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ABSTRACT Colonoscopy is considered the gold-standard investigation for colorectal cancer screening.
However, the polyps miss rate in clinical practice is relatively high due to different factors. This presents
an opportunity to use AI models to automatically detect and segment polyps, supporting clinicians to
reduce the number of polyps missed. Inspired by the success of UNets, a popular strategy for solving
medical image segmentation tasks, this article proposes a novel framework for polyp segmentation called
CRF-EfficientUNet, which enhances UNet using the EfficientNet encoder, a combined asymmetric loss
function, and Conditional Random Field as a Recurrent Neural Network (CRF-RNN) layer on top. A novel
loss function that combines pixel-wise cross-entropy loss and asymmetric similarity loss to solve the
unbalanced imaging data problem is proposed. Training the proposed network with this loss function can
achieve a considerably higher Dice score and better polyp segmentation prediction. In addition, we add the
CRF-RNN layer to the proposed framework to improve the quality of semantic segmentation. Experimental
results on popular benchmark datasets show that CRF-EfficientUNet achieves state-of-the-art accuracy
compared to existing methods. The results of the experiments, which are performed on the CVC-ClinicDB
dataset for training and testing, are 95.55% Dice and 92.23% IoU. While the experimental results on
cross-dataset using Kvasir-SEG as the training set, CVC-ColonDB as the test set are 85.59% Dice and
76.19% IoU. These results indicate that the proposed method has high generalization capability and learning
ability, and it can be a compelling choice for practical applications with considerable data variations. The
source code is available at: https://github.com/lethithuhong1302/CRF-EfficientUNet

INDEX TERMS Polyp segmentation, medical image analysis, deep learning, loss function.

I. INTRODUCTION
Colorectal cancer (CRC) is one of the most common causes
of cancer-related death in the world for both men and women,
with 576,858 deaths (account for 5.8% of all cancer deaths)
worldwide in 2020 [1]. CRC usually arises from abnormal
polyp growth inside the colon, although polyps grow slowly
and may take years to become cancer. According to anatom-
ical findings, the structure of polyps is distinguished from
normal mucosa by color, size, and surface type. The surface
of polyps can be flat, elevated, or pedunculated based on
a change in the gastrointestinal tract [2]. Though not all
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polyps lead to CRC, all CRC starts with polyps that become
cancerous over time. While the advanced stages of colorectal
cancer have a poor five-year survival rate of 10%, the early
diagnosis has shown a significantly more favorable five-year
survival rate of 90% [3]. Therefore, accurate detection, inves-
tigation, and analysis of types, patterns, and structures of
polyps are important to reduce the spread of CRC. Nowadays,
colonoscopy is considered the primary method for colon
screening and preventing polyps from becoming cancerous.
However, colonoscopy suffers from human errors because it
depends on highly skilled endoscopists and a high level of
eye-hand coordination. Moreover, some of the rare types of
polyps are visually difficult to distinguish due to flat natures
that demand the experiences and expertise of endoscopists.
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Previous studies confirmed that 22%–28% of polyps are
missed in patients undergoing colonoscopy [4]. Segmenting
out polyps from the normal mucosa can help endoscopists
to improve their segmentation errors and subjectivity. There-
fore, this study focuses on the polyp segmentation problem
using deep learning methods.

This study focuses on the polyp segmentation problem
using deep learning methods. Precise segmentation of the
polyp regions is particularly complicated because polyps
have different shapes, sizes, colors, and appearances [5].
In addition, there are challenges such as the presence of image
artifacts like specularity, saturation, artifact, bubbles, and
instrument [6], intestinal contents, and low-quality images
that can cause errors during segmentation. Figure 1 shows
some of the challenges presented by colonoscopy images.
Over the past years, researchers have made several efforts
to develop Computer-AidedDiagnosis(CADx) prototypes for
automated polyp segmentation. Most of the prior polyp seg-
mentation approaches were based on analyzing polyp color,
texture, shape, or edge information to segment polyp regions.
More recently, deep neural networks have beenwidely used to
solve medical image segmentation problems, including polyp
segmentation. The CADx system for automatically segment-
ing out polyps from normal mucosa on colonoscopy images
can be an effective clinical tool that helps endoscopists for
faster screening and higher accuracy [5]. For building a pow-
erful polyp segmentation CADx system that could be used
in clinical settings, it is necessary to address two common
challenges: (i) Robustness (i.e., the ability of the system to
perform well on both easy and challenging images), and
(ii) Generalization (i.e., a system trained on a dataset from
a specific hospital should generalize across different hospi-
tals) [7]. To address the aforementioned research challenges
and issues, the overall goal of this article is to develop a
novel deep learning framework for polyp segmentation with
high generalizability and learning ability, so that it can be an
effective choice for practical applications.

Among various deep learning models, UNet [8] and
its variants have demonstrated impressive performance in
biomedical image segmentation. Motivated by the success of
UNet, in this work, we propose a novel polyp segmentation
method based on the UNet architecture. We adapt the UNet
model for polyp segmentation and aim to evaluate the model
with different encoders (MobileNet [9], ResNet [10], and
EfficientNets [11]). We choose the EfficientNetB7 encoder
for our model because of the highest performance. One
of the challenges in training networks for polyp segmenta-
tion is unbalanced data, i.e., polyp pixels are often much
lower in numbers than non-polyp pixels. Networks trained
by unbalanced data may make predictions with high preci-
sion and low recall. These predictions are severely biased
toward the non-polyp class, which are particularly unde-
sired because the consequences of false negatives would
be more serious than those of false positives. Therefore,
we propose a novel loss function that combines pixel-wise
cross-entropy loss and asymmetric similarity loss for training

FIGURE 1. Some of the challenges presented by colonoscopy images:
(a) Varying shapes and textures of polyps, (b) Small polyps, (c) Blurriness,
intestinal contents, flares, or low-quality images.

polyp segmentation models to address this problem. By train-
ing models with the proposed loss function, we found that the
models can make predictions with a better trade-off between
precision and recall prediction to yield accurate polyp seg-
mentation. Moreover, one central issue in polyp segmen-
tation is the limited capacity of deep learning techniques
to delineate polyp objects. To solve this problem, we use
a deep network that fully integrates Conditional Random
Fields (CRFs) [12] probabilistic graphical modeling with
CNN, making it possible to train the whole deep network
end-to-end with the back-propagation algorithm, avoiding
offline post-processing methods for object delineation [13].
Finally, we perform experiments on a range of recent pub-
lic datasets for polyp segmentation, i.e., Kvasir-SEG [14],
CVC-ClinicDB [15], CVC-ColonDB [16], EITS-Larib [15]
with different scenarios of using training and test data to
evaluate our proposed method and compare with state-of-
the-art (SOTA) approaches.

This article is an extension of our work originally
presented in the 2020 RIVF International Conference on
Computing and Communication Technologies (RIVF) [17].
We extend previous work by (i) modified the model archi-
tecture by remove the ensemble step and add a CRF-RNN
layer, (ii) use EfficientNetB7 instead of EfficientNetB5 as
encoder, (iii) conducted comprehensive experiments with
multiple datasets, multiple experiment settings for compari-
son with recent SOTAs in polyp segmentation and ablation
study. In summary, this article makes the following key
contributions:
1) We present a novel neural network architecture for

automatic polyp segmentation, called CRF-EfficientUNet,
extended from UNet architecture with an EfficientNet
encoder and CRF-RNN layer on top. Moreover, we use the
transfer learning method on the proposed network architec-
ture to achieve better performance.
2) We propose a loss function that combines pixel-wise

cross-entropy loss and asymmetric similarity loss called the
combined asymmetric loss function for training polyp seg-
mentation networks. The combined asymmetric loss function
can effectively boost the performance of polyp segmentation
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networks. The proposed loss function was used to train our
polyp segmentation model results in a better performance.
3)We train and validate the proposed method on four pop-

ular benchmark datasets, i.e., Kvasir-SEG, CVC-ClinicDB,
CVC-ColonDB, EITS-Larib, with different scenarios of
using training and testing data. The results show that our
model has the robustness to detect small polyps that are
frequently missed during colonoscopy and perform well
on easy images. Moreover, our network CRF-EfficientUNet
outperforms all SOTAs across unseen polyp datasets; this
demonstrates that our proposed method has better gener-
alizability than existing methods. The experimental results
indicate that the proposed model can be a compelling choice
for practical applications with considerable data variations.

The rest of the paper is organized as follows. Section II
reviews related research on polyp segmentation. Section III
describes the proposed method for polyp segmentation in
detail. Section IV outlines our experiment settings. The
experimental results and discussion are presented and dis-
cussed in Section V. Finally, Section VI summarizes and
concludes this work.

II. RELATED WORK
Many methods have been proposed that focus on accu-
rate polyp segmentation. The existing research works in
polyp segmentation can be roughly grouped into main
approaches: using image processing segmentation and tra-
ditional machine learning methods, and using deep learn-
ing methods. The processing segmentation methods analyze
either the polyp’s edge or its color and texture for polyp
segmentation. Bernal et al. [16] proposed to use the ‘‘depth
of valleys’’ of an image to segment polyps. They use the
watershed algorithm to segment images into polyp candidate
regions and then classify each region into polyp and non-
polyp. This classification is based on region information and
the ‘‘depth of valleys’’ in each region. Ganz et al. [18] propose
a method based on Hough transform to detect the region of
interest (ROI) and specular reflection suppression with an
exemplar-based image in painting as a preprocessing method.
Then, they use an algorithm called shape-UCM for image
segmentation, shape-UCM works based on image gradient
contours and spectral clustering. Traditional machine learn-
ing methods are based on hand-crafted features for image
representation. These methods use color, texture, shape,
or edge information as extracted features and train the classi-
fier to distinguish polyps from surrounding normal mucosa.
Tajbakhsh et al. [19] proposed a feature extraction method
to extract sub-patches with a 50% overlap and calculate their
average vertically, resulting in one-dimensional signals. After
that, they use DCT coefficients as a feature for each extracted
patch. Finally, they use a two-stage random forest classifier
to label each patch.

The deep learning-based approach for polyp segmentation
has gainedmuch attention in recent years due to the automatic
feature extraction process to segment polyp regions with
unprecedented precision. In addition, the public database of

polyp images facilitated further research on the use of deep
learning models for polyp segmentation. Qadir et al. [20]
proposed using Mask-RCNN incorporated with traditional
CNN-based feature extractors to provide bounding boxes of
the polyp regions. Kang and Gwak [21] used Mask-RCNN,
which relies on ResNet50 and ResNet101, as a backbone
structure for automatic polyp detection and segmentation. For
obtaining pixel-level segmentation, a fully convolutional neu-
ral network (FCN) was used. The authors in [22] showed that
FCN architectures could be refined and adapted to recognize
polyp structures. Zhang et al. [23] used FCN-8S to segment
polyp region candidates, and texton features computed from
each region were used by a random forest classifier for the
final decision. Fan et al. [24] propose PraNet, enhancing an
FCN-like model using a parallel partial decoder and reverse
attention modules for medical image segmentation. Instead
of a single encoder in traditional FCN architecture, UNet is
proposed, which increases the performance of FCN consid-
erably and has established itself as a popular choice in med-
ical image segmentation. UNet is an encoder-decoder-based
structure that uses skip connections to concatenate the fea-
tures from the encoding and decoding layers. Inspired by the
success of UNet, several variants were proposed for polyp
segmentation and yielded promising results. Jha et al. [25]
present DoubleU-Net, which combines two UNets. The first
UNet uses a pre-trainedVGG-19 as the backbone. The second
UNet is added at the bottom of the first UNet to capture more
semantic information efficiently. They also adopt Atrous Spa-
tial Pyramid Pooling (ASPP) to capture contextual informa-
tion within the network. Zhou et al. [26] propose UNet++,
a deeply supervised encoder-decoder network, which con-
nects UNets through a series of nested, dense skip pathways.
Jha et al. [27] also propose ResUNet++, which takes advan-
tage of residual blocks, squeeze and excitation units, ASPP,
and the attention mechanism. Similar to UNet, another deep
convolutional encoder-decoder architecture, Segnet [28],
is also used for polyp segmentation. Wang et al. [29] used
the SegNet architecture to detect polyps in real-time and
with high sensitivity and specificity. Afify et al. [30] pre-
sented an improved framework for polyp segmentation based
on image preprocessing and two types of SegNet architec-
ture. Mahmud et al. [31] proposed PolypSegNet, a modified
SegNet architecture for automated polyp segmentation from
colonoscopy images with several sequential depth dilated
inception (DDI) blocks, deep fusion skip modules (DFSM),
and deep reconstruction module (DRM). Additionally, there
are several recent studies on polyp segmentation [32]–[35].
They are useful steps toward building an automated polyp
segmentation system.

From the presented related works, we observe that works
on polyp segmentation problems are becoming mature.
Researchers are conducting a variety of studies with many
different methods for precision polyp segmentation. How-
ever, the main drawback in the field is that very few works
apply towards testing the generalizability of models with the
cross-dataset test. Most of the current works have proposed
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FIGURE 2. Flowchart of the proposed deep learning model for polyp segmentation.

algorithms tested on single, often small, imbalanced, and
explicitly handpicked datasets. Besides, many challenging
polyps are usually missed during colonoscopy examinations
and can develop into cancer if they are not detected early.
Moreover, one of the significant challenges in the medi-
cal domain is the lack of large training datasets, and the
obtained datasets are often imbalanced. These challenges
make it harder to build robust and generalizable systems
for precision polyp segmentation. Toward addressing these
challenges, in this work, we aim to develop an algorithm
that could achieve high performance on different datasets.
We have done extensive experiments on various colonoscopy
images. Furthermore, we have trained the proposed model
on datasets from multiple clinical settings and tested it on
other diverse unseen datasets to achieve the goal of building
generalizable and robust models.

III. METHODOLOGY
A. OVERVIEW OF THE PROPOSED METHOD
The overall architecture of our proposed network,
CRF-EfficientUNet, is depicted in Figure 2. First, we evaluate
the performance of the UNet architecture for polyp segmenta-
tion with different CNN encoders. We select the EfficientNet
B7 encoder for the UNet architecture due to it gives the high-
est performance. Next, we extended the UNet architecture
with the EfficientNet B7 encoder and a CRF-RNN layer on
top. Besides, we propose a novel loss function that combines

pixel-wise cross-entropy loss and asymmetric similarity loss
called the combined asymmetric loss function. Training the
networks uses combined asymmetric loss, and the transfer
learning method can effectively boost the network’s segmen-
tation performance. The CRF-RNN layer is integrated on top
of UNet as follows. First, EfficientUnet was trained. When
the UNet network’s parameters have been trained, they are
fixed and set to untrainable. Next, the softmax layer is left
out, and the CRF-RNN layer on top is integrated. Finally, the
CRF-EfficientUNet is trained end-to-end once again.

B. UNets WITH DIFFERENT ENCODERS FOR
POLYP SEGMENTATION
The UNet architecture was developed by Ronneberger et al.
for Biomedical Image Segmentation [8]. UNet has two sym-
metric paths. The first path is also called the encoder, which
is used to capture the context in the image. The encoder
consists of convolutional and max-pooling layers. The sec-
ond is called the decoder, which is used to enable precise
localization using transposed convolutions. Moreover, UNet
has connections between encoder and decoder to skip the
higher-level features the encoder learned that could be lost
during the decoding process. That means the outputs of the
encoding layers are passed directly to the decoding layers so
that all the important pieces of information can be preserved.
We adopt a transfer learning approach with UNet architecture
for polyp segmentation. We use UNet with a CNN model

156990 VOLUME 9, 2021



L. Thi Thu Hong et al.: CRF-EfficientUNet: Improved UNet Framework for Polyp Segmentation in Colonoscopy Images

pre-trained on the ImageNet dataset as the encoder. The
choice of the encoder is essential because the CNN archi-
tecture, the number of parameters, the type of layers directly
affect the speed, memory usage, and most importantly, the
performance of the UNet. In this work, we select three archi-
tectures to compare and evaluate their performance in polyp
segmentation: MobileNet [9], ResNet [10], and Efficient-
Net [11]. MobileNet is a family of mobile-first computer
vision models from Google. They are designed to maximize
accuracy while being mindful of the restricted resources for
an on-device or embedded application. ResNet is a residual
learning framework that enables training deep networks eas-
ily. With ResNet, we can benefit from deeper CNN networks
to obtain an even higher level of essential features for chal-
lenging tasks such as polyp segmentation. EfficientNets are
the latest family of image classification models from Google,
which achieves the state of the art accuracy on ImageNet.
Mingxing Tan and Quoc V. Le proposed the EfficientNets
based on AutoML and Compound Scaling. In particular,
they use the AutoML MNAS Mobile framework to develop
a mobile-size baseline network named EfficientNet-B0.
Then, they use the compound scaling method to scale up
this baseline to obtain EfficientNet-B1 to EfficientNet-B7.
The accuracies of networks are steadily increasing while
maintaining a relatively small size from EfficientNet-B0
to EfficientNet-B7. This study conducts an ablation study
on different encoders, including EfficientNets family from
EfficientNet-B0 to EfficientNet-B7, ResNet-50, ResNet-101,
and MobileNetV2. Our experiments show that UNet with
EfficientNet B7 encoder gives the highest performance.

C. COMBINED ASYMMETRIC LOSS FUNCTION
We present the combined asymmetric loss function,
a novel loss function that combines existing loss func-
tions with hyper-parameters to boost segmentation results:
cross-entropy loss and asymmetric similarity loss. Pixel-wise
cross-entropy loss was used by Ronneberger et al. in [8]
for the task of image segmentation. This loss simply veri-
fied each pixel individually, comparing the class predictions
defined as a depth-wise pixel vector to the target vector. The
cross-entropy loss function is defined as:

LCE =
∑
i,j

gi,j ∗ log (pi,j) (1)

where pi,j is the predicted segmentation probability, and
gi,j stands for the ground truth at image pixel (i, j). The
cross-entropy loss function assesses every single pixel.
In medical imaging applications, such as polyp segmenta-
tion, the polyp pixel class is much lower in number than
the none-polyp pixel class. Hence, the segmentation network
trained with a cross-entropy loss function is biased towards
the background image than the object itself. Furthermore,
as the foreground region is often missing or only partially
detected, it is not easy for the model to see the object.

Dice score coefficient (DSC) is an overlap index widely
used to assess segmentation maps in the medical community.

FIGURE 3. Dice score: TP is true positives, FP is false positives, and FN is
false negatives, P is the set of predicted binary labels, G is the set of
ground truth binary labels.

Dice similarity coefficient between the set of predicted binary
labels (denoted as P) and the set of ground truth binary labels
(denoted as G) is defined as:

DSC(P,G) =
2|PG|
|P| + |G|

(2)

The dice loss function is formulated based on the Dice
score [36]. This is used to improve UNet and other segmen-
tation networks training. Simply put, Dice score is 2 × the
area of overlap between P (predicted area) and G (ground
truth area) divided by the total number of pixels in P and G.
Figure 3 illustrates the Dice score.We can see that all the Dice
score considered is the foreground class but no background
class. In other words, no matter how many ground-truth
background pixels exist in the image, they will not affect the
calculation of the Dice score. So that, The Dice score drops
sharply when much more ground-truth background pixels
than the ground-truth foreground pixels. That means the Dice
score gets more sensitive when the image suffers severe class
unbalanced. Moreover, as Figure 3, the Dice score can be
calculated as:

DSC =
2|TP|

2|TP| + |FP| + |FN |
(3)

where TP is true positives, FP is false positives, and FN
is false negatives. In this equation, Dice score weighs false
positives (FPs) and false negatives (FNs) equally. When
data is class-imbalanced, positive (polyp) pixels are often
much lower in numbers than negative (non-polyp) pixels.
The network trained with Dice loss on imbalanced data may
make predictions severely biased towards the negatives (non-
polyp) class. That is particularly undesired in colonoscopy
scan applications where false negatives are more serious than
false positives. On the other hand, precision and recall are
defined as:

Re =
|TP|

|TP| + |FN |
(4)

Pre =
|TP|

|TP| + |FP|
(5)

VOLUME 9, 2021 156991



L. Thi Thu Hong et al.: CRF-EfficientUNet: Improved UNet Framework for Polyp Segmentation in Colonoscopy Images

Combine Equation (3),(4),(5), we have:

DSC =
2 ∗ precision ∗ recall
precision+ recall

(6)

As Equation 6, Dice score is the harmonic mean of preci-
sion and recall. A trained network with Dice loss on unbal-
anced data may make predictions with high precision and
low recall. In some fields like medical image segmentation
problems, however, the data are highly unbalanced, detecting
the small number of pixels in the positive class is impor-
tant. Thus, it is necessary to better balance precision and
recall in training segmentation networks for unbalanced data.
Asymmetric similarity loss function was proposed in [37]
for training segmentation networks to make a better balance
between precision and recall. The asymmetric similarity loss
function is based on Fβ score and used to replace Dice loss
function. Fβ score is defined as:

Fβ = (1+ β2)
precision ∗ recall

β2 ∗ precision+ recall
(7)

By changing the hyperparameter β, we can control the
trade-off between precision and recall. Equation 7 can be
written as:

F(P,G, β) =
(1+ β2)|PG|

(1+ β2)|PG| + β2|G\P| + |P\G|
(8)

where |P\G| is the difference of P and G. Therefore, Fβ score
can be calculated as follows:

Fβ =
(1+ β2)

∑
pi,jgi,j

(1+β2)
∑
pi,jgi,j+β2

∑
(1−pi,j)gi,j+

∑
pi,j(1−gi,j)

(9)

Fβ score with the hyper-parameter β generalizes Dice sim-
ilarity coefficient and Jaccard (IoU) index. When β = 1, the
Fβ score is Dice score, β = 2 generates F2 score, and β = 0
transforms the score to precision. When the hyper-parameter
β is larger, the weight of recall is higher than the weight of
precision, and the false negatives are more emphasized.

In this work, we proposed a combined asymmetric loss
function that combines cross-entropy loss and asymmetric
similarity loss for training networks to boost polyp segmen-
tation results. The proposed loss function is defined as:

LAsymCE = α ∗ LCE + LAsym (10)

where LCE is cross-entropy loss and LAsym = 1 − Fβ
is asymmetric similarity loss which is based on Fβ score,
the hyperparameter α controls the amount of cross-entropy
loss term contribution in the loss function. Due to the
polyp segmentation problem is also a pixel classification
problem, we use the cross-entropy loss term to verified
each pixel individually. However, cross-entropy loss assesses
every single pixel. In colonoscopy images, polyps usually
have a small surface area. Hence, the segmentation net-
work trained with a cross-entropy loss function is biased
towards the background rather than the polyp objects. Like
Dice loss, asymmetric similarity loss can handle the input

class-imbalance problem, e.g., segmenting small polyps from
a large background. Moreover, asymmetric similarity loss
allows training networks that make a better balance between
precision and recall. By combining cross-entropy loss and
asymmetric similarity loss for training networks, we can
leverage the asymmetric similarity loss term to handles
the input class-imbalance problem and control the trade-off
between precision and recall. At the same time, we can
force networks to learn better parameters by penalizing for
false positives/negatives using the cross-entropy loss term.
In the proposed loss function, appropriate values of the
hyper-parameter α, β can be defined based on class imbal-
ance ratios of the dataset. Our experimental results prove
that combined asymmetric loss function is more robust than
cross-entropy loss function and Dice loss function.

Table 1 lists recent polyp segmentation work that used
different loss functions for trainingmodels. As reported in the
table, none of the current loss functions can explicitly handle
all the main challenges in the polyp segmentation problem.
These challenges are handling class imbalance, the trade-off
between precision and recall, and penalizing for false pos-
itives and false negatives. Some studies attempted to deal
with class imbalance by using variants of cross-entropy loss
and Dice loss: Sánchez-Peralta et al. [39] use a loss function
that combines binary cross-entropy and Jaccard index loss;
Nguyen et al. [40] use an adaptive weighted loss function
which is a weighted cross-entropy loss; Mahmud et al. use
Modified Focal Tversky (MFTL) loss function for training
the PolypSegNet, MFTL increase the focus on hard train-
ing samples by utilizing Tversky index (a generalization of
Dice score). However, these methods on polyp segmentation
datasets do not handle the trade-off between precision and
recall. Nguyen and Lee in [38] also proposed a loss function
that combines the binary cross-entropy and the Dice loss.
Milletari et al. in [37] also proposed a loss function that com-
bines the binary cross-entropy and the Dice loss. Their loss
function could penalize false positives and false negatives.
But the trade-off between precision and recall couldn’t be
dealt with on all polyp segmentation test sets. In this arti-
cle, we propose a combined asymmetric loss function that
combines cross-entropy loss and asymmetric loss to train our
polyp segmentation model. When the proposed loss function
is used as an optimization function, the polyp segmentation
model can handle class imbalance, the trade-off between
precision and recall, and penalize for false positives and false
negatives. The experiment’s results in section V-A2 show that
when our model CRF-EfficientUnet was trained with com-
bined asymmetric loss function, and it significantly improves
the polyp segmentation accuracy.

D. INTEGRATING CRF AS RNN LAYER ON TOP OF THE
POLYP SEGMENTATION NETWORKS
Using a fully connected Conditional Random Field (CRF) in
conjunction with a deep segmentation model is the popular
approach for semantic segmentation. The idea behind this is
that the segmentation model plays a role as a feature extractor
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TABLE 1. Applied loss functions in the existing deep models for polyp segmentation.

that produces a coarse segmentation. Then CRF refines the
result segmentation. The input of CRF includes the segmen-
tation probality produced by the network and the original
input image. Unlike a convolution layer that implements local
filters, the fully-connected CRF considers every possible pair
of pixels in the image. Each pair is called a clique. In CRF
graphical model, the clique is defined by the spatial distance
and color distance between pixels. This makes segmentations
produced by the CRF much sharper than those produced by
the original segmentation model. Thus, the receptive field of
a CRF is the entire image. However, when using a CRF to
improve the quality of a segmentation model, the CRF has to
be trained separately after the base model has been trained.
Hence, in [13], the authors propose the CRF mean-field
approximation as Recurrent Neural Network (RNN) that
can be added on top of CNN and train the whole system
end-to-end.

In the fully connected pairwise CRF model, the image
segmentation problem is solved as an optimization problem
by minimizing an energy function [12]:

E(Y ) =
N∑
i=1

8(yui )+
∑
∀i,j,i<j

9(yui , y
v
j ) (11)

The term 8(yui ) measures the cost of assigning label u to
pixel i, N is the number of pixels in the image, the pairwise
potential 9(yui , y

v
j ) measures the cost of assigning label u

and v jointly to pixel i, j and is defined as:

9(yui , y
v
j ) = µ(u, v)

K∑
m=1

w(m)k (m)(fi, fj) (12)

where µ(u, v) indicates the compatibility of labels u and v,
K = 2 is the number of Gaussian kernels; k (m) is a Gaussian
kernel, w(m) is a weight for the Gaussian kernel,fi, fj denote
feature vectors of pixels i, j respectively.

k (1) =

(
−
|si − sj|
2θ2α

−
|ei − ej|

2θ2β

)
(13)

k (1) = exp

(
−
|si − sj|
2θ2γ

)
(14)

where ei, ej denote the intensity and si, sj denote spatial coor-
dinates of pixels i, j respectively; θα, θβ , θγ are parameters

FIGURE 4. Network structure of CRF-RNN.

of the Gaussian kernels. Fully connected CRF predicts the
probability of assigning label u to pixel i (qui ) by minimizing
Equation (11). {qui } can be calculated using a mean-field
iteration algorithm which is formulated as Recurrent Neural
Networks. So that, CNNs and the fully connected CRF are
integrated as one deep network and can be trained using a
back-propagation [13].

This article presents a deep learning model that integrates
UNet and CRF-RNN for polyp segmentation that can be
trained the whole system end-to-end. Figure 4 shows the
network structure of CRF-RNN in our proposed model.
In Figure 4, G1, G2 are two gating functions:

Qin =

{
softmax(P) if t = 0
Qout = MeanField(Qin) if 0 < t 6 T )

(15)

Qfinal =

{
0 if 0 < t < T
Qout = MeanField(Qin) if t = T )

(16)

where Q = {qui }, {q
u
i } denotes the probability of assigning

label u to pixel i, Qin denotes the input of one mean-field
iteration, Qout denotes the output Q of one mean-field itera-
tion, Qfinal denotes the final prediction results of CRF-RNN,
P denotes the output of UNet, Pnorm denotes the P that after
softmax operation, t represents the t th mean-field iteration,
and T is the total number of mean-field iterations. Mean-field
iteration [13] is considered as a stack of CNN layers
which includes these steps: Message Passing, Re-Weighting,
Compatibility transform, Adding Unary Potentials, and
Normalization. In our study, the term 8(yui ) in Equation (11)

is the output of UNets and the term 9(yui , y
v
j )is computed

based on feature vectors of pixel i, j with information is
derived from image features such as spatial location and
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RGB values. The parameters of the Gaussian kernels θα =
160, θβ = 3, θγ = 3 while w andµ are learned in the training
phase, the RNN parameter iteration count T is set to T = 10
during the test time and T = 5 during the training time,
according to [13].

By using the UNet that fully integrates CRF-RNN as
layer on top, and making whole network possible to train
end-to-end with the back-propagation algorithm, we can
improve the polyp segmentation accuracy without offline
post-processing for object delineation. The experiment’s
results in section V-A4 show the considerable increase in
Dice score when using the CRF-RNN layer on top of all
experimented networks.

IV. EXPERIMENTAL METHOD
A. DATASET
Several public available benchmark datasets are used for the
training and evaluation of the proposed method. The exam-
ples are given from the datasets in Figure 5 Details of these
datasets are summarized as below:

-CVC-ClinicDB dataset [15] consists of 612 images
from 31 different types of polyps along with the correspond-
ing ground truth masks of defined polyp regions. The ground
truthmasks aremanually annotated by experts. All the images
have a resolution of 384× 288.
- Kvasir-SEG dataset [14], publicized by Simula Research

Laboratory, includes 1000 polyp images with varying sizes
from 332 × 482 to 1920 × 1072 and their corresponding
ground truth masks manually annotated by expert endo-
scopists from Oslo University Hospital (Norway).

-ETIS-Larib dataset [16] contains 36 different types of
polyps in 196 images with a resolution of 1225× 966. These
images were extracted from colonoscopy videos, and the
ground truth masks were annotated by experts. This dataset
is provided in the 2015 MICCAI automatic polyp detection
sub-challenge as the test set.

-The CVC-ColonDB dataset [15] is contributed by the
Machine Vision Group (MVG). This dataset consists
of 300 polyp images and their corresponding pixel-level

FIGURE 5. Examples of polyp segmentation datasets- The first and
second lines are the polyp and mask images from the CVC-ClinicDB
dataset; The third and fourth lines are the polyp and mask images from
the Kvasir-SEG dataset.

annotated polyp masks extracted from 15 video sequences.
The images had a resolution of 574× 500.
These datasets were obtained with different imaging sys-

tems. Each dataset contains binary masks as the ground truths
to indicate the location of the polyps for each image. Expert
endoscopists annotated all ground truths of polyp regions
from the corresponding associated clinical institutions. There
are similar image frames within a dataset. However, the
datasets vary regarding the number of images, image resolu-
tion, availability, devices used for capturing, and the accuracy
of the segmentation masks. In this work, we conduct experi-
ments with different scenarios using training and testing data
to compare the proposedmodel’s performance over the SOTA
approaches.

B. DATA AUGMENTATION
One of the challenges in training polyp segmentation mod-
els is the insufficient numbers of data for training. Since
the endoscopy procedures involving moving camera control,
color calibrations are not consistent, the appearance of
endoscopy images significantly changes across different lab-
oratories. The data augmentation step extends endoscopy
images into the space that can cover all their variances.
By augmenting training data, we can also reduce the over-
fitting problem on training models. Figure 6 shows the exam-
ples of the data augmentation method applied to the original
polyp image (a). The methods of augmentation used in our
work include vertical flipping, horizontal flipping, random
rotation between -10 and 10 degrees, random scaling ranging
from 0.5 to 1.5, random shearing between -5 and 5 degrees,
random Gaussian blurring with a sigma of 3.0, random con-
trast normalization by a factor of 1 to 1.5, random brightness
ranging from 1 to 1.5, and random cropping and padding by
0–5% of height and width.

C. EVALUATION METRICS
For the evaluation of polyp segmentation, we use Dice coef-
ficient as the main metric. Furthermore, to provide a general
view of the effectiveness of our method, we also employed
interception over union (IoU ), recall (Re) which is also
known as sensitivity, and precision (Pre). The evaluation
metrics are calculated as follows:

Dice =
2|PR ∩ GT |
|PR| + |GT |

(17)

FIGURE 6. Examples of Data Augmentation: (a) the original polyp image,
(b),(c) random shifting, (d) horizontal flipping, (e) vertical flipping,
(f) random shearing, (g) random brightness, (h),(j) random scaling
ranging, (i) random Gaussian blurring.

156994 VOLUME 9, 2021



L. Thi Thu Hong et al.: CRF-EfficientUNet: Improved UNet Framework for Polyp Segmentation in Colonoscopy Images

IoU =
|PR ∩ GT |
|PR ∪ GT |

(18)

Re =
|TP|

|TP| + |FN |
(19)

Pre =
|TP|

|TP| + |FP|
(20)

where PR represents prediction results, GT is the ground-
truth, TP is true positives, FP is false positives, and FN
is false negatives. Metrics compute on every image, then
average on the whole dataset across all images.

D. TRAINING SETUP
The proposed models are implemented using Keras and
TensorFlow backend. All algorithms have been programmed/
trained on a PC with a GeForce GTX 1080 Ti GPU. Weights
pre-trained on ImageNet for encoders are used as initial-
ization. The encoders are unfrozen, and the entire network
is updated via Adam optimizer with the learning rate of
1e−4 and the maximum epoch number of 500. The proposed
loss function, combined asymmetric loss, is used for training
models. The dataset is divided into batches with a mini-batch
size of four for the training. The model generated at the epoch
with max Dice score on the validation set is used as the final
model.

V. EXPERIMENTS RESULTS AND ANALYSIS
A. ABLATION STUDY
To analyze the effect of each component in the proposed
model on the segmentation performance, we performed an
ablation study with model variants. To make equal to all abla-
tion experiments, we conduct experiments on CVC-ClinicDB
dataset. The dataset is split 80/10/10 for training, validation,
and testing.

1) PERFORMANCE EVALUATION ON CNN
PRE-TRAINED ENCODERS
We first evaluate UNets with different encoders. Several
encoders are selected to evaluate their performance in
polyp segmentation. The EfficientNet family from B0 to
B7, MobileNetV2, ResNet variants, including ResNet18,
ResNet34, ResNet101 have been used. Table 2 presents the
overall results of the experiments. This table shows that Effi-
cientNet family backbones significantly outperform ResNet
and MobileNet in terms of Dice and IoU scores; EfficientNet
backbones generally perform better as size increases; UNet-
EfficientNetB7 gives the best segmentation performance with
93.72% Dice and 88.63% IoU.

2) THE EFFECT OF COMBINED ASYMMETRIC
LOSS FUNCTION
Next, we evaluate the effect of the proposed loss function on
models’ performance and compare it with basic loss func-
tions in polyp segmentation.We conducted experiments using
three backbones, UNet-MobileNetV2, UNet-ResNet101,
UNet- EfficientNetB7; the models are called UNet1, UNet2,

TABLE 2. Comparison of UNet models with different backbones.

and UNet3, respectively. We trained these models using
binary cross-entropy loss (BCE loss), Dice loss, Asymmetric
loss, and our proposed loss, i.e., combined asymmetric loss.
The hyperparameters of loss functions are chosen for the best
results of models with α = 0.4 and β = 1.6. The improve-
ments of performance metrics are reported in Table 3. This
table demonstrates that our proposed loss function makes a
better balance between precision and recall than other loss
functions. Therefore, the performance of models trained with
our proposed loss function is increased. Comparing to binary
cross-entropy loss, the models trained by the proposed loss
function could improve performance the most, specifically as
follows: Unet1 (MobileNetV2 encoder) could improve Dice
by 6.23% and IoU by 4.75%; Unet2 (ResNet101 encoder)
could improve Dice by 3.37% and IoU by 1.6%; Unet3
(EfficientNetB7 encoder) could improve Dice by 3.37% and
IoU by 1.6%. Although the precision may be decreased,
the proposed loss function can make a trade-off between
precision and recall so that the Dice score can be increased.
Figure 7 illustrates the Dice scores of models trained by
cross-entropy loss, Dice loss, asymmetric loss, and the pro-
posed loss. This figure shows that the Dice scores of models
trained by the proposed loss function outperform the others.
Moreover, Figure 8 describes the effects on the network learn-
ing progress of the proposed loss function (combined asym-
metric loss) and the cross-entropy loss function. This figure
shows that the validation loss values are less variable during
training when the model is trained by our proposed loss
function than when the model is trained by the cross-entropy
loss function.

3) THE EFFECT OF TRANSFER LEARNING
This work adopts a transfer learning approach with
UNet architecture for polyp segmentation by using CNN
models pre-trained on the ImageNet dataset as the
encoder. To evaluate the effect of this transfer learning
method, we train UNet from scratch and compare the
received results with the result from the transfer learned
UNet. We conducted experiments using six backbones:
Unet-MobileNetV2, Unet-Resnet50, Unet-Resnet101, Unet-
EfficientNetB5, Unet-EfficientNetB6, Unet-EfficientNetB7.
The comparations of performance metrics for polyp
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TABLE 3. Peformance of Unets trained with different loss functions.

FIGURE 7. Dice scores of models trained by difference loss functions.

FIGURE 8. The effect of the proposed loss function on network learning
progress on the same dataset compared to the cross-entropy loss
function.

segmentation between the UNet trained from scratch and
transfer learning methods are reported in Table 4. The table
demonstrates that the performance of models trained by the
transfer learning method is significantly improved compared
to those trained from scratched. In addition, when the models
are deeper, the performance improvement is greater.

4) THE EFFECT OF CONDITIONAL RANDOM FIELDS AS
RECURRENT NEURAL NETWORK LAYER
We adapted some experiments to test whether using a
CRF-RNN layer on top of the polyp segmentation networks

TABLE 4. Comparison of Unet models trained from scratch and transfer
learning.

improved the segmentation quality. These experiments aim
to compare the performance difference between using and
not using a CRF-RNN layer on top of the segmentation
network. Underlying network architectures used for polyp
segmentation are several UNets with different backbones,
including UNet-MobileNetV2, UNet-ResNet101, and UNet-
EfficientNetB7. The results are presented in Table 5. This
table shows a considerable increase in Dice score when
using a CRF-RNN layer on top of all experimented net-
works. More specifically, the UNet-EfficientNetB7 with a
CRF-RNN layer on top achieves the most improvements of
1.83% in terms of Dice score, and UNet-MobileNetV2 with
CRF-RNN increases the least by 0.92% in terms of Dice,
as can be calculated from average metrics in Table 5. The
improvement in results demonstrates the advantage of using a
CRF-RNN layer on top of segmentation networks. Moreover,
Figure 9 illustrates the comparison of Dice scores of UNets
with and without a CRF-RNN layer on top. This figure also
shows improvements in Dice score when using a CRF-RNN
layer on top of all experimented networks.

Finally, some examples of different segmentations pro-
duced by model variants are depicted in Figure 10. The figure
describes the UNet model with EfficientNetB7 backbone and
CRF-RNN trained by combined asymmetric loss function can
recognize the polyp mask more accurately than other models.
This figure also shows that our model has the robustness
with the ability to detect polyps on challenging images (e.g.,
blurriness, low-quality images in Figure 10(a), 10(b), small
polyps in 10(e)) and perform well on easier images (e.g.,
Figure 10(c), 10(d)).

B. COMPARISON TO EXISTING METHODS
This section compares our proposed CRF-EfficientUNet to
several recent SOTAs for polyp segmentation. Results for
the compared models are reported in their respective papers.
From the previous ablation study, we select the UNet-
EfficientNetB7 with combined asymmetric loss function and
CRF-RNN layer as the comparison model for this section.
Then, we conduct experiments with different scenarios of
training and testing data. The hyperparameters of asymmetric
loss function are chosen based on the empirical evaluation,
with α = 0.4, β = 1.6 on the CVC-Clinic dataset, and
α = 0.3, β = 1.3 on the Kvasir-SEG dataset. We present
and compare the results of the proposed method with existing
methods in terms of learning ability, generalization capability
on the same dataset, and cross-dataset.
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TABLE 5. The effect of CRF-RNN layer.

FIGURE 9. Comparison Dice scores of models with and without CRF-RNN.

1) RESULTS ON THE SAME DATASETS
We conduct two experiments to validate the model’s learning
ability when the training and test set are from the same
dataset. The first experiment uses CVC-Clinic dataset, and
the second uses Kvasir-SEG dataset. These experiments are
conducted with a five-fold cross-validation scheme. In this
scheme, four folds are used for training, while the remain-
ing fold is used to evaluate performance. The training and
evaluating processes are repeated five times, and the mean
values of the evaluation metrics are reported. The results are
compared with several SOTAs. Table 6 and Table 7 show
the comparisons of the quantitative results on CVC-Clinic
and Kvasir-SEG, respectively. As shown in these tables,
our method outperforms all other methods in Dice and IoU
metrics across both datasets. Specifically, Table 5 shows
that our proposed methods achieve the best performance on
CVC-Clinic dataset with Dice of 95.12% and IoU of 91.85%,
outperforming the second-best ResUNet++ CRF by 3.09%
in Dice and 2.87% in IoU. In Table 6, on Kvasir-SEG dataset,
our proposed method also gets the highest Dice of 92.72%
and the second-highest IoU of 87.69% (the highest is Effi-
cient UNet multi-scale attention with IoU of 88.69%). These
results demonstrate that our model has a strong learning
ability to segment polyps effectively.

2) RESULTS ON CROSS-DATASET
We carry out experiments with training and testing across
different datasets to measure the generalization capability of

TABLE 6. Comparison of quantitative results on CVC-ClinicDB dataset.

TABLE 7. Comparison of quantitative results on Kvasir-SEG dataset.

the proposed method. Since different polyp datasets have dif-
ferent image properties and feature distributions, the models
need to generalize well to have good performance. In this
session, we trainmodels onCVC-ClinicDB,Kvasir-SEG, and
a mixed Kvasir and CVC-ClinicDB, respectively, and use
the other independent datasets: ETIS-Larib, CVC-ColonDB
for testing. Then, we compare the results with current works
that have the same training and testing data scenarios. The
results are reported in comparison tables, where ‘n/a’ denotes
unavailable results, and ‘*’ indicates the results generated
using the released code.

First, we train the model with CVC-ClinicDB dataset.
Table 8 presents the results and comparison with several
SOTAs for polyp segmentation. On ETIS-Larib test set, the
proposed method gives the best segmentation performance
with 79.37% Dice, 68.65% IoU, recall of 79.44%, and pre-
cision of 80.07%. The proposed method obtains the best
results on CVC-ColonDB test set: 86.8% Dice, 77.43% IoU,
recall of 86,4%, and precision of 85.52%. These results indi-
cate that our method outperforms other SOTAs on both test
sets. Especially with the CVC-ColonDB test set, our Dice
score is 12.1% higher than PolypSegNet’s [31], which is the
second-highest method. In addition, Figure 11 presents exam-
ples of segmentations produced by the proposed model with
challenging images of the ETIS-Larib dataset. This figure
also demonstrates that our model has the robustness to detect
polyps on challenging images such as varying shapes and
textures of polyps, small polyps, and the presence of image
artifacts like saturation, artifact, bubbles, intestinal contents.

Next, we train the model with Kvasir-SEG dataset. Table 9
shows the results and comparison with other models for
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FIGURE 10. Examples of different segmentations produced by model variants with the ability of the system to perform well on both easy and challenging
images: (a),(b) low-quality images, (c),(d) easier images, (d) horizontal flipping, (e) small polyps.

polyp segmentation. Like the previous experiment with
CVC-ClinicDB, our proposed method also outperforms all
other methods on both test sets. On ETIS-Larib test set,
we obtain the best segmentation performance with 78.53%
Dice, 66.95% IoU. On CVC-ColonDB test set, the proposed
method gets the best results with 85.59% Dice, IoU 76.19%,
recall of 88,07%, and precision of 86.78%, outperforms the
second-highest method ResUNet++ TTA [33] by 29.63%
Finally, we use 1450 images, including 900 images in

Kvsir-SEG and 550 images in CVC-ClinicDB for train-
ing models. Table 9 presents the results of the cross-data

generalizability of methods. The table shows that our pro-
posed method achieves the highest results on both test
sets with 78.35% Dice on ETIS-Larib and 86.04% Dice
on CVC-ColonDB. We have compared the results with the
existing works that used the same scenarios of using training
and test data. Our method also outperforms all in both Dice
and IoU metrics. Especially with the CVC-ColonDB test set,
our Dice score is 15.14% higher than the second-highest
method PraNet [24].

In this section, we conduct experiments to measure
the generalization capability of the proposed method.
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FIGURE 11. Examples of segmentations produced by the proposed model with challenging images of the ETIS-Larib dataset.

Generalization capability checks the usefulness of the model
across different available datasets coming from different hos-
pitals. A good generalizable model could be a significant step

toward developing a good clinical system. It should be noted
that the performance of the proposed method outperforms all
SOTAs across independent test sets in terms of Dice metric.
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TABLE 8. Comparison results on cross-dataset using Clinic-DB as the
training set.

TABLE 9. Comparison results on cross-dataset using Kvasir-SEG as the
training set.

TABLE 10. Comparison results on cross-dataset using mixed Kvasir-SEG
and CVC-ClinicDB dataset as the training set.

These results indicate that the proposed method has better
generalizability than existing methods, and it can be a com-
pelling choice for practical applications with considerable
data variations.

VI. CONCLUSION
This paper proposes CRF-EfficientUNet, an improved UNet
framework for polyp segmentation. We present a novel
UNet-based architecture extended from UNet with the Effi-
cientNet B7 encoder and the CRF-RNN layer on top. A novel
loss function is proposed for training CRF-EfficientUNet to
solve the unbalanced data problem and achieve better perfor-
mance. Besides, we use the transfer learning method to train
and validate the proposed method on various datasets, i.e.,

Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB, EITS-Larib,
with different scenarios of using training and test data. More-
over, we check the generalization capability of the proposed
method by training the proposed model on Kvasir-SEG and
CVC-ClinicDB and testing it over other independent datasets:
ETIS-Larib, CVC-ColonDB. The results of the proposed
method outperform all SOTAs on the same dataset and cross-
dataset. These results indicate that our proposed method has
better generalizability and learning ability than others. In
the future, we will focus on reducing the network size with
better performance to build a model which can be an effective
choice for practical automated polyp segmentation. Besides,
the proposed method can be converted to 3D models and
easily applied to other screening modalities like CT andMRI.
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