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ABSTRACT Robotic grasping for cluttered tasks and heterogeneous targets is not satisfied by the deep
learning that has been developed in the last decade. The main problem lies in intelligence, which is stagnant,
even though it has a high accuracy rate in usual environment; however, the cluttered grasping environment
is very irregular. In this paper, an action learning for robotic grasping using eye-in-hand coordination
is developed to grasp the cluttered and wide range of various objects using 6 degree-of-freedom (DOF)
robotic manipulator equipped with a three-finger gripper. To involve action learning in this system, k-
Nearest Neighbor (kNN), Disparity Map (DM), and You Only Look Once (YOLO) were needed. After
successfully formulating the learning cycle, an instrument assesses the robot’s environment and performance
with qualitative weightings. Some experiments of measuring the depth of the target, localization of target
variations, target detection, and the gripping process itself were conducted. The entire process is spread out
in plan, act, observe, and reflect for each action learning cycle. If the first cycle does not suffice the results
according to the minimum pass standard, the cycle will renew until the robot succeeds in picking and placing.
Furthermore, this study demonstrated that the action learning-based object manipulation system with stereo-
like vision and eye-in-hand calibration can improve intelligence over previous errors with acceptable errors.
Thus, action learning might be applicable to other object manipulation systems without having to define the
environment first.

INDEX TERMS Action learning, deep learning, eye-in-hand manipulator, k-nearest neighbor, robotic

manipulator, robotic grasping, YOLOV3.

I. INTRODUCTION

Mimicking human behavior for object manipulation means
to study the inherent interaction between fast feedback
involving perception and action, it is like a complex
manipulation task to extract a single object from messy
objects. It can be ascertained that almost without prior
planning, without tactile feedback, and no vision, the
manipulations can be done very well [1]. In contrast,
robotic manipulation tends to rely on initial analysis and
planning, with the following trajectory feedback, to ensure
adherence during execution. Another way, they usually use
multiple sensors, fusion sensors, or tactile sensors but this
requires a certain approach before being used as continuous
feedback. Continuous feedback is required in visual servo
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technique that require features identification [2]. Both open-
loop perception and feedback features require calibration to
determine the accurate geometric relationship between the
end-effector of the robot and the camera [3], also involving
some deep learning processes.

Latest decade in deep learning, AlexNet was added
to the Convolutional Neural Network (CNN) by
Krizhevsky et al. [4]. The Faster R-CNN (Region based
CNN) has better precision speed than AlexNet, CNN,
R-CNN, and Fast R-CNN. Redmon et al. [5] provided another
highly capable method with the YOLO (You Only Look
Once), the last one being YOLOV3 [6]. In YOLOV2, the speed
of detection is even more significant than the Faster R-CNN.
The prowess of deep learning needs to be supported by other
techniques to be applicable in robotics.

Previous work by Levine er al. [2] from Google Inc.
employed hand-eye coordination for the grasping robot
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that successfully grasped a new object through continuous
servoing. The construction of hand-eye coordination has the
advantage of ease in estimating object localization, but the
camera field of view (FoV) will be blocked by the robot arm
itself [2], [7]. Besides, study [2] used huge data about 800,000
handheld experiments involving at least 6 to 14 manipulator
robots in parallel. This method is not practical in terms of time
and needs many robot units. The interesting thing about this
study is being able to grasp a new object that has not been
recognized.

Although work [2] has involved many datasets in deep
learning the number of grasping experiments is unpre-
dictable. Broadly, deep learning that has currently being
developed still has weaknesses on applying to dynamic
environments, such as in heterogeneous objects, wide range
of targets, and cluttered objects. The nature of deep learning
is very dependent on the learning rate at the training stage
that has been given. However, the ability of deep learning
that is specific and generalized turns out to have a weakness
if the targets are overlapping and/or partially visible and is
related to decision making. For that, deep learning generally
needs to collaborate with other systems, as for supervised or
unsupervised learning [8]-[10].

Some examples of incorporating deep learning with several
systems are becoming prevalent and have been widely
applied, such as Shi er al. [11] and Tsai et al [12]
implementing for mobile robots using Deep Reinforcement
Learning (DRL) and Deep CNN (DCNN), respectively.
Similar work was done by Chen et al. [13] by combining
DRL, RNN (Recurrent Neural Network), and LSTM (Long
Short-Term Memory), but its ability was less than 47%.
Riviere et al. provided an outstanding achievement with
end-to-end learning using the DCNN and Graph Neural
Network (GNN) approaches that can be run on low-end
microcontrollers but limited to the number of six obstacles
and neighbors only [14]. In addition to the use of end-to-
end techniques, incorporating deep learning is often found for
Reinforcement Learning (RL).

Currently, [4], [12], and [15] worked with RL and followed
up by deep network networks. Although RL is quite powerful
after being combined with other techniques, its intelligence
does not be improved because the environment determines
the value at each stage and agents are trained with static data,
which are not suitable for a changing environment. We try to
solve RL’s shortcomings by offering a novel action learning;
it is an improved method without setting the value for each
state. Action learning has been implemented in education for
a long time ago [8], [9], [16], [17], but adapted to robotic or
artificial intelligence (AI) has not been reported.

The action learning principle imitates the human learning
method, where in addition to having past learning, the robot
will also evaluate itself and the environment from several
assessment indicators. In this way, the action learning will
have a learning cycle repeated until it meets specific passing
grade. Besides the robot’s primary intelligence, it also learns
to improve its capabilities by introducing the action learning.
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In practice, we will apply to the cluttered bin for the pick and
place task. Therefore, we expect that our robot system, pow-
ered by an action learning in grasping, will be more effective.

Specifically, we propose to develop a vision-based object
manipulation system using a standard robotic manipulator
that is capable of picking and placing objects from cluttered
positions and overlapping, which are frequently confronted
while picking for the eye-in-hand manipulator. The following
details are given in this paper:

o A stereo camera-like is employed to estimate the
targeted depth, which is variable, heterogonous, and
cluttered, also a localization method based on DM-kNN
is proposed.

« We strive to be as accurate as possible recognition
and detection objects with modified YOLOvV3 as basic
detection and self-correction validation.

o The learning independently from mistakes is considered
by developing action learning for target-picking and
placing tasks and depth collision problem for manipu-
lators in layered environments. The environment as a
reference value to make decision in a single cycle is
assessed.

o The proposed action learning system in the task of
picking targets applied to a six degree-of-freedom
(DOF) robot manipulator with a three-finger gripper was
performed and evaluated, it might provide alternative
ways to similar robot cases.

In this paper, we discussed the system design overview in
Section II. Section III introduces self-correction for robotic
grasping and action learning on cluttered environment will
be detailed in Section IV. The next Section V describes the
experimental results. Finally, we conclude the work and offer
ideas for possible future works in Section V1.

Il. SYSTEM DESIGN OVERVIEW

A. PROPOSED SYSTEM DESIGN

Our whole system can be seen in Figure 1, the dashed line
box refers to the action learning process, while the green
part provides preprocessing inputs of action learning and the
red box is the robot goal. The goal to complete the moving
and picking-placing task makes the gripper avoid confusing
decision; hence, the procedures will cut off the time by
assessing some indicators or inputs.

The inputs of DM (Disparity Map), YOLOv3, kNN,
orientation/edge detection, and B are RGB images with a
resolution of 640 x 480 pixels. The output of DM is far/near
distance in the range of 270-300 mm. The YOLOv3 output
is the result with a confidence level in percentage (%)
and kNN output is in the form of coordinates (X, Y, Z).
Output orientation is in the form of position degree (°) and
environmental assessment value 8 and passing grade value
Bp are in the form of values 0-100. All these values will be
fed into the plan in each cycle to proceed and then become
a decision. Given the large number of inputs and the variety
of targets, it is necessary to limit the specific scope of work
from our proposed action learning.
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FIGURE 1. Overall architecture diagram.
04(h,0,0) b 0,(0,0,0)

camera
baseline

FIGURE 2. Developed stereo camera-like using end-effector baseline.

B. THE SYSTEM LIMITATION

The developed action learning with eye-in-hand configura-
tion is limited to being able to pick and place for the 10 target
classes that have been trained, and the number of cycles in
action learning cannot be predicted if we do not make a
limitation. In this paper, we only limit twice. We did this to
minimize the target dislocation due to the collision between
the robot’s finger and the tray if there is no restriction on
the retrieval experiment. Further explanations are discussed
in Section IV.

Ill. SELF-CORRECTION FOR ROBOTIC GRASPING

A. STEREO CAMERA-LIKE WITH DEPTH ESTIMATION

The stereo camera was developed from a mono webcam
Logitech C920 with the resolution 640 x 480 pixels as shown
in Figure 2. The same camera is placed on the coordinates
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P(X,V,Z)

FIGURE 3. Stereo camera geometry.

of the initial point O (50, 450) and shifted along the x axis
to become point O, (150, 450). The same camera is placed
in an imaginary rigid surface aligned in the y axis and 100
mm apart in the x axis. The cameras must also be perfectly
aligned to avoid the height offset generated on the resulting
3D image.

To measure the discrepancy of two cameras aligned, the
blue dot positions of the object in 2D image plane are
computed then the x values and y values between two images
on left and right cameras are compared as illustrated in
Figure 3. The difference value of y; and y, should be zero
which indicates the two cameras aligned. Figure 3 shows
the blue dot appeared on image plane of left camera with
coordinate is p1(x1, y1) and the dot point appeared on the right
image plane with coordinate p>(x7, y2). The distance between
left camera center (optical center) and the right camera center
(optical center) is called baseline (b). The distance between
x1 and x; is called disparity distance (d), as shown in Egs. (1-
3) where Z is the depth of point P and f is the camera focal
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FIGURE 4. The FOV of Logitech C920.
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Substituting Eq. (2) to Eq. (3) the depth (Z) is seen in Eq.
(4). After obtaining Z, we could use Egs. (5) and (6) to obtain
the X and Y coordinates of P point, respectively,

_ bxf
Z = p 4)
X:Z*xl )
f
Z xy
Y = 6
7 (6)

where pixel locations on the 2D image are x; and x>, and
actual positions on the 3D image are X, Y, and Z.

On the other hand, the camera’s FoV can be used for depth
verification by finding the dx value, see Eq. (7). If diagonal
FoV (DFoV) is given in Figure 4, both vertical FoV (VFOV)
and horizontal FoV (HFoV) for the C920 camera can be
found. Because this camera employs a 16:9 CMOS sensor by
default, we should convert it to the 4:3 aspect ratio using Eq.
(7), where dx denotes the length between the camera pinhole
cp and the frame center and dh denotes the length between
the camera pinhole and the frame vertex. The horizontal line
is half the length of cx, the vertical line is half the length of cy,
and the diagonal line is half the length of dy. As a result, the
difference between the 4:3 and 16:9 aspect ratios is related to
the length of dy.

d
DFoV = cos_l(—x) x 2
dh

DFoV
dx = dh x cos

DFoV N
dy:dhxsin( ° )

cx = dy x cos (@)

cy = dy x sin (@)
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Referring to Eq. (7) to find the values of HFoV and VFoV
by the angle o = atan (3/4), so Eq. (8) is obtained,

DFoV 3
HFoV =2 x atan ( tan x cos(atan | —
2 4 )

DFOV . 3
VFoV =2 x atan | tan 5 x sin(atan 1

With HFoV and VFoV, then to recognize the depth of a
position can be done through a comparison of the perimeter
or volume of an object. Illustration of distance, object, and
camera has a linear relationship in the FoV.

In computer vision, another method, the Disparity
Map (DM) is quite popular. A disparity map refers to the
difference in visible pixels or motion between a pair of stereo
images. The existence of the baseline causes a shift of several
pixels in several baseline lengths. The results of the disparity
map can show a gradation of distance; although it is not
specific in length units, it is pretty helpful. Feng et al. [18]
utilized this method with CNN to estimate the depth and the
disparity map results. Thus, the disparity map capability can
be used for the benefit of depth estimation.

The D (x,y) disparity map represents the displacement
of the corresponding pixels between the left and right
images. However, locating corresponding pixels is difficult.
Some variables may cause problems in the non-occlusion
pixels, such as non-textured, camera noise, homogeneity, and
repeated texture. The disparity is calculated for all pixels
using Block Matching (BM), and the validity of the disparity
significance is defined as follows,

Dr_Rr(X,y)

= argmin eﬁﬁR(x, y) )
de[0,Dax]

8](%_>L(XﬂY)
_ Z(u,v)zewm(x_u»y_v)_fl(X_u+dvy_V)|

Y rew i x—uy = V) Ffix—u+dy—v)|
(10)

The disparities between the left image and the right image
are derived from Eq. (9) and Eq. (10), where 81%—>L x,y) is
the normalized BM error with the horizontal disparity d, W is
window of the BM, Dy, is the maximum value of disparity
within the permissible limit, and # and v are the number of
pixels in the xy camera image plane, respectively. To check
the observed disparity, Eq. (11) expresses the disparity from
the right image frame f; to the left image frame fj,

DroL(X,y) = argmin sﬁﬁL(x, y) (11
de[—Dimax,0]

The Minimum Matching Error (MME) determines how
close the pair image values in the left (x,y) and right (x +d, y)
images are to the same points. The MME is well-known from
its effectiveness Eq. (12).

MME(X, y) = & (X, Y)ld=Dg_. L (x.y) (12)

Apart from DM, other methods such as kNN are needed.
The principle of kNN [19] is found in the application
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FIGURE 5. YOLOv3 with features extraction network of SqueezeNet.

of robotic assistance, another study involved the Kinect
sensor with the kNN algorithm [20]. kNN is applied for
classification based on the closest distance to reference.
At the same time, kNN is reported to have a weakness in
distinguishing entities from each object, but the opportunity
for classification with multiple references is open to this
method.

B. TARGETS DETECTION AND LOCALIZATION

In this study, YOLOV3 was used as the basis for determining
target localization. The results were in the form of confidence
level and its bounding box. The square shape of the bounding
box will be used as the basis for determining the target grip
point. Therefore, detection using YOLOV3 is critical. Two
crucial things related to target detection with YOLOv3 and
the detected object’s orientation need to be explained further.

1) TARGET DETECTION

The essential part of a detection involves deep learning,
in other words which one feature extractor will be chosen.
So far, no one claims about a standard feature extractor
for one algorithm like YOLO. This opens opportunities
for developing customization of the algorithm into hard-
ware [21], [22]. YOLOvV3 can add more variations to the
training data by utilizing data augmentation rather than
increasing the number of labelled training samples, YOLOv3
with SqueezeNet shown in Figure 5. Data augmentation
techniques include random horizontal flipping, random
scaling by 10%, and color jitter augmentation in HSV space.

The cyan is a feature extraction network using SqueezeNet,
the purple color indicates the first detection head, and the gray
is the second detection head with their respective outputs.
In this SquezeeNet, we use nine depth concatenation layers
with an input size of 227 x 227 x 3 in the image form.
There are 86 layers with a connection number of 75, and
the output type is a classification of 10 classes. The basic
idea of the YOLO architecture is to employ two networks
simultaneously and the process to be quickly bypassed in
certain parts. YOLOV3 uses logistic regression to estimate an
objective score (confidence) for each bounding box.

The original SqueezeNet settings for the activation func-
tion are preserved by using the Rectified Linear Unit (ReLU)
function in the fire modules [21]. The leaky ReLU function
will be followed by the fully connected (FC) layers. Leaky
ReLU is a modified version of ReLU with a slight slope in
the function output for negative data. So, the derivative is

156426

A G
G,?.i_-' S{{, =) L

[ o
4{},& = ’
4 3 %f(
Output S~ @*@, Output

N
N

: (b)
(c) (d) (©)

FIGURE 6. Object orientation detection; (a) major axis to x axis
comparison; (b) horizontal; (c) vertical; (d) left diagonal; (e) right
diagonal.

never zero; it can reduce the appearance of silent neurons,
which solves the problem of ReLU failing to learn when
negative intervals are encountered. The following is how the
term leaky ReLU is defined as Eq. (13).

x>0
px) =1Kx) = 0 Ix, x<0 (13)

During training, our model will be optimized using the
categorical cross entropy loss function:

n
loss = — Z
i=1

+ Jim 10g Yim
(14)

i1 logyit + ¥ logyip + - -

where n and m represent the number of samples and the
number of categories, respectively. The y represents the true
value and y represents the prediction value.

In practice, it is necessary to make the loss function pay
more attention to the categories with small samples, which
will help solve the sample imbalance problem. To make the
model training run smoothly and avoid overfitting, we add
loss factors to the loss function as in Eq. (15):

loss = — Z?:l

11 logyir + A23;, logyi
+---+ )LmS’im 10g Yim (15)

The values of loss factor A have been listed for different
target categories, calculated as Eq. (16):

Cn
nN;

Ai= (16)
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where C, represents the total number of samples. The N;
represents the sample amount of class 7, while n is the number
of target categories.

2) TARGET ORIENTATION

After succeeding in identifying the grasping point, object
orientation is necessary for robot grasping. If the target
on tray position is cluttered, so orientation recognition is
required. In a cluttered environment, orientation is necessary,
because overlapping or overlapping objects can form new
orientations. On the other hand, picking up and placing
objects such as circles, spheres or picking up using a vacuum
gripper (non-finger) does not require orientation. Broadly, the
traverses are grouped into five types based on the ratio of the
longest axis to the horizontal x axis.

The estimated region of the subject provided by the
MATLAB function is used to calculate object orientation
ranging from —90° to 90°. During the eye-in-hand adjustment
process, these orientation data must be adjusted to the end-
orientation effector’s so that the object can be grasped
properly. The angle formed by the x axis and the ellipse’s
major axis, as shown in Figure 6, is known as object-
orientation [23]. The relationship among the horizontal line
x, vertical line y, width W and height H of the object is given
in Eq. (17),

O<x<W
(Cl) / /
0.25H" <y <0.75H
®) 0.25W' < x < 0.75H’
O<y<Ww
H 1, H 1,
yZWx_EH yz_Wx+§H
H 1, H 3,
(© }’SWX‘FEH (d) )’f—WX—FEH (17)
O0<y<H 0<y<H
O<x<W 0<x<WwW

The ellipse on the left side of the diagram refers to the
blue axis’s lines, the red dots are the blue line’s centre. The
orientation is defined as the angle between the horizontal
dashed line and the central axis. The picture region and its
ellipse are represented on the right side of the figure. Each
map function is classified as four categories: (b) horizontal,
(c) vertical, (d) left diagonal, or (e) right diagonal.

3) TARGET LOCALIZATION

The localization of the target is the combination of the X, Y
coordinates, Z depth and orientation. Targets that YOLOv3
successfully recognizes will be used as an external reference
in addition to the centroid of the target containing the XY
coordinates. Meanwhile, FoV and disparity map order verify
the results from camera-like stereo to Z depth. Both are
combined, including orientation, so 3D points are formed
with each orientation, as shown in Figure 7.
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FIGURE 7. DM kNN architecture with FOV in depth estimation.

Figure 7 exposes the DM kNN architecture combined with
FoV. The two image inputs are used as inputs through the
popular histogram of oriented gradient (HOG) approach, the
centroid value of each target is obtained [24].

The combined results produce 3D coordinates in image
frame I. The kNN classification method is one of the
most powerful classification methods, and it strengthens our
adoption [19]. The problem of identifying the position of an
object with respect to its nearest neighbor can be solved using
Euclidean method.

C. ACTION LEARNING FOR SELF-CORRECTION

After the emergence of Al in the last decade, algorithms for
robotic manipulators seem to increase again. It is commonly
known that learning for robots is formerly imitated from
human education learning. Several learning theories have
been adopted and each learning theory has its syntax, so it
can be reduced into a procedure or algorithm.

1) APPROACH OF ACTION LEARNING IN ROBOTIC

Broadly, the emergence of action learning was introduced
by Altricther et al. and Dick et al. [26], [28], and [37],
it had undergone several modifications by Bell, Aldridge,
Whitehead, Mc Niff, Norton, Stringer et al., and some even
called it classroom action research/action research. Details
about action learning are discussed in the next subsection. So,
the development of action learning in robotic manipulator has
not been in scientific publications in engineering, and it is still
limited to the field of education [27], [33], [38], and [39].

To adopt action learning in the robotics field, it is necessary
to understand the concepts of general learning approaches
that have existed, including benchmarking them in Table 1.
It should be emphasized that action learning is different from
other learning approaches. Meanwhile it has some similarities
in syntax, such as planning, acting, assessing, reflecting,
evaluating, or reviewing in active learning, reinforcement
learning, metacognitive learning, and experimental learning,
but these are different as a whole process.

Action learning architecture contains cycles; there are
four stages in one cycle. The number of cycles cannot be
determined or limited. It is just the cycle will stop when
it reaches a predetermined threshold. The threshold value
is obtained from an evaluation instrument, and usually,
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TABLE 1. Comparison among learning approaches in education practice.

Learning Approach Characteristic Advantage Disadvantage Syntax
Action learning [9], The problem solving, it involves Continuous gﬁyl)reedtl(c)t:glzlrl;zr;learner Plan> Act > Reflect>
[17], [26]-[28] acting and reflecting upon the results improvement g ’ Learn

results

Active learning
[29]-31]

Proactively selects the subset of
examples to be learned next from the
pool of unknown data.

Can query a user
interactively

Iterative human-in-the-
loop method and
sampling rate is needed

Analyze—> Question >
Objectives > Plan >
Sequence = Assess

Collaborative learning
[32], [33]

Apart from learning from the system,
also can learn from other agents
involved

Rich of learning
resources

Double focus and takes
time for learner

Goal > Activity
->Sequence>
Distribution>Represent

Reinforcement
learning [3], [11], [13],
[34]

If a certain behavior is reinforced, it
will most likely be repeated

Achieve results in the
shortest way

Number or value of
reward set firstly and set
by intuition

Interpret—>
Reward/State=> Action

Metacognition

Essentially to know the meta-memory

Suitable for
asynchronous learning

Syntax only three but the

Plan—>Monitor

learning [35] and mnemonic strategies of the learner . process is tiring -Evaluate
environments

Experimental learning  The learning process through previous Best learning retention The ability to absorb and Prepare—> Absorb—>

[9], [36] experience and reflection ability & review each is unique Capture>Review

in a single instrument, some items indicate performance
indicators. The performance value of this instrument will
continue to be evaluated in each cycle.

2) STEPPING IN EACH CYCLE

The four stages in one cycle are planning, acting, observing
and reflecting. The first stage is a plan; some of the inputs are
analyzed using a particular approach at this stage. The second
stage, act, this part is a form of execution of an action that
has been planned. Act in the robotic manipulator is described
as a motion series starting from the initial position towards
the target until the gripping process returns homing. The
third stage observes the system’s observations after the act
is carried out through the assessment instrument. The last
part is reflecting, which performs an evaluation for the robot,
especially the success of the verification in this section. If the
target grasping process is not successful, then the next cycle
is recycled.

In order to verify an eye-in-hand configuration using action
learning, the target pick and place task was performed as
following details. Although we introduced action learning,
reinforcement learning was an inspiration. The Bellman
equation used by reinforcement learning gives a discounted
value from the goal point; the possible paths are trained to
get the maximum value. In this way, of course, the value of
each state in reinforcement learning is defined previously.
In contrast, on action learning, the value is removed and
replaced with a real-time assessment based on the instrument,
or we also call it a pass grade for learners. The pass grade
value is denoted by B,. The assessment value comes from the
eight assessment instruments in Table 2 and the illustration in
Figure 8.

It should be declared that the output of YOLOV3 detection
is 8 and ¢ is the result of target localization, where §, ¢ € R.
The value obtained from the eight assessment indicators in
Table 2 could be written as Eq. (18),

8
B=) _ moi+niois+ 0oy (18)
i=1
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TABLE 2. Environmental assessment instrument on action learning.

Scale/Probability
Assessment Aspect (Indicators) [0}
0 1 2 3
Before Plan and Act (B,)
Measure the YOLOV3 result on a } <80 8195 >96 5

single process & (%)

Assess the current environment of
B, value

Estimate the XY-coordinate using
kNN-FOV ¢ (mm)

Estimate the Z ordinate using
stereo camera-like and DM (mm)
Before Observe and Reflect (3,)
Confirm on previous success pick-

76~90 >91 3

60~11 <10 3

place of the target No - - Yes 15
Ensure target is not overlap with

each other Yes - No 9
Compare the current of § with the ) o1 6~20 = 3

previous of B, (%)
The value CDF in the next cycle - <75

76~90 >91 5

So, the plan in the first cycle can be written as Eq. (19),
where the plan is symbolized by p;, action by a,, observe by
o0, and reflect by r;.

p=BASANE = a (19)

If the p; has fulfilled the conditions by g, 4, ¢, it will
continue to the a, process, with conditions such as Eq. (20).

a #0= o, (20)

From Eq. (20), we could write Eq. (21), and the value of
the reflection result is dependent on o, with binary properties,

01‘:,3/\5:>rt; ,3,5,8#0

2
o, € {0, 1} @D

It = Oy,

If » = 1, then the cycle stopped; otherwise, if r,= 0,

it will scroll to the next cycle to evaluate B(41) and return its

value. In Eq. (21), when observation o, collects inputs from

the value B8 A §, it means that in this position, YOLOv3 works

for the second time to make sure if the target has been grasped
or not and turns into second cycle.
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FIGURE 8. The flow of action learning with each cycle with input and output.

3) ASSESSMENT OF THE ENVIRONMENT

To develop action learning in manipulator robots, the robot’s
perception of the target must be valid [32]. Assessment
of robot perceptions is carried out using eight items of
assessment instruments. Every single process of grasping
attempt will obtain one assessment result with a range
of 1-100. Recording and comparing the data B, with the
results obtained at that time are presented in a probability
density curve. The normal distribution (also known as the
Gaussian distribution) is a two-parameter curve family. The
central limit theorem states (roughly) that as the sample size
grows to infinity, the number of independent samples from
any distribution with finite mean and variance converges
to the normal distribution. The normal distribution curve
has been widely used to generalize, predict, and analyze
decision making [40]-[45]. Furthermore, the basics of normal
distribution have been commonly used for the development of
deep learning.

For action learning to work well, apart from the innate
intelligence obtained by the manipulator robot through
YOLOV3, other instruments are still needed. This assessment
instrument is a function to assess environmental conditions
in one cycle. This dissertation uses eight initial data to be
generalized plus the latest data to update the latest envi-
ronmental conditions based on eight indicators. Each datum
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has its scale and weighting. These scales and weights are not
standardized but are arranged accordingly. Instrument details
with all indicators are presented in Table 2, and the results of
this instrument assessment on environment are denoted by
which is separated into two parts 81 and B,. The results of this
assessment will be the decision-maker for action learning in
stimulating the robot.

The results of the assessment in Table 2 are presented
in the form of a bell curve. The normal distribution is
popular for modeling unbiased uncertainties and additive
random errors, as well as symmetrical distributions of many
natural processes and phenomena [42]. A commonly cited
rationale for assuming normal distributions is the central
limit theorem, which states that the sum of independent
observations asymptotically approaches a normal distribution
regardless of the shape of the underlying distribution:

PDF : f (x)
N ex {_l (x_,u>2 roo=x =00 (22)
T Voo P12 \e ) TS

where u is the mean and o is the standard deviation.
Although a CDF is cumulative distribution function F(x)

does not have a closed-form solution, it is frequently

presented using the complementary error function solution.
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FIGURE 9. Transformation process from tray coordinate frame P to robot
base frame R for eye-in-hand robot manipulator.

However, it can be expressed in terms of a standard normal
CDF, G (),

F(x) = G(XTT’ﬂ 23)

The probability coverage corresponding to a given interval
around the mean is often used to describe the symmetrical
nature of the distribution. For example, the interval [u =+
lo] corresponds to P(A) = 0.683, the interval [u £ 20]
corresponds to P(A) = 0.954, and the interval [u £ 30]
corresponds to P(A) = 0.997.

D. ROBOT COORDINATE TRANSFORMATION

Triangulation of methods for completing camera to
robot manipulator coordinate transformation has been
reported [6], [23], [46]. Triangulation does not require
prior knowledge, calibration, training, and a wide variety of
methods. The use of kNN, disparity map, HOG and FOV
is a potential approach. The advantage of each method will
complement the transformation of the camera coordinates to
the coordinates of the manipulator robot, thereby overcoming
the complexity of estimating the 3D position of the world
target.

The camera is put on the end-effector with the eye-in-hand
configuration and takes pictures in the cluttered 2D target
coordinates of camera frame C. It’s essential to transform
frame C to end-effector frame E [47]. Figure 9 will make it
simpler. The target frame P is the object to be grasped, in the
image it is indicated by a blue ball that is on the chessboard
frame B. Suppose B is the location for cluttered target O in
the frame. Let RO represent the position of cluttered targets
O in relation to the robotic base frame R, and €O represent
the position of cluttered targets O in the C frame. Eq. (24)
is used to express the transformation of the target coordinate
from camera frame O to robotic base frame R.

RE = CELERE (24)
I’g & be obtained from the structure of the MELFA RV-3SD
robot manipulator shown in Table 3, including the joint j,

angle between two connection rods 6, length of link I,
angle of torsion connected with rod «, and the distance
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TABLE 3. The DH parameters for MELFA RV-3SD manipulator.

Ji 0 [;(mm) d; (mm) 0:(°) Joint

1 0; 350 95 -90° Waist
2 0, 0 245 0° shoulder
3 0, 0 135 90° Elbow
4 04 270 0 -90° Forearm
5 05 0 0 90° Wrist
6 05 85 0 0° Tool

between the two connection rods d. The Denavit-Haternberg
(DH) parameters shown in Table 3 for manipulator control
are the most common for inverse kinematics to control
manipulators.

IV. ACTION LEARNING ON CLUTTERED ENVIRONMENT
A. VARIOUS TARGETS ON CLUTTERED ENVIRONMENT
The targets laid on the tray are within the gripper’s reach so
that the centroid position of each detection result needs to be
searched. The most uncomplicated technique is to calculate
the centroids from the bounding box expressed in Eq. (25)
below:

aip a2 a3z a4
az  axp a3 a4
Bpoxy = | @31 @32 a3 ax (25)

anl ap2  ap3 Aan4

The bounding box matrix Bp,x has four columns ajj . 4
and the number of rows depends on the number of detected
targets ap,4) on each coordinate. So, we could find the
centroids (Xcen, Yeen) from Eqs. (26) — (27) as follows.

Xe = Bpox (:;a11) 5 Yo = Bpox (2, a12)

a = Bpox(:, a13); b = Bpox(:, ars) (26)
a
Xcen = Xc + =
7 27)
Ycen = Yc + 5

From Eq. (27), the centroid can be calculated and becomes
the reference point for a gripper to pick the target. The
centroid point in this condition is still in 2D image, so it is
necessary to add Z value obtained from stereo camera-like
Egs. (4)-(6) and verified by Egs. (25)-(27).

B. GRASPING THE LOCALIZED TARGET

Before the target detection process and proceeding with
localization, the parameter options for YOLOV3 need to be
clarified. The difference in parameters certainly affects the
results of deep learning itself. The value of the initial learning
rate, the mini-batch size and maximum epoch applied will
significantly affect detection accuracy and time consumption
during training. For example, if the learning rate is too
low, then training takes a long time. On the other hand, if
the learning rate is too high, then training might reach a
suboptimal result or diverge. The followings are the training
option parameters applied in the paper; SGDM optimizer
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FIGURE 10. Training loss RMSEs over iteration while in a YOLOv3 detector training; a) training loss for ADAM, RMSProp,
and SGDM optimizer, b) training RMSE, c-e) training loss of attractor’s and ring’s class, d-f) training RMSE of attractor’s

and ring’s class.

(Stochastic Gradient Descent with Momentum) as a solver
for training network, initial learn rate 0.001, verbose set true,
minibatch size of 16, max. epoch of 30, shuffle being never,
and verbose frequency of 30.

A detector that has been formed from training can be seen
in general performance based on the training loss for the
required iteration numbers. Figure 10 shows the results of the
YOLOV3 detector training with different optimizers (SGDM,
ADAM (Adaptive Moment Estimation), and RMSProp (Root
Mean Square Propagation) in this paper. It was proved that,
compared to the other two, SGDM was the best as displayed
in Figure 10.a. It can be seen that in the 100" iteration, the
value of training loss is almost close to zero and continues
to tend to stagnate after more than 200 iterations in Figures
10.a,c,e, while the RMSE training can be seen in Figures
10.b,d,f. The precision of this detector is crucial for overall
system testing verification. Ideally, the precision is one at all
recall levels. Figure 10 is only a sample to see the detector’s
performance from the attractor class and ring class. For that,
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FIGURE 11. Target labelling process of YOLOv3 detector; a) single
detector for all target and b) selected detector for selected target.

we summarize it in the form of training RMSE for cautiously
understanding. It can be seen that out of ten classes, the
ring has better performance than other detectors, as shown
in Figure 11.
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FIGURE 12. Target labelling process of YOLOv3 detector; a) single
detector for all target and b) selected detector for selected target.

FIGURE 13. A sequence of detection using YOLOv3; a) an original input
image, b) detection results using parallel YOLOv3 detector, c) the b) result
added by orientation, d) centroid of bounding box detection adjusted
with gripper range, e) the d) result with closest point kNN = 5 (green
circle) and f) final result detection with kNN = 5 and possibility remove
obstacle (blue circle).

We also compare detectors; in general, the process of
making detectors is preceded by a labelling process. As we
have done in our previous work [22], [48], modifications in
labeling also have a significant effect on detection speed.
In the paper, ten objects are used as targets in Figure 12.
In a typical training detector, this can be done simultaneously
for labelling ten targets to be only one detector for all ten
targets. In contrast to the second method we used, where the
ten targets have their own detectors, the number of detectors
will increase. We call this method a parallel detector so that it
can shorten the detection time by 1.34 times, and we applied
in action learning.

In this paper, SGDM is the best as an optimizer, and we
use it. After that, after the detection and localization process
went well, we determined the grasping point, as shown in
Figure 13. Figure 13 shows the sequence of the recognition
and detection of interfering target. Starting from Figure 13.a
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TABLE 4. Performance of YOLOv3.

Class of Parameters
target Conf. Acc. Prec. Rec. F1 AP T (s)
S 089 Ji 1 1 1 0.98 020
Attractor A 087 096 096 1 098 094 037
R 08 09 096 1 098 092 037
S 093 098 1 1 0.90 097 0.7
Beam A 093 096 096 1 098 097 025
R 095 09 096 1 098 097 025
S 09/ 089 092 095 09 079 031
Bottle A 089 092 09 096 096 089 047
R 087 08 09 092 094 096 047
S 091 1 1 1 1 1 0.18
Cor. pen A 084 092 092 1 096  0.93 0.29
R 079 08 08 09 092 0.83 0.29
S 082 091 095 095 095 08I 0.12
Pliers A 084 094 096 1 098 096 024
R 079 08 08 09 092 094 024
S 094 i 1 1 1 1 0.12
Ring A 087 096 096 1 098 096 025
R 08 08 092 092 094 09 024
S 088 093 1 093 096 086  0.12
Scissors A 090 089 09 092 094 092 025
R 093 092 09 096 09 093 025
S 090 093 095 097 09 087  0.12
Screwdriver A 082 089 089 1 094 076 021
R 081 085 088 096 092 075 021
S 090 098 099 099 099 096 0.3
Sponge A 072 085 092 092 092 091 0.24
R 072 08 092 09 094 087 024
S 079 099 1 0.99 099 09  0.12
Wrench A 072 08 092 092 092 073 0.24
R 08 085 08 091 089 068 028
S 08 09 098 098 098 092 016
u A 084 092 094 097 095 090 028
RO 084 080 092 095 094 088 028
S 004 0035 002 002 002 007 009
o A 006 004 002 003 002 008 007
R

0.06 0.04 0.03 0.02 0.02 0.09 0.07

Note. S = SGDM, A = ADAM, and R =RMSProp

as the input image, Figure 13.b is the result of recognition by
YOLOV3. The orientation of each object can be determined
by using the traditional image processing technique, and now
the target is marked with a (yellow x) and a grip point
(black +) as shown in Figures 13.d. The green circle shows
the gripper finger range, including the five green circles in
Figure 13.e that is the minimum number of obstacles assumed
to be on four sides. It is clear the green circle on the ring
and bottle overlaps the target (attractor). In the last process,
Figure 13.f, the grasping point is given for each potential
obstacle with a blue circle so that the bottle with the highest
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TABLE 5. The results of object position and orientation test.

Position and orientation |Error|
No. Measured Actual Orient. (7) o Position

X Y Z, Cn X, Y, Z, C, (mm)

1 264.45 169.75 281.10 -75.41 270.32 173.14 282.72 -77.67 2.26 3.63
2 296.50 138.89 280.90 48.93 308.01 144.45 276.52 50.89 1.96 423
3 306.39 207.62 280.80 67.95 311.52 222.15 283.22 71.34 3.40 7.36
4 295.40 468.34 281.80 -43.07 300.85 482.39 290.25 -45.22 2.15 9.32
5 319.97 266.39 276.70 31.22 312.77 279.71 296.07 32.16 0.94 8.50
6 329.02 409.56 298.50 -47.16 330.09 408.23 301.47 -48.58 1.41 0.90
7 361.51 228.70 281.10 7.86 377.66 234.71 282.34 7.94 0.08 7.80
8 364.42 373.75 279.30 56.03 368.07 384.97 284.89 58.83 2.80 6.81
9 474.93 384.98 286.90 43.57 477.17 392.68 298.38 44.88 1.31 7.14
10 394.72 374.21 280.90 70.57 402.35 386.66 282.14 74.10 3.53 7.11
11 407.93 312.46 280.80 52.01 406.48 321.83 275.46 54.61 2.60 0.86
12 455.66 248.18 278.50 50.26 453.89 270.52 282.43 52.71 2.51 8.16
13 466.96 106.74 279.00 -3.55 463.63 114.21 298.53 -3.73 0.18 7.89
14 475.89 288.59 281.80 42.44 480.16 291.48 279.71 44.14 1.70 1.69
n 1.92 5.81

P 1.06 2.70

overlapping area will be shifted first. In Table 4, performance
by three optimizers in YOLOv3, SGDM (S), ADAM (A), and
RMSProp (R) are compared.

V. EXPERIMENTS

A. DETECTION METHOD EVALUATION

The following is a separate test of the YOLOv3 performance
for ten targets. YOLOvV3 testing includes the level of
confidence, accuracy, precision, recall, performance, average
precision, and computation time required [25]. A confidence
value of 0.85 was set to compute the detection result metrics.
The results are shown in Table 4, in which can be seen that
targets had a higher rate of detection precision.

Obviously, the annotation process simplifies the targets,
whereas it is tougher to define the obstacles, such as piled
up or sticky. This could not disturb the detection network
but challenges to perform pick and place on that target. So,
this experiment is necessary to measure the distance between
the target and the obstacle using kNN. This measurement is
done by assigning five closest points, assuming one closest
point for the target to the centroid of the bounding box and
the remaining four closest points for the right, left, front, and
rear obstacles.

B. EXPERIMENTS OF SELF-CORRECTION FOR GRASPING

Regarding stereo camera-like coordinates, the coordinates of
the 3D object’s position are obtained using the verification
method as discussed in Section IV. The green circle indicates
the width of the gripper, and if there is an overlap with other
circles, it means that other objects are disturbing. The overlap
needs to be separated in order to grasp the target. In eye-
in-hand coordination, we don’t do any training. Because in
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FIGURE 14. The process of taking the target without action learning;
a) the target orientation is recognized by the robot; b) the robot tried to
grasp the target but failed, c) the target fails placed by the robot.

FIGURE 15. The process of taking the target by activating action learning;
a) the attractor tag is recognized by the robot; b) the target is successfully
grasped; and c) the target is successfully placed.

this section, the system performs calculations based on the
estimation results of the eye-in-hand camera. We have also
included a video version at https://youtu.be/DJZ80Lop5ES to
provide a comprehensive understanding.

Figure 14 shows the sequence of targeting without using
action learning. In Figure 14.a, the gripper approaches
the object’s position along with the estimation results of
its orientation. The 6D (XYZABC position) object pose
estimation has succeeded in estimating the position including
the target orientation to the camera coordinates on the end
effector, as follows: —10.1 mm (x axis), - 474.3 mm (y axis),
268.0 mm (z axis), 178.0° (a axis), 1.0° (b axis), —51.6° (c
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FIGURE 16. The process of taking the target by activating action learning;
a) the attractor target with scissors disturbance is recognized by the
robot; b) the scissors is successfully shifted by the end of the gripper; c)
the target is grasped by the gripper; d) the target is placed.

axis/orientation). The correction pen (square-shaped) is the
target and B was set at 48. However, in Figure 14.b, it seems
that the position of the y axis is a little less precise, and it is not
good enough for the robot trying to grip the target. As a result
(Figure 14.c), the robotic manipulator failed, and it does not
try to repeat because it does not use action learning, in other
hand B = 48 only.

The last two grasps attempt using action learning. The
gripper is positioned parallel to the target orientation’s
estimation results as shown in Figure 15.a. The 6D target
pose has been successfully estimated, which includes the
orientation of the target object to the camera coordinates
on the end effector, as follows: 50 mm (x axis), 450 mm
(y axis), 500 mm (z axis), —178.0° (a axis), 1.0° (b axis),
—88° (c axis/orientation) with value of § = 70 and attractor
(cylindrical shape) as a target. The target is successfully
grasped (Figure 15.b) and placed into black tray (Figure 15.c).

Figure 16 shows the sequence of targeting using action
learning, but in Figure 16.a, the robot evaluates the attractor’s
situation by recognizing the presence of overlap interference
by the scissors. The system’s decision is made so an overlap
scissors is shifted by gripper finger as shown in Figure 16.b
and grasping try to re-identify, re-grasp (Figure 16.c), and
place it into a black tray (Figure 16.d). The 6D object pose
estimates are as follows: 101.8 mm (x axis), —453.5 mm (y
axis), 380.0 mm (z axis), —178.0° (a axis), 1.0° (b axis), -
88.6° (c-axis/orientation).

Based on the experiment results, object detection based
on YOLOV3, stereo camera-like, kNN, DM, and orientation
estimation have succeeded in distinguishing objects from the
background and other interference objects. However, when
critiquing from the average performance of success using
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TABLE 6. The gripping test evaluation.

> Grasp T
Target Bo By f  Obst cycle Result (s)

Beam

70 60 92 0 1 1 175
25¢)
Ring
(141 g) 92 60 99 0 1 1 166
Scr. driver

9 60 73 0 1 1 182
(68 g)
Attractor

7360 88 0 1 1 264
“45¢)

88 39
Wrench = o 2 0 253
(237g) 39 75

75 46
Bottle 60 — 3 2 0 173
(184 g) 46 83
Beam

83 60 73 1 1 1 177
(25¢)

73 85
Corr. Pen 0 —— 0 2 1 251
239 85 76
Sponge 76 70 9% 0 ! 1 182
Gg
Ring
(141 5) 94 70 97 0 1 1 173
Scr. driver

97 70 69 0 1 0 170
(68 ¢g)
Scissors @ 70 > 0 2 0 234
(84¢) 59 74
. 74 51
Pliers 70 — 1 2 0 246
79¢ 51 78
Attractor

7870 77 1 1 1 179
“45¢)

TABLE 7. The action learning evaluation.

Number of Success
Mode Cycle Successes  Failures Rate
Non-Action Learning n/a 1 6 0.142
Action Learning 2 9 5 0.642
Non-Action Learning n/a 2 5 0.285
Action Learning 3 12 2 0.857
Random Planner [49] - - - 0.480
Dex-Net 4.0 [49] - - - 0.490
Tactile-Visual [49] - - - 0.800

action learning, it is still in the range of 0.857 a maximum
cycle limitation of 3 times.

C. EVALUATION ROBOTIC GRASPING USING ACTION
LEARNING
Now we focused on Table 5 above that action learning which
is discussed with 14 experiments. Evaluating action learning
performance means recording four processes simultaneously.
The success of action learning is judged by the robot’s success
in carrying out the gripping task. It is difficult to determine
the value position f in the first-time system running; for this
reason, we create dummy data with o = 70. Initially, action
learning does not limit the number of cycles.

Nevertheless, this experiment has to limit to only two
cycles. This consideration is based on the safety factor of the
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FIGURE 17. The PDF of 14 grip attempts with 19 cycles using action
learning.

robot because the possibility of changing positions is very
high. All details of the limited experimental results are totally
of 21 grasping experiments performed in the paper. The
14 experiments employ action learning as mentioned above
and the remaining seven without using action learning. The
results are listed in Table 6. The success rate results without
and with action learning (cycle limit = 2) are 0.142 and 0.642,
respectively. After we increase the cycle limit to 3, the results
are 0.285 and 0.857, respectively.

Every process of grasping by the robot in action learning,
whether it fails or succeeds, the data are always stored by
the robot. Re-reading the data becomes an essential part
of observing and reflecting in a single cycle. The value of
Bp is set to 60 and 70, respectively, while the value of the
instrument’s assessment result is 8. The system will continue
to do repetition to reach 8, = .

An experiment of 14 grip attempts with five failures
required 19 cycles in total. The values of 8, B, and By if
described in PDF will look like Figure 17. The value of Sg
when first set at 70, then after the robot works its value, is very
dependent on the value of 8. The last ten data are accumulated
to calculate the PDF.

VI. CONCLUSION

This study has successfully developed action learning for
grasping objects by deep learning and used a standard
manipulator robot with a stereo-like camera in an eye-in-
hand configuration. A robotic manipulator equipped with a
gripper can pick up and place targeted objects at cluttered
positions in the workspace. A camera stereo-like is created
by shifting the initial position to the second position on the x
axis by a baseline of 100 mm. The process of grasping targets
in action learning consists of four steps; planning, acting,
observing, and reflecting—several prerequisites; DM, kNN,
YOLOV3, and orientation. However, the results show around
0.857 successful grasping task with self-correction using
action learning, while separately tested; an accuracy for the
YOLOV3 of 0.923, and depth estimation around 0.341 mm.
This evaluation process calculates with limited cycle in action

VOLUME 9, 2021

learning within three cycle and environmental pass grade of
60 and 70.
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