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ABSTRACT From weak clients outsourcing computational tasks to more powerful machines, to distributed
blockchain nodes needing to agree on the state of the ledger in the presence of adversarial nodes, there is a
growing need to efficiently verify the results of computations delegated to untrusted third parties. Verifiable
computing is a new and interesting research area that addresses this problem. Recently, new applications of
verifiable computing techniques have emerged in blockchain technology for secure key management, sybil-
resistance and distributed consensus, and smart contracts, while providing desired performance and privacy
guarantees. In this paper, we provide an overview of common methods for verifying computation and present
how they are applied to blockchain technology. We group the presented verifiable computing applications
into five main application areas, i.e., multiparty approval for secure key management, sybil-resistance and
consensus, smart contracts and oracles, scalability, and privacy. The main contribution of this survey is to
answer two research questions: 1) what are the main application areas of verifiable computing in blockchain
technology, and 2) how are verifiable computing techniques used in major blockchain projects today.

INDEX TERMS Verifiable computing, blockchain, zero-knowledge proof, verifiable random function,

multiparty computation, trusted execution environment, smart contract, privacy.

I. INTRODUCTION

Verifiable computing (or verifiable computation) allows a
client to delegate computation to possibly untrusted clients
while retaining the ability to verify the results. This solves the
problem of dishonest clients returning false results without
actually performing the assigned work. Verifiable computing
is not only about getting the correct result, but also about
verifying that result with significantly less computational
effort than was required to compute the result itself. There
are several methods that can be used for verifiable comput-
ing [1], such as interactive proofs (IP) [2], zero-knowledge
proofs (ZKP) [3], multiparty computation (MPC) [4], trusted
execution environment (TEE) [5] and others. These concepts
found their application in cloud computing, volunteer com-
puting projects, and blockchain technology. For example,
the Enigma [6] project, a decentralized computing platform
with guaranteed privacy, uses MPC to jointly work on data
while maintaining privacy. The Folding@home project [7],
a distributed computing platform that aims to develop new
treatments for a variety of diseases by simulating protein
dynamics, uses a simple technique of verification by replica-
tion to check the correctness of results. The use of verifiable
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computing and blockchain enables new mechanisms for pri-
vacy preservation, for example of patient healthcare data in
an e-Healthcare system [8] or for a secure and efficient man-
agement of data during a federated learning process [9]. Par-
ticularly interesting application areas of verifiable computing
can be found in blockchain technology and its applications,
which have motivated and challenged research in this field in
recent years.

Consider a public blockchain. It is a distributed, decentral-
ized, and shared ledger that requires no central authority and
eliminates the need for third-party verification [10]. It was
first introduced for the Bitcoin cryptocurrency [10] as a public
ledger to record all transactions. It provides trust when the
parties involved do not trust each other. Instead of trusting an
authority or intermediary, trust is transferred to a computer
code. This code runs on computers called nodes that are
connected in a peer-to-peer (P2P) network. The need for an
intermediary is avoided by using a distributed, cryptographi-
cally secured ledger that everyone agrees to. The ledger can
only be updated by consensus between all parties involved,
i.e., all nodes. The data that is written to the blockchain is
mathematically encrypted and digitally signed. It is grouped
into blocks that are appended and cryptographically linked to
a previous block, creating a chain of blocks, a growing ledger
of historical records. Once the data is written and accepted
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by the nodes, no deletions or changes are possible, making
the blockchain practically immutable. In order to participate
in consensus, where identities can be anonymous, and in the
presence of malicious nodes that do not follow the rules,
a sybil-resistance mechanism must be in place. One such
mechanism is Proof-of-Work (PoW) [10], [11], where par-
ticipants must perform some computational work to validate
new data with all other participants before it can be appended
to the chain of blocks [12]. In PoW, network participants typ-
ically perform cryptographic computations to solve puzzles
(see subsection III-B1 for more details). The high energy con-
sumption of the POW consensus protocol and limited trans-
action throughput motivated the development of alternative
mechanisms such as Proof-of- Useful-Work (PoUW) [13],
which focuses on solving practical problems instead of cryp-
tographic puzzles, and Proof-of-Stake (PoS) [14], which uses
stake in the blockchain, i.e. cryptocurrency supporting the
blockchain network, as voting power. All of the above con-
sensus mechanisms use some form of verifiable computing.

Some blockchains are also capable of running smart
contracts, which further enrich the functionality of the
blockchain. A smart contract is a program that runs on
the blockchain and whose methods, when invoked, per-
form actions that execute logic and change the state of the
blockchain. To confirm correct execution, each participant
in the network must re-execute the same method with the
same input, which is a waste of compute cycles and requires
that all nodes have access to the same input data, which can
be a problem with data outside the blockchain. Verifiable
computing methods can circumvent both problems, i.e., they
can reduce the need to re-execute the same computations and
guarantee that the execution is done with the same data even
in a distributed environment.

In this paper, we provide an overview of verifiable com-
puting techniques, focusing on their use in the decentralised
setting of blockchain technology. The main research ques-
tions we address are: 1) what are the main application areas
of verifiable computing in blockchain technology, and 2) how
are verifiable computing techniques used in major blockchain
projects today.

In section II, we provide an overview of common con-
cepts and technologies for verifying computation. Then,
in section III, we present how they are being used today
with blockchain technology in some notable projects that use
these methods. Finally, we conclude with a discussion and
summary of the work presented.

Il. VERIFIABLE COMPUTING

In the blockchain context, where the parties involved in a
computation cannot be implicitly trusted, verification of a
computation may generally involve verification of the par-
ticipants, the program executed to perform the computation,
the data and results of the computation, and any messages
exchanged between the participants during the process. In this
section, we describe selected methods and concepts related to
verifiable computing currently used in the blockchain imple-
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mentations under consideration, with a focus on performance
and privacy. First, digital signatures are discussed as the
primary scheme for verifying the authenticity and integrity
of a message, document, or transaction, as well as ensur-
ing non-repudiation and accountability of participants in the
blockchain system. In the next two subsections, we present
various methods for verifying that the computation was per-
formed correctly and that the results are as claimed. We then
present techniques and schemes that allow multiple parties to
perform the computation jointly, even when unknown adver-
sarial participants are present. We present methods for veri-
fiable generation of random numbers, which are an essential
tool in many security protocols and especially in blockchain
applications. Finally, we describe how specially designed
hardware can facilitate the task of verifying computations.

A. DIGITAL SIGNATURE SCHEMES

A digital signature scheme typically consists of a triplet of
efficient algorithms (G, S, V) [15]. A generation algorithm
G takes no input and generates a key pair (sk, pk) where
sk is the private key selected uniformly at random from a
set of all possible private keys and pk is the corresponding
public key. A signing algorithm S(sk, m) returns a signature
o when given the sk and a message m as input. A verification
algorithm V (pk, m, o), given the message m, public key pk
and signature o, outputs true if the signature is valid and false
otherwise. The private key sk is therefore used as the signing
key and the public key pk is used as the verification key. For
any practical signature scheme it must be computationally
infeasible to generate a valid signature ¢ without knowing the
private key sk.

Digital signatures are widely used in certificates and public
key infrastructure (PKI). In any blockchain, they are used
to verify the integrity and authenticity of digital messages
and ensure non-repudiation [16]. Every transaction on a
blockchain is digitally signed and every node must verify
all transactions. Therefore, signature verification should be
as fast as possible. Other desirable properties of signature
schemes include small signature size, the ability to aggregate
multiple signatures to save both space and time, and speed
of the signing process. The following three digital signa-
ture schemes, compared in Table 1, are commonly used in
blockchain implementations:

1) ECDSA SIGNATURES

ECDSA stands for Elliptic Curve Digital Signature Algo-
rithm and is the signature scheme currently used in Bit-
coin [10]. It is based on the discrete logarithm problem and
uses elliptic curves over finite fields. The generated keys
are shorter than keys in RSA signatures, which are often
used in certificates and PKI. A public key pk is generated
as a point on an elliptic curve (the curve used by Bitcoin
is secp256k1 as standardized by the National Institute of
Standards and Technology (NIST) [17]) by using the private
key sk as a scalar.

VOLUME 9, 2021



S. Simunic et al.: Verifiable Computing Applications in Blockchain

IEEE Access

2) SCHNORR SIGNATURES

Similar to ECDSA, the Schnorr signature scheme is based on
the discrete logarithm problem and uses elliptic curves, but
the signature is computed differently [18]. Also, with Schnorr
signatures, it is possible to aggregate all signatures and public
keys in the transaction into a single key and signature. Sig-
nature verification can be performed only once. This makes
Schnorr multisignature transactions (MultiSig) indistinguish-
able from regular signatures, which has a positive impact
on privacy and transaction size. The disadvantage of the
Schnorr signature scheme is that it requires a random number
generator for signature aggregation and an additional round of
communication between each signer and the aggregator, due
to the interactivity between signers. This is not practical for
blockchain applications like MultiSig with cold wallets [19].
Also, t — of — n multisig schemes become complex for large
t and n [19] and it is not possible to combine all signatures in
the block into a single signature.

3) BLS SIGNATURES

BLS (Boneh-Lynn-Shacham) signature scheme [20] uses
the properties of bilinear pairing of elliptic curves and is
based on the computational hardness assumption over the
Diffie-Hellman problem [21]. It has the unique property that
all BLS primitives (secret keys, public keys, signatures) are
aggregable and can be combined in any order to form a single
primitive of the same type, with no practical limit on the num-
ber of aggregated primitives. BLS primitives that correlate
with each other still correlate with each other when the same
arithmetic operations are performed on each of them. For
example, if two signatures are aggregated that were created
using the two previously aggregated secret keys and the same
message hash, the new signature will also be validated against
the aggregated public key. Also, unlike ECDSA, where the
use of randomness within the signature results in multiple
possible signatures for the same public key and message, BLS
signatures are unique and deterministic. For any given combi-
nation of public key and message, there can be only one valid
signature. These properties are especially relevant for various
blockchain implementations [22], [23]. The disadvantage of
BLS signatures is that signature verification is an order of
magnitude slower than ECDSA or Schnorr signatures. How-
ever, if selected optimization techniques are implemented, the
signature verification time can be significantly reduced [23].

B. VERIFICATION BY REPLICATION

The easiest way to verify a computation is to simply repeat
the computation. Given a computation method C and an input
1, the prover can compute the result R = C(I) and send it
to the verifier. Assuming that the verifier also has access to
C and I, acquired either publicly or privately, he can then
compute R* = C(I) and evaluate R’ 2 R. In an untrusted
environment, with multiple participants, n verifiers can be
randomly chosen to perform the verification. Assuming that
the majority of participants are honest, there is usually a
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threshold ¢ that marks the minimum quorum (often t > 2)
of verifiers that must agree on the result R. If this condition is
met, the verifiers can then confidently assume that the result
R is correct.

The advantage of this approach is its simplicity and the
technical implementation is straightforward compared to
other approaches. However, this comes at the cost of a major
weakness - the waste of energy caused by the repeated com-
putation itself.

Replication can be done always or only under certain
conditions. A system that needs a quick decision on whether
the computation was performed correctly usually has the
recomputation performed immediately by a certain number
of verifiers. Other types of systems, based on game-theoretic
principles [24], require recomputation only when one par-
ticipant disagrees with the solution submitted by another
participant. In these systems, the computation is performed
only once unless the result is disputed. In case of a dispute,
an application-specific dispute resolution protocol is started,
which can be a kind of interactive game between a prover
and a verifier. To prevent participants in these systems from
making false claims, they must put down a deposit, which
they lose along with their reputation if they are found to have
acted maliciously.

The world’s largest volunteer computing project, Fold-
ing@home [7], and many others [25], [26], use this approach.
The architecture of such projects usually involves a client and
many workers [27]. The client sends identical units of work
from (C, I) to multiple workers W = {wq, ..., wy}, which
then compute the results Rw = {Ry,,...,Ry,}. Once the
quorum is reached with a certain threshold for Ry, the result
is marked as final. It is also important that these projects have
some kind of reputation system to discourage dishonest actors
and prevent them from submitting false results. The reputa-
tion metric can be a combination of the time taken to complete
the work and the correctness of the results returned [28].

C. VERIFICATION BY PROOFS

An alternative to recomputation to verify the result of the
computation is to use a proof which asserts that the compu-
tation was performed and that the result is correct. Generally,
the prover has a proving method P which runs a computation
method C on input / and produces (R, w) = P(C, I), where
R is the result and 7 is the proof of the computation. Given
a computation method C, an input /, a result R, a proof of
the computation , and a verification method V, anyone can

check the validity of the result by V(C,I,R, ) 2 true.
In some cases m = R holds, where the result R can serve
as a proof m and its validity proves that the computation has
been performed. Consider an example of searching for an
occurrence of a substring that matches a regular expression
in a large string. The prover can compute the result R =
(i, ) using the computation method C on a string S and a
regular expression re, where i and j are starting and ending
positions of an occurrence. Given the result (i, j) the verifier
can run a separate verification method V (S, re, i, j) to quickly
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TABLE 1. Properties of notable signature schemes with reference to ECDSA.

Signature size | Verification time | Signature aggregation | Unique | Deterministic
ECDSA - - No No No
Schnorr Long Normal Interactive only No No
BLS Short Slow Yes Yes Yes

check whether the substring in that range matches a regular
expression without having to perform the entire computation
C again. If privacy is a concern and the data being worked
on must remain private, the proof of the computation can
be constructed in a zero-knowledge way (subsection II-C2).
In this case, the verifier does not need to know the input /
and can simply check V(C, R, ). In the next subsections,
we present common methods that rely on proving rather than
recomputing to verify a computation.

1) INTERACTIVE PROOF

An interactive proof (IP) system is an abstract machine where
computation is modeled as an exchange of messages between
the prover P and the verifier V [2]. The prover has unlim-
ited computational power and cannot be trusted, while the
verifier has limited computation power and is always honest.
Messages are exchanged between the verifier and the prover
until the verifier is convinced by the prover that a statement
is true, resulting in the verifier accepting the statement. If the
prover failed to convince the verifier that a statement is true,
the verifier rejects the statement. Interactive proof systems
must satisfy the following two requirements [29]:

o Completeness — If the statement is true, the honest
verifier will be convinced that the statement is true by
an untrusted prover.

« Soundness — If the statement is false, no cheating prover
can convince the honest verifier that the statement is
true, except with some small probability.

An interactive proof can also be a proof of knowledge by
which the prover can convince the verifier that he knows
something [30]. Most frequently used interactive ways to
prove knowledge are the Schnorr protocol [18] and the
3 -protocol [31]. Proofs of knowledge are also used in sig-
nature schemes, such as group signatures [32] and Schnorr
signatures [18].

2) ZERO-KNOWLEDGE PROOF

A zero-knowledge proof (ZKP) is a method by which the
prover can prove to the verifier that some statement is true
without revealing any information other than the fact that the
statement is true [33]. Assume the prover wants to prove to the
verifier that he knows the value x. The challenge is to prove
the knowledge of x without revealing the x itself. Besides
the requirements of interactive proof systems completeness
and soundness, any ZKP must also satisfy the requirement
of zero-knowledge — if the statement is true, no verifier
learns anything other than the fact that the statement is
true.

156732

There are two types of ZKP: interactive and non-
interactive. In an interactive ZKP, the prover performs series
of actions to convince the verifier that a particular statement
is true, with some probability p. The more rounds of inter-
action there are, the higher the probability p will be. A non-
interactive zero-knowledge proof (NIZKP) does not require
any interaction between the prover and the verifier, which
provides greater flexibility since the verifier can verify the
proof itself at any time. It is also possible to transform some
interactive ZKPs to NIZKPs using a Fiat-Shamir heuristic,
which is a way of creating a signature based on an interactive
proof of knowledge [34], [35].

One of the NIZKP is zk-SNARK [3], [36]-[38], which
stands for “Zero-Knowledge Succinct Non-Interactive Argu-
ment of Knowledge” . Succinct means that the proof is just a
few hundreds bytes in size, even for statements about compu-
tations that are very large, and that it can be verified quickly,
usually within a few milliseconds. Every zk-SNARK consists
of three algorithms [39]: generator G, prover P, and verifier
V. Generator G takes as an input a secret parameter A and a
program (computation) C, from which it derives proving key
pk and verification key vk. This is a one time process for any
program C, and the keys are made public. The prover P takes
as an input proving key pk, a public input x and a private
input w, also known as a witness. The proving algorithm
then generates a proof m = P(pk, x, w) which asserts that
the prover knows a witness w which satisfies the program.
The verifier V can then use verifying key vk, public input
x and a proof 7 to compute V(vk, x, ) which returns true
if the prover knows a witness that satisfies C(x, w) = true.
Downside and common criticism of zk-SNARK protocol is
the need for a trusted setup. A secret parameter X is required
during generation phase, which if unveiled, could allow a
cheating prover to generate fake proofs without knowing a
witness w. To prevent this from happening it is not unusual
to use MPC (subsection II-D) during generation of the public
parameters [40], [41], which is secure as long as one of the
participants is honest.

This drawback in zk-SNARKSs has led to the development
of other NIZKPs that do not require trusted setup, such as
zk-STARKSs [42] and Bulletproofs [43]. While zk-STARKSs
are faster than zk-SNARKSs during proving phase, they
are slower during verification phase [44]. Bulletproofs are
smaller in size than zk-STARKS, however, they are much
larger than zk-SNARKSs [44]. Different protocols have
different limitations in terms of proof size, proving time
and verification time. These are the properties that need to
be considered when deciding which NIZKP to use, as also
shown in Table 2 [45]-[47].
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D. MULTIPARTY COMPUTATION

Multiparty computation (MPC) is a method by which multi-
ple parties P = {p1, ..., pn} can jointly compute a function
F of their individual inputs X = {x, ..., x,}, without any
party revealing their inputs to the other parties [4], [48]. The
generated output ¥ = F(xi,...,x,) is public and can be
viewed by all parties. For example, in the blockchain context
the parties are often nodes and it is assumed that some of the
nodes may be potentially adversarial [49]. The nodes wish to
perform a joint computation of a function while preserving
basic security properties such as correctness and privacy.
The privacy requirement states that nothing beyond what
is absolutely necessary may be learned; more specifically,
the parties may learn only the intended output and nothing
else. The requirement of correctness states that each party
should produce its correct output. Therefore, the adversary
must not be able to cause the result of the computation to
be different from the function that the parties intended to
compute.

Most MPC protocols use secret sharing. Secret sharing
allows a secret to be shared among multiple parties, with
each party receiving a portion of the secret [S0]. No single
party owns the entire secret, minimizing the risk that the
secret will be revealed if one party is compromised. Besides
some trivial secret-sharing schemes where all shares are nec-
essary to recover the secret, the most common schemes are
those where ¢ of n secrets are shared and where a certain
threshold of adversaries can be tolerated [51]. A notable
secure and efficient threshold sharing scheme based on the
Lagrange interpolation polynomial is Shamir Secret Sharing
(SSS) [52]. SSS is based on the premise that the dealer and
the parties are honest. It is not possible to verify that (i) a
dealer is sending correct shares to some or all participants
and (ii) participants are not submitting fake shares during the
reconstruction process [53]. Verifiable secret sharing (VSS)
includes auxiliary information that allows parties to verify
their shares as consistent, even if the dealer is malicious [53].
A commonly used example of a simple VSS scheme is the
Feldman scheme for non-interactive VSS [54]. Publicly Ver-
ifiable Secret Sharing (PVSS) [55] explicitly requires that not
only the parties involved in the scheme, but anyone can verify
that the parties have received correct shares. The original
secret sharing schemes [52], [56] required a dealer to generate
and distribute shares of a secret to the participants. To ini-
tialize the cryptosystem securely without requiring a dealer,
a Distributed Key Generation protocol (DKG) [57], [58] can
be used. A group of n participants can jointly generate a secret
whose shares are distributed among the participants such that
any subset larger than ¢ can use the secret. No trusted party is
required.

E. VERIFIABLE RANDOMNESS

Many applications require random values that cannot be pre-
dicted in advance and must be published. The source of the
randomness may be from the system itself or from a trusted
third party. However, when participants do not trust either the
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system or a third party, a provably fair and publicly verifiable
method is needed. We describe common methods that can be
used to generate randomness and publicly verify its fairness.

1) VERIFIABLE RANDOM FUNCTION

A verifiable random function (VRF) is a pseudo-random
function that provides a verifiable proof of its correct-
ness [59]. For a given input x, used as a seed for random
number generation, a party with private key Pr and public
key Pu can compute the result y = Fp,(x) and the proof
7pr(x). The result is a random number that other parties can
verify by computing the verification function with the known
seed x, the proof mp, and the public key Pu. The result of
the verification is true if the random number was generated
correctly, false otherwise. In other words, evaluating the out-
put of the VRF function for a given input does not allow the
adversary to distinguish the output of VRF from a random
source. Moreover, given the output of the VRF function and
a prover’s public key, the verifier can be non-interactively
convinced that the output was correctly generated using the
prover’s secret key. The prover cannot say for arbitrary ran-
dom looking number that for that input and his private key
the same number will be generated.

VRF can be used to provide deterministic precommit-
ments that will be revealed at a later time [60]. For exam-
ple low entropy inputs (e.g., “John Doe’’) can be mapped
to a random number and committed in advance on a pub-
lic blockchain. A notable use case for VRFs is the Inter-
net draft for NSEC5 [61] which proposes a scheme that
uses VRFs to prevent offline DNSSEC zone brute-force
enumeration and guarantee the integrity of zone contents
even if an attacker compromises the authoritative name-
server responsible for responding to DNS queries for the
zone. Some traditional applications of VRFs are resettable
zero-knowledge proofs [62], micropayment systems [63], and
privacy-preserving transaction escrow schemes [64]. Some
prominent blockchain applications of VRFs are described in
the next section.

2) VERIFIABLE DELAY FUNCTION
A verifiable delay function (VDF) is a function that takes a
prescribed minimum time to compute a unique output that
can be efficiently verified in a public setting [65], [66]. More
precisely, for an input x € X and a VDF function y = F(x),
anyone can compute F(x) in ¢ sequential steps, but no adver-
sary, even with a parallel computer with many processors, can
compute the output of F'(x) in substantially fewer steps. Given
the output y, any observer can quickly verify that y = F(x).
Moreover, every input x € X must have a unique valid output
yeY.

VDFs were introduced as a way to prevent malicious actors
from influencing an output by predicting future values.

F. TRUSTED EXECUTION ENVIRONMENT
A trusted execution environment (TEE) is a secure area on
the main processor that is separate from the main operating
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TABLE 2. Properties of different NIZKPs.

Proving time | Verifying time Proof size Trusted setup | Quantum secure
zk-SNARK Quasilinear Constant Constant Yes No
zk-STARK Quasilinear Polylogarithmic | Polylogarithmic No Yes
Bulletproofs Linear Linear Logarithmic No No

system. It is an execution environment that provides features
such as isolated execution of programs, integrity of computa-
tions, and confidentiality of data [5].

An application using TEE generally consists of two com-
ponents. An untrusted component, a host, runs on the
untrusted operating system, while a trusted component,
an enclave, runs inside an isolated TEE container. TEE
enables the storage of secret data that cannot be accessed
by attackers, ensuring confidentiality. To ensure security and
integrity, TEE only executes code authorized by other autho-
rized code. To prove its trusted state, TEE is able to generate a
signed proof, called an attestation, which can be used later for
verification. This makes it impossible for other applications
to alter the state or tamper with the code executed within
TEE. As such, TEE provides features that can help verify
computations.

Two notable hardware technologies that support TEE are
ARM TrustZone [67] and Intel SGX [68]. TEEs are usually
shipped with a unique private key from the manufacturer,
which is then used to generate attestations. This means that
in the case of a malicious or hacked manufacturer, we can no
longer trust the TEE. In addition, numerous vulnerabilities
have been discovered in TEEs in recent years [69]-[73].
Some of these risks can be mitigated by distributing the work
among multiple workers and using threshold cryptography
for secrets. TEE can be used to store encryption keys to verify
the integrity of the operating system, user data for biometric
authentication, and other forms of sensitive data [5]. TEE can
also provide a hardware-protected random number generator
with special instructions [74].

Ill. BLOCKCHAIN APPLICATIONS

In this section, we provide an overview of the main appli-
cations of verifiable computing in blockchain systems.
We describe how the selected verifiable computing meth-
ods are used, what functionality they enable, and for what
purpose. Where possible, we also list examples of practical
implementations of blockchain systems that use these meth-
ods. For better readability and structure, we group the appli-
cations of verifiable computing into five thematic blockchain
areas: key management, consensus mechanisms, smart con-
tracts, scalability, and privacy.

The verifiable computing methods and their applications
are summarised in Tables 3 and 4. Table 3 maps the desired
goal/functionality to one or more specific verifiable com-
puting techniques used to achieve that goal, while Table 4
provides an overview of current blockchain applications that
rely on verifiable computing techniques, with notable system
examples for each application.
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A. SECURE KEY MANAGEMENT

Blockchain protocols are based on public-key cryptography
where pairs of a public key and a private key are used to
perform different tasks. Any person with the private key is
able to sign transactions and there is no way to recover it if
it is lost. It is therefore of utmost importance to protect the
private key and keep it secret.

1) MULTIPARTY APPROVAL SCHEMES

To reduce the risk of an adversary gaining access to the private
key, multiparty approval schemes are often used where there
is no single point of failure.

A traditional solution for multiparty approval is to use a
multisignature transaction (MultiSig) [101]. To be considered
valid, a multisignature transaction must be signed by multiple
private keys from different participants.

A different approach with several important advantages
over MultiSig is the use of verifiable computing techniques
in secure multiparty approval schemes. By using a Threshold
Signature Scheme (TSS) [102]-[104] it is possible to define
a (¢, n)-threshold signature scheme, where at least ¢ parties
of n are required to create a signature. To sign a transaction,
multiple parties participate in a secure offline protocol where
each party uses its secret to generate a partial signature. When
enough partial signatures have been collected, the transaction
can be signed. Anyone with a public key can then verify
that the transaction is valid, i.e., that it was signed with
the corresponding private key. However, the signature is the
result of an MPC computation and the private key is never
generated. It can therefore not be stolen, destroyed or used to
sign another transaction. Once the offline signature process is
complete, the threshold signature appears as a single standard
signature regardless of the number of approvers. This is an
advantage over MultiSig because no meta-information about
public key shares or signers needs to be stored when sending
to at — of — n address or spending it’s output. No additional
software modification is required by a particular blockchain
implementation to support TSS approval schemes and privacy
is also improved as the address is indistinguishable from a
normal address. In addition, TSS provides additional pri-
vacy and security as individual approvers can be removed,
changed, or added at any time without changing the resulting
signature. In contrast, MultiSig records the signature of each
approver on the public blockchain for successful transactions.

2) SECRET SHARES MANAGEMENT
One of the common security practices in key management
is key updating, where the user is required to change the
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TABLE 3. Blockchain uses of verifiable computing methods.

Goal

Method

Hashcash solution verification

Replication, hash function

Computation integrity, solution verification

Replication, TEE

Validator selection VRF
Transaction existence verification Replication
Constant sized blockchain recursive verification NIZKP
Committee selection for shards VRE, VSS, DKG
Opening and closing state channels MultiSig

Sidechain state verification

Replication, NIZKP

Verification of off-chain transactions

Interactive game, NIZKP

Verification of external data (oracles)

Replication, TEE, MPC

Provable and fair generation of random numbers

VRF, VDF

Off-chain computation verification in smart contracts

Replication, NIZKP, interactive game

Private computation in smart contracts

NIZKP, MPC, TEE

Threshold signature scheme MPC
Masternode quorum selection DKG, MPC
Private transactions NIZKP
General private computation MPC, TEE

TABLE 4. Verifiable computing applications examples in blockchain networks.

Method Blockchain application System example
Replication PoW Bitcoin [10], PoW blockchains
SPV Merkle proofs, NIPoPoWs [75]
Sidechains BTC Relay [76], NIPoPoWs [75]
Smart contract data Chainlink [77]
Dispute resolution Optimism [78], Truebit [24], Arbitrum [79]
Proofs (IP/NIZKP) Succint blockchain Mina [80]
Sidechains Zendoo [81], zkRelay [82]
Rollups Loopring [83], zkSync [84]
Smart contract computation ZoKrates [85], Cairo [86]
Smart contract privacy Hawk [87], Zether [88]
Private transactions Zcash [89], [90], Monero [91]
MPC Shard committee selection RapidChain [92]
Smart contract data DECO [93]
Smart contract privacy zkHawk [94]
Multiparty approval schemes (multiple projects)
Instantly settled transactions Dash [23]
Chainlocks (51% attack prevention) Dash [23]
Private computation ARPA [95]
VRF Shard committee selection OmniLedger [96]
Smart contract randomness ChainLink [77]
TEE PoUW REM [97]
Private computation Enigma [6]
Smart contract data Town Crier [98]
Smart contract privacy Ekiden [99], ShadowEth [100]

private keys regularly to reduce the risk of exposure. The
same practice can be used in multiparty approval schemes
where shares of the secret are held by n different parties.
It should be possible for each party to replace the individual
share of the secret sharing scheme with a new share, so that
when the shares are added together, e.g. for use in the sign-
ing protocol, they are still equal to the value of the private
key.

a: SECURE KEY ROTATION

In TSS this can be achieved as it is possible to generate
many different and random combinations of secret distributed
shares that can still be combined to generate the same secret
key [105]. Key rotation can be performed proactively at reg-
ular intervals or on demand if deemed necessary to address a
potential security risk. For example, an attacker might attempt
to compromise one party at a time until it has the required

VOLUME 9, 2021

number of shares. In a secure key rotation, the attacker must in
practice compromise at least ¢ parties in a (¢, n) secret sharing
scheme within the key rotation interval. For a short key rota-
tion interval, this task is likely to be much more difficult. In a
traditional MultiSig system, if one party is compromised and
the adversary learns the value of the key share, a key update
is required in which entirely new private keys are generated
and an on-chain transaction is performed to synchronize the
public and private keys and accounts. Changing a private key
in a cryptocurrency, for example, results in a changed account
or payment address, which is often undesirable. This is not the
case with TSS, as it is possible to perform secure key rotation
while maintaining a static account address.

b: USER REPLACEMENT
There are many scenarios in which it may be necessary to
replace, remove, or add a party participating in a multiparty
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approval scheme. For example, if an employee who holds a
secret share leaves the company or is replaced by another
employee. In this case, his or her secret share must be inval-
idated and a new share generated for the new employee.
Preferably, this should be done without changing the address
or account protected by the secret sharing scheme. Again,
both of these processes can be easily accomplished using
TSS. To remove a party from a secret sharing scheme,
the secure key rotation mentioned above can be performed
between the remaining users. Once the key rotation has been
performed, the secret share of the leaving party can no longer
be used in any way, effectively removing the party from the
sharing scheme. To add another party, all that is necessary
is to issue another share to the new party. For example,
if Lagrange interpolation is used in TSS, the share is derived
from a point on the polynomial corresponding to a number
associated with the new party, e.g., a hash of ID.

B. CONSENSUS AND SYBIL-RESISTANCE

In a distributed consensus, participants propose a value and
later agree on that value. To be fair, consensus protocols
involving anonymous identities must ensure that each partici-
pant does not cheat by having more influence on the outcome
than they should [106]. A malicious participant could hide
behind multiple identities and have an unfair amount of vot-
ing power. This is also called a sybil attack [107] and requires
special mechanisms to either reduce the impact or ensure
that this does not happen. In the next subsections, we present
common sybil-resistance mechanisms used in the blockchain
and explain how they use verifiable computing concepts.

1) PROOF OF WORK

To participate in the consensus on the blockchain, com-
puting power can be used. This is the approach taken by
PoW-based blockchains such as Bitcoin [10]. In a distributed
system [108], the ability of nodes to reach consensus on a
value is called liveness [109]. Conversely, safety is a guar-
antee that nodes will not come to a consensus with different
values [109]. Bitcoin uses the Nakamoto consensus, which
emphasises liveness over safety, and the longest chain with
the most accumulated work is the source of truth. Participants
in the network, known as miners, have an incentive to expend
computational power for the chance to publish a block and
thus secure the block reward. The PoW algorithm that Bitcoin
uses is called Hashcash [110]. Miners who want to compete
for the right to publish the next block try to find a value called
nonce, which serves as one of the inputs to a cryptographic
hash function. The output of such a function must yield a
value h, such that i < d, where d is the current difficulty of
the network. Once a miner finds the satisfying nonce value,
it is broadcast to the network as part of the new block and
others verify its correctness by recomputing 4. In this context,
nonce serves as a proof of the computation itself. What guar-
antees sybil-resistance is the fact that finding nonce is com-
putationally intensive and requires a brute force approach.
However, once the nonce is found, its verification is cheap and
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occurs in constant time. Therefore, the cost relation between
the computation method C and the verification method V is
V « C. As the blockchain grows, the computational cost of
rewriting history increases exponentially [10], while the cost
of verification remains constant.

2) PROOF OF USEFUL WORK (PoUW)

One of the biggest criticisms of the PoOW mechanism is that
it is wasteful in terms of energy [111]. Due to environmen-
tal concerns, there is active research into how to replace
it with alternative algorithms, puzzles, or problems. There
have also been successful attempts to replace SHA256 mining
with solving NP-complete problems [112], [113] to achieve
PoUW. To keep the protocol fair, it is important that no par-
ticipant has an advantage in solving these problems because
they know the solution beforehand. For this reason, randomly
generated problems can be used, but their solutions are of
limited use because they may have no practical applications.
Other works [114]-[116] describe systems and frameworks
that solve problems from specific domains such as artificial
intelligence, in particular machine learning. These limitations
have also led to the use of trusted hardware, i.e., TEE (sub-
section II-F), to perform more general computations.

One of the first algorithms to use trusted hardware for
sybil-resistance was Proof of Elapsed Time (PoET), proposed
by Intel for the Sawtooth Lake [117] project and based on
the SGX module. Instead of performing cryptographic com-
putations, miners run code that idles for a random amount of
time, and the miner with the shortest wait time gets to lead the
consensus round and reaps the reward. POET has been shown
to have some vulnerabilities and limitations. An attacker is
able to successfully attack the network by compromising
only a small fraction of the participants [118]. PoET also
incentivizes the use of cheap and outdated hardware specifi-
cally designed for mining, which leads to waste, i.e., all the
hardware collected does not perform useful work [97]. More-
over, reliance on a single manufacturer can be considered
centralized. The Resource-Efficient Mining (REM) frame-
work [97], which also relies on trusted hardware, addresses
the risk of compromised SGX CPUs and achieves more
promising PoOUW. REM measures computation in the number
of instructions executed for useful work and is therefore
more flexible in the variety of work that can be used for
PoUW. It allows users to use their CPUs for any workload,
such as protein folding, machine learning, data compres-
sion, and hashing [97]. Thus, REM enables even less wasted
computing power in mining, while maintaining security guar-
antees similar to PoW.

3) PROOF OF STAKE

Instead of using PoW for sybil-resistance, some blockchains
opt for the PoS mechanism, where the voting power is based
on participants’ stake in the network [119]. This approach is
very effective as it consumes a fraction of energy compared
to PoW-based blockchains and helps in scaling the network.
In PoS, participants can take a special role as proposers or
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validators who are responsible for growing the blockchain.
A proposer creates a new block, which must then be checked
by validators before it is appended to the blockchain. A naive
approach is to use the block hash as a source of randomness
and derive the probabilities for selecting proposers and val-
idators [14]. Since transactions in the block can be reordered
or omitted, this allows miners to keep doing so until they
find the hash that would most favor them in the next round
of consensus. To overcome this vulnerability, another source
of randomness should be used.

An example of a project that uses verifiable random func-
tions for its sybil-resistance mechanism is Algorand [120].
The VRF takes a private key and a value and produces a
pseudorandom output along with a proof that can be used to
verify the result. The VRF is used to select the leaders who
propose a block and also the committee members who vote
on a block [121]. The chance of being selected is proportional
to the stake in the network, ensuring that a participant does
not gain an advantage by creating multiple identities. Nodes
participating in consensus rounds first validate the VRF proof
to ensure that the associated output is correct before moving
on to the next phase. Other blockchain networks such as
OmniLedger [96], Cardano [122], and others [123]-[125]
also use VRF as part of their consensus mechanism.

C. SMART CONTRACTS

A smart contract is a computer program running on top of
the blockchain [126]. In general, smart contracts only have
access to what is already on the blockchain, which was gen-
erated or put there by the network participants. The ability
to connect real world, i.e. systems external to the blockchain,
with smart contracts is of a great value and is one of the major
milestones towards increased blockchain adoption. In next
subsections, we explain how verifiable computing assists in
getting data, randomness or results of general computation to
the blockchain and enables to keep private the smart contract
code, execution, and data.

1) DATA

Due to its nature, the blockchain can also be defined as a
replicated deterministic state machine. This means that any
state change at any point in time can be seen and verified by
all peers in the network. Suppose there is a method M within
a smart contract. When executed, method M makes a request
to an external API to obtain and process some data and return
the result R. If transaction 7 which is a call to method M,
occurred at time #;, then we can assert that the blockchain
was moved from one state to another, S 1) St’l,. The problem
occurs when this transaction is sent to the network and needs
to be verified. Each peer in the network will also execute T
once it reaches it, but the time of execution will not be the
same. This means that each peer will execute T at a different

. - . T
time 7; and the state transition will be S — S, . When the data
requested from the API changes or becomes unavailable, the
peers will end up in different state S’, breaking the invariants
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of the blockchain and its determinism. The same problem
arises with any subsequent verification of state transitions.

This problem is also known as the oracle problem and
consists of two parts. First, there is the question of how data
can be moved between blockchains and external systems,
and second, how this can be done in a secure and decen-
tralized manner. To get at the data outside the blockchain,
smart contract methods typically send out events that systems
outside the blockchain listen for and respond with the data in
the form of a new transaction. These systems are known as
oracles and serve as middleware between blockchains and the
real world [127]. This poses the risk of potentially insecure
systems passing data to smart contracts on a supposedly
highly secure decentralized blockchain network. To solve this
problem while still maintaining decentralization and security
properties, the approach of verification by replication can be
applied. As suggested by Chainlink [77], there are generally
two methods by which this can be done: in-contractor aggre-
gation and off-chain aggregation. In the first method, multiple
independent actors first fetch the data from an external source
and then submit it to a smart contract responsible for reaching
a quorum. This is expensive and energy consuming as each
actor has to submit a separate transaction. The second method
uses Schnorr signatures [18], where aggregation and agree-
ment occurs outside the blockchain and is later submitted as
a single transaction.

Other problems that arise are authenticity and confiden-
tiality. A malicious oracle can change the retrieved data
before it is sent to the blockchain. In a decentralized ora-
cle network, this would require the majority of oracles to
collaborate and carry out the attack together. Some oracle
services, such as Provable [128], provide authenticity proofs
along with the data [129]. The Town Crier [98] system also
addresses some of these problems by using Intel’s trusted
hardware SGX. In particular, it guarantees that data sup-
plied by a website has not been tampered with. It also pro-
vides confidentiality by enabling private data requests with
encrypted parameters. For example, a request might include
a password to log into a server from which the data is then
retrieved [130]. SGX ensures that such secret data remains
hidden from everyone, including Town Crier operators. Other
hardware-based distributed oracles also extend this by imple-
menting a reputation system to address problems with over-
loaded or malicious oracles, favoring those with the shortest
response times [131]. Another protocol, DECO [93], achieves
most of the same functionality but without trusted hardware.
Instead, DECO is making use of a MPC to allow users to
prove in zero-knowledge that data accessed via TLS [132]
originated from a specific website.

2) RANDOMNESS
Smart contracts sometimes require a random number genera-
tor for scenarios such as minting non-fungible tokens (NFT)
in games, picking lottery winners, or choosing leaders in
consensus rounds.

Similar to Proof of Stake, a naive approach is to use
the block hash as a source of randomness. However, this
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is not secure as it can be manipulated by miners [133],
[134]. Other solutions, such as decentralized commitments
with deposits [135], [136], are complex and costly because
they require multiple participants to submit transactions to
the blockchain as part of the process of selecting a random
number.

For a provably fair and verifiable source of randomness,
a verifiable random function can be used. Generally, a random
number is generated outside the blockchain and then sent to
the network along with the cryptographic proof. Chainlink
has implemented VRF [137] for smart contracts, providing
developers with both security and ease of use when deal-
ing with random numbers. Each time a random number is
requested, a new random number with the associated proof
is generated off-chain by oracle operators and then published
and verified on-chain before the random number is used in a
smart contract to ensure that no tampering has occurred.

A verifiable delay function (VDF) can also be used to
generate randomness in smart contracts. The VDF is used
to provably delay the revelation of randomness and pre-
vent the randomness from being influenced by the malicious
party, who can choose whether or not to submit the gener-
ated random value. The delay is designed to allow the seed
of the random value to be committed in an earlier block.
VeeDo [138], a STARK-based VDF service, allows users to
request a random value from an off-chain service, which is
then verified on-chain with a corresponding proof. A longer
delay increases security, as other parties that may be mali-
cious must also wait the same amount of time to compute
the VDF output. When using VeeDo, the user can choose
between a 3 minute and 7 minute delay.

3) COMPUTATION

Each network participant that takes part in the smart contract
execution process must perform the entire computation again
as part of the verification process, which can result in a large
computational overhead and network congestion.

Proofs of computation, such as zk-SNARKSs, can be used to
solve this problem. Since they are hard to construct for non-
specialist users, high-level languages have been developed to
facilitate their development [85], [86], [139]. An example of
such a system for the Ethereum platform is ZoKrates [85].
It allows developers to write their zk-SNARK program in
a high-level language from which Solidity code is gener-
ated, allowing for easy integration with other smart contracts.
A transaction containing the result of the computation and a
proof can then be sent to a smart contract, and miners only
need to verify the proof of correctness. A provable program
can also be created using Cairo [86], a high-level language for
generating zk-STARKSs. Since SNARKSs or STARKS cannot
be constructed for most programs, this verification method
has limited applicability. It is therefore not particularly well
suited to complex computations and is best used when some
information to be kept secret and a proof of the computation
must be immediately available.
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Instead of relying on cryptographic proofs, computations
can also be verified through an interactive game [140].
TrueBit [24] uses game-theoretic principles as part of its
interactive verification protocol. This allows for heavy com-
putations to be performed off the blockchain by a single
solver, who must submit a deposit as a guarantee that the
computation will be performed correctly. During a certain
period of time, any verifier can redo the computation and
check if the result is correct. If there are no disputes, the com-
putation is marked as final and the solver receives his deposit
back, along with a reward for performing the computation.
However, if the verifier and the solver disagree on the result
and the adjudication system finds verifier’s solution to be
correct, the solver loses his deposit and the verifier is entitled
to the reward. To incentivize the verifiers’ participation, the
TrueBit protocol occasionally inserts errors that the verifiers
try to find.

D. SCALABILITY

Scalability describes how well a system is able to han-
dle an increased load. A system can be scaled vertically
by upgrading hardware and horizontally by distributing the
load across multiple machines. By combining these methods,
a distributed system can achieve linear scalability. However,
this becomes more difficult with blockchains because there
may be malicious nodes that do not adhere to the protocol
rules. Also, all events must be verifiable by every other node
in the network. This raises the question of how blockchains
can scale efficiently while maintaining properties such as
decentralization and security. One of the metrics used to
describe how well a blockchain scales is transactions per
second (TPS). In the next subsections, we discuss recent
advances in scaling both on-chain and off-chain and how they
leverage verifiable computing.

1) ON-CHAIN

The blockchain design as originally proposed by Bitcoin [10]
has not proven to be easily scalable in practice. Since
then, numerous solutions have been proposed that make
changes to the base layer of the blockchain. Some of
these solutions include changing the blockchain data struc-

ture [80], using smaller signatures for transactions [141], and
sharding [142], [143].

a: SIMPLIFIED PAYMENT VERIFICATION

In traditional blockchains, all transactions since the beginning
of the network are stored and hosted by individual network
participants called full nodes [10]. This data can accumulate
over time to a size of hundreds of gigabytes. In addition, when
other full nodes join, they must download all transactions
from other participants, which takes up both bandwidth and
storage. It is also possible to participate in the network as thin
or lightweight node [10] where only the block headers need to
be downloaded to validate transactions using the Simplified
Payment Verification (SPV) method. A thin node acquires all
block headers from a full node and, if needed, asks the full
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node for a Merkle proof of a particular transaction to verify
its existence.

Some of these requirements for thin nodes can be
relaxed by using Non-Interactive Proofs of Proof-of-Work
(NIPoPoWs) [75]. NIPoPoWs enables the verification of
transactions on PoW-based blockchains without the need to
acquire all block headers. NIPoPoWs nodes only need to
download a polylogarithmic number of block headers, which
is enabled by the fact that for PoW, statistically half of the
blocks produced exceed the network difficulty d [75]. If D is
a number of leading zeros in the network difficulty, then half
of the block hashes produced start with D 4 1 zeros, a quarter
start with D + 2 zeros, and so on. These blocks are called
superblocks and form a superchain, acompressed blockchain.

b: SUCCINT BLOCKCHAIN

Mina [80] goes a step further and introduces the notion
of a succinct blockchain, where the traditional blockchain
structure is replaced by an easily verifiable cryptographic
proof. Instead of verifying the entire blockchain from the
beginning, participants verify the network and transactions
with recursive zk-SNARKSs. When a new block is created,
the proof of computation not only validates the new block, but
also the proof of an existing, previous block. This new state is
then used as the previous state when another block is created.
This keeps the size of the network constant (about 20 kB) and
is more accessible to weak clients than a constantly growing
ledger, which stores the entire history and has a higher barrier
to entry. Smaller devices, such as smartphones, can perform
a full verification of the entire network history in only about
200 ms.

¢: SHARD COMMITTEE SELECTION

Another technique that changes the blockchain base layer is
sharding. Sharding in blockchain means that the network is
divided into several parts, called shards, with only a sub-
set of participants responsible for each shard at any given
time [143]. The shards operate in parallel and are able to
communicate with each other, resulting in higher transaction
throughput. Each shard usually has a group of validators,
called a committee, that is responsible for consensus and
verification of transactions on the same shard. The selection
of the committee could be based on a block hash or round
robin algorithm. However, in these approaches, an attacker
could manipulate or predict the selection and potentially
corrupt a particular shard. Therefore, it is important to have
a fair, unbiased, and publicly verifiable random method for
selecting a committee for each shard. Verifiable random
functions (VRF) [59], verifiable secret sharing (VSS) [54],
and publicly verifiable secret sharing (PVSS) [55] have been
applied to this problem. VRF allows a participant to generate
verifiable randomness, while VSS and PVSS allow a group
of participants to generate collective randomness. In VSS,
each participant can verify the validity of their own share,
while in PVSS, everyone can verify that each participant
received the correct share through public proofs without
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direct interaction between participants. Previous works, such
as Elastico [144], used the least significant bits of the PoW
hash as a source of randomness to determine the committees,
which allowed adversaries to influence the selection process
in the next round. A more secure approach is taken by other
sharded blockchain protocols such as OmniLedger [96] and
RapidChain [92], which generate randomness for committee
selection using VRF and VSS, respectively.

d: MASTERNODE QUORUMS

Masternodes are incentivised full nodes with a required
minimum level of performance (e.g., proof-of-service [23])
that can provide advanced functionality and participate in
governance in addition to the regular tasks of a full node.
Masternodes have the additional requirement of holding a
collateral, which makes them sybil-resistant, i.e., a malicious
user cannot spin a number of nodes to gain an advantage.
Typical additional tasks include validating blocks proposed
by miners, protecting against 51% miner attacks, enabling
instantly re-spendable transactions, and enhancing transac-
tion privacy and fungibility for cryptocurrencies [23].

In order to provide some of these services, mastern-
odes must collectively reach an agreement that requires the
exchange of a large number of messages between them. With
a large number of masternodes, this affects the scalability of
the network. The solution proposed and used by Dash [23] is
to use subsets of masternodes called long-living masternode
quorums (LLMQ) [145]. The main task of an LLMQ is
threshold signing of consensus-related messages. Multiple
LLMQs of different sizes are formed as needed using a DKG
protocol and can be active simultaneously for long periods
of time, e.g., hundreds of blocks, allowing load balancing
between these quorums. A node can be active in multiple
quorums simultaneously. LLMQs are selected in a random
deterministic manner from all currently active masternodes
and the result of this selection, i.e., the quorum participants,
is mined on-chain before the LLMQ is actually used. The
LLMQs are statistically representative of the entire network.
For example, to protect against 51% mining attacks and
chain reorganizations, a mechanism called Chainlock [146]
is used where masternodes in LLMQ perform a verifiable
vote of the “first seen’” block to checkpoint it. If a threshold
of masternodes participating in LLMQ (e.g., 80%) saw the
block as first, then statistically about the same threshold of
nodes across the whole network should also have seen the
node as first and the block can be checkpointed. Similarly,
LLMQs enable instantly re-spendable transactions through
locking transactions by an LLMQ until miners include them
in a block. The miner must include the locked transaction
in the next block or the block will not be accepted by the
masternodes. All nodes participating in an LLMQ threshold
sign the messages using the BLS signature scheme. The result
of the signing session can then be aggregated in a single BLS
threshold signature, regardless of quorum size, and propa-
gated network-wide. By distributing a load across multiple
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LLMQs and aggregating signatures, LLMQs provide a robust
solution for scaling on-chain.

2) OFF-CHAIN

Instead of dealing with scalability directly on-chain, another
approach is to move parts of the system off-chain and update
the data on the chain at a later time, either with partial,
compressed, or representative data. A number of off-chain
scaling solutions have been proposed for Ethereum and
other blockchains, such as state channels [147], [148], side
chains [149]-[152], and rollups [153], [154].

a: STATE CHANNELS

State channels allow participants to transact directly outside
the blockchain [147]. First, participants open the state chan-
nel via multisignature, locking the part of a blockchain state.
Participants can then transact with each other. Once this is
done, they close the state channel and update the blockchain
with the new state, unlocking the state on the blockchain. The
disadvantage of this approach is that opening and closing the
state channel requires the participants to be fully reachable.

b: SIDECHAINS

A sidechain is another blockchain which is linked to a main
blockchain via a two-way peg, providing a way to transfer
assets between the two [149]. A two-way peg is a mechanism
that allows assets to be locked on one chain which can then
be used on the other chain and vice versa [150]. Sidechains
can have their own consensus protocols, accounting mod-
els, or privacy guarantees that may differ from those of the
main blockchain. There is usually a trusted or trustless inter-
mediary, that orchestrates the communication between the
main and sidechain. Zendoo [81] and zkRelay [82] leverage
zk-SNARKS to generate succinct proofs of the state of the
sidechain, allowing efficient verification in constant time
on the mainchain. This is an improvement over previous
approaches such as BTC Relay [76] and NIPoPoWs [151],
which have linear and polylogarithmic costs for the num-
ber of blocks, respectively. Since sidechains are separate
blockchains, they can lack security and be expensive to
maintain.

¢: ROLLUPS

Rollups, which allow transactions to be executed off-chain
and transaction data to be published later on the chain, are
a particularly interesting solution. Since only the Merkle
state root and the compressed transactions are stored
on-chain, transaction throughput is greatly increased and
network fees are significantly reduced. The largest space
savings is achieved by using the BLS aggregate signature [20]
for multiple transactions. There are two approaches to rollups,
optimistic and zero-knowledge. As the names imply, opti-
mistic rollups are based on optimistic assumptions, i.e., trans-
actions are assumed to be valid by default and rely on fraud
proofs, while zero-knowledge rollups use ZKPs as validity
proofs [153]. In optimistic rollups, the entity responsible for
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submitting a batch of transactions is required to put down a
deposit so incentives are aligned that it does not act fraud-
ulently [154], [155], while zero-knowledge rollups require
a deposit to ensure that the relayer eventually updates the
state [156]. For optimistic rollups, after a new state root
and compressed transactions are sent on-chain, there is a
challenge period, usually one week, in which a challenger can
submit a proof of fraud. If the proof of fraud shows that the
batch was not constructed correctly, the entity that sent the
incorrect rollup loses its deposit, the challenger is rewarded,
and the on-chain state is reversed. For zero-knowledge rollups
there is no challenge period, as a valid zk-SNARK or
zk-STARK asserts the correctness and existence of transac-
tions and proves the valid transition from the old to the new
state. This leads to much faster finality and even less data
stored on-chain. Optimistic rollups are currently better suited
for general purpose computation, as NIZKPs can be complex
and expensive to construct, generate, or verify. However,
as the technology behind NIZKPs improves, zero-knowledge
rollups are expected to overcome these issues [153]. There are
numerous projects such as Optimism [78], Loopring [83], and
others [79], [84], [157] that implement these two approaches
for Ethereum.

E. PRIVACY

This section discusses more generally how privacy is
achieved for on-chain transactions, general computation, and
in smart contracts.

1) TRANSACTIONS

Public blockchains are referred to as pseudo-anonymous.
This is because while the identities behind the network
participants are not known, the transaction data associated
with those identities is public [49]. Once the identity on the
blockchain is linked to an individual, there is a risk that
someone can trace their entire transaction history.

One of the solutions applied to this problem was zero-
knowledge proofs. Zcash [89], [90] was one of the first to use
the concept of shielded transactions based on zk-SNARKSs.
This concept allows senders and recipients of transactions
to prove that encrypted transactions are valid. The sender,
recipient, and transaction data cannot be inferred from the
transaction itself, providing confidentiality and strong pri-
vacy guarantees.

To address the downsides of zk-SNARKSs, such as trusted
setup and size, other projects have begun to look at other
cryptographic protocols. Projects based on the Mimblewim-
ble [158], [159] protocol, such as Grin [160] and Beam [161],
provide not only confidential transactions but also better
scalability. Mimblewimble uses Pedersen commitments [57]
to prove that transaction inputs and outputs are valid,
$0 Y Txmm — Y Txouw = 0, and Bulletproofs [43] as range
proofs to prove that committed values are nonnegative and lie
in the range € [0, 2°4]. Mimblewimble also does not require
all transactions to be stored permanently, resulting in a signif-
icant reduction in blockchain size. Monero [91], which used
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ring signatures [162]-[164], also implemented Bulletproofs,
resulting in a drastic reduction in transaction size, faster ver-
ification times, and lower fees [165]. Encrypted transactions
allow parties to take advantage of public blockchains while
protecting their privacy.

2) COMPUTATION

Entities that cannot afford to run their own infrastructure usu-
ally delegate their computations to cloud services. However,
adding a trusted party to manage their data poses a privacy
risk. Computation networks combined with blockchain using
a secure MPC can overcome this problem. Not only can a
single participant keep their data private, but all participants
can collectively compute something with their individual
data.

ARPA [95], a privacy-preserving computation network,
uses MPC in addition to information-theoretic Message
Authentication Codes (MACs). In ARPA, the correctness of
computations can be verified with MACs at constant time
complexity, while privacy is preserved through a secret shar-
ing protocol. This enables private smart contracts and protec-
tion of shared data being worked on.

Enigma [6] proposed a decentralized computation platform
with guaranteed privacy based on MPC using blockchain
for identities, access control and storage for verifiable trails.
However, the originally proposed MPC protocol was imprac-
tical due to the computational overhead, so Enigma initially
only supported TEEs for their secret contracts and deferred
the implementation of MPC to future releases. For providing
their computational resources, nodes in Engima are compen-
sated with fees paid by those who submit tasks.

3) SMART CONTRACTS
Since smart contracts in most blockchains are stored on a
public blockchain, their code, state, and all associated trans-
actions can be viewed by anyone. This presents a hurdle for
companies that want to move to blockchain but do not want
their assets to be public.

The Hawk framework [87], which uses zk-SNARKS, was
one of the first to offer a solution to this problem. Hawk
splits the contract into a public contract and a private contract.
The public contract is executed on the blockchain, while
the private contract is executed off-chain by managers. The
drawback of Hask is that the confidentiality of smart contracts
depends on a manager being trusted, and each circuit requires
a trusted setup for new SNARK. These issues are addressed
by zkHawk [94], which replaces SNARKSs and the manager
with an MPC protocol. Zether [88] proposes the use of
Bulletproofs for confidential transactions compatible with
existing smart contact platforms. Ekiden [99] and Shad-
owEth [100] also achieve private smart contracts by using
trusted hardware such as Intel SGX, but this imposes
additional trust requirements on TEE manufacturers. Arbi-
trum [79] also allows smart contracts to scale by using off-
chain computation, but with privacy guarantees. Arbitrum
allows someone to create an Arbitrum Virtual Machine, a spe-
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cial smart contract, and select managers to be responsible for
its execution. Arbitrum, with its weaker trust assumptions,
guarantees that a single honest manager can ensure that the
computations were done correctly. With Arbitrum, the smart
contract code does not need to be public, the computation cost
is constant, and only the cryptographic hash of the state is
stored on-chain.

IV. CONCLUSION

Verifiable computing techniques are used to provide core
functions in blockchain projects. They aim to reduce energy
requirements while maintaining or increasing security and
improving network efficiency, scalability, and privacy. Due
to its recent and growing popularity, blockchain technology
has been a driving factor for research in this area.

In this paper, we have provided an overview of verifiable
computing techniques currently used in popular blockchain
projects. We have divided the verifiable computing applica-
tions in blockchain into main application areas, i.e., multi-
party approval for secure key management, sybil-resistance
and consensus, smart contracts and oracles, scalability, and
privacy. We have described how and for what purpose verifi-
able computing is used in large blockchain projects. As far as
we are aware, this is the first overview of its kind that aims to
map specific verifiable computing techniques to blockchain
applications while providing example projects.

Future research should further develop existing verifiable
computing methods and propose new ones that are less com-
putationally intensive and enable a broader range of applica-
tions. In addition, further research is needed to extensively
test the security of existing practical implementations of ver-
ifiable computing methods. Part of our current research is
devoted to reviewing available state-of-the-art implementa-
tions of various verifiable computing techniques, highlighting
their unique properties. In an effort to find a sustainable
replacement for Proof-of-Work, we are also exploring a solu-
tion that uses verifiable computing to verify work in a Proof-
of-Useful-Work consensus mechanism without relying on a
trusted execution environment.

In summary, verifiable computing applications are being
actively explored and improved in a rapidly evolving
blockchain technology context. A move towards a sustainable
model where one party computes and all others verify effi-
ciently would not only be a technological advance, but also
an environmental one.
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