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ABSTRACT This paper presents a novel travelling wave-based placement strategy and fault detection
scheme to locate faults on complex power grids. A fault occurring on a power grid results in travelling
waves propagating from the fault location towards detectors. In this paper, the power grid is transformed to
a simple, weighted, undirected graph and the shortest path information is leveraged using two well-known
graph invariants to place detectors and detect and locate faults accurately. An offline algorithm is presented
to determine the number and position of detectors, while an online algorithm is proposed for locating the
fault. The proposed fault detection algorithm is benchmarked using the IEEE 30-bus distribution system.

INDEX TERMS Metric dimension, locating set, resolving set, vertex cover, travelling wave fault location
and grid protection.

I. INTRODUCTION
Managing the supply and integrity of energy depends on the
ability to understand, protect and control a complex power
system in an optimized and real-time manner [1]. The ability
to respond to faults, and the restoration process following
thereafter, relies on a wide area situational awareness of
the grid and the fault status of the electrical network [2].
Hardware protocols with short delays and fast sampling allow
for synchronized grid information that can be leveraged for
the purposes of low latency digital resource optimization, grid
protection and fast demand response [3]–[5], see Fig. 1.

To support the notion of a self-healing smart grids and
microgrids, especially those with complex grid topologies,
the concept of fault location via the detection of travelling
waves is receiving attention spread across numerous fun-
damental fields of science and engineering, with particular
application in graph theory [6], [7]. The concept of travelling
wave fault location (TWFL) is firmly based on the physics
model that governs the propagation of the wideband distur-
bance wave and ability to detect the wave in a synchronized
and accurate manner using TWFL detectors [8].
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FIGURE 1. Interplay of the time and frequency domain for grid protection
hardware to ensure fast response to faults and self-healing.

TWFL is driven by wave arrival times and prior knowl-
edge of the network topology, ultimately providing an ele-
gant detection method for fault location. TWFL optimizes
both the restoration time needed following fault detection
(and location) and the network response to protect against
damage associated with valuable electrical infrastructure,
wild fires and loss of life [9]. Grid failure is considered to
be a global problem, but is intensified for countries with
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poorly maintained and aging infrastructure. TWFL detec-
tion schemes are sensitive to the number of detectors, since
fault waves are considered to be fast transients and require
costly detectors with high frequency sampling properties,
hence the number of detectors required must always be min-
imized [9], [10].

TWFL detection schemes exist for overhead transmission
lines, hybrid transmission lines and wide area distribution
networks [11]. However, the emphasis is shifting to smaller
power systems (e.g. university campus microgrids and low
voltage networks) and the TWFL opportunities that these
scenarios offer. TWFL techniques associated with transmis-
sion lines (whether hybrid or not) have the added benefit of
large distances supporting the delay and detectability between
the successive reception of disturbance waves. The value
of these techniques decreases with compact networks that
consist of relatively short paths between the electrical buses
in the network. With the development of synchrophasors to
establish a true real-time representation of a power grid comes
the opportunity of accurate and time-aligned TWFLmeasure-
ment [12]. The reader is referred to [13] for a detailed com-
parison of different detection techniques and the influence
of sampling rate and time synchronicity on such alternative
methods. These include impedance-based techniques, requir-
ing voltage, current and the impedance sequence to estimate
the location of the fault [13], [14]. In [15], hybrid classifiers
were investigated for fault location in distribution networks.
S-transform-based feed forward neural networks were inves-
tigated in [16] for distribution grid networks, which are able
to detect faults independent of the physical limitations asso-
ciated with traditional TWFL detection schemes. Further-
more, [17] and [18] investigated the applicability of wavelet
transforms (representation of transient in time and frequency)
towards support vector machine and extreme learning appli-
cations in distribution grids. TWFL detection schemes work
well for fault location associated with transmission lines,
due to full control of the physical effects influencing the
accuracies of fault locations [9]. The traveling wave detection
requirements (both hardware and software) become more
stringent for compact grid topologies, such as campuses and
cities [19]. In these cases, the emphasis is placed on the data
processing techniques associated with voltage and current
measurements at key locations. Due to the short travelling
times (microseconds) and wide band nature of the TWwithin
the grid topology, detection instruments are typically utilizing
high-frequency sampling and time synchronization capabili-
ties with other instruments [9] and is tied to the concept of
grid observability [20], [21].

This paper proposes an alternative travelling wave-based
placement strategy and fault detection scheme for fast and
accurate fault detection. The objectives of this study were
to develop a placement criteria for a minimum amount of
detectors, and to demonstrate an online algorithm for locating
faults within the grid. For the first objective, two well-known
graph invariants, the metric dimension [22]–[25] and vertex
cover [24], [26], are used as part of an offline algorithm to

FIGURE 2. Fault occurrence (marked ‘‘X’’) between two buses generating
a wideband travelling wave propagating towards TWFL detectors
positioned at u and v . The distances travelled are denoted by m and p,
and the detectors accurately measure the arrival times tu and tv of the
primary and secondary fault disturbance waves.

determine the number and placement of detectors. Simula-
tions were also conducted on a standard IEEE 30-bus to test
the applicability and accuracy of the proposed method. The
paper is structured as follows: Section II briefly summarizes
the physics of TWFL detection. Section III explores the graph
theory and the invariants used in the pre-processing offline
algorithm to determine the number and placement of detec-
tors in the grid. Section IV contains the fault locationmethod-
ology based on the given detector placement. In Section V,
simulations are carried out on the IEEE 30-bus, followed by
a discussion in Section VI and the conclusion in Section VII.

II. PHYSICS OF TWFL
This section contains a brief summary of fault location via
traveling waves. The reader is referred to [9] for a detailed
overview of TWFL detection.

Consider an elementary power grid G having only 2 buses
u and v with an edge connecting them. A fault occurring
somewhere on this edge of G generates a travelling distur-
bance that is a wide frequency phenomenon and includes a
plethora of physical effects that closely follow the character-
istics of the particular electrical network that the graph rep-
resents [9], [10], [27], [28], [29]. If detectors are positioned
at u and v and a fault occurs somewhere along the edge as
illustrated in Fig. 2, travelling waves will propagate from the
fault towards u and v by means of the shortest path possible.

In general, a fault occurring along any line will result in
waves propagating through the grid toward the detectors.
The primary waves reaching the detectors will clearly follow
the shortest path between the fault and a detector, while
reflected (refracted) waves reach the detectors through other
paths in the grid. Themethodology relies on using the primary
travelling waves arriving at detectors u and v, and to extract
their times of arrival tu and tv, respectively. In this particular
instance as shown in Fig. 2, it is then possible to calculate
the shortest distance m from the fault to detector u, using the
following equation,

m =
luv + (tu − tv) v

2
(1)
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where luv is the cable length of line uv, and v is the speed
along line uv. The fraction xuv = m

l of the total length of uv
can be found from the equation

xuv =
Tuv + (tu − tv)

2Tuv
, (2)

where Tuv is the transmission time along line uv [30].
The example in Fig. 2 shows a double-ended detec-

tion method, but TWFL techniques can span single-ended,
double-ended or wide area detection methods based on the
number of detectors and the ability to detect the primary or
reflected waves.

The accuracy of fault wave times of arrival and inherent
errors associated with the fault location depends on several
physical effects that are detector-based or governed by the
electrical network. Latter-mentioned network effects include
dispersion of travelling waves and the impact of branch inci-
dent waves [9]. Detector based effects include sampling rates
and time detector synchronization errors [10].

Travelling fault waves within complex networks pose the
challenge of dealing with the composition of primary (short-
est path) waves and reflected waves. Both generations of
waves are wideband in the frequency domain and complex
by nature, but the reflected (or refracted) waves are attenuated
versions of the primary wave [29].

TWFL schemes can utilize different levels of data associ-
ated with the primary waves and reflected waves, including
primary wave arrival times, secondary wave arrival times,
wave polarities and detection triggers from neighboring fiber
linked detectors. For single ended detection, both primary and
secondary wave time stamps are utilized. For double ended
detection, the time stamps associated with the primary waves
detected at both ends, are utilized [10].

III. OPTIMAL PLACEMENT OF DETECTORS
In this section, a brief introduction to graph theory and param-
eters involved in detector placement and fault location will be
presented. A graph G = {V ,E} consists of nodes or vertices
in a set V (G), and possible connections or edges between
them, denoted by E(G). Only simple, undirected graphs are
considered, meaning there are no loops (an edge from a vertex
to itself) and there can be at most one edge e = uv = vu
between every two vertices u and v. Positive integers n and
m represent the number of vertices and edges in a graph,
respectively, and these are referred to as the order and size of
G. If an edge connects two vertices u and v, they are said to be
adjacent, and the graphG can be represented by its adjacency
matrix A [26], which is an n× n matrix with entries

aij =

{
1 if vivj ∈ E (G) ,
0 otherwise.

(3)

It is clear that if G is a simple graph, the main diagonal of
A would consist of zeros, and if G is undirected, A would be
a symmetric matrix. The degree of a vertex v, or deg(v), is the
total number of edges that are incident with v, which can be
found by adding the entries in the row corresponding to v.

The power grid is modelled using a graph where the ver-
tices represent buses, with labeled edges denoting the cable
length between them, and the notion of locating sets in graphs
is applied as an attempt to resolve vertices, edges and, ulti-
mately, any position within an edge accurately. One addi-
tional advantage of using graphs to model power grids is that
the vulnerability of the grid can be evaluated by considering
the density of G, which is the ratio of edges in the graph in
relation to the maximum number of possible edges,

D =
2|E (G) |

|V (G) |(|V (G)| − 1)
. (4)

The concept of distance plays a central role not only in
the resolvability of vertices and edges in a graph, but also
in constructing a model of a power grid. For the moment,
only unweighted graphs are considered (edges are unlabeled),
but in application the physical distance would also have to
be represented in the model, and for this an edge e = uv
is labelled with a weight luv, where luv denotes the physical
length of a cable connecting vertices u and v. Hereafter, such
a graph shall be referred to as a power grid graph, where
vertices u and v represent buses and an edge between them
a physical cable of a certain length connecting them. For
now, the distance between any two vertices u and v in an
unweighted connected graphG is defined to be the number of
edges in a shortest path from u to v, denoted by d (u, v) [26].

Distance in graphs give rise to many parameters, of which
we include the metric dimension in Section III(A), and a few
others here, for the purposes of this paper. For more detail or
terminology the reader is referred to [26].

The eccentricity of a vertex v is the maximum distance
between v and all other vertices in the graph. The diameter d
of a connected graph G is the maximum eccentricity, or the
greatest distance between any two vertices in the graph, and
by the same token the radius is the minimum eccentricity.
All vertices of minimum eccentricity form the center of the
graph, and all vertices of maximum eccentricity form the
periphery of the graph.

A. METRIC DIMENSION
The metric dimension of a graph is essentially the smallest
number of landmarks necessary to provide a set of unique
coordinates to different sites, based on their distances to these
landmarks [24], [25]. Slater fittingly referred to this set of
landmarks as a locating set in [22] and originally proposed
its usefulness in working with sonar and loran stations. The
terminology of Harary and Melter [23] will be used through-
out this paper.

Suppose k vertices in a graph are selected to form an
ordered set W = {w1,w2, . . . ,wk} , as seen in Fig. 3. For
each vertex v in G, a code (in the form of a k-tuple) can be
formed consisting of the distances from v towards each of
the vertices w1,w2, . . . ,wk in W . This is called the metric
representation of v with respect to W and is defined as

r (v |W ) = (d (v,w1) , d (v,w2) , . . . , d (v,wk)) (5)
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FIGURE 3. Example of a graph where three vertices (solid) are selected to
form a set W = {w1,w2,w3}. The vertex v with its metric representation
with respect to W is shown, namely r

(
v |W

)
= (3, 3, 1) and the shortest

paths from v to w1,w2 and w3 are indicated. The set W is actually a
resolving set for the graph, since all vertices have unique codes. However,
it is not a minimum resolving set, because W − {w3} is also a resolving
set, which is the smallest resolving set possible.

FIGURE 4. Example of an unweighted graph with a resolving vertex cover
B = {b1,b2,b3,b4}, For any edge e = uv in the graph, either u ∈ S or
v ∈ S, and all vertices in V

(
G

)
−B have unique metric representation.

where d(v,wi) is the shortest distance from v towi, 1 ≤ i ≤ k .
W is said to be a resolving set for G if no two distinct vertices
have the same metric representation, i.e. no two codes are the
same. The objective is therefore to choose a set of vertices to
form W such that each vertex in the graph has a unique code
with respect to its location toW . A minimum resolving set of
a graphG is a resolving set with the least number of elements,
or in other words, the minimum amount of vertices in W for
which all codes are unique.

The cardinality of a minimum resolving set is referred to
as themetric dimension of the graphG, or dim (G). It is worth
noting that a resolving set (or minimum resolving sets) is not
necessarily unique, for example, any two pendant vertices
(those with degree 1) in Fig. 3 could have been chosen for
W with similar results.
The concept of resolving sets can be useful in finding the

least amount of buses where detectors can be installed, were
the objective simply to pinpoint faults occurring at buses in
the grid. Since the aim of this paper is to present a scheme
for fault detection and location, particularly faults occurring
within

lines on the grid, a resolving set on its own might not nec-
essarily be sufficient. However, when considering travelling
waves that are reflected, the concept of a resolving set plays
a vital role to ensure unique locations within the grid.

In order to represent physical distance in the model,
we assign a weight of luv to an edge uv that has has length
luv. This weighted graph is denoted by Gw. It is then possible
to define a weighted resolving set, where the weighted metric

representation of a vertex v with respect to W is defined as

rw (v |W ) = (dw (v,w1) , dw (v,w2) , . . . , dw (v,wk)) (6)

where dw(v,wi) is the shortest weighted distance from v to
wi for 1 ≤ i ≤ k (note that this is not necessarily along the
shortest path in the unweighted graphG).W will be weighted
resolving set for Gw if rw (u |W ) = rW (v|W ) implies that
u = v.

B. VERTEX COVERS
A vertex cover of a graph G is a set of vertices S =
{s1,s2, . . . ,sl} from V (G) with the property that for any edge
e = uv in the graph, either u or v is in S [26]. The minimum l
for which this is possible is called the vertex covering number,
denoted by β(G).
Where the (weighted) resolving sets play a role in uniquely

identifying positions within the graph based on distance
towards a specified set of detectors, the vertex cover liter-
ally ‘‘covers’’ all the edges in the graph. In other words,
a travelling wave would pass through at most 1 bus before
reaching the closest detector. Using a vertex cover therefore
minimizes the number of possible reflectedwave arrival times
to consider when trying to locate the fault.

The set of solid vertices in Fig. 3 is not a vertex cover for
the graph, as the edges uv,vw,xy,xw, and yz are not covered
by W . The reader is referred to Fig. 4, where both a resolving
set and vertex cover are presented. The minimum cardinality
of a resolving vertex cover for this graph G is 4, while
dim (G) = 2 and β (G) = 3.

C. GRAPH CONTRACTION
One important transformation that needs to occur before the
detector placement algorithm can be implemented, is that of
a distance-preserving graph (or vertex) contraction similar to
what is found in [32]. FromSection III(B), one can clearly see
that if a grid contains multiple large cycles (or, more specifi-
cally, many consecutive vertices of degree 2), the vertex cover
would require that every second vertex be part of the covering
set. If this were to be a consideration for detector placement,
it would mean that every second bus would need a detec-
tor, which is clearly impractical and wasteful of expensive
resources. A graph contraction is proposed, where buses that
are not ideal locations for detectors (i.e. many consecutive
buses in series with no branching) are removed.

The contraction proposed here is a slight modification of
the distance-preserving contraction in [32]. For a path Pn on n
vertices v1,v2, . . . ,vn of weighted length lw, the interior ver-
tices v2,v3, . . .vn−1 are removed, with the contracted graph
being P2, having vertices v1 and vn with weighted length lw
(See Fig. 5(a)).

For a cycle Cn with vertices v1,v2, . . . ,vn of weighted
length l, all but one of the interior vertices are removed, say
v3,v4, . . . ,vn−1, so that the resulting contracted graph is a
triangle C3 consisting of v1,v2 and vn, of weighted length lw
(See Fig. 5(b)). With the removal of vertices v3,v4, . . . ,vn−1
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FIGURE 5. Distance-preserving graph contractions performed on
(a) a path P5 of length lw . by removing vertices v2,v3 and v4 and
(b) a cycle P5 by removing vertices v3 and v4, where the distance of the
path v2v3v4v5 is preserved for the new edge v2v5.

the new edge v2vn is assigned the weighted length

lw (v2vn) =
n−1∑
i=2

lw(vivi+1) (7)

which is the combined weighted lengths of all edges between
removed vertices and v2 and vn.
The method for distance-preserving graph contractions

proposed here focuses on removing vertices of degree 2 and
joining their incident edges. However when contracting any
cycle, the smallest that the cycle can be contracted is 3 ver-
tices. This is to avoid contracting the graph into a non-simple
graph, i.e. more than one edge between vertices.

D. DETECTOR PLACEMENT
The placement algorithm in this paper is based on finding a
set of vertices that is both a weighted resolving set, as well
as a vertex cover. However, first a distance-preserving con-
traction as described in the previous section is performed
on the weighted graph Gw. Two additional constraints are
introduced to ensure that no location on any edge can be
mistaken for another. The first is that no path between any
two vertices in the detector set can have the same (weighted)
distance, and the second is that all but one pendant vertex
adjacent to the same vertex cannot all be outside of the detec-
tor set. In order to find the smallest set B = {b1,b2, . . . ,bk}
of detectors, a detection algorithm is proposed as described
in Fig. 6.

FIGURE 6. A flowchart illustrating the process of the detector placement
algorithm.

IV. PROPOSED ONLINE ALGORITHM FOR FAULT
LOCATION
After performing the offline operation of optimal detector
placement in Section III and assuming that appropriate detec-
tors are place at the identified nodes in the electrical network,
the core of the online algorithm could be considered active.

Suppose the primary wave arrival times at the k chosen
detectors are given by the vector P = [tD1 ,tD2 , . . . ,tDk ]
(in ms). If the two smallest values in P correspond to the
primary wave arrival times at two detectors Du and Dv, then
these two detectors are closest (along the grid) to where the
fault occurs.

There are a few possibilities for the fault location in terms
of its position to vertices u and v in the graph. Firstly, the fault
could occur on some u− v path (not necessarily the shortest),
and the two earliest arrival times at u and v are extracted from
travellingwaves that propagated from two different directions
at the fault occurrence point. This first scenario is illustrated
in Fig. 7, and is referred to as an internal fault. Secondly, it is
possible for the two earliest travelling waves detected to have
originated from the same end of the fault. This is referred
to as an external fault. Here are two cases. For the first,
the wave reaches one of the detectors (say u) first, and then
travels towards the second detector via the shortest u− v path,
see Fig. 8. In the second case, the wave travels through one
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FIGURE 7. An example of an internal fault occurring along a u− v path
P∗uv of (weighted) length l (P∗uv ), where the primary waves reach u and v
by propagating in opposite directions from the fault occurrence point.
A Bewley diagram is incorporated to illustrate the timeline (using the two
solid vertical axes) starting at the fault occurrence time t0. The time tu
and tv represents the arrival times of these primary waves at detectors u
and v , respectively. The distance from the fault towards detector u is
shown as m, and the distance from the fault towards detector v is shown
as p.

FIGURE 8. An example of an external fault, where the primary travelling
wave reaches one of the detectors (say u) first, and then travels towards
the second detector via the shortest u− v path Puv of (weighted) length
l (Puv ). In this case, the earliest primary waves reach u and v by
propagating in the same direction from the fault occurrence point. A
Bewley diagram is incorporated to illustrate the timeline (using the two
solid vertical axes) starting at the fault occurrence time t0. The time tu
and tv represents the arrival times of these primary waves at detectors u
and v , respectively, and reflections are also indicated between detectors,
the fault, and possible vertices along these paths. The distance from the
fault towards detector u is shown as m, and the distance from the fault
towards detector v is shown as m+ p = m+ l (Puv ).

or more common vertices (non-detectors) and refracts from
the final common vertex in two directions towards vertices
u and v, see Fig. 9.

FIGURE 9. An example of an external fault, where the primary travelling
wave travels along one or more common vertices like c (that are
non-detectors) first, and then towards detectors u and v in opposite
directions.

In the case of an internal fault occurring on a u− v path
P∗uv of length l

(
P∗uv
)
, the fraction xuv = m

l(P∗uv)
of the length

of P∗uv can be described by

xuv =
T ∗uv + (tu − tv)

2T ∗uv
, (8)

where T ∗uv is the transmission time of P∗uv [30].
In the second case, a fault occurs externally and the trav-

elling wave first reaches one of the detectors, say u and then
moves along the shortest u− v path towards v. As indicated
in Fig. 8, The travelling wave from the fault, reflecting at u,
again reflecting from the fault back to u arrives at time x+u
with positive polarity. This is not necessarily the secondary
wave sDu that arrives at u, since the presence of possible
vertices between the fault and v, or beyond the fault in the
opposite direction, could result in a travelling wave that
reaches u before the reflected fault wave. If one could identify
x+u successfully, it is possible to find the distance m from the
fault to u (and then certainly the distance to v) by using the
formula

m =

(
x+u − tu

)
v

2
, (9)

xuw =

(
x+u − tu

)
2T ∗uw

, (10)

where v here denotes the line speed, xuwleuw = m denotes the
fraction of the line from u to w corresponding to the section
between the fault and u, and leuw the length of line uw. One can
easily identify the possibility of this type of external fault for
two detectors u and v if tv − tu = Tuv. This could imply that
the wave travels through detector u first, and then along the
shortest u− v path towards vertex v (similarly tu − tv = Tuv
could imply that the wave travels through detector v first, and
then towards u).

In the case of Fig. 9, an external fault that results in a
travelling wave moving towards the two closest detectors
u and v in the same direction, there must be a final com-
mon vertex through which this wave passes, say c, before it
diverges towards u and v. Necessarily, c cannot be a detector,
but because the detector set must be a vertex cover for the
contracted graph, the edge on which the fault occurs must
lie on some w− c path where w is a detector. This means the
fault is external in terms of u and v, but is internal for detectors
u,w and vw, and Equation (8) can be used to determine the
position of the fault.
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For an internal fault, only the primary wave arrival times
are necessary in order to locate the fault occurrence point,
which are readily available. The fault location calculated
from these arrival times can be confirmed by looking for the
occurrence of a specific reflected wave at the nearest detector
(match). However, in order to identify an external fault’s
location, the method in this paper theoretically assumes that
all arrival times as well as polarities at are available at all
detectors. Currently, while theoretically possible, it is diffi-
cult in practice to detect reflected waves beyond a certain
point, especially for power networks with many paths. Their
amplitudes become weaker as they propagate through the
grid, and polarity also becomes difficult to distinguish. Fault
location accuracy thus diminishes when using second, third,
etc. waves as opposed to primary waves with large signal-
to-noise ratio. The sampling rate could play an important
role here, as it ultimately determines the accuracy and the
ability to detect higher order reflected waves. As detectors
become more advanced, the sampling rate will increase,
which opens up the possibility of detecting and subsequently
finding arrival times and polarities for reflected waves more
accurately [34].

The external fault location strategy presented in
Section III(B) is conceptual, and depends on future advance-
ments in sampling rates associated with detectors. Should
the reader wish to apply it to an existing dataset for fault
location, where reflectedwave arrival times are not accurately
available, it is suggested that the detection algorithm is altered
by adding the requirement that the detector set has to include
all pendant vertices in the graph, instead of all but one
that have common neighbours. This is a small change, but
one which will ensure that all faults occur internally. The
amount of additional detectors will be marginally higher, but
only primary wave arrival times are required. This method,
using primary waves only is explained in Section III(A), and
in Section III(B) the conceptual strategy for dealing with
external faults is presented.

A. INTERNAL FAULTS
How would the internal faults be distinguished from the
external faults? And is it possible for a fault to be exter-
nal for any two detector pairs? As mentioned previously,
if

|tu − tv| = Tuv, (11)

then the possibility exists that the travelling wave passes
through u or v first, before reaching the other. If
Equation (11) does not hold for a pair of detectors u and v,
the fault can be classified as internal with respect to
u and v.
If it is possible to find two detectors u and v for which

Equation (11) does not hold, with earliest primary arrival
times from P, the array

T = [T 1
uv,T

2
uv, . . . ,T

r
uv] (12)

represents the transmission times along each distinct u− v
path, and the array X is formed with r entries

xuvi =
T iuv + (tu − tv)

2T iuv
(13)

each representing the fraction of the i-th u− v pathwith trans-
mission time T iuv for 1 ≤ i ≤ r . These entries are therefore the
fractions of the u− v paths’ total lengths (from the fault to u).
The fault occurs along one of these r paths, say Piuv. Thus

the fault occurrence time t i0 [30] can be found by calculating

t i0 =
tu + tv − T iuv

2
. (14)

Theoretically, then, if the fault occurs along path Piuv at
time t i0, the reflected wave from u to the fault and back would
occur at time x+u = t i0+3(tu − t

i
0) with positive polarity (see

Fig. 7). Because of the detector placement, this timestamp
will be unique, i.e. it will only occur along one particular path.
It is therefore proposed that t i0+3

(
tu − t i0

)
is calculated for all

i where 1 ≤ i ≤ r and compared to arrival times at detector
u with positive polarity. If there is a time detected at u that
matches t i0+3

(
tu − t i0

)
, then the fault occurs along path Piuv,

and the distance from u along this path will be

mi = xuvi l
(
Piuv
)

(15)

where xuvi is the fraction of the uv path in Equation 12, and
l(Piuv) is the length of path Piuv.

B. EXTERNAL FAULTS
If, for a detector set K = {D1,D2, . . . ,Dk}, it is possible to
find a detector u for which tDi−tu = TuDi for all i ∈ [1, k]−u,
then the fault is external for all possible detectors, and occurs
either on a pendant edge in the graph, or a leg on the graph.
A leg of a graph is a path from a vertex (u in this case) that
ends in a pendant vertex, where all internal vertices on the
path have degree 2. This will be a special case for which
Equations (9-10) will be used. In this particular application,
the presence of a leg on a power grid of length more than 1
is highly unlikely, and because of the choice of detector
placement it would not be unreasonable to assume that there
can only be one edge along which the fault can occur, namely
the only pendant edge incident with u, whose pendant vertex
w does not have a detector. It then simply remains to find the
distance from the fault to the closest detector.

From the primarywave arrayP = [tD1 ,tD2 , . . . ,tDk ], detec-
tor u =D1 would be the first detector reached at time tu = tD1 ,
but the reflected wave’s arrival time (from u to the fault and
back), say x+u (see Fig. 8), would not necessarily be linked to
the secondary wave that arrives at u.
If the fault occurrence point is closer to u than any other

vertex (except of course, w) is to u, then x+u is the secondary
wave that arrives at u, but if it lies further from u than these
vertices, the second time of arrival at u will be received
from a wave reflecting not from the fault, but from one
or more of these vertices, hence Equations (9-10) will give
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FIGURE 10. Graph representation of the IEEE 30-bus distribution system
(Generated using pandapower [33]). Detectors are placed at buses 2, 6,
10, 11, 12, 24, 26, 27, 28 and 30.

inaccurate values. From the arrival times at detector u, it is
impossible – at first glance – to determine which of these is
the case.

Suppose, however, that it is possible to identify the
reflected fault wave at time x+u . The distance m could be
calculated easily using Equation (9). If the fault occurs along
edge e = uw, then there would again be a wave travelling to
bus u, back to the fault, and reflected back to bus u. This wave
would travel a distance of 3m, arriving at time

t0 + 3 (tu − t0) (16)

where t0 = 1
2

(
3tu − x+u

)
. If it were possible to retrieve

several arrival times at detector u, say U = [tu =

u1,u2,u3, . . . ,un], one would be able to use Equation (9) to
calculate n distances from u, one of which would be the dis-
tance to the fault. But how would one go about identifying it?

Firstly, as can be seen in Fig. 8, the reflected wave from
the fault has positive polarity, and so all ui with negative
polarity can be discarded. Secondly, if some ui = x+u , then
the reflected wave (from the fault to u back to the fault, and
again back to u) would have an arrival time of

uj = t0 + 3 (tu − t0) . (17)

for some j = 2, 3, . . . , n, with positive polarity. One can
therefore form a partition of U into two arrays U+ and U−,
containing arrival times with positive and negative polarity,
respectively. Then calculate and match all distances corre-
sponding to the arrival times in U+. If it is possible to find
a ui∈U+ and uj∈U+, that satisfies Equation (16), that is,
tj = t0+3 (tu − t0) as well as t0 = 1

2 (3tu − ui), then the
distance from the fault to u will be mi =

(ui−u1)v
2 (from

Equation (9)) from u along line uw, and the fault has been
located.

V. SIMULATION RESULTS
The methodology of the optimal placement of detectors (see
Section III) was applied to the graph representation of the
IEEE-30 distribution system (see Fig. 10) and the optimal

TABLE 1. Transmission line lengths and wave-propagation times for all
lines of the IEEE-30 bus adopted from [30].

placement of detectors was determined to be at buses 2, 6,
10, 11, 12, 24, 26, 27, 28 and 30. In order to benchmark
the proposed alternative travelling wave fault locating algo-
rithm, the fault location generated by the online algorithm
was compared to the results obtained in [30]. Table 1 shows
transmission line lengths and wave-propagation time adopted
from [30].

A. INTERNAL FAULTS
The fault from [30] on line 2− 6 with inception time of 10ms
was simulated for new detector placements at buses 2, 6, 10,
11, 12, 24, 26, 27, 28 and 30. The fault occurred at a distance
of 200 km along the line 2− 6 from bus 2.

EMPT was used for the simulation of the fault within
the IEEE-30 bus distribution system and morphological
edge detection was utilized for time stamping of primary,
secondary and tertiary waves (see Table 2 and [30] with
T1, T2 and T3 representing arrival times for primary, sec-
ondary and tertiary waves with polarity P1, P2 and P3 at
detectors 2 and 6). Detectors 2 and 6 are the two nearest
detectors to the fault, based on their primary wave arrival
times being the earliest, occurring at 10.679 and 10.632,
respectively.

To accurately estimate the fault location, the measured
voltage signals are first converted to their modal components.
The modal components are processed through the discrete
wavelet transform (DWT) and the wavelet coefficients (WC)
are retrieved and employed to detect the arrival times and
polarity of travelling wave. Arrival time of initial traveling
wave-front is captured according to modulus maximum of the
wavelet transform. The WCs of traveling wave at bus 6 for
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TABLE 2. Arrival times and polarity of travelling wave at detectors 2 and
6 when fault occurs 200 km away from bus 2 on line 2-6.

FIGURE 11. WC of the traveling wave at bus 6 for fault on the line 2-6.

TABLE 3. The 4 shortest 2− 6 (or 6− 2) paths with their lengths and
transmission times.

fault on the line 2-6 are shown in Fig. 11. The fault occurs
internally along a 6 − 2 path, since |t2 − t6| = 0.047 6=
T26 ≈ 1.2942 (Equation (11)). The 4 shortest 6−2 (or 2−6)
paths are shown in Table 3. For each 6 − 2 path, a possible
fault inception time can be calculated using Equations (13)
and (14).

Firstly, x6,2i can be calculated for each 6− 2 path Pi6,2
with transmission time T i6,2. This represents the fraction
of the path corresponding to the distance from the closest
detector (bus 6) to the fault using Equation (13). Each pos-
sible fault inception time t i0 is then calculated using x6,2i
and Equation (14). Finally, all values of t i0+3

(
t6 − t i0

)
are

calculated, which represent the possible reflected waves with
positive polarity detected at bus 6. Table 4 shows these frac-
tions, fault inception times and possible reflected wave arrival
times for the 4 shortest 6− 2 paths.
Matching these values with the arrival times at bus 6,

one can see that t i0 corresponds to the detected waves
at time t ≈ 11.8792, and so the fault occurs along the
shortest 6− 2 path with transmission time T6,2 ≈ 1.2942.
From Table 4, the fraction of the line 6− 2 is equal to
roughly 0.4818 and the distance calculated from bus 6 will

TABLE 4. The values of x6,2
i and t i

0 for the 4 shortest 2− 6 (or (6− 2)
paths, calculated using Equations (13) and (14).

TABLE 5. Primary travelling wave arrival times at buses 2, 6, 10, 11, 12,
24, 26, 27, 28 and 30, where the fault occurs 5 km away from bus 12 on
line 12-13. The nearest detector to the fault is D12.

TABLE 6. Arrival times and polarity of travelling waves at detector 12,
where the fault occurs 5 km away from bus 12 on line 12-13.

be x6,21 × l
(
P16,2

)
≈ 185.9748 km, which is roughly

200.0252 km from bus 2.

B. EXTERNAL FAULTS
An external fault for the IEEE-30 bus from [30] was simu-
lated on line 12− 13, at a distance of 5 km from bus 12 with
inception time at 10ms. Primary travelling wave arrival times
at detectors 2, 6, 10, 11, 12, 24, 26, 27, 28 and 30 are shown in
Table 5, and arrival times at the nearest detector (bus 12) are
shown in Table 6 for primary, secondary and tertiary waves
with polarity P1, P2 and P3. It can be confirmed that the fault
is indeed external by noting that |t12 − tv| = T12,v + ε for
all detectors v 6= 12 and a specified error margin ε, thus the
travelling wave passes through detector 12 before reaching
any of the others.

Using Equation (9) and primary wave arrival time t12 =
10.105 along with secondary, tertiary, etc. arrival times with
positive polarity (such as T2 = 10.308 in Table 5), a set of
possible distances from bus 12 along the line 12− 13 can
be derived. A set of possible fractions corresponding to the
section on line 12− 13 from bus 12 to the fault can be found
from Equation (10), which in turn can be used to find a set of
predicted reflected travelling wave arrival times (specifically
travelling waves from the fault to bus 13, and back to 12). It is
possible to find these using Equation (16).

As an example x12,13 =
(10.055−10.021)

2T12,13
≈ 0.1692

and t0≈ 10.004. The distance from bus 12 would be
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FIGURE 12. WC of the traveling wave at bus 12 for fault on the line 12-13.

approximately 5.0746 km. The expected arrival time of a
reflected travelling wave would be approximately at time
10.055. Fig. 12 shows the WC of the travelling waves at
bus 12, with a matching arrival time of 10.055, which can
also be confirmed from Table 6 as T2. Thus the fault has been
located.

As mentioned earlier, this method of identifying reflected
travelling waves could possibly extend past current practi-
cal capabilities, as it is difficult to detect a great number
of reflected waves and their polarities. However, should a
number of possible distances be calculated from arrival times,
none of which match with the data for the reflected waves,
it would imply that the distance of the fault to the nearest
bus umust exceed all of the distances calculated (from incor-
rectly assumed x+u ). Depending on the number of reflected
waves with positive polarity, one can thus use this process of
elimination to determine a lower bound for the distance from
the nearest bus to where the fault can occur.

VI. DISCUSSION
The error of the fault estimation where the fault occurs on
the i-th u− v path can be expressed as a percentage δiFL as
follows:

δiFL =

∣∣(miA − miO)∣∣
l(Piu,v)

× 100 (18)

where miA,m
i
O,l(P

i
uv) represent the actual distance along the

i-th u− v path from the fault to bus u, the calculated distance
along the i-th u− v path from the fault to bus u, and the length
of the i-th u− v path.
For the simulated internal fault on the IEEE-30 bus that

occurred 200 km from bus 2 on line 2− 6, the proposed
algorithm was able to identify the fault on line 2− 6 at a
distance of 200.0252 km from bus 2. The percentage error
of the proposed fault location scheme is therefore equal to
0.0065%, this compares well with the results of 0.0066%
obtained in [30] (See Table 6 in [30] for a comparison to
recent wide-area fault location methods).

For the external fault simulation along line 12-13, the
actual distance from bus 12 was 5 km, and the calculated

distance from bus 12 was found to be 5.0746 km. This gives
a percentage error of 0.0025%, which is negligible.

VII. CONCLUSION
In this paper, a graph theory-based approach is presented as
a solution for investigating an optimal and unique TWFL
detection scheme for power grids containing several paths for
fault travelling wave propagation. The main contributions of
the paper can be summarized as follows:

1) A proposed placement strategy for detectors based on
a combination of the graph theoretic concepts of vertex
covers and resolving sets. The vertex cover requirement
for detectors ensures that every line (or successive lines
that do not branch out for the contracted graph) has a
detector at one end. The requirement that the placement
of detectors must also correspond to a set of vertices
that are able to distinguish all other vertices in the
graph based on their distances to this set ensures that
the origin of any reflected travelling waves can be
uniquely determined. These two concepts play a role
in identifying internal or external faults and then using
reflected wave arrival times to identify the unique path
along which the travelling wave propagated, as well as
the distance from the detector,

2) A proposed scheme for detection of both internal and
external faults, based on fault wave arrival times and
polarization. Based on the two earliest primary wave
arrival times at detectors, the fault can be classified
as internal or external and a relatively straightforward
approach is shown for either case to identify the line
on which the fault occurs, as well as the distance to the
nearest detector,

3) Simulation results based on the IEEE-30 bus network
were presented, which verified that the proposed detec-
tion scheme can accurately and uniquely determine
both internal and external faults. These results were
benchmarked against similar wide-area fault location
methods and improvements were observed regarding
the accuracy of the fault location.

This work can be expanded into several innovative and
critical research themes. Propagation of measurement uncer-
tainty through the proposed offline and online fault loca-
tion scheme remains an interesting problem. Defining future
meter requirements and accuracies needed to detect external
faults in a network-independent fashion, will be explored
in a future paper. Investigating the theoretical performance
of the proposed scheme for travelling wave fault detection
in LV networks and the necessities it poses, will establish
future requirements for fault location in more complex net-
works. Also, with some networks implementing gas insulated
transmission lines (GIL), an interesting avenue to explore
would be the influence of mechanical and discharge faults
on the performance of the proposed fault location scheme.
Immediate next steps include: investigating the influence of
the effects of physical behaviors of power systems on the
proposed scheme, scaling to larger networks, determining
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computational complexities linked to network size and topol-
ogy and benchmarking the proposed scheme using a real
fault.

REFERENCES
[1] M. Farmanbar, K. Parham, Ø. Arild, and C. Rong, ‘‘A widespread review

of smart grids towards smart cities,’’ Energies, vol. 12, no. 23, p. 4484,
Nov. 2019.

[2] W. Leterme, I. Jahn, P. Ruffing, K. Sharifabadi, and D. Van Hertem,
‘‘Designing for high-voltage DC grid protection: Fault clearing strategies
and protection algorithms,’’ IEEE Power Energy Mag., vol. 17, no. 3,
pp. 73–81, May 2019.

[3] M. Kuzlu, M. Pipattanasompom, and S. Rahman, ‘‘A comprehensive
review of smart grid related standards and protocols,’’ in Proc. 5th
Int. Istanbul Smart Grid Cities Congr. Fair (ICSG), Istanbul, Turkey,
Apr. 2017, pp. 12–16, doi: 10.1109/SGCF.2017.7947600.

[4] K. Dehghanpour, C. Colson, and H. Nehrir, ‘‘A survey on smart agent-
based microgrids for resilient/self-healing grids,’’ Energies, vol. 10, no. 5,
p. 620, May 2017.

[5] M. Ul Mehmood, A. Ulasyar, A. Khattak, K. Imran, H. S. Zad, and
S. Nisar, ‘‘Cloud based IoT solution for fault detection and localization in
power distribution systems,’’ Energies, vol. 13, no. 11, p. 2686, May 2020.

[6] N. Ayer and R. Gokaraju, ‘‘Online application of local OOS protection and
graph theory for controlled islanding,’’ IEEE Trans. Smart Grid, vol. 11,
no. 3, pp. 1822–1832, May 2020, doi: 10.1109/TSG.2019.2943525.

[7] J. Beyza, J. M. Yusta, G. J. Correa, and H. F. Ruiz, ‘‘Vulnerability
assessment of a large electrical grid by new graph theory approach,’’
IEEE Latin Amer. Trans., vol. 16, no. 2, pp. 527–535, Feb. 2018, doi:
10.1109/TLA.2018.8327409.

[8] L. Wang, H. Liu, L. Dai, and Y. Liu, ‘‘Novel method for identifying fault
location of mixed lines,’’ Energies, vol. 11, no. 6, p. 1529, Jun. 2018.

[9] E. O. Schweitzer, A. Guzman, M. V. Mynam, V. Skendzic, B. Kasztenny,
and S. Marx, ‘‘Locating faults by the traveling waves they launch,’’ in
Proc. 67th Annu. Conf. Protective Relay Eng., College Station, TX, USA,
Mar. 2014, pp. 95–110, doi: 10.1109/CPRE.2014.6798997.

[10] G. Krzysztof, R. Kowalik, D. D. Rasolomampionona, and S. Anwar,
‘‘Traveling wave fault location in power transmission systems: An
overview,’’ J. Electr. Syst., vol. 7, no. 3, pp. 287–296, 2011.

[11] X. Xue, M. Cheng, T. Hou, G. Wang, N. Peng, and R. Liang, ‘‘Accurate
location of faults in transmission lines by compensating for the electrical
distance,’’ Energies, vol. 13, no. 3, p. 767, Feb. 2020.

[12] W. Tao, M. Ma, C. Fang, W. Xie, M. Ding, D. Xu, and Y. Shi, ‘‘Design and
application of a distribution network phasor data concentrator,’’ Appl. Sci.,
vol. 10, no. 8, p. 2942, Apr. 2020.

[13] S. L. Zimath, M. A. F. Ramos, and J. E. S. Filho, ‘‘Comparison of
impedance and travelling wave fault location using real faults,’’ in
IEEE PES T&D, New Orleans, LA, USA, Apr. 2010, pp. 1–5, doi:
10.1109/TDC.2010.5484310.

[14] R. Dashti, S. Salehizadeh, H. Shaker, and M. Tahavori, ‘‘Fault location in
double circuit medium power distribution networks using an impedance-
based method,’’ Appl. Sci., vol. 8, no. 7, p. 1034, Jun. 2018.

[15] S. Jamali, A. Bahmanyar, and S. Ranjbar, ‘‘Hybrid classifier for fault loca-
tion in active distribution networks,’’ Protection Control Modern Power
Syst., vol. 5, no. 1, pp. 1–9, Dec. 2020.

[16] M. Shafiullah and M. A. Abido, ‘‘S-transform based FFNN approach for
distribution grids fault detection and classification,’’ IEEE Access, vol. 6,
pp. 8080–8088, 2018, doi: 10.1109/ACCESS.2018.2809045.

[17] M. Shafiullah, M. Ijaz, M. A. Abido, and Z. Al-Hamouz, ‘‘Opti-
mized support vector machine & wavelet transform for distribution grid
fault location,’’ in Proc. 11th IEEE Int. Conf. Compat., Power Elec-
tron. Power Eng. (CPE-POWERENG), Cadiz, 2017, pp. 77–82, doi:
10.1109/CPE.2017.7915148.

[18] M. Shafiullah, M. Abido, and Z. Al-Hamouz, ‘‘Wavelet-based extreme
learning machine for distribution grid fault location,’’ IET Gen-
erat., Transmiss. Distrib., vol. 11, no. 11, pp. 4256–4263, Nov. 2017,
doi: 10.1049/iet-gtd.2017.0656.

[19] M. Kezunovic, ‘‘Smart fault location for smart grids,’’ IEEE Trans. Smart
Grid, vol. 2, no. 1, pp. 11–22,Mar. 2011, doi: 10.1109/TSG.2011.2118774.

[20] T. L. Baldwin, L. Mili, M. B. Boisen, Jr., and R. Adapa, ‘‘Power system
observability with minimal phasor measurement placement,’’ IEEE Trans.
Power Syst., vol. 8, no. 2, pp. 707–715,May 1993, doi: 10.1109/59.260810.

[21] V. H. Quintana, A. Simoes-Costa, and A. Mandel, ‘‘Power system topolog-
ical observability using a direct graph-theoretic approach,’’ IEEE Trans.
Power App. Syst., vol. PAS-101, no. 3, pp. 617–626, Mar. 1982.

[22] G. Chartrand, L. Eroh, M. A. Johnson, and O. R. Oellermann, ‘‘Resolvabil-
ity in graphs and the metric dimension of a graph,’’ Discrete Appl. Math.,
vol. 105, pp. 99–113, Oct. 2000.

[23] S. Khuller, B. Raghavachari, and A. Rosenfeld, ‘‘Landmarks in graphs,’’
Disc. Appl. Math, vol. 70, pp. 217–229, Oct. 1996.

[24] P. J. Slater, ‘‘Leaves of trees,’’ Congr. Numer, vol. 14, pp. 549–559,
Feb. 1975.

[25] F. Harary and R. A. Melter, ‘‘On the metric dimension of a graph,’’ Ars
Combin, vol. 2, pp. 191–195, 1976.

[26] G. Chartrand, L. Lesniak, and P. Zhang,Graphs andDigraphs. Boca Raton,
FL, USA: CRC Press, 2016.

[27] Y. Chen, D. Liu and B. Xu, and Bingyin, ‘‘Wide-area traveling wave fault
location system based on IEC61850,’’ IEEE Trans. Smart Grid, vol. 4,
no. 2, pp. 1207–1215, Dec. 2013, doi: 10.1109/TSG.2012.2233767.

[28] M. Shafiullah and M. A. Abido, ‘‘A review on distribution grid fault loca-
tion techniques,’’ Electr. Power Compon. Syst., vol. 45, no. 8, pp. 807–824,
2016.

[29] L. C. Andrade and T. Ponce de Leao, ‘‘Travelling wave based fault loca-
tion analysis for transmission lines,’’ in Proc. EPJ Web Conf., vol. 33,
Oct. 2012, p. 04005.

[30] M. Salehi, A. A. M. Birjandi, and X. Dong, ‘‘Determining minimum
number and placement of fault detectors in transmission network for
fault location observability,’’ Int. J. Electr. Power Energy Syst., vol. 124,
Jan. 2021, Art. no. 106386, doi: 10.1016/j.ijepes.2020.106386.

[31] J.-W. Lee, W.-K. Kim, J. Han, W.-H. Jang, and C.-H. Kim, ‘‘Fault area
estimation using traveling wave for wide area protection,’’ J. Modern
Power Syst. Clean Energy, vol. 4, no. 3, pp. 478–486, Jul. 2016.

[32] A. Bernstein, K. Däubel, Y. Disser, M. Klimm, T. Mütze, and
F. Smolny, ‘‘Distance-preserving graph contractions,’’ SIAM J. Discrete
Math., vol. 33, no. 3, pp. 1607–1636, Jan. 2019.

[33] L. Thurner, A. Scheidler, and F. Schäfer, ‘‘Pandapower—An open-source
Python tool for convenient modeling, analysis, and optimization of electric
power systems,’’ IEEE Trans. Power Syst., vol. 33, no. 6, pp. 6510–6521,
Nov. 2018.

[34] F. B. Costa, F. V. Lopes, K. M. Silva, K. M. C. Dantas, R. L. S. França,
M. M. Leal, and R. L. A. Ribeiro, ‘‘Mathematical development of the
sampling frequency effects for improving the two-terminal traveling wave-
based fault location,’’ Int. J. Elect. Power Energy Syst., vol. 115, Feb. 2019,
Art. no. 105502, doi: 10.1016/j.ijepes.2019.105502.

ELIZABETH C. M. MARITZ received the master’s
and Ph.D. degrees in graph theory from theUniver-
sity of the Free State, South Africa, in 2014 and
2017, respectively.

She has been a Lecturer in mathematics at
the University of the Free State, since 2011. Her
research interests include additive and heredi-
tary properties of graphs, generalized colorings of
graphs, and various other graph parameters.

JACQUES M. MARITZ received the master’s
degree in physics and the Ph.D. degree in astro-
physics from the University of the Free State,
South Africa, in 2014 and 2017, respectively.

He has been a Lecturer in engineering sciences
at the University of the Free State, since 2017. His
research interests include physics, astrophysics,
energy modeling, energy analytics, energy AI, and
power systems.

MOSLEM SALEHI received the master’s degree
in electrical engineering from Shahid Rajaee
Teacher Training University, Iran, in 2011, and
the Ph.D. degree in electrical engineering from
Lorestan University, Iran, in 2018.

He has been a Lecturer in electrical engineer-
ing at Technical and Vocational University (TVU),
since 2019. His research interests include power
system protection, and fault location and detection
in power systems.

VOLUME 9, 2021 155825

http://dx.doi.org/10.1109/SGCF.2017.7947600
http://dx.doi.org/10.1109/TSG.2019.2943525
http://dx.doi.org/10.1109/TLA.2018.8327409
http://dx.doi.org/10.1109/CPRE.2014.6798997
http://dx.doi.org/10.1109/TDC.2010.5484310
http://dx.doi.org/10.1109/ACCESS.2018.2809045
http://dx.doi.org/10.1109/CPE.2017.7915148
http://dx.doi.org/10.1049/iet-gtd.2017.0656
http://dx.doi.org/10.1109/TSG.2011.2118774
http://dx.doi.org/10.1109/59.260810
http://dx.doi.org/10.1109/TSG.2012.2233767
http://dx.doi.org/10.1016/j.ijepes.2020.106386
http://dx.doi.org/10.1016/j.ijepes.2019.105502

