-plane that partitions the vector space into two
regions. This hyperplane provides the largest possible margin
between the hyperplane and the nearest feature vectors in
each partition [18].

The hyper-plane can be defined using Equation (9) [18]:

fx)=xB+b=0 )

where:

B €R"

b is a real number

This hyper-plane separates the classes, and is called the
decision boundary. Any data point above this boundary is
considered of class 1 (x;8 + b > 0 then y; = 1), and any
data point below this boundary is considered of class —1 (x;
B+b < Otheny; = 1). The method computes the values of 8
and b, with largest possible margin. This type of classification
is considered linear SVM [19].

2) NEURAL NETWORKS
Our brains are networks of neurons, interconnected with
effectors (axons) and receptors (dendrites) [20]. The den-
drites are inputs and axon terminals are the outputs. Each
neuron includes a cell body that contains a nucleus and asso-
ciated dendrites. The axon is a long fiber. Complex processes
happen in the axon, using the inputs to get the outputs [21].
At the end of the axon are branches called axon terminals that
send the output signal to the dendrites on other neurons [21].
Artificial neural network is inspired by the human nervous
system. Consider a set of inputs x; and x>, and an output
y. The inputs and the output are connected with weighted
interconnection links w; and w,. The output can be calculated
using Equation (10).

y =f (wixy +waxz) (10

The weights refer to the strength of the connection between
the neurons [20].

A single-layer artificial neural network has a single output
layer [22]. Consider a network with n inputs and m outputs,
this leads to n x m weights, starting with wy; and ending with

Winn-
The output vector will be y = (y1,y2,...,Yym) and the
input vector will be x = (x1, X2, ..., X;). The single output

is then computed using Equation (11) [23]:

sm=1 (3 wwixi) (1)
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A multi-layer artificial neural network has one or more
hidden layer(s) between the input and output layers [22].
These hidden layers allow for non-linear relationship between
the input and the output of the network.

In this work, a multi-layer artificial neural network is used
with three hidden layers.

3) K-NEAREST NEIGHBORS

The k-nearest neighbors (KNN) classifier works as follows.
Each feature vector is assigned a label/class based on the
majority of the k-nearest neighbor vectors, using a distance
metric to compute the nearest neighbors [24].

A feature vector is compared to a set of labeled feature
vectors previously used as training data (prior data [25]). The
label for the feature vector is determined based on the major-
ity of nearby labeled feature vectors [26]. An odd number for
K is used [25].

The distance used in this work is Euclidean, which is
defined in Equation (12) [26]:

K
Euclidean distance = Zi:l (xi — yi)? (12)

In our work, different values for K were used, in an attempt
to find the optimal value [27].

4) DECISION TREE

A decision tree has three components: Root, Branch, and
Leaf. Each step of the decision process is based on one
element of the feature vector. The process starts at the Root,
proceeds through the Branches, and ends at the Leaf, which
represents the label [28]. Ideally, the Root node is based on
the most informative element of the vector [29].

5) RANDOM FOREST

The Random Forest learning method computes and builds a
set of multiple decision tree models to distinguish between
positive and negative instances. Each decision tree is built
based on a randomly selected instances of a given data
set [59].

During prediction, a feature vector is compared to the set
of decision tree models previously constructed. Prediction
results are collected from all decision trees. The label for the
feature vector is determined based on the majority votes of all
decision tree prediction results [59].

6) NAIVE BAYES

The Naive Bayes is a probability based supervised learning
method. It uses Bayes theorem to compute conditional prob-
abilities of any given instance to belong to each class label.
The instance is then assigned to the label with the highest
conditional probability [60].

Given a set of training instances represented as feature
vectors for each instance, and the set of possible classes
(C1, Cy...Cy), a feature vector x for any given instance to
be classified is assigned conditional probabilities for each
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possible class using Equation (13) [60].
p(C) x p (xICy)
rx)

An output label that is most probable is then assigned

to x based on the maximum a posteriori rule, using Equa-
tion (14) [60].

y = argmax p (C;) l_[p (X|Ci) (14)

p(Cilx) = (13)

F. PERFORMANCE MEASURES

It is possible to evaluate and compare the performance
of different image feature extraction methods and different
machine learning algorithms using the well-known 10-fold
cross validation method. In this method, each labeled feature
vector set is divided into ten partitions, where nine partitions
are used for training, and one partition is used for testing.
The process is repeated ten times such that each partition is
used for testing once [53]. This results in ten values for each
performance measure, which are then averaged.

Several performance measures can be used. Some
researchers in the field use an accuracy metric, while others
use sensitivity and/or specificity metrics.

Accuracy shows the ability of the system to distinguish
between abnormal and normal cases. Sensitivity shows the
ability of the system to identify the abnormal cases correctly,
and specificity shows the ability of the system to identify the
normal cases correctly [52]. These measures are computed as
follow.

TP + TN
Accuracy = (15)
TP+ TN + FP 4+ FN
. TP
Sensitivity = ———— (16)
TP + FN
Specificit N 17
ecificity = ————
PEeiy = TN Fp

where:

o True positive (TP): number of the abnormal cases that
are correctly diagnosed as abnormal.

« False positive (FP): number of the normal cases that are
incorrectly diagnosed as abnormal.

o True negative (TN): number of the normal cases that are
correctly diagnosed as normal.

« False negative (FN): number of the abnormal cases that
are incorrectly diagnosed as normal.

G. GLOBAL MODELS

To build global models, image features are extracted from the
entire image. Each of these extracted feature types is used
to generate a feature vector to represent each image. These
feature vectors are then used to compute and build the global
detection models.

H. LOCAL MODELS
To be able to localize the image regions with suspicious
content, images are warped, cropped, and then divided into
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(8) (c)
Global Phase Local Phase
(1) (2) (1) (2) (3)
Image Feature Image Image Regions of
Preprocessing Extraction Preprocessing Blocking Interest
() (Image Warping (Ten Image (Image Warping (Local blocks) (ROIs)
Bk and Cropping) Features) and Cropping)
Collection
(CT Scan Images) (3) (4) (4) (s) (e)
Learning Testing Feature Learning Testing
Extraction
(Six Learning (Performance (Best Image (Best Learning (Performance
Algorithms) Measures) Features) Algorithms) Measures)

FIGURE 1. Overall methodology.

a number of local blocks. Within each local block, image
features are extracted from the local block. Each of these
extracted feature types is used to generate a feature vector
to represent each local block. These feature vectors are then
used to compute and build the local detection models.

IV. METHODOLOGY

In this work, we propose a comprehensive and comparative
global and local feature extraction framework to build a detec-
tion system for lung cancer from CT scan images. It applies
multiple classification techniques to features extracted from
those images.

Figure 1 shows the overall methodology used in this work.
This methodology consists of three major sequential phases:
the Data Collection Phase, the Global Phase, and the Local
Phase. In the Data Collection phase, a set of CT scan images
is collected.

During the Global Phase, the collected images are pre-
processed (1) using image warping and cropping. Then ten
different types of global features are extracted from each
preprocessed image (2). This produces ten feature vectors
for each image. These feature vectors are then used to build
detection models using six different machine learning algo-
rithms (3). The result is 60 different detection models. The
performance of each detection model is then measured, and
compared with the other 59 models (4).

During the Local Phase, the images are preprocessed (1)
and then each image is subdivided into an array of local
blocks (2) which are used to define ROIs (3). Using the
types of image features that performed well during the Global
Phase, features are then extracted from each image block to
produce feature vectors (4). These feature vectors are then
used to build detection models for the image blocks, using
the learning algorithms that performed well in the Global
Phase (5). In this third phase, we experiment with different
numbers of blocks per image (including a single block, i.e.
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global approach) to determine the optimal number of blocks.
The performance of each detection model is then measured,
and compared with the other models (6).

A. DATA COLLECTION

A set of 1000 CT images were used in this work:
500 abnormal cases and 500 normal cases. The images were
selected randomly from thousands of images from TCIA
database [51].

These CT scan images were taken after the patients were
diagnosed, but before any treatment or surgery. Each image
represents a single slice from the stack of slices produced by
a CT scan. The thickness of each slice is between 3 and 6 mm,
depending on the CT scanner. This TCIA database contains
more than 4000 images from different patients.

B. GLOBAL PHASE

In the global phase, we train our system to detect lung cancer
from the CT scan images. This is done in three stages (as
shown in Figure 1): preprocessing, feature extraction, and
learning. The resulting learnt model is then used in the testing
phase for performance evaluation.

Several feature extraction methods and learning models are
used. This work compares the performance of each feature
extraction method and each learning method for building the
final lung cancer detection model.

1) IMAGE PREPROCESSING

In this stage, two image preprocessing steps are applied
to each image in our data set: image warping and image
cropping.

a: IMAGE WARPING

To align the anatomical features in each image with a
common reference anatomical coordinate system, we first
selected one image, and manually marked 19 anatomically-
based control points within the image, as shown in Figure 2.
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FIGURE 2. Image warping.

(These control points were corner points that surrounded the
lungs, and corner points that surround the heart.) We then
used these 19 control points to warp the images, so that they
aligned with the corresponding control points in our reference
anatomical coordinate system, as shown in Figure 2.

A MATLAB software tool was used to mark the control
points within the reference anatomical coordinate system
image (right side of Figure 2) and the image to be warped
(left side of Figure 2).

We then computed a geometric transformation that aligns
the control points within the chosen image to those within our
reference anatomical coordinate system. Given the (x,y) pixel
coordinates for the 19 control points in the reference image,
and the (x,y) coordinates of the same 19 points in the chosen
image, a non-linear transformation was computed that warps
the chosen image to align its control points with those in the
reference image.

We computed and applied a geometric transformation to
each of the images in our 1000-image data set, to generate
warped versions of all the images. The resulting images
contain the same textural details as the original images, but
with their control points aligned to the ones in the reference
image.

b: IMAGE CROPPING

The warped image from the previous step is cropped.
Figure 3 shows an example of a cropped image. The crop-
ping points were the far-right and the far-left points, and the
highest and the lowest points.

2) FEATURE EXTRACTION
Extracted image features play an important role in our pro-
posed framework. In this paper, we compare the performance
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FIGURE 3. Cropped image.

of ten feature extraction methods. The features used in this
work are shown in Table 1.

For global feature extraction, we extract these ten feature
types from the entire image. This produces 10 feature vectors
for each image. These feature vectors are then used in the
learning phase.

3) LEARNING

Each of these ten extracted feature types is used to generate
a feature vector to represent each image. These ten feature
vectors are then used in the learning process to compute and
build the final detection model. To do so, several learning
algorithms are used. This work compares the performance of
six well-known machine learning algorithms: Support Vector
Machines (SVM), Neural Networks, K-Nearest Neighbors
(KNN), Decision Tree, Random Forest, and Naive Bayes.
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TABLE 1. Image features used.
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Feature
Intensity Histogram
Histogram of Oriented Gradients (HOG)
Gabor Filter
Entropy Filter
Grayscale Contrast
Grayscale Correlation
Grayscale Energy
Grayscale Homogeneity
Standard Deviation
Haar Wavelet

p—
<

4) TESTING
For each CT scan image, the same preprocessing and feature
extraction processes were applied. The learnt model is then
used to label each image as abnormal or normal

As stated earlier, in this work, we compare the performance
of ten different image feature extraction methods, and six
different machine learning algorithms.

To evaluate the performance of each of the 60 learnt mod-
els, a 10-fold cross validation method is used to compute three
performance measures: accuracy, sensitivity, and specificity.

C. LOCAL PHASE

In the Global Training and Testing phase, we compare the
performance of the ten types of extracted image features
and the six machine learning algorithms, and identify those
features and the learning methods that outperformed the other
features and methods. The Local Training and Testing phase
then uses those better-performing features and methods.

1) IMAGE PREPROCESSING
Image warping and cropping operations that were used in the
global phase are also used in the local phase.

2) IMAGE BLOCKING

In this stage, we divide each warped image into a number of
blocks, as shown in Figure 4. Within each block, we then use
the types of feature extraction that performed well during the
Global Phase. Each feature type produces b feature vectors
for each image, where b is the total number of blocks in the
image. Each of these b feature vectors can then be used to
label one block.

3) REGIONS OF INTEREST

To reduce the learning and training time, we go through all of
the 500 abnormal images to determine which blocks contain
suspicious content. Many of the blocks in abnormal images
do not contain any suspicious content, and thus, they are
not included in the feature extraction nor in the training and
learning processes. In other words, we only train models with
the blocks that contain suspicious content in the abnormal
images — those are our Regions of Interest (ROIs).
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FIGURE 4. Local blocks.

4) FEATURE EXTRACTION
In this stage, we apply the best feature extraction methods
(identified in the global phase) to each ROI.

5) LEARNING
In this stage we apply the best machine learning algorithms
(identified in the global phase) to each ROI.

6) TESTING

In the testing process, we use these models to label each
ROI (i.e. each block) in any given test image as normal or
abnormal. If any ROI within the test image is labeled as
abnormal, then that entire test image is labeled as abnormal.
Only if the none of the ROIs in the test image is labeled as
abnormal is that test image labeled as normal.

For training purposes, we would ideally like to have train-
ing sets that contain a balance in the number of abnormal
cases and normal cases. That is the reason that we chose
to use 500 abnormal CT scans, and 500 normal CT scans.
However, when CT scan images are subdivided into multiple
blocks, there are many more normal blocks than abnormal
blocks. In addition, for any given block, there might be only
10 abnormal blocks across the 500 abnormal images. This
leads to a large imbalance in the count of normal versus
abnormal blocks in the training set for that block.

This work avoids this imbalance problem in two ways:

(1) We chose our ROIs to be only the blocks with suspi-
cious content in at least 250 abnormal images (out of
the 500 abnormal images).

(2) We experiment with different block sizes, to find the
optimal number of blocks to define our ROIs for local
feature extraction. This allows merging neighboring
blocks, which in turn increases the number of suspi-
cious blocks in a local ROI across the images.

Table 2 presents the algorithm for our proposed local fea-
ture extraction approach.

V. RESULTS AND DISCUSSION
In this section, the detailed results (in terms of accuracy,
sensitivity, and specificity) are presented and discussed for
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TABLE 2. Proposed local feature extraction algorithm.

1 is the set of input images

I, = warp(l)
Ic = crop(l,)
fOl"b = bl, bz bn
B = blocks(I., b)
ROIs = RegionsOfInterest(B)

for each ROI
FV = FeatureExtraction(ROI)
Model = Learning(FV)

End for

P = Performance(Model, ROIs)
End for

Output b; with highest P
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FIGURE 5. SVM performance for global feature extraction.

the six learning methods, across the ten types of extracted
features using the global feature extraction approach and the
local feature extraction approach.

For the local feature extraction approach, the accuracy,
sensitivity, and specificity rates are presented and discussed
for different ROI sizes, ranging from a 1 x 1 block (i.e. the
global approach) to 20 x 20 blocks, using the image features
and the learning methods that outperformed others in the
global approach.

A. GLOBAL FEATURE EXTRACTION RESULTS

1) SVM LEARNING METHOD

Figure 5 shows the accuracy, sensitivity, and specificity per-
formance measures using SVM and global feature extraction
for the ten image features.

The results presented in Figure 5 suggest that the Gabor
Filter, the Haar Wavelet, and the HOG feature types outper-
form the rest of the feature types, when using SVM with
global feature extraction. Overall, the Gabor Filter achieved
the best performance measures, with accuracy, sensitivity,
and specificity rates of 80%, 81%, and 81%, respectively.
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Global Approach: Neural Network
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FIGURE 6. Neural Network performance for global feature extraction.

TABLE 3. The best k values in global feature extraction.

Image Feature Best £ | Best Accuracy
Intensity Histogram 15 0.51
HOG 1 0.60
Gabor Filter 1 0.65
Entropy Filter 7 0.56
Grayscale Contrast 1 0.45
Grayscale Correlation 9 0.46
Grayscale Energy 13 0.46
Grayscale Homogeneity 9 0.37
Standard Deviation 1 0.26
Haar Wavelet 15 0.59

2) NEURAL NETWORK LEARNING METHOD

Figure 6 shows the accuracy, sensitivity, and specificity per-
formance measures using the Neural Network with global
feature extraction for the ten image features.

The results presented in Figure 6 suggest that the Gabor
Filter, the Haar Wavelet, and the HOG feature types outper-
form the rest of the feature types, when using the Neural
Network with global feature extraction. Overall, the Gabor
Filter achieved the best performance measures with accuracy,
sensitivity, and specificity rates of 69%, 69%, and 66%,
respectively.

3) K-NEAREST NEIGHBORS LEARNING METHOD

This section presents the results of using the k-nearest neigh-
bors (KNN) learning method. However, we first conducted
several experiments to find the values of k that achieved the
best accuracy values for each type of image feature with the
global feature extraction approach.

Table 3 shows the values of k that achieved best accuracy
rates for each image feature with the global feature extraction
approach.

Figure 7 shows the accuracy, sensitivity, and specificity
performance measures using KNN with global feature extrac-
tion for the ten image features (using their best k values).

The results presented in Figure 7 suggest that the Gabor
Filter, the HOG, and the Haar Wavelet feature types
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Global Approach: K-Nearest Neighbors
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FIGURE 7. KNN performance for global feature extraction.

Global Approach: Decision Tree
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FIGURE 8. Decision Tree performance for global feature extraction.

outperform the rest of the feature types, when using KNN
with global feature extraction. Overall, the Gabor Filter
achieved the best performance measures with accuracy, sen-
sitivity, and specificity rates of 65%, 61%, and 70%, respec-
tively with a k value of 1.

4) DECISION TREE LEARNING METHOD

Figure 8 shows the accuracy, sensitivity, and specificity per-
formance measures using the Decision Tree with global fea-
ture extraction for the ten types of image features.

The results presented in Figure 8 suggest that the Gabor
Filter, the HOG, and the Haar Wavelet feature types outper-
form the rest of the feature types, when using a Decision
Tree with global feature extraction. Overall, the Gabor Fil-
ter achieved the best performance measures with accuracy,
sensitivity, and specificity rates of 58%, 54%, and 61%,
respectively.

5) RANDOM FOREST LEARNING METHOD
Figure 9 shows the accuracy, sensitivity, and specificity per-
formance measures using the Random Forest with global
feature extraction for the ten types of image features.

The results presented in Figure 9 suggest that the Gabor
Filter, the HOG, and the Haar Wavelet feature types outper-
form the rest of the feature types, when using a Random
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FIGURE 9. Random Forest performance for global feature extraction.

Global Approach: Naive Bayes
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FIGURE 10. Naive Bayes performance for global feature extraction.

Forest model with global feature extraction. Overall, the
Gabor Filter achieved the best performance measures with
accuracy, sensitivity, and specificity rates of 61%, 61%, and
62%, respectively.

6) NAIVE BAYES LEARNING METHOD

Figure 10 shows the accuracy, sensitivity, and specificity
performance measures using the Naive Bayes with global
feature extraction for the ten types of image features.

The results presented in Figure 10 suggest that the Gabor
Filter, the HOG, and the Haar Wavelet feature types out-
perform the rest of the feature types, when using a Naive
Bayes model with global feature extraction. Overall, the
Gabor Filter achieved the best performance measures with
accuracy, sensitivity, and specificity rates of 66%, 60%, and
71%, respectively.

7) THE BEST IMAGE FEATURE(S)

In order to identify the best image feature types, we aver-
aged the performance measures (accuracy, sensitivity, and
specificity) for each of the ten image feature types, across all
six learning methods. Figure 11 shows the average accuracy,
sensitivity, and specificity performance measures for the ten
types of image features, when using SVM, Neural Network,
KNN, Decision Tree, Random Forest, and Naive Bayes with
the global feature extraction approach.
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Global Approach: Average of Learning Methods
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FIGURE 11. Average of learning methods for global feature extraction.

Global Approach: Average of Best Features
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The results presented in Figure 11 suggest that the Gabor
Filter, the HOG, and the Haar Wavelet feature types outper-
form the rest of the feature types, with the global feature
extraction approach. Moreover, the Gabor Filter achieved the
best performance measures with average accuracy, sensitiv-
ity, and specificity rates of 67%, 64%, and 69%, respectively.

8) THE BEST LEARNING METHOD(S)

To identify the best learning method(s), we averaged the
performance measures (accuracy, sensitivity, and specificity)
for each of the six learning methods across the best three
types of image features identified in the previous section.
Figure 12 shows the average accuracy, sensitivity, and speci-
ficity performance measures for the six different learning
methods, when using the Gabor Filter, the HOG, and the Haar
Wavelet with the global feature extraction approach.

The results presented in Figure 12 suggest that SVM out-
performs the other five learning methods, with the global
feature extraction approach. It achieved the best performance
measures, with average accuracy, sensitivity, and specificity
rates of 72%, 71%, and 74%, respectively.

Taken together, the results presented in figures 11 and 12
suggest that the Gabor Filter, the HOG, and the Haar Wavelet
feature types used with SVM, outperformed the rest of image
feature types and learning methods, with the global feature
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FIGURE 13. SVM and Gabor Filter performance for local feature
extraction.

Local Approach: SVM + HOG
1.00

080

8

o
3

2

3

0.
0.
0.
0.

0.00 ||| ||| ||| ||| III

0.
1x1 Block (Global) 5x5 Blocks 10x10 Blocks 15x15 Blocks 20x20 Blocks

g

8

]
R
5]

o
o
=]

® Accuracy W Sensitivity ™ Specificity

FIGURE 14. SVM and HOG performance for local feature extraction.

extraction approach. Thus, they were used in presenting the
local feature extraction results in the following section.

B. LOCAL FEATURE EXTRACTION RESULTS

1) SVM WITH GABOR FILTER

Figure 13 shows the accuracy, sensitivity, and specificity
performance measures using SVM and the Gabor Filter with
local feature extraction, using ROI arrays sizesof 1 x 1,5x 5,
10 x 10, 15 x 15, and 20 x 20 blocks. Note that an ROI array
size of 1 x 1 is equivalent to the global feature extraction
approach for SVM and the Gabor Filter.

The results presented in Figure 13 suggest that an ROI
array size of 10 x 10 blocks outperforms all the other array
sizes, when using SVM and the Gabor Filter with the local
feature extraction approach. It achieved the best performance
measures, with accuracy, sensitivity, and specificity rates of
97%, 96%, and 97%, respectively.

2) SVM WITH HOG

Figure 14 shows the accuracy, sensitivity, and specificity per-
formance measures using SVM and HOG with local feature
extraction using ROI array sizes of 1 x 1,5 x 5, 10 x 10,
15 x 15, and 20 x 20 blocks. Note that the ROI array size
of 1 x 1 represents the global feature extraction approach for
SVM and HOG.
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Local Approach: SVM + Haar Wavelet
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FIGURE 15. SVM and Haar Wavelet performance for local feature
extraction.

The results presented in Figure 14 suggest that an ROI
array size of 10 x 10 blocks outperforms all the other sizes,
when using SVM and HOG with the local feature extraction
approach. It achieved the best performance measures with
accuracy, sensitivity, and specificity rates of 88%, 85%, and
89%, respectively.

3) SVM WITH HAAR WAVELET

Figure 15 shows the accuracy, sensitivity, and specificity
performance measures using SVM and the Haar Wavelet with
local feature extraction using ROI array sizes of 1 x 1,5 x 5,
10 x 10, 15 x 15, and 20 x 20 blocks. Note that the ROI array
size of 1 x 1 block represents the global feature extraction
approach for SVM and the Haar Wavelet.

The results presented in Figure 15 suggest that the ROI
array size of 10 x 10 blocks outperforms the other sizes,
when using SVM and the Haar Wavelet with the local feature
extraction approach. It achieved the best performance mea-
sures with accuracy, sensitivity, and specificity rates of 90%,
88%, and 91%, respectively.

C. OVERALL DISCUSSION

Taken together, the results presented in figures 13, 14, and
15 suggest that the local feature extraction approach with an
ROI array size of 10 x 10 blocks, when used with a Gabor
Filter, a HOG, or a Haar Wavelet feature extractor and with
SVM outperformed the rest of ROI array sizes.

The results also suggest that with local feature extraction,
an ROI array size of 10 x 10 blocks and SVM, the Gabor
Filter outperformed the other feature extractors.

Overall, the results presented in this work, which was
performed with a large data set of 1000 CT scan images, sug-
gests that the local feature extraction approach outperforms
the global one. It also suggests that the proposed method
performs better than the other methods cited in the literature
review section.

Specifically, the proposed research in this work is better
in comparison towards other methods in the literature for
several reasons. First, it uses larger data set than those in
the literature. Our work uses a large data set of 1000 CT
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scan images, while the cited work in the literature used less
than 500 images. For example, the work in [41], [42], [54],
and [55] used 420, 125, 276, and 400 images, respectively.

Second, our work achieved better performance when com-
pared with the cited methods in the literature. It achieved
accuracy, sensitivity, and specificity rates of 97%, 96%, and
97%, respectively. Although the work of [41], [47], and [54]
achieved a sensitivity rate of 93.4%, 93.9%, and 97.5%,
respectively, however, accuracy and specificity rates were not
reported.

Finally, our work builds localized learning models for lung
cancer detection, while the cited work in the literature used
global detection methods using different machine learning
algorithms [22], [39]-[42], [55]. Building such localized
learning models is very important in CT scan images, because
these images are interpreted and diagnosed by radiologists
based on anatomical regions within the images. Normal con-
tent in some anatomical regions might be abnormal in other
regions, and vice versa. In addition, our work compares the
effectiveness of ten different types of extracted image fea-
tures and six well-known machine learning algorithms. This
explains the importance of our proposed local feature extrac-
tion and learning method when compared with traditional
methods.

VI. CONCLUSION AND FUTURE WORK
In this work, we proposed to answer the following research
question:

Q: What image features and learning methods would be
most useful for building localized learning models for lung
cancer detection within CT scan images?

This work proposed a comprehensive and comparative
global and local feature extraction framework for lung cancer
detection using CT scan images. It compared between six
well-known machine learning algorithms, and ten image fea-
ture extraction methods, using global and local feature extrac-
tion approaches. Image warping was performed to allow
for anatomically-based local feature extraction and model
learning.

The results presented in this work showed that the Gabor
Filter, the Histogram of Oriented Gradients (HOG), and the
Haar Wavelet feature extraction methods outperformed seven
other feature extraction methods, and that a Support Vector
Machine (SVM) outperformed five other types of learning
algorithms.

The results also showed that the proposed local fea-
ture extraction approach outperformed the traditional global
approach. SVM with Haar Wavelet feature extraction
achieved 90% accuracy, 88% sensitivity, and 91% specificity.
SVM with HOG feature extraction achieved 88% accuracy,
85% sensitivity, and 89% specificity. SVM with Gabor Filter
feature extraction achieved the best accuracy, sensitivity, and
specificity rates of 97%, 96%, and 97%, respectively.

These results show that the proposed method performs bet-
ter than other cited methods within the literature not only in
achieving better accuracy, sensitivity, and specificity rates but
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also in terms of using a large data set of 1000 CT scan images
and building localized learning models for lung cancer detec-
tion. This suggests that using SVM with Gabor Filter feature
extraction could be useful for detecting suspicious regions
within CT scan images, to assist radiologists in detecting lung
cancer.

As for future work, more comparison algorithms will be
considered, and more data sets will be included.
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