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ABSTRACT In traditional web crawling, all web pages crawled are first stored to databases. As a result,
this approach can store unnecessary web pages and requires additional running time for the construction of a
sentiment dictionary in a particular domain because sentiment words should be identified by scanning all web
pages in the database. To address these problems, we first define the sentiment-aware web crawling problem
and then propose two hash-based methods for the implementation. One is based on hash join and the other is
bucket-sorted hash join. In particular, we propose a novel bucket-sorted hash join for the efficient sentiment-
aware web crawling method. Our experimental results show that the proposed web crawling method using
bucket-sorted hash join outperforms existing web crawling methods by significantly reducing the running
time and storage space. In the proposed method, the time taken to execute the sentiment-aware task per web
page is 0.016 seconds and the database space can be saved by 59% compared to the existing web crawling
methods.

INDEX TERMS Hash join, sentiment analysis, sentiment lexicon, web crawling.

I. INTRODUCTION
In the past, most data mining techniques that exploit use-
ful information hidden in objective facts have been widely
used, but recent studies on analyzing and aggregating sub-
jective information of people by the development of smart
devices and social network services have been treated to be
important. In this sense, sentiment analysis or opinion min-
ing [1] [2] [3] has been actively studied from the past to the
present. Recently, public opinion and market research are no
longer surveyed in the traditional way, but rather relevant data
are automatically collected from the web and then pros and
cons of the questionnaire are summarized through sentiment
analysis.

To conduct market research in a certain domain, one of
challenging research problems is to automatically identify
domain-dependent sentiment words [4]. Furthermore, Sen-
timent Analysis using deep learning requires a large-scale
training set of labeled sentiments. To solve this prob-
lem, an existing sentiment lexicon was used for automatic
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generation of a large-scale training set labeled with senti-
ments [5]. Opinion Summarization is one of the most impor-
tant problems in sentiment analysis and market research
areas recently [6]. Given a large collection of review text
documents about a particular product in automobiles or
smartphones as input, state–of–the–art opinion summariza-
tion methods usually provide (1) a few main aspects, (2) pros
and cons per aspect, and (3) extractive/abstractive summaries
in favor of/against each aspect.

As such, the sentiment analysis techniques can be widely
applied in many diverse applications, making it an important
technology in data mining. In particular, a sentiment lexicon
is one of the key components in sentiment analysis. If there
are abundant sentiment vocabularies in the sentiment lexicon,
it will be possible to obtain high accuracy even if any senti-
ment analysis method is used. Recently, however, social net-
work services and chat applications have become widespread
and new sentiment words, abbreviations, and even emoticons
are increasing rapidly. Even if we build an almost perfect
sentiment lexicon with time and cost, it is necessary to add
new sentiment vocabularies in many different domains over
time. To add new sentiment words and phrases to the existing
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sentiment lexicon, web crawlers periodically crawl and col-
lect new text documents from the web [7].

Algorithm 1 Traditional Crawling Algorithm as Baseline

1 Input: SEED_URL;
2 enqueue(URL_queue, SEED_URL);
3 if not length(URL_queue) > 99 then
4 while not empty(URL_queue) do
5 URL = dequeue(URL_queue);
6 page = crawl_page(URL);
7 enqueue(crawled_pages, (URL, page));
8 URLlist = extractURLs(page);
9 for u in URLlist do
10 enqueue(links, (URL, u));
11 if u not visit URL_queue and (u,-) not in

crawled_pages then
12 enqueue(URL_queue, u);
13 ReorderQueue(URL_queue);

The basic process of web crawling is shown in
Algorithm 1. Web crawlers first download initial web pages
by a list of seed URLs and then URLs in each web page
downloaded are added to the queue. The URLs in the queue
are rearranged according to their importance. The URL
with the highest priority is deleted from the queue and the
corresponding web page is downloaded from the web. The
same process is repeated until the queue is empty. In this
manner, traditional web crawling methods are likely to store
the downloaded web pages in a file system in which all
web pages are scanned when a sentiment dictionary for a
particular domain is constructed. In this approach, two major
problems occur. Because some web pages contain abundant
sentimental vocabularies, while other web pages may have
few sentimental vocabularies, one problem is that the storage
space is excessively wasted by storing all downloaded web
pages that contain little sentimental vocabulary. The other
problem is that it takes a lot of time to build a sentiment
dictionary while all the web pages stored in the file system
are scanned [8].

To address these problems, in this work, we propose a new
sentiment–aware web crawling approach that filters unneces-
saryweb pages duringweb crawling.When our proposedweb
crawler tries to download a web page, it identifies whether or
not the web page contains a lot of sentiment vocabularies.
As the baseline method, all words on the web page need
to be scanned to check if each word exists in the sentiment
dictionary. Here, we assume that a sentiment lexicon is given
in advance. If a web page contains a lot of sentiment words
even though some sentiment words do not exist in the given
sentiment lexicon, it may be more valuable than other web
pages including little sentiment words. Since the baseline
method matches all words with all sentiment words in the
sentiment dictionary, it will take a long time. For example,
in case that a web page W has n words and the number of
the vocabularies in the sentiment dictionary is m, the time

FIGURE 1. Sentiment–aware web crawler.

complexity is O(knm), where k stands for the number of
web pages downloaded by web crawlers. This means that the
traditional web crawling method needs the intelligent process
to quickly find out if a web page has many sentiment vocabu-
laries. The goal of the proposed web crawling algorithm is to
minimize the execution time of finding web pages with many
sentiment words.

For this, we first propose a sentiment-aware web crawling
method. Figure 1 illustrates the overall flow chart of the pro-
posed approach. Then, we present two hash-based methods
for implementation. One is based on hash join and the other
is bucket-sorted hash join. In particular, we propose a new
bucket-sorted hash join method that is faster than the existing
hash join method. Our experimental results show that the
proposed web crawling method outperforms the traditional
web crawling method by significantly reducing the running
time and storage space. Please refer to the Experimental
Results section for details.

The contributions of our work are as follows:
• In this work, we first raise the necessity of the sentiment-
aware web crawling method rather than the existing
web crawling method to build a sentiment dictionary
by periodically collecting new words of sentiment and
defining the problem formally. Moreover, the proposed
novel algorithm that overcomes major drawbacks such
as applying insufficient sentiment words in web crawler
methods for sentimental analysis or not considering var-
ious sentiment classifications expressed in vocabulary.
To the best of our knowledge, this is the first study in
web crawling.

• Our proposed method, that is, the sentiment-aware web
crawling method, can save the space of the database
and the time to build the sentiment dictionary compared
to the existing web crawling method. However, it takes
additional time to determine whether a web document
contains many sentiment words. To minimize this addi-
tional time, we propose hash join based methods.

• For efficient sentiment-aware task, we propose a solu-
tion that fits our problem by borrowing the existing hash
join algorithm. We call this approach sentiment-aware
web crawling based on hash join. Besides, we propose
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a new bucket-sorted hash join scheme that is faster
than the existing hash join scheme, and apply it to our
problem.

• Our experimental results show that the proposed web
crawling method outperforms traditional web crawl-
ing method by significantly reducing the running time
and storage space. In addition, the proposed bucket-
sorted hash join method is faster than the hash join
based method in the sentiment-aware task in web
crawling.

The remainder of this article is organized as follows:
First, we introduce previous studies related to this work in
Section II. Then, we formally define our problem in web
crawling in Section III. Next, we described the detailed algo-
rithms for the proposed sentiment-aware web crawling based
on both hash join and bucket-sorted hash join in Section IV.
In the experimental set-up and result sections, we validate
the proposed hash join based methods, compared to the tradi-
tional web crawling method. In Section VI, we deal with the
scope, assumption, and limitation of our proposed method in
detail. Finally, we summarize our work followed by the future
research direction in Section VII.

II. RELATED WORK
Web crawlers for information retrieval from web sites are
classified into four categories: focused, distributed, incre-
mental and hidden web crawlers. Among these strategies, a
focused web crawler approach is used to prioritize crawled
pages and collect web pages that contain some target infor-
mation through the hyperlink navigation process. There-
fore, focused web crawler is used in web content collection
approach targeting keywords, miscellaneous content filtering
approach, ontology-based content collection approach, and
opinion mining-based approach considering various content
expression methods in web pages [9]. Also, according to the
collection purpose of the web crawler, it is classified into
URL based web crawler and content-based web crawler [10].
Content based approach is classified into two types: a sur-
face web approach that collects superficially displayed web
pages and a deep web approach that collects hidden con-
tents. To collect more valuable information in the recent web
environment in which various contents are shared, it is also
necessary to classify the collection object of the collector in
detail. Therefore, in this paper, we define subcategories of the
surface web approach as keyword-based web crawlers, multi-
resource-based web crawlers, semantic web crawlers, and
sentiment analysis crawlers. Figure 2 shows the classification
of web crawler.

Through the representative characteristics of openness and
accessibility of the World Wide Web, users are experienc-
ing the benefits of creating and sharing many contents on
web pages. However, since web pages containing much
malicious content have a detrimental effect on users and
systems, methods have been proposed to filter such con-
tent and prevent access through the web crawler system.
Keyword-based approach is used to retrieve the information

FIGURE 2. Classification of web crawler.

from the web [11]–[13]. [13] proposed a web crawler system
that classifies web pages based on keywords contained in
web pages. By extracting keywords representing age groups
such as ‘‘kids,’’ ‘‘parenting,’’ and ‘‘drowning,’’ it classifies
whether the content of a web page is appropriate for a
specific age(5-9 years) and blocks access to inappropriate
information. At this time, WordNet thesaurus is applied to
calculate the similarity between keywords and categories
included in the content. Therefore, the system accurately
classifies web pages containingmalicious advertisements and
web pages that do not fit the age classification targeting large-
scale web pages. As a result, it is possible to identify and
classify harmful web pages through content filtering of web
pages, but there is a limitation in that keywords belonging
to a specific category (such as age) must be defined in
advance.

In addition, since web pages contain information in vari-
ous types of resources such as images and videos, and text
content, a focused web crawler targeting these various web
resources has been proposed. [14] proposed a method for
classifying web pages based on text and images included in
web pages based on artificial neural network algorithms. The
proposed algorithm extracts features including objectionable
words, sentences having objectionable words, images having
objectionable words as titles through the feature extractor
module. Learning the extracted features as input data of the
Advanced Quantum-based Neural Network (AQNN) Classi-
fier classifies whether the web page is objectionable or non-
objectionable. If an objectionable is found on a website, the
website and URL are added to the database and managed.
Therefore, when users try to access any objectionable web-
site, the number of objectionable URLs’ database increases
and thewebsitemay be blocked. As a result, it proves that web
content filtering is possible through machine learning using
text and images collected by a web crawler. However, since
the proposed method focuses only on whether the feature is
objectionable or not, it is limited to sentiment classification
of websites where sentiment words and sentences frequently
appear, such as product and movie reviews and news article
comments.

Semantic web pages are being created so that humans
and machines can understand web resources included in
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web pages. Web resources are defined using standard-
ized syntax such as Web Ontology Language (OWL) and
Resource Description Framework (RDF) so that crawlers
can understand them. As a result, the recall and accuracy
of the web crawler show much better performance than the
general web type. Ontology-based crawlers have been pro-
posed to collect ontology included in these semantic web
pages [15] [16] proposed a distributed web crawler system
that understands the theme of content included in web pages
and supports the decision-making required for crawling page
selection. Web resources included in semantic web pages
are analyzed through the ontology analyzer module, enabling
the crawling of web pages highly related to specific search
keywords. Therefore, the robustness and reliability of the web
crawler can be improved because web pages, including web
resources expressed in RDF/OWL, can be handled more effi-
ciently. However, although the ontology-based crawler can
help the understanding and identification of web resources,
there is an apparent weakness in that the performance
of the web crawler is reduced for the resources included
in the traditional web page, which still occupies a large
proportion.

From an industry point of view, web pages are actively
used for product advertisements and product introductions.
In addition, product users provide user opinions and exchange
information through web pages based on product informa-
tion. At this time, users obtain the information they want
through questions and answers about the product information
and actively express their opinions using various emotional
vocabulary. Therefore, to quickly and accurately analyze the
question and answer sentences included in the web page,
extracting the response sentence for a specific question sen-
tence plays a vital role in the opinion mining field. [17]
proposed a method to automatically extract and crawl texts
for questions and answers included in websites. Extracts
original data from web pages and extracts keywords through
pre-processing such as word separation and morphological
analysis. The extracted keyword is calculated using the the-
saurus to calculate the similarity with the question sentences.
Therefore, it is possible to extract the most similar question
sentence to the corresponding keyword and extract the answer
sentence, including the corresponding keyword as a pair
with the question sentence. Therefore, the proposed crawler
system can help construct the set of question and answer
sentences. However, the proposedmethod calculates the simi-
larity with the question sentences only for the vocabulary con-
structed in the thesaurus and collects the answer sentences.
Therefore, there is a limit to data extraction and crawling,
including sentiment words, which have different expression
methods according to changes in trends, and words with
various morphological changes.

Sentiment analysis deals with computational treatment of
sentiment, opinion and subjectivity in text. However, it is
difficult to draw a positive or negative conclusion from the
various opinions. Recently, in an environment where opin-
ions among users through huge amounts of web pages are

actively exchanged, an efficient analysis and mining method
of website data is needed for accurate sentiment analysis.
[18] proposed an advanced sentiment classification method
in financial news articles and proposed a market price pre-
diction method. In this work, customized crawlers extract
financial news articles for the target region(industry) from
multiple sources. Syntactic analysis and sentiment classifi-
cation are performed from all web documents, and market
prices are also collected. Each sentence is extracted from all
collected web documents, and the sentiment score is calcu-
lated and accumulated through parsing the sentences. As a
result, based on the correlation between news sentiments and
market prices, market price prediction is to be facilitated.
However, since it is necessary to collect, store, and parse all
sentences included in all the news articles, it takes much time
to analyze sentiment analysis for a large-scale website. The
duplication of the collected data is a significant drawback.
Figure 10 shows the comparison results for methodologies of
the content-based web crawler.

III. PROBLEM STATEMENT
To build a sentiment dictionary, web crawlers first collect a
large amount of web pages and store them in a database. After
that, the entire database is scanned and the sentiment vocabu-
lary is identified. The problem of this traditional approach is
that web documents that contain little sentiment vocabulary
are also stored together, which wastes storage space in the
database and increases the unnecessary time to build the
sentiment dictionary because the entire database must be
scanned.

To solve this problem, we propose a web crawler using
hash join during the crawling process to quickly identify and
selectively store only documents containing a large number
of positive and negative vocabularies before storing the web
document to the database. Throughout this article, we will
call such a crawler a sentiment–aware web crawler.

In this work, for formal problem definition, assume that a
web crawler C visits a web page W and can use a sentiment
lexicon D that is available in public. Specifically, W is a set
of terms i.e., W = {t1, t2, . . . , tn} and D is a set of sentiment
terms i.e., D = {s1, s2, . . . , sm}. Unlike the existing web
crawlers, the sentiment-aware web crawlers must perform the
following task in Algorithm 2.

Please note that this task is based on the hypothesis that
W , stored in the database, also includes many additional
sentiment vocabularies disappearing in D.

As one major weak point in the sentiment-aware task,
it takes additional time unlike the existing web crawlers.
In the formulation, when C visits k web pages, the time
complexity is O(knm). Compared to the existing web crawl-
ing method, it takes more O(nm). In order to minimize
the time to perform the sentiment-aware task, we use a
hash join method in Algorithm 3 rather than the pair-wise
matching in Algorithm 2 and further propose an effi-
cient method by improving the existing hash join method.
In the efficient sentiment-aware task, the time complexity
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Algorithm 2 Sentiment-Aware Task

1 matching = 0;
2 for t ∈ W do
3 for s ∈ D do
4 if t == s then
5 matching++;
6 α =

mathcing
n ;

7 if α ≥ Threshold θ then
8 Store W to the database;

Algorithm 3 Efficient Sentiment-Aware Task

1 for s ∈ D do
2 Hash function

h(s)→ one of buckets in Hash Table H ;
3 matching = 0;
4 for t ∈ W do
5 h(t)→ B[i] in H ;
6 for t == s ∈ B[i] do
7 matching++;
8 α =

mathcing
n ;

9 if α ≥ Threshold θ then
10 Store W to the database;

is O(m+ n|B|) ≈ O(n|B|), where |B| is the number of the
sentiment terms per bucket and |B| � O(m).
The aim of our approach is to reduce the running time in the

sentiment-aware task. By collecting only web documents rich
in sentiment vocabulary through the sentiment-aware task,
database space is saved, and there is no need to scan the entire
database, making it easy to build a sentiment lexicon. It is also
essential to study in depth the trade-off of the advantages and
disadvantages arising from performing the sentiment-aware
task.

IV. MAIN PROPOSAL: EFFICIENT SENTIMENT-AWARE
TASKS IN WEB CRAWLERS
To develop the efficient sentiment-aware crawling methods,
we propose two hash-based approaches. One is based on
hash join and the other is bucket-sorted hash join. In the
first approach, we merely apply existing hash join scheme
to our problem to see if it is working on the sentiment-
aware crawling task. On the other hand, in the second
approach, we first propose a new bucket-sorted hash join
scheme that is more efficient than the existing hash join
scheme, and then we apply the proposed bucket-sorted hash
join scheme to the sentiment-aware crawling task. For the
details, we will describe the sentiment-aware web crawling
method using hash join in Section IV-A and the sentiment-
aware web crawling method using bucket-sorted hash join in
Section IV-B.

A. SENTIMENT-AWARE TASK USING HASH JOIN
1) MAIN CONCEPT OF HASH JOIN
In this section, we assume that tables R and S will be joined
with hash join, to explain them easily. The hash join scheme
has two steps: build and probe. In the build step, it builds a
hash table for the table with the smaller number of tuples.
In the probe step, it probes the constructed hash table using
the other table. This can be accomplished with all these
operations in memory [19] if the tuples of these tables are
small. However, if these tables are too big to fit in the mem-
ory, they require expensive disk I/O operations. The early
hash join [20] is based on symmetric hash join and uses a
single hash table for each input. It also consists of reading
and flushing. This join algorithm dynamically customizes
the balance between initial performance results and mini-
mum execution time. The grace hash join scheme [21], [22]
was proposed to reduce the number of expensive disk I/O
operations. The scheme consists of two phases. In the first
phase, table R is divided into multiple partitions, and each
partition is read from the disk and hashed with a hash table.
In this article, a directory (i.e., hash table) consists of multiple
directory entries and resides in main memory. Buckets are
also allocated in the memory space to hold corresponding
records by the hashed value. Each directory entry can have
multiple linked buckets, and a hashed record is assigned to
each corresponding directory entry. If the allocated memory
space for a certain directory entry in the hash table is full, all
records of the allocated memory space are written back to the
disk and deleted, and the algorithm then continues to process
all the tuples in table R. In the second phase, it builds the hash
table with a different hash function after reading the tuples in
table R from the storage. Then, it probes the built hash table
for table R with a tuple of table S, after reading the tuple of
table S from the storage. Thus, the grace hash join scheme
can significantly reduce the number of disk I/Os because it
accesses tables R and S with block I/Os.

The hybrid hash join scheme [23], [24] is a variant of
the grace hash join and is intended to utilize memory more
efficiently. In hybrid hash join, the first partition of table R is
kept in the memory and the hash table is built during the first
phase, without writing back to the storage. When hashing the
first partition of table S, the algorithm directly probes the hash
table of the first partition of table R in the memory. Except
for the first partition of tables R and S, other partitions will
be processed in exactly the same way as the grace hash join.
Thus, the hybrid hash join scheme can eliminate the disk I/Os
for the first partition.

2) SENTIMENT-AWARE TASK USING HASH JOIN
In the previous section, we describe the main concept of
hash join schemes like grace hash join and hybrid hash join.
We borrow the main algorithm of the hash join schemes to
apply for our problem. In this work, the input data of the
hash join scheme are: One table is a set of the terms in W

161212 VOLUME 9, 2021



B.-W. On et al.: Efficient Sentiment-Aware Web Crawling Methods for Constructing Sentiment Dictionary

and the other is a set of the sentiment terms in D. This is,
W = {t1, t2, . . . , tn} and D = {s1, s2, . . . , sm}. The scheme
consists of two phases. In the first phase, each s ∈ D is hashed
into one of buckets BD = {BD1 ,B

D
2 , . . . ,B

D
l } in a hash table

HD through a hash function h1(). For example, h1(s5)→ BD2 .
The hash table HD is a set of directory entries, each of which
has multiple buckets. If the first bucket of the directory entry
does not have enough space, a new bucket is linked to the
first bucket in a separate chaining method. For example, a
term needs to be added to the first bucket, but if it is already
full, after the second bucket is created, the term is inserted
in the bucket. When the overflow bucket is also full, another
overflow bucket is created and connected. In the directory
entry, all buckets are linked by a linked list. In Figure 3(a), the
directory entryBD1 inHD has two buckets. The first bucket has
two sentiment terms s1 and s′1 and the second bucket has two
sentiment terms s2 and s10. In the figure, using h1(), all terms
in D are hashed into HD. Similarly, as shown in Figure 3(b),
a web documentW crawled by a web crawler has five terms.
Through the same hash function h1(), the all terms are hashed
into the hash tableHW . In the figure, three terms t1, t ′1, and t

′′

1
are hashed into BW1 ; one term t2 is hashed into BW2 ; and one
term t3 is hashed into BWl .
Eq 1 is the hash function used in the first phase. We call

it the first hash function. Suppose that a term x is a string
of length n. x[i] means the byte value for the i–th character
of x. The directory entry to which x should be stored inHD is
determined by h1(x)%|HD

|, where |HD
| is the total number

of the directory entries in HD.

h1(x) = x[0]× 31(n−1) + x[1]× 31(n−2) + . . .+ x[n− 1]

(1)

The purpose of the first phase is to group similar terms
from each table. For instance, in Figure 3(a), assume that
two terms s1 and s′1 are identical in D. Likewise, three terms
t1, t ′1, and t

′′

1 are identical in W . In each table, through h1(),
similar terms are hashed into the same directory. For example,
s1, s′1, s2, and s10 are in BD1 as the same directory in HD.
Consequently, since the same hash function h1() is used, the
words inBD1 andBW1 are likely tomatch each other. Therefore,
in the second phase, BD1 does not need to compare all buckets
of W , and only performs a join operation on the bucket BW1 .
The output of the first phase is {(BD1 ,B

W
1 ), (BD2 ,B

W
2 ), . . . ,

(BDl ,B
W
l )}. For each pair, e.g., (BDi=1,B

W
i=1), s ∈ B

D
i=1 is first

hashed into one of buckets in the hash table HS , through the
second hash function h2(). As depicted in Figure 3(c), four
terms s1, s′1, s2, and s10 inB

D
1 are hashed into one of buckets in

HS . In the figure, s1 and s′1 are in B
S
1 ; s2 is in B

S
2 ; and s10 is in

BSl . Through this process, the hash tableH
S is constructed for

BD1 . In fact, this is the build step. Next, for t ∈ B
W
1 , it is hashed

into one of buckets in HS using h2(). We call this process the
probe step. Each term in BW1 is assigned to one bucket by h2().

For instance, in Figure 3(d), t1 ∈ BW1 is assigned to BS1 in H
S .

Finally, the join operation is performed on (t1, s1) and (t1, s′1).

Algorithm 4 Insert Operation

1 Function Insert(Record R, The Bucket B)

2 while (B is full) do
3 B : = B->next;
4 if (B is equal to the last bucket) then
5 Allocate a new bucket;
6 B : = the new bucket;
7 break;

8 if (B ! = empty) then
9 A := The last record in B;
10 R := The new record;
11 while (A.Key > R.Key) do
12 Move right A in the bucket;
13 A := A’s preceding record;
14 Add R into A’s right side;
15 else
16 Add R into B;

Eq 2 is the hash function used in the second phase. We call
it the second hash function. Assuming that a term x is a string
of length n, x[i] means the byte value for the i–th character
of x. The directory entry to which x should be stored in HS

is determined by h2(x)%|HS
|, where |HS

| is the total number
of the directory entries in HS .

h2(x) = x[0]+ x[1]+ . . .+ x[n− 1] (2)

B. SENTIMENT-AWARE TASK USING
BUCKET-SORTED HASH JOIN
1) MAIN CONCEPT OF BUCKET-SORTED HASH JOIN
In [25], we proposed a new hash-join scheme, called bucket-
sorted hash-join, to sort records only within a bucket in
order to reduce the probing time, while the hybrid hash-join
scheme sequentially scans records in a hash table until the
corresponding records are matched. In this study, we extend
it for the efficient sentiment-aware task.

Algorithm 4 presents the detailed process of an insert oper-
ation in the first and second phases in our proposed scheme.
To insert a new record into a certain bucket in the proposed
scheme, it first checks whether the bucket is full or not.
If the bucket is full, it moves to the next bucket. If the bucket
is not full, it starts comparing the record to insert with the
last record in the bucket. If the key of the inserting record is
smaller than the key of the last record in the bucket, it moves
the last record to the next, and then compares the preceding
record to the last record again. Otherwise, it simply inserts
the new record next to the current record. The scheme repeats
this process until a new record is properly added to a certain
bucket and indicates that the new record will be inserted in the
proper slot in the bucket by maintaining the ascending order
among records within the bucket.

Algorithm 5 presents the detailed process of a probing
operation in the second phase in our proposed scheme. In our
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FIGURE 3. Efficient sentiment-aware task using hash join.

proposed scheme, we use the binary search algorithm to find
the record within a certain bucket instead of scanning records.
To probe the record, the scheme visits the first bucket to find
the corresponding record using the binary search algorithm.
If the corresponding record is found, it combines these two
records. Then, it moves to the next bucket to search, and
keeps doing so until the last bucket is visited because multiple
records with the same key value can exist in some tables.

Next, we explain the proposed schemewith a simple exam-
ple, and Fig. 4 depicts how the bucket-sorted hash join works.
While the proposed scheme is the same as that of the hybrid
hash-join in the first phase, in the second phase the 0 directory
entry (first partition) initially has one bucket to hold four
records, 8, 16, 24 and 40, as shown in Fig. 4 (a). Within the
bucket, the four records are stored in ascending order, and
now a new record, 80, is inserted in this directory entry.

Because the current bucket has no space to store the new
record, the new bucket is first allocated and linked, and
then the record is inserted in the first slot in the second
bucket. Fig. 4 (b) shows the status of the hash table after
the new record (80) is added. Now, we add the new record
32 to the first directory entry in the hash table. Because
the first bucket is full, the algorithm checks whether the
next bucket has available space to store the new record.
The record in the first slot is moved to the second slot,
and the new record will be added to the first slot in the
second bucket to maintain the ascending order among records
within the second bucket. Fig. 4 (c) shows the status of
the hash table after the new record 32 is added. Thus, a
certain record can be easily searched for with our proposed
scheme, using the binary search algorithm. This implies that
our proposed scheme can significantly reduce the probing
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FIGURE 4. Bucket-sorted hash join.

Algorithm 5 Probe Operation

1 Function Probe(Record R, Bucket B)

2 while (B ! = The Last Bucket) do
3 BinarySearch(R,B);
4 B := B->next;

5 Function BinarySearch(Record R, Bucket B)
6 First := the first record in Bucket B;
7 Middle := the middle record in Bucket B;
8 Last := the last record in Bucket B;
9 while (First <= Last) do
10 if (Middle.Key < R.Key) then
11 First := The next record of Middle;
12 else if (Middle.Key == R.Key) then
13 Combine A and B;
14 else
15 Last := The preceding record of Middle;
16 Middle= The middle record Between First and Last;
17 return NULL;

time in the second phase, compared to the hybrid hash-join
scheme.

2) TIME AND MEMORY SPACE COMPLEXITY
Assume that we use a separate chaining to resolve a collision
in a hash table, and additional memory spaces other than the
key/value pairs in the hash table directory are not needed. The
cost of a hash join includes i) partitioning the relations into
blocks, ii) creating a hash table entry, iii) probing with a hash
table, iv) reading and writing the disk blocks, and v) moving
the data to the write memory buffer.

During hash table creation, the keys in the hash table are
partially sorted in the bucket-sorted hash join. Therefore,
instead of a linear search inside a page block, the bucket-
sorted hash join uses a binary search on the partially sorted
page block. Consequently, it requires more time to generate a
partially sorted hash table entries within a bucket, but probing
time is reduced by using a binary search within a bucket.

By using the notations in Table 1, because partition phase
is the same as that of the hybrid hash join, the total cost is
defined as

TPartition = (Nr + Ns) ∗ (Th ∗ CL ∗ O(Bn))

+(Nr + Ns) ∗ (1− q) ∗ Tm
+(dNBr/(NBm − NBqr − 1)e

+dNBs/(NBm − NBqs − 1)e)

∗(Tr + (1− q) ∗ Tw)

During a hash table creation phase, blocks should be par-
tially sorted, which requires O(B2n) instead of O(Bn) as in
hybrid hash join. The cost to create a hash table is defined
as

THash = Ns ∗ (Th ∗ CL ∗ O(B2n)+ (1− q) ∗ Tm)

+(d(NBs − NBqs)/(NBm − 2)e) ∗ Tr

Since the hash table is partially sorted, we can use a
binary search within a bucket during the probing phase which
requires O(logBn) rather than O(Bn). Then, the probing cost
is defined as

TProbe = (1− q) ∗ Nr ∗ (Tp ∗ CL ∗ O(log(Bn))

+(d(NBs − NBqs)/(NBm − 2)e − 1)

∗(NBr − NBqr ) ∗ Tr

The cost associated with writing the result blocks to the
disk remains the same as

TWrite = NBo ∗ Tw

In this method, if relations R and S are already sorted,
then we can replace the sorting terms O(B2n) by O(1) during
the hash table creation. The probing phase would also then
require O(logBn) with a binary search.

3) SENTIMENT-AWARE TASK USING
BUCKET-SORTED HASH JOIN
Figure 5 depicts the sentiment–aware web crawling process
based on bucket–sorted hash join. In the pre–processing step,
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TABLE 1. Notations.

FIGURE 5. Sentiment–aware web crawling algorithm using bucket–sorted
hash join.

a hash table is created with the sentiment words in the
sentiment lexicon. When a hash table is created, a bucket
address is assigned to each word through a hash function.
The number next to the word in the hash table is the allo-
cated bucket address. Then, the assigned bucket addresses are
sorted in ascending order. During web crawling, each word
w in crawled web page (a list of words in the web page 1) is
assigned to the bucket address using the hash function. To see
whether w is in the hash table or not, the binary search is
performed in the hash table. In this process, the words ‘love’,
‘happy’, and ‘poor’ are considered as sentiment words among
‘cookie’, ‘love’, ‘glass’, ‘cloth’, ‘door’, and ‘happy’.

Algorithm 6 summarizes the pseudo code of the proposed
sentiment–aware web crawling method using the bucket–
sorted hash join algorithm. Each tuple of the hash table is key
and value, where key is a word and value is the hash value that
hashes the word. The bucket address is assigned to this hash
value. A hash table is built by the sentiment words in the given
sentiment lexicon and the tuples are sorted by the bucket
addresses in the hash table. Meanwhile, each word w in the
crawled web page is represented as the format of key and
value. key is w and value is the hash value of hashing w. The
hash value is assigned to a bucket address for w. To quickly

1Both non–text data and stop words are removed and each word is trans-
formed to the root form through stemming

find whether w is involved in the hash table or not, the binary
search is executed by the bucket addresses. If the same bucket
address is searched, the algorithm returns ‘true’ as output
and ‘false’, otherwise. The sentiment score of a web page
is computed by Number of true counts

Number of true counts+Number of false counts . If the
score is greater than 0.1 ,2 it is considered that the web page
contains many possible sentiment words and is stored in the
database. Once the hash table is created in the pre–processing
step, only words in the crawled web pages are checked to see
whether or not they contain in the hash table or not. Please
note that we can ignore the running time of building the hash
table because the size of the sentiment lexicon is small in
general. The time complexity of probing the hash table is
O(kmlogn), where k , m, and logn mean the number of web
pages crawled, the average number of words per web page,
and the total time of both computation of hash function and
binary search.

V. EXPERIMENTAL VALIDATION
In this section, we explain the experimental set-up and show
the performance evaluation.

A. EXPERIMENTAL SET-UP
Each method was in standalone executed in a high-
performance workstation server with Intel Xeon 3.6GHz
CPUwith eight cores, 24GBRAM, 2TBHDD, and TITAN-X
GPU with 3,072 CUDA cores, 12GB RAM, and 7Gbps
memory clock. The operating system of the computer for the
experiment was Ubuntu 18.04.3, and the proposed sentiment-
aware web crawlers based on hash join and bucket-sorted
hash join were implemented using Python 3.6.

To crawl web pages, web crawlers like Algorithm 1
started at three seed sites: (1) http://newdaily.com, (2) http://
joongang.joins.com, and (3) http://hani.co.kr. The web
crawlers went around neighboring web pages via hyperlink.
These web pages were collected for one day on February 1,
2021, and all web pages with a sentiment score α = 0.1 or

2The optimal value is found through several experiments.
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less were filtered out because such web pages are not likely
to have a number of sentiment words.

Through Beautiful Soup 4.9.1 [26], a Python library, we
removed html or xml tags from each crawled web page and
extracted text data within the web page. We also used MeCab
0.9.9 and its dictionary 2.1.1 [27] in Korean NLP in Python
(Konlpy) 4.9.1 [28] for morpheme analysis of the parsed text
data as above. The reason is: Tomatch awordw in the text and
the sentiment words registered in Kunsan National University
(KNU) Korean Sentiment Dictionary [29], w is required to
change to the root form of w.

Algorithm 6 Sentiment–AwareWeb Crawling Algorithm
Using Bucket–Sorted Hash Join

1 Input: seed_word, collected_word;
2 Sentiment_Score α;
3 Build hash_table1;
4 for see_word in hash_table1 do
5 hash_table1 key = seed_word;
6 hash_table1 value = hash_function(seed_word);
7 Sorting hash_table1 value;
8 Insert bucket of hash_table1 value;
9 for seed_word in hash_table2 do
10 hash_table1 key = collected_word;
11 hash_table1 value = hash function(collected_word);
12 Probing with Binary Search;
13 α =

count(true)
count(true) + count(false) ;

14 if α > 0.1 then
15 Store the document;

In our previous work, we constructed the KNU Korean
Sentiment Dictionary, which is composed of positive and neg-
ative words that represent the general expression of human
emotions rather than positive and negative words used in
specific domains such as foods, travels, movies, musics, cars,
smart phones, lectures, computers, and so on. For exam-
ple, common positive expressions include ‘to be impressed,’
‘to have value,’ and ‘thank you,’ whereas general negative
expressions include ‘just that,’ ‘can’t do it,’ and ‘to be pissed.’
The purpose of the sentiment dictionary is to use it as a
basis to automatically build the domain-dependent sentiment
dictionary, which can be used for market research in a specific
domain. The KNU sentiment dictionary has the following
characteristics.

• The general sentiment words were collected by the
glosses of each word constituting the standard Korean
dictionary [30] [31] that contains about 500,000 words.
First, we selected only glosses that include adjective,
adverb, verb, or noun. Next, the Bi-LSTM model was
trained with the selected glosses and then classified each
gloss to one of positive, neutral, and negative classes.
Finally, for each class, we selected top-k glosses and
three evaluators manually extract sentiment words from

the gloss and determined the polarity of each sentiment
word through voting.

• The polarity of each sentiment word was classified into
five levels: very positive, positive, neutral, negative, and
very negative.

• This dictionary includes various types of positive and
negative words such as 1-gram, 2-gram, n-gram (i.e.,
phrase and sentence pattern), and abbreviated words.

Table 2 shows the statistics of the sentiment expressions
in KNU Korean Sentiment Dictionary. Using these sentiment
expressions, Hash TablesHD andHS were constructed in the
first and second phases of hash join and bucket-sorted hash
join.

TABLE 2. Statistics of KNU korean sentiment dictionary.

To validate the effectiveness of the proposed methods, we
experimented fivemethods. The first method is the traditional
web crawling method in Algorithm 1 and is used as the
baseline method in our experiment. This method does not
work with the sentiment-aware task. The web crawler visits
any web page and stores it to the database. Therefore, the
database has all the crawling web pages. As the advantage
of this method, it does not take any additional time to con-
duct the sentiment-aware task. In contrast, to construct the
sentiment dictionary from the crawled web pages, it needs to
scan the entire database. Thus, it takes a lot of time to build
the sentiment dictionary. In addition, the database space is
wasted because unnecessary web pages have to be stored.
The second method is Algorithm 2 in which each word in
the crawled web page is compared to all the sentiment words
in KNU Sentiment Dictionary. This method needs pair-wise
comparisons between the words in the crawled web page and
the sentiment words in the sentiment dictionary. In the third
method, the first phase of hash join is just completed and
the pair-wise comparison between two blocks BDi ∈ H

D and
BWi ∈ H

W in the second phase. In this method, hash function
h2 is not used. The Fourth method is the sentiment-aware
task in Algorithm 3 based on hash join. In this method, we
borrowed the idea of hash join from the database area and
modify it to the sentiment-aware web crawling algorithm.
The final method is the sentiment-aware task in Algorithm 3
based on bucket-sorted hash join. Unlike the fourth method,
in this method, we propose a new bucket-sorted hash join and
extend to the sentiment-aware web crawler. In next section,
we denote the first method by baseline, the second method by
nest, the third method by hj1, the fourth method by hj2, and
the fifth method by bshj.
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For the above five methods, the effectiveness of the pro-
posed method is shown by comparing the time it takes to
perform the sentiment-aware task, the number of matching
words according to different sentiment scores αs, and the size
of the storage space of the database.

If the number of web pages to be crawled increases, the
storage cost of the database will increase proportionally.
All web pages that do not contain a lot of sentiment vocab-
ulary are also stored in the database. In addition, it takes
a lot of time because the entire database is scanned when
a sentiment dictionary is constructed by determining new
words or sentiment words dependent on a particular domain
based on the stored web pages.

B. EXPERIMENTAL RESULTS
1) EXECUTION TIME OF SENTIMENT-AWARE WEB
CRAWLING METHODS
In the previous section, we used the five method. The
other methods except the baseline method perform the
sentiment-aware task suggested in Algorithm 2. Specifically,
it calculates how many words in a crawled web page match
the sentiment words of the KNU sentiment dictionary. For
example, suppose that the text content of the web page is
a set of five words such as W = {t1, t2, t3, t4, t5}. If t2
and t3 are determined as sentiment words after all words
in W are compared with the sentiment words registered in
the sentiment dictionary, the sentiment score of W is α =
|{t2,t3}|
|W | =

2
5 = 0.4. As α is higher, it is considered that W is

likely to contain a number of sentiment words.
When the web crawler collected 30,000 web pages for

the experiment, the baseline method did not perform the
sentiment-aware task, and it took a total of 6,059 seconds to
store all web pages in the database, as shown in Figure 6(a).
This includes not only the time to crawl the web pages
(Crawling task), but also the time to remove the html tags
and extract only the text data (Parsing task). If the num-
ber of web pages to be crawled increases, the storage cost
of the database will increase proportionally. All web pages
that do not contain a lot of sentiment vocabulary are also
stored in the database. In addition, it takes a lot of time
because the entire database is scanned when a sentiment
dictionary is constructed by determining new words or sen-
timent words dependent on a particular domain based on
the stored web pages. In Figure 6(a), Pre-processing task
and Sentiment-aware task correspond to morpheme analysis
and Algorithm 2∼3, respectively. Interestingly, the execution
times of the crawling, parsing, and pre-processing tasks were
very close to all the methods. Moreover, most of the time was
spent performing the crawling and parsing tasks among the
four tasks. Relatively, the time it took to perform the pre-
processing and sentiment-aware tasks was insignificant. For
instance, in the nestmethod, the respective proportions of the
four tasks to the total execution time were 32%, 32%, 1%,
and 35%, respectively, while those were 47%, 46%, 1%, and
6%, respectively in the bshj method.

FIGURE 6. Execution times of five web crawling methods.

Figure 6(b) shows the time it takes when methods nest, hj1,
hj2, and bshj perform the sentiment-aware task. nest takes
3,364 seconds to execute the sentiment-aware task for the
30,000 web pages, while hj1, hj2, and bshj take 458 seconds,
449 seconds, and 397 seconds, respectively. The average
running time of the three methods is about 434 seconds and
the hash-based methods are 6.8 times faster than nest. This
is because nest performs the pair-wise comparisons between
the words of the web page and the sentiment words of KNU
sentiment dictionary. On the other hand, hj1, hj2, and bshj
are efficient, compared to nest because hash function, hash
join, and bucket-sorted hash join are used to quickly perform
the sentiment-aware task. Since hj1 uses one hash function
(h1) in the first phase of hash join and performs the pair-
wise comparison on the results of h1 in the second phase of
hash join. This method is slightly slower than the methods
based on hash join and bucket-sorted hash join. As shown in
Figure 6(b), among the four sentiment-aware methods, bshj,
the method using bucket-sorted hash join proposed in this
paper is the most fastest. The reason is that each bucket in the
hash table is sorted, and a fast search is performed through a
binary search tree.

Please note that the running time of baseline (Algorithm 1)
is 6,059 seconds but that of bshj, one of the proposed
methods, is 6,548 seconds. Compared to the traditional web
crawling method, when the proposed hash-based sentiment-
aware task is performed for 30,000 web pages, the additional

161218 VOLUME 9, 2021



B.-W. On et al.: Efficient Sentiment-Aware Web Crawling Methods for Constructing Sentiment Dictionary

FIGURE 7. Frequency of web pages according to different α values.

time is at most 489 seconds, and the time to perform the
sentiment-aware task per web page is 0.016 seconds. This
means that adding the sentiment-aware task to the existing
web crawler algorithm hardly affects the overall crawl time.

In the experiment, web crawlers started at three seed sites:
(1) http://newdaily.com, (2) http://joongang.joins.com, and
(3) http://hani.co.kr. Table 3 summarizes the execution time
for the proposed sentiment-aware web crawlingmethod using
bucket-sorted hash join for each site. It seems that the execu-
tion times of each task for the three different sites are almost
similar. They are in between 2,000 and 2,500 seconds.

2) EFFECTIVENESS OF THE PROPOSED METHODS
Unlike the existing web crawlingmethod, the proposedmeth-
ods have the advantages of saving the time to build the
sentiment dictionary and the space of the entire database.
To find out the need to perform the sentiment-aware task
in web crawling, we measured the frequency of the crawled
web pages for sentiment score α, which refers to the per-
centage of how many sentiment vocabulary each web page
contains.

Figure 7 shows the frequency of web pages according to
different α values. The x-axis and y-axis mean the α value
and the frequency of web pages, respectively. For example,
in the figure, the number of web pages with α = 0.1 is up
to 100. Most web pages have the sentiment score α = 0.04.
In addition, the four sentiment-aware methods, nest, hj1, hj2,
and bshj, show the same results because data loss due to hash
collision does not occur even if a hash function is used for
quick retrieval.

TABLE 3. Execution times of bshj for each site (Unit: Seconds).

Most importantly, the sentiment score α of most web pages
is in between 0 and 0.07, indicating that most web pages are
not likely to have a lot of sentiment words. Consequently,
there is no need to store such web pages in the database in

FIGURE 8. Frequency of sentiment words according to different α values.

FIGURE 9. Space saving ratios of four hash-based sentiment-aware
methods.

advance to build the sentiment dictionary. From the result of
Figure 7, we set a threshold value θ to 0.1. In the sentiment-
aware task, if α of the crawled web page is less than θ , the
web page is filtered, otherwise it is stored in the database.

Figure 8(a) and (b) show the numbers of sentiment words
in web pages according to different α values. Specifically, in
Figure 8(a), the sentiment words in the crawled web pages are
determined through KNU sentiment dictionary. On the other
hand, in Figure 8(b), the sentiment words in the crawled web
pages are identified by human evaluators.

Note that some word is definitely the sentiment vocabulary
but is also missing in the sentiment dictionary. It seems
that the frequency distributions of sentiment words accord-
ing to different values of α are very different. The curve
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FIGURE 10. Comparison of methodologies of the content-based web crawlers.
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of Figure 8(a) is very similar to that of Figure 7. On the
other hand, the curve of Figure 8(b) is quite different from
Figure 8(a). In particular, pay attention to the frequency of
the sentiment words in case of α = 0.15 or more. Unlike
Figure 8(a), we can find many sentiment words that are
missing in KNU Sentiment Dictionary. As a result, we can
conclude that web pages with many sentiment vocabulary
matched in KNU Sentiment Dictionary contain proportion-
ally more unknown sentiment words that will be of great help
when constructing an sentiment dictionary.

In addition, in Figure 8(a), the reason why the number of
sentiment words is high at low α values is that the number
of web pages is large. According to our deep investigation,
the average sentiment words per web page is about 5. Even
though the number of the sentiment words per web page
is small, the frequency of sentiment words is high in small
values of α because the number of web pages is large.

3) DATABASE STORAGE SPACE COMPARISON
In this paper, we experimented to see how much of the pro-
posed methods save database space compared to the existing
web crawling methods. Among the 30,000 web pages we
crawled, four hash-based methods filtered out unnecessary
web pages and calculated the web pages stored in the actual
database by dividing them into 30,000 web pages. nest, hj1,
hj2, and bshj store the web pages of 12,489, 12,489, 12,489,
and 12,489, respectively. Thus, the storage rates of web pages
in the database are 12,489

30,000 = 0.4163, 12,489
30,000 = 0.4165,

12,489
30,000 = 0.4167, and 12,489

30,000 = 0.4167. The average rate
is about 0.41. The proposed hash-based methods save 1.44
times more database space than the existing web crawling
method. Figure 9 shows the space saving ratios of nest, hj1,
hj2, and bshj, compared to the existing web crawling method.
In the figure, the x-axis is the four proposed hash-based
schemes and the y-axis is the ratio r = |{W |α≥θ}|

30,000 . For this
experiment, we set α to 0.1. Through this figure, we clearly
understand that the proposed schemes can significantly save
space in the database compared to the existing web crawling
scheme.

VI. DISCUSSION
To construct the sentiment dictionary that contains new sen-
timent words or domain-dependent sentiment words, at first,
the existing web crawling method collects web pages and
stores them to the database. In the post-processing step,
new sentiment vocabulary or domain-dependent sentiment
expressions are extracted from the entire database. This
approach is not efficient because it takes time to scan the
entire database, and the database space is wasted because of
unnecessary web pages.

To address this problem, we add the sentiment-aware
task to the existing web crawling method. The goal of the
sentiment-aware task is to match some words in the crawled
web page with sentiment words in the sentiment dictionary.
If unnecessary web pages can be removed by performing this

sentiment-aware task during the crawling process, various
problems occurring in the existing web crawling method can
be solved. However, as the disadvantage of the proposed
sentiment-aware task, it takes additional time to perform the
sentiment-aware task in web crawling. We propose a hash-
based sentiment-aware task to minimize the running time
of the sentiment-aware task. Specifically, we propose two
sentiment-aware web crawling methods using hash join and
bucket-sorted hash join.

Our experimental results show that the time taken to exe-
cute the sentiment-aware task per web page is 0.016 seconds
and the database space can be saved by 59% compared to
the existing web crawling method. Furthermore, we observed
that most web pages do not have a lot of sentiment words
and the average number of sentiment words on a web page
is 5 or so. When the sentiment score of a web page is more
than 0.15, there are many unknown sentiment words that
are not included in the sentiment dictionary. These exper-
imental results indicate the necessity of the method pro-
posed in this article in addition to the general web crawling
method, and it is an effective method to construct a sentiment
dictionary for a new word or domain-dependent sentiment
vocabulary.

There are two limitations in the proposed hash join-based
methods. First, by comparing α and θ values in Algorithm 6,
it is decided whether to store the crawled web page to the
database or filter it. This θ value should be adjusted across
domains. In this work, we just found out the optimal value
by setting θ differently and repeating the experiment. In our
future research, it is necessary to study an automatic method
to identify the optimal θ value across domains. Second, we
focused merely on identifying whether a given web page
contains a number of sentiment words or not. In practice, it is
necessary to study how to extract new sentiment words that
are not in the KNU sentiment lexicon after Algorithm 6 is
performed. Since such a study is beyond the scope of this
article, the in-depth study is needed in the future.

VII. CONCLUSION
In this work, we focus on the problem of using existing web
crawling methods to build a sentiment dictionary. Through
this method, it takes a lot of time to build the sentiment dictio-
nary and unnecessary waste of database space. To solve these
problems, for the first time, we propose a new sentiment-
aware task in addition to the existing web crawling scheme.
In the task, the words in the crawled web page are matched
with the sentiment words in the sentiment dictionary, and
the sentiment score of the web page is calculated. In this
case, additional time is required due to the pair-wise word
matching process between the web page and the sentiment
dictionary. In this work, we propose two hash-based methods
to minimize the time to perform this sentiment-aware task.
One is based on hash join and the other is based on bucket-
sorted hash join. In particular, we propose a new bucket-
sorted hash join algorithm and apply it to the sentiment-aware
task in web crawling.
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Our experimental results shows that the proposed
sentiment-aware web crawling methods outperform the exist-
ing web crawling method in the perspective of the execution
time and the storage space. The time taken to execute the
sentiment-aware task per web page is 0.016 seconds and the
database space can be saved by 59% compared to the existing
web crawling method.
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