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ABSTRACT The incidence of chronic kidney disease (CKD) is rising rapidly around the globe.
Asymptomatic CKD is common and guideline-directed monitoring to predict CKD by various factors is
underutilized. Computer-aided automated diagnostic (CAD) can play a major role to predict CKD. CAD
systems such as deep learning algorithms are pivotal in disease diagnosis due to their high classification
accuracy. In this paper, various clinical features of CKD were utilized and seven state-of-the-art deep
learning algorithms (ANN, LSTM, GRU, Bidirectional LSTM, Bidirectional GRU, MLP, and Simple RNN)
were implemented for the prediction and classification of CKD. The proposed algorithms were applied
based on artificial intelligence by extracting and evaluating features using five different approaches from
pre-processed and fitted CKD datasets. In this study, we have measured accuracy, precision, recall, and
calculated the loss and validation loss in prediction. Further, the study analyzed computation time and
prediction ratio, and AUC to evaluate the model performance along with statistical significance to compare
their performances. While classifying CKD, algorithms such as ANN, Simple RNN, andMLP provided high
accuracy of 99%, 96%, 97% respectively, and a good prediction ratio along with reduced time. The model
outperforms traditional data classification techniques by providing superior predictive ability. Subsequently,
the study proposed the integration of best performing DL models in the IoMT. This proposal will assist
predictive analytics to advance CKD prediction by using deep learning more efficiently and effectively. The
study is the first fundamental step toward a comprehensive performance assessment to classify and predict
CKD using deep learning models and its associated risk factors.

INDEX TERMS Artificial neural network, chronic kidney disease, classification, deep learning.

I. INTRODUCTION
CKD is one of the most crucial health concerns due to its
increased prevalence globally [1] and includes conditions
damaging the kidneys slowly and reducing the ability to
perform the essential functions of the body for a longer
time. CKD is associated with complications such as renal
failure, high blood pressure, anemia, nerve damage, etc [2].
An estimated 2.2 million people around the world are plagued
by renal failure. For instance, CKD has affected a large
portion of the population in developing countries such as
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Pakistan, India, Nepal, Bangladesh, Bhutan, Sri Lanka, and
Afghanistan [3]. In addition, 750,000 Americans suffer from
CKD every year [4]. It is alleged that multiple risk factors
(not limited to) such as the history of renal failure, high
blood pressure, or diabetes, etc. are required to monitor
each year for any abnormal test results [5]. Few blood
tests are commonly used to detect CKD; (i) determine the
glomerular filtration rate (eGFR), (ii) verify the concentration
of albumin in the blood and urine, (iii) measure the blood
urea nitrogen (BUN) index, and creatinine (CR) [6]. These
circumstances lead to two major concerns (i) reliability of
the screening test and ii) rising cost. First, there is no
conclusive evidence that relying on screening tests can help
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FIGURE 1. CKD progression in different stages.

one suspected patient to prevent the prognosis of CKD,
because the disease is highly dependent on epidemiology
and other clinical features. Second, CKD has no signs and
symptoms in its early stages, diagnostics testing is one of
the ways to distinguish whether a patient has renal disease
or not. Once diagnosed, the patients follow various stages
of CKD leading to end-stage renal disease (ESRD) which
requires kidney transplants or dialysis to save people’s lives
(Figure 1) [7]–[9]. Kidney transplants or hemodialysis are
very costly and many patients in under developing countries
cannot afford these treatments [10]. Health care has been
digitalized, which has resulted in the creation of vast new
data sets, and these are electronic medical record (EMR)
systems, health insurance claims data, x-ray, lab reports, etc.
Due to these vast available data, the conventional medical
facility shows a limited capacity to predict CKD effectively
and accurately. Hence, performing predictive health analytics
to harness data is imperative.

Predictive tools such as machine learning (ML) and deep
learning (DL) models/algorithms can be used to overcome
the limitations of traditional healthcare management [11].
Application of DL-based diagnosis may reduce unneces-
sary and invasive procedures to improve the efficacy and
sustainability of existing health care practices. Utilizing
DL’s knowledge discovery capabilities, such as data mining
and classification techniques, it is now possible to handle
massive and valuable data to improve medical diagnosis
and prognosis in decision making [9]. When health care
providers combine this information with other data sources,
they can create new solutions with the support of predictive
analytics for early CKD diagnosis, associated health risks,
and even prescriptive analytics for precision medicine. Early
detection of CKD can prevent ESRD progression which is
achievable by DLmodels prediction and subsequently reduce
the cost. The researchers used DL models and attained very
good performance in classifying chronic diseases such as
liver disease [12], heart disease [13], and kidney disease.
Moreover, the application ofDL algorithms helps to develop a
fast-acting, non-invasive, and easily accessible platform that
is comprised of various data related to kidney disease. This
usage of DL will eventually create a valuable supporting tool
for early, accurate and fast diagnosis of CKD.

Given that deep learning offers novel designs and better
performance in many domains, we firmly think that deep

learning has much to contribute to the field of CKD.
The study shows a detailed explanation of the technical
specifics of deep learning (DL) architectures along with a
comprehensive performance assessment of the DL methods
used to predict CKD. Five sets of feature selection/ranking
tools have been utilized and compared to incentivize the
application of DL methods. Further, the use of statistical
analysis proved the outcome more reliable and effective.
In addition, the study shed some insights into the application
to the development of a health monitoring framework that can
be used as an IoMT portal based on DL algorithms.

The goals of the research are to showcase how CKD can
be diagnosed efficiently through prediction and classifica-
tion by using DL algorithms. To achieve the goal, seven
DL algorithms- ANN, LSTM, GRU, Bidirectional LSTM,
Bidirectional GRU, MLP, and Simple RNN are proposed in
the study. These algorithms were then extensively compared
based on their accuracy and error(s) to classify CKD diseases.
Subsequently, prediction ratio and computational times were
calculated to evaluate the model performances. Further,
the statistical significance was carried out to validate the
outcome. The developed system and model were applied
to the CKD dataset, which is publicly available on the
UCI machine learning repository [14]. Therefore, the key
contributions of the study are as follows:

i) The study involved in comprehensive performance
assessment of seven DL models including simple
RNN, Bi GRU, and Bi LSTM, and GRU in predicting
and diagnosing CKD.

ii) Current data modalities were evaluated through
feature selection to establish the utility of feature
selection in DL models. These approaches have not
been explored extensively earlier relating to predicting
CKD.

iii) The study identified the risk factors associated with
CKD that can prevent disease progression to the
end-stage.

iv) Two statistical significance tests were further carried
out to establish the reliability of the performance
assessment.

The remainder of the paper is structured as follows:
Section II examines the related studies performed by
researchers using ML and DL algorithms along with gaps
in the extant literature. Section III discusses the proposed
algorithms along with detailed descriptions. Section IV
explains the experimental analysis and results. Further,
a detailed discussion along with limitations is presented in
Section V. Finally, Section VI summarizes the conclusion of
the research.

II. RELATED STUDIES
While examining the extant studies, it is evident that predict-
ing CKD has become a prime interest among researchers. The
studies emphasized the utilization of ML and DL algorithms.
However, the prominence of using deep learningmodels casts
interest among researchers in recent years.
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To monitor and diagnose chronic diseases, machine
learning-related techniques have been used [15]. For
example, the authors implemented seven machine learn-
ing algorithms including ANN and linear support vector
machine (LSVM) to predict CKD. They used the CKD data
set from the UCI repository. Three feature selection methods
(i) filter (ii) wrapper, and (iii) embedded method were used to
extract important features. Further, they obtained the highest
accuracy of 98.46% using LSVM [16]. Chen et al. [15]
applied three models to the UCI dataset. They used KNN,
SVM, and SIMCA (soft independent modeling of class
analogy) to calculate the patient’s risk. The SVM and
KNN models achieved the highest accuracy of 99.7% [17].
In addition, six classification algorithms; Naive Bayes, MLP
(Multilayer Perceptron), SVM, J48, and Decision Tree were
used to assess the accuracy and effectiveness of classification
of CKD. The results showed that MLP provided 99.75%
accuracy [18].

Notable DL algorithms/classifiers along with hybrid
versions were observed in the extant literature. The primary
focuses are on the fitness of utilizing DL methods and
discussing these methods’ performance in diagnosing CKD.
For instance, researchers used a sensor data set, extracted the
features, and classified CKD by applying a Convolutional
Neural Network-Support Vector Machine (CNNSVM). The
concentration of urea in the saliva sample was measured to
detect CKD. The study showed 96.59% prediction accuracy
for the proposed algorithm [19]. Another study utilized a
deep convolutional neural network (DNN) to distinguish
serum potassium levels from 449,380 patients observed at
Mayo Clinic’s Rochester, Minnesota and was consequently
confirmed using retrospective data from the Mayo Clinic
in Minnesota, Florida, and Arizona. The study used ECG
to detect hyperkalemia in CKD patients where the deep-
learning model detected hyperkalemia with high sensitivity
(90%) with an area under the curve (AUC) between 0.853 and
0.90 [20]. In another study, Heterogeneous Modified Artifi-
cial Neural Network (HMANN) was applied to describe the
different architectures, colors, and locations of kidney stones.
They achieved high accuracy (97.50%) and a substantial
reduction of the required time. They used kidney ultrasound
images to detect and segment kidney stones [6]. A Deep
Neural Network (DNN) classifier was used to predict CKD
and its severity level. The model classified CKDwith 98.25%
accuracy which later was increased to 99.25% by the PSO
(Particle Swarm Optimization)feature selection method [21].

Limited study has been observed on the study utilizing
the IoMT platform. Notably, a study emphasized an adaptive
hybridized deep convolutional neural network (AHDCNN)
for the early detection of kidney disease. CNN-based
algorithm model was implemented to improve the classi-
fication accuracy by reducing the feature dimension. The
model showed of 97% Accuracy. The study used a health
monitoring framework as part of the IoMT portal [11].
Another study developed Ensembling Multi-stage Deep
Learning Approach (EMSDLA) to assess tumors in the

kidney. For kidney and kidney tumors, the average Dice score
is 0.96 and 0.74 on 90 unknown test cases [22]. The study
claimed that the findings can advance tumor segmentation
on the IoMT platform. Further, the Adaptive Neuro-fuzzy
Inference System (ANFIS) was utilized to help determine
chronic renal failure. Based on the fuzzy method, ANFIS
networks estimated GFR with a high degree of accuracy [23].
Researchers utilized 10 ResNet models to predict eGFR
and 10 XGBoost models to classify CKD. The models
provided 85.6% accuracy.

Overall, we can assert that most of the researchers
essentially applied ANN and CNN-based models including
modified ANN and CNN to predict CKD, but the application
of a wide range of other DL algorithms i.e., Recurrent
Neural Network, SimpleRNN, LSTM, and GRU are missing.
Alongside, the performance evaluation among various DL
models is lacking in the extant literature. The reliance on
one model or its hybrid edition does not warrant the model
performance and so does its accuracy to predict CKD. The
risk factors of CKD need to be detected to prevent CKD
progression. Very limited ML and DL studies performed a
risk factor analysis of CKD. Hence, the study envisioned
to fill these gaps to apprehend whether proposed advanced
DL algorithms work efficiently to diagnose or classify CKD
coupled with how their performance can be evaluated. Thus,
the study emphasized seven deep learning algorithms along
with ANN andMLP to substantiate comparative performance
among the models to classify CKD accompanying risk factor
analysis.

III. RESEARCH METHOD
Figure 2 explains the research process/model along with
IoMT framework. The details are as below:

A. DATA RETRIEVAL, DESCRIPTION, AND CONCERN
The real-time data was collected from the UCI reposi-
tory [14]. In this dataset, the number of instances is 400.
From the test report analysis, 250 patients are affected in
CKD and 150 patients are not affected. As a result, each class
has 62.5% with CKD and 37.5% without CKD. This dataset
contains 25 attributes, where 11 attributes are numeric and
the remaining 14 are nominal (Table 1).

This is a small dataset with a small imbalance issue.
Subsequently, some concerns exist with the dataset, which
might be an overfitting or generalization problem, imbalance,
and the noise of the data. The researcher attempted various
strategies/techniques to handle these issues. P. Yang et al.
concluded that the ensemble technique is better than a single
classifier because it is better at reducing the chance of over-
fitting [24]. Three feature selection methods (Filter, Wrapper
method, and embedded methods) were adopted for feature
selection while utilizing machine learning algorithms [16].

B. DATA PRE-PROCESSING
Missing data in the medical data set to cause a threat utilizing
deep learning. It is generally believed that every attribute
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FIGURE 2. Proposed method.

in the medical data poses a significant impact on health
assessment. Hence, data pre-processing is the strategy that is
utilized to change over the raw data into a clean dataset. It is
the basic step to train every DL model/classifier algorithm.

For categorical string data columns, preprocessing was
done by converting them into categorical numeric data
columns. The categorical numerical data is defined as 0
(negative assertion) or 1 (positive assertion). For example,
in the data set, column ‘‘pc’’ was described as ‘‘normal ‘‘or
‘‘abnormal which were replaced to 1 and 0 respectively;
normal was defined as 1 and abnormal was defined as 0.

We performedmultiple imputations (MI) to fill the missing
values. The imputation process was based on linear regression
for predicting continuous variables, and logistic regression
for categorical variables. In multiple imputations (MI),
missing values in the dataset are replaced by n times, where
n is usually a small number (from 3 to 10). We applied MI
for 10 iterations to generate 10 different datasets. To narrow
down the data to a subset with a plausible range of values,
we choose the dataset that had the nearest means and
standard deviations for its variables to the original dataset.
Subsequently, the missing values for the entire data were
filled.

C. FEATURE SELECTION
It is essential to remove unnecessary features from the dataset
before training DL classifiers. Among feature selection
methods, there were Co-relation based Feature Selection

(CFS), (2) Recursive Feature Elimination (RFE), (3) Lasso
Regression, (4) Boruta Feature selection method. The
details of the five feature selection approaches/methods are
explained as follows:

1) WITHOUT FEATURE SELECTION (WFS)
We considered all features after filling all missing values in
the dataset and defined them as WFS datasets.

2) WRAPPER METHOD—CFS
CFS conducts attribute rankings based on the correlation
heuristic assessment function [28]. The function employs an
approach that generates two class labels, one associated with
class and one not

3) RFE
RFE is a wrapper-type feature selection method. RFE works
by exploring a various subset of features training dataset and
successfully eliminating features until the required number
remains. RFE utilizes the core of the model, ranks features
by significance, removes the least important features, and
re-fitts the model.

4) EMBEDDED METHOD—LASSO
Lasso Regression is a linear regression that lowers the
coefficients for input factors that have no substantial impact
on the prediction task. Later, Lasso allows some coefficient
values of features to go to zero, essentially eliminating input
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TABLE 1. Data attribute and description.

variables from the model and providing automatic feature
selection.

5) BORUTA
Boruta is a feature selection algorithm. Precisely, it operates
as a wrapper algorithm over Random Forest. Boruta uses an
all-relevant feature selection approach where it collects all
features which are in certain conditions important to the result
variable.

D. MODEL DESCRIPTION
We applied seven deep learning algorithms. Those are ANN,
LSTM, GRU, Bidirectional LSTM, Bidirectional GRU,
Multi-Layer Perceptron, and Simple RNN. Further, Adaboost
and perceptron are used to find out the significant risk factors
of CKD. The models are described as follows:

1) ANN
Artificial Neural Network (ANN) is a computational algo-
rithm developed like a human brain where neuron nodes are
interconnected like a web. ANN algorithm can be used for

TABLE 2. The selection of features using five methods.

both machine learning and pattern recognition. ANN can
learn from past data or example data for classification and
prediction. Figure 3 depicts the generic architecture of ANN.
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FIGURE 3. Sample architecture/process of ANN [25].

FIGURE 4. Sample architecture/process of LSTM [27].

There are 3 layers in ANN. These are (1) Input layer, (2)
Hidden layer, and (3) Output layer. The general equation of
ANN is:

a = f (net) = f (n) = f
(
wT .p+ b

)
= f

(∑R

i=1
wTR .pR + b

)
(1)

a = f(wT.p+ b) (1.1)

where f is the activation function, wT are the weights and b is
the bias term.

2) LSTM
Long short-term memory (LSTM) is a deep learning algo-
rithm that resembles Recurrent Neural Network (RNN)where
connections between nodes form a directed graph along a
chronological sequence [26]. LSTM is an algorithm that
can retain information for a long time. Depending on time
series data it can classify, predict and process data. LSTM
algorithms retain information with the support of cell and
memory manipulation with gates. Figure 4 describes the
generic architecture of LSTM

LSTM has three gates: 1. Input Gate(it), 2. Forget Gate(ft),
3. Output Gate (ot). The gate equations are as follows:
For gates,

it = σ (wi [ht = 1, xt ]+ bi) (2)

ft = σ
(
wf [ht = 1, xt ]+ bf

)
(2.1)

ot = σ (w0 [ht = 1, xt ]+ b0) (2.2)

FIGURE 5. Sample architecture/process of GRU [28].

For Cells,

c′t = tanh (wc [ht−1, xt ]+ bc) (3)

ct = ft ∗ ct−1 + it ∗ c′t (3.1)

ht = ot ∗ tanh (ct) (3.2)

Here,
ct = Cell state at timestamp (t)
c′t = Candidate of cell state at timestamp (t)

3) GRU
Gated Recurrent Unit (GRU) is an RNN algorithm that uses
the hidden states to transfer information. GRU algorithm uses
two vectors: weight (W) and unit (U). These two vectors
decide what information should take or not for the output.
Without removing it through time, they (two vectors) can be
trained to keep information for a long time. Figure 5 shows
the generic architecture of GRU The equation of gates is as
follows:

Update Gate(zt):
The formula for update gate is,

zt = σ
(
W (z)x1 + U (z)ht−1

)
(4)

Here, x_t is multiplied by its weight W(z) when it is
plugged into the network unit. The same process is going for
h_(t-1) were multiplied by weight U(z).

Reset Gate (rt):
The formula for update gate is,

rt = σ
(
W (r)x1 + U (r)ht−1

)
(5)

Here, the formula is the same as the update gate. The main
difference in weights and the usage of the gate.

4) BIDIRECTIONAL LSTM
When used in sequence classification, bidirectional LSTMs
offer an improvement over regular LSTM. Instead of one
LSTM, bidirectional LSTMs train two LSTMs on the input
sequence. Bidirectional run inputs in two ways past to future
and future to past. Figure 6 depicts the generic architecture of
Bidirectional LSTM.
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FIGURE 6. Sample architecture of bidirectional LSTM [29].

FIGURE 7. Sample of the process of bidirectional GRU [30].

First computes the forward hidden sequence Eht . Then
compute the background sequence �

h t . Finally generating two
computes Eht and

�
h t , we get an output: yt.

Eht = H
(
WxEhxt +WEhEhEht−1 + bEh

)
(6)

�
h t = H

(
WxEhxt +W�

h
�
h

�
h t−1 + b�

h

)
(6.1)

yt = WEhyEht +W�
hy

�
h t + by (6.2)

5) BIDIRECTIONAL GRU
A bidirectional GRU can be called BiGRU. GRU means
gated recurrent units. It is a sequence processingmodel which
consists of two GRU’s. It is a bidirectional recurrent neural
network (inputs in forward and backward direction) with only
the input and forgets gates. Figure 7 describes the generic
architecture of Bidirectional GRU.

Forward direction:
�(i)
ht (7)

�(i)
z =

�

∂
(
EW (z)
(i) x

i
t + U

(r)
(i) h

(i)
(t−1)

)
(7.1)

�(i)
r =

�

∂
(
EW (r)
(i) x

i
t + U

(r)
(i) h

(i)
(t−1)

)
(7.2)

�(ĩ)
h = tanh

(
EW(i)xt + rot U(i)Eht−1

)
(7.3)

FIGURE 8. Sample architecture/process of MLP [31].

�(i)
h = z(i)ot h(i)t−1 +

(
1− z(i)t

)o
h̃(i)t (7.4)

Backward direction:
�(i)
ht (8)

�(i)
z =

�

∂
(

�
W

(z)
(i) x

i
t + U

(r)
(i) h

(i)
(t−1)

)
(8.1)

�(i)
r =

�

∂
(

�
W

(r)
(i) x

i
t + U

(r)
(i) h

(i)
(t−1)

)
(8.2)

�(ĩ)
h = tanh

(
�
W (i)xt + r

o
t U(i)

�
h t−1

)
(8.3)

�(i)
h = z(i)ot h(i)t−1 +

(
1− z(i)t

)o
h̃(i)t (8.4)

Output:

yt = softmax
(
U
[�(top)
ht ,

�(top)
ht

]
+ a

)
(9)

here zt update gate, rt reset gate hti is new memory and h̃t is
reset the memory.

6) MLP
Multi-layer perceptron (MLP) algorithm can be used for
facilitating supervised learning of binary classifiers through
a linear classifier or an algorithm. There are 5 primary com-
ponents of perceptron: Input, Weights, Bias, Step function,
weighted summation. The features must be added to train in
the first layer as input. Later, the result of weights and inputs
are multiplied. Figure 8 describes the generic architecture of
MLP.

Bias value-added for shifting output function. The equation
of Perceptron is given below:

y = 1 if
∑n

i=0
wi ∗ xi ≥ 0 (10)

y = 0 if
∑n

i=0
wi ∗ xi < 0 (10.1)

Here x0 = 1 and w0 = −θ
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FIGURE 9. Sample architecture/process of simple RNN [32].

7) SIMPLE RNN
Simple RNN is the collection of neurons where it can
work with the variable length of sequences. RNN has been
considered as a state model for its feedback loop. The state
develops overtime for the nature of recurrence relation and
the feedback is used in the state with one timestep delay.
The delay feedback loop works as a memory causing it to
store information between timesteps. Figure 9 describes the
generic architecture of SimpleRNN. The recurrence relation
over time steps is given below:

Sk = f (Sk−1 ·Wrec + Xk ·Wx) . (11)

where Sk represents the state at k time.
Xk means input at k time.
Wrec and Wx are the weight parameter and free forward

nets. Sk is the final output of the network with k timestep,
which is typically calculated as Sk−i · · · Sk+j.

The current state Sk can be calculated from current input
Xk or else previous state Sk−1 and it can predict the next state
from Sk+1 where the current state is Skad current input is Xk.

8) ADABOOST
AdaBoost may be a collective learning process (also referred
to as ‘‘meta-learning’’) that was first shaped to raise the
productivity of binary classifiers. AdaBoost uses an iterative
tactic to soak up from the errors of weak classifiers and check
out them into strong ones. Figure 10 describes the generic
architecture of AdaBoost.

The overall equation for AdaBoost is summarized as

F (x) = sign

(
M∑
m=1

θm fm (x) 12

)
(12)

F_m = the m_th weak classifier
θm = corresponding weight

9) RANDOM FOREST
RF is a large-dataset aggregate classifier and regression
classification method that generates decision trees from a
randomly selected subset of training data and returns an
output class (i.e., which is the output of individual trees [30].
Even though RF can easily maintain thousands of input
attributes, there is no need to reduce variables during analysis.

FIGURE 10. Sample architecture/process of AdaBoost [33].

The estimation of variables important in classification is
provided by RF.

10) MODEL EXECUTION PROCESS
After collecting the data from the UCI repository, the adjusted
values of the model parameters were defined. Then the
dataset was randomly divided into a training set (80%) and
a validation or test set (20%). We selected the parameters of
the maximum average performance to build the model. Seven
deep learning algorithms were implemented and customized
to fit themodel with the dataset and find the best fit to perform
the analysis. We applied several input and output layers,
different activation functions, and different parameters for
model compiling and fitting. For ANN, we used hidden layers
where the activation function; Rectified Linear Unit (ReLU),
and sigmoid were used in input/hidden and output layers
respectively. In the case of GRU and bidirectional GRU,
4 layers of DL models which contain 50 units each were used
with 20% dropout for handling and overfitting. Similarly,
2 layers of DL models which contain 50 units each were
implemented with 20% dropouts for handling overfitting in
LSTM and, Bidirectional LSTM.

In the case of simple RNN and MLP, we used 2 layers
of DL models where 32 units were in the first layer with
20% of dropout. Sigmoid and ReLU (activation function),
Adam and SGD (optimizers) were used for model compiling
in ANN andMLP respectively. tanh as the activation function
to compile and fit parameters, SGD as an optimizer, MSE as
loss (mean squared error), and 200 epochs were applied in the
remaining models (LSTM, bidirectional LSTM, GRU, and
bidirectional GRU algorithm). ReLU as activation function,
RMSPROP as an optimizer, and MSE as the error was
implemented for SimpleRNN (Table 3).

We calculated accuracy, Precision, Recall, F1 score, the
loss and validation loss of the seven models, and visualized
the model performance through AUC-ROC curve. Further,
the study evaluates the prediction ratio and computation time
of the models. The parameter score of the current parameter
combination was used to compute the average performance.
We trained our data 200 times in the training set for each
model and tested it with the testing dataset. The optimum
model was predicated on the testing/verification set to obtain
the prediction result. After that, we made comparisons of
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TABLE 3. Models activation functions, optimizer, and loss.

TABLE 4. Confusion matrix.

the models with each other. All processing, visualization,
and computation were done on Google Collaboration using
python programming. The significance of the comparison
among DL models in terms of accuracy was evaluated
through Wilcoxon signed-rank test using R and the Deep
dominance test in python.

IV. EXPERIMENTS AND RESULTS
In this paper, we have presented the DL model-based predic-
tion of CKD. For classification of the disease, we evaluated
the accuracy, precision, Recall, and F1 Score, ROC curve
area, loss, and validation loss of the models. The results
of the performance of the seven algorithms are shown
according to four feature selection methods followed by
the performance without feature selection. We determined
the prediction ratio and computational time of each model
for a comprehensive understanding of the models. Finally,
statistical significance analyses were performed to evaluate
the reliability of the performance. In addition, AdaBoost and
perceptron algorithms are applied to find the significant risk
factors of CKD.

A. MODEL PERFORMANCE
1) CONFUSION MATRIX
For classification prediction, it is important to explain the
concept of a confusion matrix. A confusion matrix is defined
by 2×2 matrices, containing 4 attributes namely true positive
(TP), true negative (TN), false positive (FP), and false-
negative (FN) (Table 4) [21].

The most widely used prediction performance parameter is
accuracy. It measures the value of classified instances events
and is denoted in percentage (%). For greater classification
results, the accuracy should be close to 100%, as defined in

Eq. (13).

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(13)

Precision computes and estimates the number of positive
classes representing the truly positive class.

a. Recall calculates and predicts the number of positive
classes in the data set overall positive instances.

b. F1-score is calculated as the harmonic mean of
precision and recall for each model.

Precision implies the number of real positives which are
correctly classified as positives and is represented in Eq. (14).

Precision =
TP

TP+ FP
(14)

Recall signifies the number of real negatives which
are correctly classified as positives and are represented
in Eq. (15).

Recall =
TP

TP+ FN
(15)

The F-score is a measure of the testing process’ accuracy.
Precisions and recall sets are used to calculate the average.
The equation is expressed as:

f 1Score = 2×
Precision× Recall
Precision+ Recall

. (16)

FPR is applied to calculate the likelihood for a particular
test incorrectly by discarding the null hypothesis. It is the
proportion of negative instances predicted as positive in the
dataset. It is denoted in Eq. (17).

FPR =
FP

FP+ TN
(17)

TPR or sensitivity is the ratio of the number of positive
instances correctly categorized as positive to the total number
of correctly classified cases. It is denoted in Eq. (18).

TPR =
TP

FN + TP
(18)

FNR =
FN

TP+ FN
(19)

FNR is the miss rate of the model describing positive
instances classified as negative (Eq. 19) and this rate is
expected to be as close to zero. FPR indicates negative
instances classified as positive. Both FPR and FNR rates
should be as close to zero for a good performance.
Figure 11 shows the confusion matrix for each model while
taking all the attributes (WFS) of the data set. This matrix
shows the TP, FP, FN, TN of each model. We calculated
the False Positive Rate (FPR), and True Positive Rate (TPR)
of each model as it is important to know the FPR and the
FNR rate in each model. Also, Figure 11 shows the confusion
matrix with FPR and FNR for seven DLmodels with theWFS
dataset. ANN showed the lowest FNR and GRU showed the
highest FNR of 0.231. MLP and SimpleRNN also provided
low FNR;0.058,.038 respectively. The Confusion matrix of
the seven algorithms using the other four feature selection
methods is presented in the supplementary (Figure S1-S4).
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FIGURE 11. Confusion matrix for 7 DL models (WFS).

2) ACCURACY, PRECISION, RECALL, F1 SCORE
We used all the features, and selected features in the data
set through different methods, the models were fitted in
the training dataset, tested the testing dataset, and predicted
the CKD, it has been observed that SimpleRNN, MLP, and
ANN provided the highest performance in terms of Accuracy,
Precision, Recall, AUC, Loss, and Validation loss for all
applied FS and WFS method among all DL models. All
of these measurements should have values as close to 100.
We considered the classifier that handles the greatest score to
be the best classification algorithm.

a: WITHOUT FEATURE SELECTION (WFS)
Table 5 provides the experimental results of the proposed
seven DL model with the WFS method and represents the

different measures such as Accuracy, Precision, Recall, F1
Score, AUC, Loss, and Validation loss (errors) [34]. All
the models showed 80 to over 90% accuracy, where three
models showed 96-99% accuracy. Out of all algorithms,
ANN showed the highest accuracy of 99%. SimpleRNN
and MLP showed an accuracy of 97%, followed by LSTM
and Bidirectional LSTM-85% and 88% respectively, GRU-
85% and Bidirectional GRU-89%. ANN provided the highest
score for precision, Recall, and F1 score. SimpleRNN and
MLP also showed high scores for Precision, Recall, and
F1 measures. LSTM and GRU showed lower Precision
and F1 measures compare to other algorithms. While
predicting CKD disease, LSTM showed the lowest Pre-
cision (84%), and F1 score (84%), and Recall (86%and)
(Figure 12).
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TABLE 5. Performance comparison of DL models (WFS).

FIGURE 12. Graphical representation of performance comparison (WFS).

TABLE 6. Performance comparison of DL models (CFS).

b: CFS
Table 6 provides the experimental results of the proposed
seven DL classifiers with CFS data and represents the
different measures such as Accuracy, Precision, Recall, F1
Score, AUC, Loss, and Validation loss (errors) [34]. All the
models showed 80 to over 90% accuracy, where the two
models showed over 95% accuracy. Out of all algorithms,
ANN showed the highest accuracy of 97%, followed byMLP
and SimpleRNN-96% accuracy. Bidirectional LSTM, GRU,
and Bidirectional GRU achieved n accuracy of 85%. ANN
provided the highest value of Precision (97%), Recall (98%),

and F1score (97%). The values of Precision, Recall, and
F1 scores of Bidirectional LSTM, GRU and Bidirectional
GRU are the same i.e., 85% and 88%, 85% respectively.
While predicting CKD disease, these models show the lowest
Precision sand F1 measure score (Figure 13).

c: RFE
Table 7 provides the experimental results of the proposed
seven DL models and represents the different measures such
as Accuracy, Precision, Recall, F1 Score, AUC, Loss, and
Validation loss (errors) [35]. All the models showed 80% to

165194 VOLUME 9, 2021



S. Akter et al.: Comprehensive Performance Assessment of DL Models in Early Prediction and Risk Identification of CKD

FIGURE 13. Graphical representation of performance comparison (CFS).

TABLE 7. Performance comparison of DL models (RFE).

over 90% accuracy, where three models showed over 95%.
Out of all algorithms, ANN showed the highest accuracy
of 97%, followed by 96% accuracy of both SimpleRNN
and MLP. GRU, BidirectionalGRU, and Bidirectional LSTM
achieved the same accuracy(85%). Also, Table 7 shows
precision, recall, and F1 score for all DL models. ANN
showed the same percentage of Precision and F1 scores
(97%) and Recall (98%). The values of Precision, Recall,
and F1 scores of Simple RNN and MLP. Precision, Recall,
and F1 score are the same for GRU, Bidirectional GRU, and
Bidirectional LSTM i.e., 85%, 88%, and 85% respectively.
While predicting CKD disease, LSTM showed Precision
(87%), Recall (90%), and F1 score (87%) (Figure 14).

d: LASSO
Table 8 provides the experimental results of the proposed
seven DLclassifiers and represents the different measures
such as Accuracy, Precision, Recall, F1 Score, AUC, Loss,
and Validation loss (errors) [34]. All the models showed
80 to over 90% accuracy, where three models showed more
than 90 % accuracy. Out of all algorithms, ANN showed the
highest accuracy of 97%, followed by Perceptron-96%, and

Simple RNN-95%. LSTM, Bidirectional LSTM, and GRU
showed the same score for accuracy (79%), the accuracy of
BidirectionalGRU was 86%. ANN, MLP, and SimpleRNN
scored high Precision, Recall, and F1 scores. ANN achieved
the highest Precision, Recall, and F1 measure among all
models. The values of Precision, Recall, and F1 scores
of LSTM, Bidirectional LSTM, and GRU are the same;
81%, 84%, and 79% respectively, and these scores are low
compared to all other models (Figure 15).

e: BORUTA
Table 9 provides the experimental results of the proposed
seven DLclassifiers with Boruta method and represents the
different measures such as Accuracy, Precision, Recall, F1
Score, AUC, Loss, and Validation loss (errors) [34]. All
the models showed 80 to over 90% accuracy, where three
models showed 96-99% accuracy. Out of all algorithms,
ANN showed the highest accuracy of 99%. SimpleRNN and
MLP showed the accuracy of 97% and 96% respectively,
followed by LSTM and Bidirectional LSTM -86% and
88% respectively, GRU and Bidirectional GRU-84%. ANN
provided the highest score for precision, Recall, and F1 score.
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FIGURE 14. Graphical representation of performance comparison (RFE).

TABLE 8. Performance comparison of DL models (Lasso).

FIGURE 15. Graphical representation of performance comparison (Lasso).

ANN, SimpleRNN, and MLP also showed high scores for
Precision, Recall, and F1 measure. GRU and Bidirectional
GRU showed lower Precision and F1 measure compared
to other algorithms. While predicting CKD disease, GRU
showed the lowest Precision (84%), and F1 score (84%), and
Recall (83%) (Figure 16).

B. RECEIVER OPERATING CHARACTERISTIC (ROC)/REA
UNDER CURVE (AUC)
At different threshold settings, the AUC-ROC curve is
plotted to assess the performance of classification algorithms.
Receiver Operation Characteristics (ROC) denotes the proba-
bility and Area Under Curve (AUC) represent the separability
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TABLE 9. Performance comparison of DL models (Boruta).

FIGURE 16. Graphical representation of performance comparison (Boruta).

measure or degree. Higher AUC (close to 1) means better
performance to distinguish whether the patient has a disease
or not [35]. Figure 17 shows the AUC curve where the x
and y-axis represent FPR (False Positive Rate) and TPR
(True Positive Rate) respectively. Here, ANN, showed the
highest AUC in all features selected methods andWFSwhere
the value is from 0.97 to 0.99 (close to 1) indicating very
good performance. SimpleRNN, and MLP also showed high
AUC scores compared to other models. For Lass method
LSTM, GRU, Bidirectional LSTM, and bidirectional GRU
provided the same AUC of 0.84 which is the lowest in the
analysis.

So, the three DL algorithms: ANN, MLP, and SimpleRNN
performed superior to other deep learning algorithms in all
methods along with WFs considering all features.

C. LOSS AND VALIDATION LOSS
Loss is defined by the error that occurred during each
iteration (epoch) on the training dataset to predict the class of
CKD. Loss or error is also calculated for the testing dataset
and described as validation loss or val-loss. After completing
200 epochs (which entails the number of iterations), the loss
and validation Loss were measured for each model. Loss and
validation loss of the seven DL models is shown in Figure 18
(A-G) for WFS.

It is observed that both loss and validation loss is showing
a similar pattern for all the models. This indicates a perfect
fitting of the data to models. To highlight, SimpleRNN
showed minimum error as loss and validation loss among
all the models in four feature selection methods along with
the data without feature selection i.e., CFS-0.006, Boruta-
0.003, Lasso-0.0036, RFE-0.0123, and WFS-0.001 as loss
and CFS-0.02, Boruta-0.013, Lasso-0.044, RFE-0.01, WFS-
0.0186 as validation loss or Val_loss. ANN and MLP showed
low scores of loss and validation loss. The largest error as
loss and validation loss was achieved by LSTM in WFS,
Lasso, and RFE. GRU in CFS, Bidirectional LSTM in
Boruta also showed high scores for both loss and validation
loss. However, the difference between loss and validation
loss was very low for the DL models in all selection
methods suggesting the perfect fitting of data to the models.
Thus, we can conclude that models were not overfitted
to the training dataset (Table 5). The Loss and Validation
Loss results of the seven algorithms using the other four
feature selection methods are presented in the supplementary
(Figure S5 – Figure S8).

D. PREDICTION RATIO
The algorithm uses a training set of features and the asso-
ciated result to predict a given outcome (prediction results).
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FIGURE 17. ROC curves of DL models.

To improve prediction learning techniques, the proper
selection parameters for the tests of different classifiers need
to be determined. Hence prediction ratio determines the
ratio of correctly classified instances to incorrect ones for
a given data set. The study divided the whole data set into

eight segments containing 50 instances. Figure 19 shows the
prediction ratio of the seven DL algorithms. In the case of
WFS, CFS, and Boruta, it is observed that ANN, MLP, and
SimpleRNN showed a high prediction ratio for small datasets.
However, the prediction ratio of MLP drops to zero with
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FIGURE 18. (A-G). Error as loss of training dataset and error as validation loss of testing dataset are shown for seven deep
learning models using WFS. Here val_loss denotes the error as validation loss for the testing dataset.

a large dataset (300-400 instances). For other models, the
Prediction ratio was high with small data set, then reduced,
at last increased with a large dataset. For Laso and the
prediction ratio of MLP and Bidirectional GRU appears in

the opposite direction; the ratio drops a with higher data
set while the ratio increases to 100% with large data set.
This analysis shows that SimpleRNN and ANN performed
best compared to other models while predicting CKD
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FIGURE 19. Comparison of prediction ratio of DL models.

disease. For the remaining models, the prediction ratio varies
concerning different sets of data. In the case of 150 and
200 data sets, the prediction ratio dropped to ∼60-80% for
Bidirectional LSTM, GRU, and LSTM, and increased to
around 100% for 400 data sets.

E. COMPUTATION TIME
Performance is also verified by calculating the computation
time of all models. The time for the computation to
predict CKD is considered for each model with four
feature selection methods described earlier and also without
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TABLE 10. Wilcoxon signed-rank test results (WFS).

feature selection(WFS). The proposed ANN, MLP, and
Simple RNN models showed low computation time i.e.
10 sec, 11-13sec, and 21 sec respectively suggesting high
performance. Figure 20 demonstrates the computational time
of the implemented seven DL models comprehensively
with the method. Bidirectional GRU took the highest time;
91 sec with RFE and 90.63 sec with WFS. In Boruta,
LSTM, Bidirectional LSTM completed the prediction or
classification with more than 80 sec and GRU took ∼65 sec
(Figure 20).

F. STATISTICAL TEST OF SIGNIFICANCE
We performed a statistical test of significance to validate
the findings that are likely is real, reliable, and not occurred
by chance. To achieve so, the study used Wilcoxon signed-
rank test and calculated p-values among all models for all
feature methods along with WFS based on accuracy [36].
Table 10 depicts the results of the p-value for pair-wise
comparison of the models of theWFS dataset. To explain, the
p-value among ANN and other models (LSTM, Bidirectional
LSTM, GRU, Bidirectional GRU) is lower than 0.05
(p-value ∼0.003- 0.004) whereas the p-value among ANN
and two other models (SimpleRNN and MLP) is greater than
0.05 (p-value ∼0.07- 0.15). Similar results were observed
for SimpleRNN and MLP. Hence, the observed accuracy of
ANN,MLP, and Simple RNN is significantly higher than that
of other models to validate the outcome from the previous
findings. The Wilcoxon test results of the seven algorithms
using the other four feature selection methods are presented
in the supplementary (Table S1- Table S4).

G. DEEP DOMINANCE TEST
Along with the Wilcoxon signed test, the study performed
the deep dominance test to compare the performance of the
seven algorithms. The test determines ‘‘Almost Stochastic
Dominance’’ which follows a measurement of stochastic
dominance (between two Algorithms [37]. Each algorithm
was compared against the other, and deep dominance (ε) was

measured between 0 to 1.0. 0 that corresponds to perfect
stochastic dominance of one algorithm (X) over another
(Y) and 1 corresponds to perfect stochastic dominance of Y
over X. Table 11 shows the results from the Deep Dominance
test. The Deep Dominance test results of the seven algorithms
using the other four feature selection methods are presented
in the supplementary (Table S 5 – Table S8).

H. RISK FACTOR ANALYSIS
We identified the risk factors of CKD by using Perceptron
and AdaBoost Classifier models. Figure 21 shows the risk
factors of CKD using both models considering all the
features i.e. WFS). After preprocessing and normalizing,
both models were fitted to the CKD data, features were
ranked based on importance in predicting the class of the
disease [38]. Perceptron provided the full ranking of the
features (absolute values of the features were considered)
and Adaboost classifier model ranked 15 important features
which are as follows: ‘‘hemo,’’ ‘‘sc,’’ ‘‘sg,’’ ‘‘age,’’ ‘‘bu,’’
‘‘rc,’’ ‘‘bgr,’’ ‘‘pcv,’’ ‘‘pe,’’ ‘‘dm,’’ ‘‘wc,’’ ‘‘pot,’’ ‘al,’ ‘‘bp,’’
and ‘‘htn.’’ Random forest identified top 15 features, and
these are hemo, sg, pcv,sc, al Rc, htn, bgr, dm, bu, sod, su,
pot, pe, bp. While reviewing both models concerning top
15 features, it is observed that 9 features such as ‘‘hemo,’’
‘sg,’ ‘pe,’ ‘al,’ ‘dm,’ ‘htn,’ ‘bp,’ ‘sc,’ ‘pcv’ and depicted in
Figure 21. The importance and interrelation of these 9 factors
towards CKD progression have been substantiated in the
medical science and health domains [39].

I. IoMT PLATFORM
Hardware plays a critical role in IoMT. Various hardware
can be used to collect real-time data from CKD patients.
Data can be collected from a range of medical devices such
as ECG (Electrocardiogram) to provide heart monitoring
data, fitness tracker to provide data like stress, breathing,
Oxygen level, and glucometer to provide diabetes in blood,
and blood monitoring devices will provide the pressure of
blood (Figure 2). All these devices are interconnected via
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FIGURE 20. Comparison of computation time of DL models.

TABLE 11. Deep dominance test results (WFS).

the internet and are responsible for data transmission to the
cloud through connectivity technologies such as networks
and gateways. In many instances, data are uploaded from
time to time through an API (Application Programming
Interface) key for a secured connection. These API keys will
allow the specific devices to access and store data on the
IoT platform. Subsequently, deep learning models provide
health care professionals with data analytics, reporting, and
device control opportunities through software solutions. The
approach to utilize IoMT components to manage CKD
data and adopt a replicable application using deep learning
algorithms to predict CKD is proposed in the study.

V. DISCUSSION
The risk of CKD is increasing rapidly, and consequently
more people are suffering and dying due to a lack of
proper treatment. Moreover, CKD needs to be identified
at an early stage because late diagnosis leads to severe
consequences and treatment becomes highly expensive.
Perhaps, DL applications are key developments in recent
years to combat variousmedical diagnoses. These approaches
can potentially reduce the cost and treatment of CKD; due
to the advantage of the built-in feature engineering method
for DL algorithms, data is scanned through a faster learning
technique and researchers can get efficient results. Thus, the
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FIGURE 21. (A–D) Risk factor analysis with perceptron, AdaBoost and random forest. Figure 21 (D) the factors those fall in the three models.

efficacy of deep learning algorithms to predict CKD along
with identified risk factors has been shown in this study.
To demonstrate a comprehensive performance assessment,
we used seven deep learning algorithms on 400 CKD data
for predicting the class of CKD. The proposed methods
achieved high accuracy around 99%. In comparison, ANN,
MLP SimpleRNN achieved the highest accuracy in terms of
predicting CKD compared to other deep learning models that
include feature selection techniques- WFS, CSF, RFE, Lasso,
and Boruta. Overall, ANN (96%-99%), MLP (96%-97%),
and SimpleRNN (95%-97%) showed accuracy in all the five
feature selection processes. GRU provided an accuracy of
85% in RFE, and both Bidirectional GRU and Bidirectional
LSTM showed 85% accuracy in CSF. LSTM showed 89%
and 88% accuracy to predict CKD class in CFS and RFE
respectively. 85% accuracy was observed in the case of GRU
both in CSF and RFE.

It is evident that all the algorithms providedminimum error
around 0.1 and the error of both types i.e., loss and validation
loss decreased with longer time and iterations. The outcome
substantiates the best fitting of the data to all the deep

learning models. Overall, with all features (WFS) compared
to other algorithms, SimpleRNN showed the minimum
error for both the testing and training data i.e., 0.001 and
0.02 respectively. LSTM provided a maximum error of
0.15 for the testing dataset. The other key findings are as
follows; (1) Bidirectional GRU took the highest computation
time (i.e., 91 sec), (2) ANN andMLP took less time (∼10 sec
and ∼11 sec) with feature selection methods including WFS
(Figure 20). (3) ANN and SimpleRNN showed similar and
comparatively high prediction ratios (i.e., 0.98-1.0). Hence
ANN, Simple RNN, and MLP are the best fit for the CKD
data. Also, these algorithms can classify the CKD data more
accurately and efficiently than the remaining four algorithms.

The importance of medical significance on features selec-
tion plays a major role in understanding the performance.
As indicated five feature selection techniques are adopted
in the study. These methods generated different data set
containing different features. The result of feature selection
provided different attributes shown in Table 2. Further, using
these feature selectionsmethods, the average accuracy among
the DL models lies between 85-99%. But it does not warrant
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true performance. Few features such as bp (blood pressure),
sc (serum creatine), bgr (random blood sugar) were not
selected in Lasso. Similarly, su (serum urea), bp (blood
pressure), and pe (paddle edema) were not selected in RFE.
However, it is well documented the direct and indirect
influence of these parameters on CKD progression. Hence
identifying interconnection between different functions and
selecting target attributes are imperative. In this essence,
without feature selection methods such as WFS does not
eliminate any feature and showed superior performance in
terms of Accuracy, Precision, Recall, and prediction ratio
while using seven DL models, Therefore the study strongly
recommended that without feature selection can potentially
be considered in the DL models to predict CKD.

Further, the findings were validated by statistical signifi-
cance analysis for all five feature selection processes. While
comparing with other models, significant p-values (<0.05)
were obtained for ANN, SimpleRNN, and MLP (Table 10).
This substantiates the findings using the Wilcoxon test that
ANN, SimpleRNN, and MLP showed superior performance
in the case of WFS. In addition, the Deep dominance test
showed that ANN is better than all other models where ε is 0.
The ε values of other models (LSTM, Bidirectional LSTM,
GRU, and Bidirectional GRU) is ∼1.0 while compared with
Simple RNN and MLP. The findings indicate that fours
models are not better than (nbt) SimpleRNN and MLP.
Overall, both significance tests resemble a similar outcome
in the rest of the four feature selections.

Further, the study identified the risk factors of CKD.
Perceptron, Adaboost, and Random forest classifier models
were used. These models successfully provided nine features
as the considerable risk factors of CKD (Figure 21). For
example, In CKD, the kidneys fail to produce enough
erythropoietin (EPO), a hormone required by the body to
produce red blood cells which have direct relation with
the hemoglobin. Less red blood cells indicate a lower level
of hemoglobin. Hence, rc (red blood count) and heme
(Hemoglobin) are crucial parameters for the diagnosis of
CKD. Albumin usually found in blood and kidneys filters this
protein. Thus, albumin is not commonly observed in urine.
The presence of albumin in urine indicates that the kidney
nephrons are damaging and lose the ability to filter albumin
from the body. This increased amount of albumin in urine
indicates CKD disease [40]. High-risk individuals having
diabetes, hypertension, etc. are generally recommended to
check albumin in the urine. The best models and risk factors
identified in this study can be implemented in IoMT which
will enable remote monitoring of CKD. Therefore, IoMT can
be implemented for (1) improved diagnosis and treatment, (2)
effective CKD management, and (3) reduced cost.

The study has limitations too. The dataset is small, which
could cause the results to be unreliable. It is difficult to
find another dataset with more attributes containing higher
instances. More specifically, data collection dynamically
from IoMT platform is even more difficult. However, during
optimization, overfitting was prevented by customizing the

parameters to calculate the error between testing and training
datasets. In this study, we successfully applied several input
layers, hidden layers, activation functions, and optimizers in
all DLmodels. These actions resulted in a very low difference
between loss and validation loss (Figure 18 and Table 5).
Hence it can be concluded that the models were not overfilled
with the training dataset despite having 400 datasets.

VI. CONCLUSION
This paper proposed a methodology utilizing seven deep
learning algorithms to detect CKD and identify risk factors
that are crucial for early diagnosis to prevent the prognosis of
the disease to end-stage. The study demonstrates a holistic
performance assessment of deep learning algorithms on
CKD. The study explains the following contribution to the
body of the knowledge- (1) the study adopted a scientific
data processing approach to identify the missing values
in the CKD dataset. We employed linear regression and
logistic regression for numerical and categorical data to
fill up the missing values respectively. (2) five state-of-
the-art feature selection processes were adopted to select
features and subsequent comparative performance of the
seven algorithms so that the utility of inclusion and not
the inclusion of feature selection application in the deep
learning were explained (3) adding the statistical significance
(combination ofWilconsin rank test, and deep dominance test
for cross-checking the results to compare the performances)
established the reliability of the outcome, finally (4) four DL
models simple RNN, Bi GRU, and Bi LSTM, and GRU are
applied to predict CKD for the first time. Thus, this research
examined the efficacy of seven DL algorithms for predicting
CKD. When comparing the models, ANN, MLP, and Simple
RNN showed superior performance, providing an accuracy
of 97% in predicting the disease. In this study, applied DL
algorithm MLP Adaboost, and RF identified nine factors
or attributes as the risk factors of CKD. These results can
boost the medical community by predicting CKD and the
risk factors. Based on the research, we believe that deep
learning approaches could be effectively used to translate
large amounts of clinical and/or biomedical data of CKD into
improved human health.

APPENDIX
Figures S1–S8 and Tables S1—S8 are available as Supple-
mental files.
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