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ABSTRACT In order to improve the performance of the sparrow search algorithm (SSA), in this paper,
a novel series of SSA variants is proposed by combining SSA with improved Tent chaos mutation (IT), Lévy
flights mutation (LF), elite opposition-based learning mutation (EOBL), variable radius mutation (VR) and
the combination of IT, LF, EOBL, and VR, namely, ITSSA, LFSSA, EOBLSSA, VRSSA, and CMSSA,
respectively. Initially, the performance of these variants is evaluated on a comprehensive set of 31 benchmark
test functions. Moreover, the performance of the best algorithm among these variants is compared with
19 state-of-the-art optimization algorithms to validate its performance on 31 benchmark test functions.
The convergence and computational complexity of the best variant are also analyzed to test exploration,
exploitation, and local optima avoidance. It is then employed on eight real-world constrained engineering
problems to further verify its robustness. The experimental results reveal that the best algorithm of SSA
variants outperforms other competitors and is highly effective in solving real-life cases.

INDEX TERMS Sparrow search algorithm, improved Tent chaos mutation, Lévy flights mutation, elite
opposition-based learning mutation, variable radius mutation.

NOMENCLATURE
GA Genetic Algorithm
GP Genetic programming
DE Differential evolution
FES Fast evolution strategies
FEP Evolutionary programming made faster
BBO Biogeography-based optimization
SA Simulated annealing
BB–BC Big Bang–Big Crunch
CFO Central Force Optimization
GSA Gravitational search algorithm
GIO Gravitational Interactions Optimization
WCA Water cycle algorithm
BH Black hole

The associate editor coordinating the review of this manuscript and

approving it for publication was Chun-Hao Chen .

SRA Specular Reflection Optimization Algorithm
SCA Sine Cosine Algorithm
MVO Multi-Verse Optimizer
IPO Inclined planes system optimization algorithm
IPSO Improved PSO with Time-Varying Accelerator

Coefficients
GOA Grasshopper Optimisation Algorithm
SHO Spotted hyena optimizer
SSA [20] Salp swarm algorithm
EPO Emperor penguin optimizer
BOA Butterfly optimization algorithm
SOA Seagull optimization algorithm
STOA Sooty Tern Optimization Algorithm
BOSA Binary Orientation Search Algorithm
HHO Harris hawks optimization
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SO Sailfish optimizer
SMA Slime mould algorithm
TSA Tunicate Swarm Algorithm
SSA [30] Sparrow search algorithm
RSO Rat Swarm Optimizer
BEPO Binary emperor penguin optimizer
ESA Emperor Penguin and Salp Swarm

Algorithm
JS Jellyfish Search
TEO Thermal exchange optimization
AEFA Artificial electric field algorithm
SSA [47] Spring Search Algorithm
TLBO Teaching–Learning-Based Optimization
BSA Brain storm optimization algorithm
SBA Social-based algorithm
LCA League championship algorithm
SGO Social group optimization
SMO Social mimic optimization
PRO Poor and rich optimization
PO Political optimizer
DGO Darts Game Optimizer
HBO Heap-based optimizer
PSO Particle swarm optimization
ABC Artificial bee colony algorithm
FA Firefly algorithm
BA Bat algorithm
CS Cuckoo search algorithm
GWO Grey Wolf Optimizer
SOS Symbiotic Organisms Search
ALO Ant lion optimizer
MFO Moth-flame optimization algorithm
DA Dragonfly algorithm
WOA Whale Optimization Algorithm
LFSSA Lévy flights-SSA
EOBLSSA Elite opposition-based learning-SSA
VRSSA Variable radius perturbation-SSA
CMSSA Combined mutated-SSA
N The population of sparrows
D The dimension
k The current iteration
max_iteration The maximum number of iterations
α A uniform random number within (0,1]
Q A random number obeying normal distri-

bution within [0,1]
L Amatrix of 1× D for which each element

is 1
R2 A random alarm factor within [0,1]
ST A safety factor within [0.5,1]
PD The number of discovers
SD The number of sparrows who to be on

guard
ED The number of sparrows who updated by

the EOBL
LD The number of sparrows who updated by

the LF.
xkiD The k-th location of sparrows

xkwrost The k-th worst solution in the whole search
space.

xk+1B The (k+1)-th best location of sparrows
A A matrix of 1×D for which each element is

1 or −1
β The step size factor randomly within [0,1].
γ The step size factor randomly within [−1,1]
xkbest The k-th best location of sparrows
ε A minimum constant to avoid zero denomi-

nator
fbest The current best solution
fworst The worst solution
fi The fitness value of i-th sparrows
xbestiD The best location of sparrows
Tent

(
xbestiD

)
The best location of sparrows mutated IT
operator

r Adaptive attenuation factor
ρ The inertia weighting factor
ACO Ant colony optimization
IIR Infinite impulse response
MMIPO Multimodal IPO algorithm
MOIPO Multi-objective inclined planes system opti-

mization algorithm
MIPO Modified inclined planes system optimiza-

tion algorithm
MOMIPO Multi-Objective Modified Inclined Planes

System Optimization
SIPO Simplified and Efficient Version of IPO
VLIPO Variable Length Inclined Planes System

Optimization Algorithm
CSSA Chaos sparrow search optimization

algorithm
ISSA Improved sparrow algorithm
ASSA Adaptive sparrow search algorithm
CASSA Modified sparrow search algorithm
ESSA Enhanced sparrow search algorithm
OBL Opposition-based learning mechanism
SCA-CSSA Improved sparrow search algorithm using

SCA algorithm and labor cooperation struc-
ture

LLSSA Lens learning sparrow search algorithm
KLSSA Multi-strategy improved sparrow search

algorithm
SSA-PSO Hybrid sparrow search optimization algo-

rithm and particle swarm optimization algo-
rithm

SVM Support Vector Machine
IT Improved Tent chaos mutation
LF Lévy flights mutation
EOBL Elite opposition-based learning mutation
VR Variable radius mutation
ITSSA Improve Tent chaos-SSA
Nρ(t) The elite individuals
xi,j(t) The solution by the common individuals
x∗i,j(t) The elite opposition-based learning solution
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k ′′ A random number within [0,1]
aj(t) The lower limiting value of xi,j(t)
bj(t) The upper limiting value of xi,j(t)
R The variable radius factor
ub The upper bounds of variable
lb The lower bounds of variable
Avg. Average value
Med. Median value
Std. Standard deviation value
ARV. Average ranking value
TA The number of teeth on gear A
TB The number of teeth on gear B
TD The number of teeth on gear D
TF The number of teeth on gear F
MIBBSQP Nonlinear Branch and Bound Algorithm
IDCNLP Mixed Integer-discrete-continuous Program-

ming
MVEP Mixed-variable evolutionary programming
Gene AS Genetic Adaptive Search
HSIA Hybrid swarm intelligence approach
UPSO Unified Particle Swarm Optimization
CAPSO Chaos-enhanced accelerated particle swarm

optimization
A1 The cross-sectional area of first bar
A2 The cross-sectional area of second bar
DEDS Differential evolution with dynamic stochas-

tic selection
MBA Mine blast algorithm
PSO-DE Hybridizing particle swarm optimizationwith

differential evolution
TAS Taguchi-Aided Search Method
Li Side length of the i-th square-shaped cross-

section
MMA Method of Moving Asymptotes
L (β) A randomly distributed number drawn from

Lévy distribution
xj A point in D-dimension space
aj The lower limiting value of xj
bj The upper limiting value of xj
x∗j The opposite point of xj
k ′ A random number within [0,1]
xi (t) A solution of the t-th iteration
x∗i (t) The opposite solution of xi (t)
Ni(t) The elite individuals
Qi(t) The common individuals
MCOA Modified Cuckoo Optimization Algorithm
B1 Face width
Z1 Module of teeth
Z2 Number of teeth in the pinion
B2 Length of the first shaft between bearings
B3 Length of the second shaft between bearings
D1 Diameter of first shafts
D2 Diameter of second shaft
MPSO Particle swarm optimization algorithm

with asymmetric time varying acceleration
coefficients

b1 Height of the main girder
b2 Width of the main girder
LP Linear Programming
GCA(I) Generalized convex approximation using the

simplified form
GCA(II) Generalized convex approximation using the

full form
CPSO Co-evolutionary particle swarm optimization
ES Evolution strategies
RO Ray Optimization
d ′ Wire diameter
D′ Mean coil diameter
N ′ Number of active coils
Ts Thickness of spherical shell
Th Thickness of ball head
R′ Radius of spherical shell
L ′ Length of spherical shell
SBS Socio-Behavioural Simulation Model
h Thickness of weld
l Length of the clamped bar
t Height of the bar
b Thickness of the bar
TAPSO Modified particle swarm optimization with an

adaptive acceleration coefficients
GWOCS Grey wolf optimizer algorithm integrated with

Cuckoo Search
b3 Thickness of the web plate
b4 Thickness of the flange plate

I. INTRODUCTION
Optimization problem has been a hot research topic, which is
widely used in science, engineering, economy, management,
and other fields. Over the past few years, deterministic
optimization techniques have been widely used to solve
these optimization problems. However, these techniques
have some limitations to obtain a better solution, especially
for multimodal, nonlinear constrained, and complex real-
world optimization problems. Therefore, to better deal with
these cases, meta-heuristic algorithms have been developed
rapidly in recent years. The advantages of these methods are
the flexibility, gradient-free mechanism, and avoiding local
optimum. In addition, since they belong to a class of random
techniques with different random operators to help them
can effectively avoid local optimum for solving real-world
problems. Meta-heuristic algorithms are usually divided
into evolutionary-based algorithms, swarm-based algorithms,
physics-based algorithms, and human-based algorithms.

Evolutionary-based algorithms generally are inspired by
the process of biological evolution. The individuals of
each generation of the population are randomly generated
through the previous generation of individuals through
selection, reproduction, mutation, etc. The individuals of the
population are constantly updated and iterated to achieve
global optimization. However, the disadvantages of these
algorithms are discarding the information of the previous
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TABLE 1. A few famous evolutionary-based algorithms.

generations of populations, and the high computational
complexity due to a large number of operators. A few famous
evolutionary-based algorithms are presented in Table 1.

Swarm-based algorithms are inspired by the collective
intelligence behavior of social creatures (i.e., fireflies,
ant lions, grey wolfs, seagulls, etc.). These methods are
easy to implement since they have fewer parameters and
operators. Due to the characteristics of information sharing,
coevolution, and learning among population agents, they
can efficiently avoid the local optimum. A few well-known
swarm-based algorithms are presented in Table 2.

Physics-based algorithms mimic the physical phenomena
(such as the black hole, the force of gravity, electricity, etc.)
in nature. These algorithms have a high ability to avoid
local optima since the information is exchanged between the
candidate solutions. Some of the popular algorithms in this
category are shown in Table 3.

Human-based algorithms are inspired by different human
behaviors (such as brainstorming process, competition
behavior, teaching behavior, learning behavior, etc.). They
usually have the characteristics of organization, persistence,
simplicity, and intelligence. The search strategy of these
algorithms is different from that of other types. And the
search agents of these algorithms are updated and iterated
according to different human behaviors to avoid local
optimum. Some of the state-of-art algorithms in this category
are shown in Table 4.

Therefore, in recent years, various meta-heuristic algo-
rithms inspired by different concepts are coming out in a rush.
However, the metaheuristic frameworks of these algorithms
are similar to some extent [58]. The similarity of these meta-
heuristic algorithms is that they can achieve better solutions
and have two search stages: exploration and exploitation [59].
The exploration stage is to seek the global optimal solution in
the search space as much as possible. The exploitation stage
is to further search for the global optimal solution to improve
the search accuracy based on obtaining the optimal solution
in the exploration stage. Only using exploration may decrease

the convergence accuracy, but only using exploitation may
increase the probability of getting trapped in a local optimum.
Therefore, it is still a challenging problem that how to seek
the balance between exploration and exploitation. In addition,
for many problems, these meta-heuristic algorithms can
obtain a better solution. And meta-heuristic algorithms have
some limits, likely the parameters of algorithms being set
manually [60]. Based on the No Free Lunch theory [61], these
popular meta-heuristic algorithms are not fully guaranteed
to seek the global optimum for all optimization problems,
especially NP-hard optimization problems.

At present, to better handle these NP-hard optimization
problems, the performance of meta-heuristic algorithms is
improved in different ways. A hybrid method is an efficient
way to improve the algorithms [62], such as PSO with
non-smooth penalty reformulation [63], a randomized fixing
strategy inspired by ACO, and an exact large neighborhood
search [64], Integrating LP [65], etc. A single algorithm
improved with other approaches is another effective way.
For instance, combing with Newton’s second law and
equations of motion, the inclined planes system optimization
algorithm (IPO) inspired by the dynamic of tiny ball’s sliding
motion along frictionless inclined planes was proposed,
which effectively handled some single-objective optimization
problems [66]. It has the advantages of high stability,
robustness, and high convergence efficiency. In recent
years, the IPO algorithm was used to solve some various
optimization problems, such as optimal design of the level
shifter circuit [67], the data clustering problem [68], the
unsupervised data and histogram clustering problem [69],
the automatic design of a neuro-fuzzy classifier [70], the
optimal architecture of MLP neural networks [71], the
optimal design of IIR digital filters [72], the IIR system
identification problem [73], the IIR system modeling [74],
the epileptic seizure detection [75], etc. The multimodal
IPO (MMIPO) algorithm was efficiently used to solve the
multimodal optimization problems [76]. The fourth-order
butterworth filter was effectively and efficiently designed
based on the multi-objective inclined planes system opti-
mization (MOIPO) algorithm [77]. The problem of IIR
model identification was optimized by a modified inclined
planes system optimization (MIPO) algorithm using the
appropriate mechanism based on the executive steps of the
algorithm with the constant damp factors [78]. Compared to
other multi-objective methods, the multi-objective modified
inclined planes system optimization (MOMIPO) algorithm
was better to solve the ring oscillator optimal design [79].
The multi-objective inclined planes system optimization
(MOIPO) algorithm was used to handle the optimization of
CMOS cross-coupled LC voltage-controlled oscillators [80].
A simplified and efficient version of IPO (SIPO) with high
reliability and stability was proposed and superior to IPO
and MIPO [81]. An adaptive neuro-fuzzy inference system
classifier was effectively designed by the variable-length
inclined planes system optimization algorithm (VLIPO)
method [82].
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TABLE 2. A few well-known swarm-based algorithms.

To better seek the balance between exploration and
exploitation and the global optimum, the sparrow search

algorithm (SSA) was proposed by Jiankai Xue, which was
mainly inspired by the sparrow group wisdom, foraging
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TABLE 3. A few popular physics-based algorithms.

and anti-predation behaviors of sparrows [30]. Compared
with PSO, GWO, and GSA, SSA is a superior meta-
heuristic algorithm with the advantages of fast convergence
rate, higher stability and strong resistance. However, the
basic SSA can easily fall into the local optimum for
high multimodal and complex problems. To improve the
performance of basic SSA, the chaos sparrow search
optimization algorithm (CSSA) was proposed by combining
the Tent chaotic sequence and Gaussian mutation [83],
and the improved sparrow algorithm (ISSA) by combining
Cauchy mutation and opposition-based learning [84] was

TABLE 4. A few popular human-based algorithms.

proposed. The adaptive sparrow search algorithm (ASSA)
was proposed by introducing the adaptive learning factor,
DE/best/1 mutation strategy, and dynamic scaling factor to
deal with the problem of the optimal parameter identification
of the PEMFCs [85]. Combining the center of gravity
reverse learning, learning coefficient, and Cauchy mutation
operators, the improved sparrow search algorithm with
good steady-state performance was applied to track the
problem of a distributed maximum power point tracking [86].
By introducing the chaotic map, adaptive inertia weight, and
Cauchy–Gaussian mutation strategies, the modified sparrow
search algorithm (CASSA) was proposed to efficiently solve
the UAV route planning problem [87]. The convolutional
neural network is optimized by an enhanced sparrow search
algorithm (ESSA) classification which is improved by the
opposition-based learning (OBL) mechanism and the Merit
function mechanism [88]. By using the SCA algorithm and
labor cooperation structure, an improved sparrow search
algorithm (SCA-CSSA) was proposed to solve the labeled
and unlabeled data classification problem [89]. Based on
the logistic map, the chaotic sparrow search algorithm
was utilized in the stochastic configuration network [90].
A lens learning sparrow search algorithm (LLSSA), which
combined the reverse learning strategy, variable spiral search
strategy, and the simulated annealing algorithm, was applied
to optimize the 3D UAV path planning problem [91]. The
sparrow search algorithm (SSA) was introduced to optimize
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TABLE 5. Description of unimodal test functions.

TABLE 6. Description of multimodal test functions.

the extreme learning machine model [92], the parameters of
the variational mode decomposition method [93], and the
penalty factor and kernel function parameter of SVM [94].
By using the K-means clustering, the levy flight mechanism,
and the adaptive local search strategy, the multi-strategy
improved sparrow search algorithm (KLSSA) is proposed
to overcome the shortcomings of SSA [95]. The hybrid
SSA-PSO algorithm was proposed to solve the software
defect prediction problem [96]. To solve the large error of
DV-Hop, ISSADV-Hop algorithm was proposed based on
the improved sparrow search algorithm which introduced
the levy flight mechanism [97]. An improved sparrow
search algorithm was proposed by the adaptive local search
strategy, the improved Tent chaotic map and Cauchy
mutation [98]. To deal with the economic optimization
of the microgrid cluster problem, a chaos sparrow search
algorithm was proposed combing the Bernoulli chaotic map,
dynamic adaptive weighting, Cauchy mutation, and reverse
learning [99].

Although the above methods have improved the search
ability and convergence speed of basic SSA, they also
have difficulty in avoiding the local optimum to deal with
more complex problems. Therefore, it can be seen that the
basic SSA is difficult to obtain the global optimal solution,
especially for the high-dimensional and complex multimodal
problems with a limited number of iterations, and then simple
mutation algorithms can still hardly balance the ability of
between exploration and exploitation.

In this paper, a novel series of SSA variants (namely,
ITSSA, LFSSA, EOBLSSA, VRSSA, and CMSSA,

respectively) is proposed through the combining SSA with
different mutation operators (i.e., improved Tent chaos
mutation (IT), Lévy flights mutation (LF), elite opposition-
based learning mutation (EOBL), variable radius mutation
(VR)). In addition, the performance of these variants is
evaluated on 31 benchmark test functions. Further, the
performance of the best SSA variant is comprehensively
tested on 31 benchmark test functions and seven constrained
problems. The results show that the best SSA variant
is very competitive when compared to other existing
methods.

The remaining sections are organized as follows: Initially,
a brief review of basic SSA is presented in Section II.
In addition, to further balance the exploration and exploita-
tion phases effectively, in Section III, a series of mutation-
based SSA is proposed, namely ITSSA, LFSSA, EOBLSSA,
VRSSA, and CMSSA, respectively. Experimental results and
the applicability of mechanical engineering problems are
implemented in detail in Section IV. And then the conclusion
and future work is summarized in Section V.

II. OVERIEW OF SPARROW SEARCH ALGORITHM (SSA)
SSA is a novel meta-heuristic optimization algorithm pro-
posed by Jiankai Xue in 2020, which is mainly inspired
by the foraging behavior and anti-predation behavior of
sparrows [30]. Themain principle of SSA can be simplified as
a discoverer-participant mathematical model in the foraging
process, and then the reconnaissance and alarming behavior
are introduced into the model. The detailed steps of SSA are
as follows:
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TABLE 7. Description of fixed-dimension multimodal test functions.

TABLE 8. Hybrid and composition benchmark functions.

Step 1: Assuming that there are N sparrows in the
D-dimensional space, the position X of the i-th sparrow in
the D-dimensional space can be expressed by Eq. (1).

X =


x11 x12 · · · x1D
x21 x22 · · · x2D
...

...
...

...

xN1 xN2 . . . xND

 (1)

Step 2: The fitness value is evaluated by Eq.(2). The
sparrow with the best fitness value is selected as the
discoverers to lead the whole sparrow population to get closer
to the food source. The location of the discoverers is updated
by Eq. (3).

F =


f (x11, x12, · · · , x1D)
f (x21, x22, · · · , x2D)

...

f (xN1, xN2, · · · , xND)

 (2)

xk+1iD

=

 xkiD · exp
(

−i
α ·max_iteration

)
if R2 < ST (3.1)

xkiD + Q · L if R2 ≥ ST (3.2)
(3)

where k is the number of current iterations, max_iteration
is the maximum number of iterations, α is a uniform
random number within (0,1], Q is a random number obeying
normal distribution within [0,1]. L is a matrix of 1×D
for which each element is 1. R2 is a random alarm factor
within [0,1] and ST is a safety factor within [0.5,1],
respectively.

Step 3: The rest of the sparrows are selected as the
participants, except the sparrows selected as the discovers.
And then the location of the participants is updated by Eq. (4).

xk+1iD =

Q · e
xkwrost−x

k
iD

i2 if i >
N
2

(4.1)

xk+1B +

∣∣∣xkiD − xk+1B

∣∣∣ · A+ · L Otherwise (4.2)

(4)

where xkwrost is the worst solution in the whole search space.
xk+1B is the current best solution obtained by the discoverers.
A is a matrix of 1×D for which each element is 1 or −1, and
A+ = AT (AAT )−1.

Step 4: When the sparrows start to forage, 10%-20% of
the sparrows are selected to be on guard. When they find the
dangers approaching, both the discoverers and participants
will give up the current food and fly to another location. Based
on the alarming behavior, the location of sparrows is updated
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by Eq. (5).

xk+1iD

=


xkbest + β ·

∣∣∣xkiD − xk+1best

∣∣∣ if fi> fgbest (5.1)

xkiD + γ ·

(∣∣xkiD − xkworst ∣∣ · A+ · L
(fbest − fworst)+ ε

)
if fi= fgbest (5.2)

(5)

where β is the step size factor randomly within [0,1], which
obeys normal distribution. γ is also the step size factor
randomly within [−1,1], which represents the movement
direction of sparrows. ε is a minimum constant to avoid a
zero denominator. fi is the fitness value of i-th sparrows, fbest
and fworst are the current best solution and worst solution,
respectively. The pseudo code of SSA can be expressed in
Algorithm 1, and the flowchart of the SSA algorithm is
shown in Fig. 1, respectively.

Algorithm 1 Pseudo Code of SSA
Set the parameters of SSA, the population of sparrows N , the
number of discovers PD, the number of sparrows SD who to
be on guard, the safety factor ST, max_iteration, respectively.
Initialize the population X .
While (k < max_iteration)

Calculate the fitness vaule F by Eq.(2), and the
best solution fbest and worst solution fworst by sort (F),
respectively.

Update the R2
for i = 1: PD

if (R2 < ST)
The location of sparrows is updated by Eq.(3.1)

else
The location of sparrows is updated by Eq.(3.2)
End if

End for
for i = (PD+1): N

if (i < N /2)
The location of sparrows is updated by Eq.(4.1)

else
The location of sparrows is updated by Eq.(4.2)
End if

End for
for j = 1: SD
if (fi < fgbest )

The location of sparrows is updated by Eq.(5.1)
else
The location of sparrows is updated by Eq.(5.2)

End if
End for

The best solution and positon are updated.
k = k + 1;

End while
Return Xgbest and fgbest

III. THE PROPOSED METHODOLOGY
For low-dimensional unimodal and multimodal optimization
problems, SSA is characterized by a fast convergence speed
and better global convergence ability. However, for some

complex problems, especially the high dimensional and
multimodal problems, SSA is easier to fall into the local
optimum. The performance of basic SSA focuses on the
interaction between sparrow individuals. In addition, when
most sparrows are trapped into the same local optimum, SSA
will slow down and eventually stagnate.

In order to effectively overcome the shortcomings of SSA
for complex optimization problems, an effective method
called mutation strategy is introduced into SSA. In the
mutation strategy, there are four innovations embedded
into the basic SSA, which are improved Tent chaos map,
Lévy flights, elite opposition-based learning, variable radius
perturbation, respectively. In a variety of ways, hybrid
mutation strategies are introduced to mutate the population
of the basic SSA and to enhance the performance of basic
SSA. The ability to quickly move the best solution and
enrich the high diversity of the population is improved by
the hybrid mutation strategies. In this work, several mutation
mechanisms are introduced into the basic SSA. The first,
second, third, and fourth variants exploit the concept of
improved Tent chaos map, Lévy flights, elite opposition-
based learning, variable radius distribution, respectively. The
fifth variant uses the combination of improved Tent chaos
map, Lévy flights, elite opposition-based learning, variable
radius perturbation in three different ways. The detailed
variants are as follows.

A. IMPROVED TENT CHAOS-SSA (ITSSA)
Like other traditionalmetaheuristic algorithms, the basic SSA
is easier to fall into local optimum by the weak diversity of the
population. Therefore, in this section, the population of SSA
is initialized by the improved Tent chaos map to enhance the
diversity of the population in SSA.

1) INITIALIZED POPULATION BY IMPROVED
TENT CHAOS MAP
The Tent chaos map plays a great influence on the perfor-
mance of the optimization algorithm [100] and has the advan-
tage of uniform ergodicity and faster search speed [101].
However, the Tent chaos map also has disadvantages of small
periods and unstable periodic points. Therefore, to avoid
falling into a small period or unstable periodic point, the Tent
chaos map is improved by the rand(0,1) × 1/N as shown in
Eq. (6) [102].

xi+1 =


2xi + rand(0, 1)×

1
N

0 ≤ x ≤ 0.5

2 (1− xi)+ rand(0, 1)×
1
N

0.5 < x ≤ 1

(6)

By the Bernoulli shift method and Eq. (6), xi+1 is obtained
as shown in Eq. (7).

xi+1 = (2xi)mod1+ rand(0, 1)×
1
N

(7)

where N is the population number of sparrows.

159226 VOLUME 9, 2021



B. Ma et al.: Enhanced Sparrow Search Algorithm With Mutation Strategy for Global Optimization

Based on improved Tent chaos strategy, the detailed steps
to initialize the population of SSA are as follows.

Step 1: The initial value x0 is generated randomly in [0,1],
and let i = 0.

Step 2: Set the maximum number of iterations is
max_ieration and according to Eq. (6), loop iteration is
calculated for i times, chaotic sequence xD is obtained.

Step 3: If i < max_iteration, save the xD.
Therefore, in ITSSA, the Eq.(1) in SSA is replaced by the

Eqs. (6) and (7) to increase the population diversity.

2) OPTIMAL INDIVIDUAL PERTURBATION BY IMPROVED
TENT CHAOS
When all sparrows find the optimal solution, the optimal
sparrow individual is mutated with the improved Tent chaos
by the random roulette strategy to improve the global
convergence accuracy. Therefore, in ITSSA, the optimal
sparrow individual was mutated by Eq. (8) and (9).

r =
e2×(1−k/max_iteration)

− e−2×(1−k/max_iteration)

e2×(1−k/max_iteration) + e−2×(1−k/max_iteration) (8)

xbest
′

iD = xbestiD ×

(
1+ Tent

(
xbestiD

))
if rand < r (9)

where Tent
(
xbestiD

)
can be calculated by Eq. (6) and (7).

Thus, the pseudo code of ITSSA can be expressed in
Algorithm 2 as follows.

B. LÉVY FLIGHTS-SSA (LFSSA)
In this section, in order to enhance the expansion of search
space, and improve the ability to avoid falling into local
optimum. The Lévy flights mutation and the inertia weighting
factor are introduced into the basic SSA. In this way, LFSSA
can find the global optimum more effectively. The Lévy
distribution can be expressed by Eq. (10) [103].

Levy (β) ∼ u = t−1−β , 0 < β ≤ 2 (10)

where β is the index of stability. The Lévy distribution can
also be described by Eq. (11).

Levy (β) ∼
γ × µ

|v|1/β
(11)

where u and v are both standard normal distribution, β = 1.5,
and γ is expressed by Eq. (12).

γ =

 0(1+ β)sin(π × β/2)

0
((

1+β
2

)
× β × 2

β−1
2

)
1/β

(12)

The inertia weighting factor ρ is expressed by Eq.(13).

ρ = 1− k/max_iteration (13)

Therefore, based on the random roulette strategy, the
individual position of sparrows xkiD is mutated by the Eq. (14).
Then the optimal sparrow individual is also mutated by
Eq. (15).

xk
′

iD = xkiD + L (β)×
(
xkiD − x

k
best

)
, if rand > ρ (14)

Algorithm 2 Pseudo Code of ITSSA
Set the parameters of ITSSA, the population of sparrows
N , the number of discovers PD, the number of sparrows
SD who to be on guard, the safety factor ST, max_iteration,
respectively.
Initialize the population X by Eq.(6) and (7).
While (k < max_iteration)

Calculate the fitness vaule F by Eq.(2), and the
best solution fbest and worst solution fworst by sort (F),
respectively.

Update the R2
for i = 1: PD

if (R2 < ST)
The location of sparrows is updated by Eq.(3.1)

else
The location of sparrows is updated by Eq.(3.2)

End if
End for
for i = (PD+1): N

if(i < N /2)
The location of sparrows is updated by Eq.(4.1)

else
The location of sparrows is updated by Eq.(4.2)
End if

End for
for j = 1: SD
if(fi < fgbest )

The location of sparrows is updated by Eq.(5.1)
else

The location of sparrows is updated by Eq.(5.2)
End if

End for
The best solution and positon are updated.
Calculate the r by Eq. (8).
if(rand < r)
the optimal sparrow individual is mutated by
Eq. (9).
End if
The best solution and positon are updated.
k = k + 1;

End while
Return Xgbest and fgbest

xbest
′

iD = xbestiD × (1+ L (β)) if rand < ρ (15)

where L (β) is a randomly distributed number drawn from
Lévy distribution by Eqs. (10)∼(12). Thus, the pseudo code
of LFSSA can be expressed in Algorithm 3.

C. ELITE OPPOSITION-BASED LEARNING-SSA (EOBLSSA)
In this section, opposition-based learning mutation can
enlarge the search space of the population, and improve
the ability to avoid falling into local optimum prematurely
and the convergence speed. The individuals with the best
fitness are regarded as elite individuals who contain more
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Algorithm 3 Pseudo Code of LFSSA
Set the parameters of LFSSA, the population of sparrows
N , the number of discovers PD, the number of sparrows
SD who to be on guard, the safety factor ST, max_iteration,
respectively.
Initialize the population X by Eq.(1).
While (k < max_iteration)

Calculate the fitness vaule F by Eq.(2), and the
best solution fbest and worst solution fworst by sort (F),
respectively.

Update the R2, and ρ is obtainde by Eq. (13),
repsectively.

for i = 1: PD
if (R2 < ST)
The location of sparrows is updated by Eq.(3.1)

else
The location of sparrows is updated by Eq.(3.2)

End if
End for
for i = (PD+1): N

if(i < N /2)
The location of sparrows is updated by Eq.(4.1)
else
The location of sparrows is updated by Eq.(4.2)
End if

End for
for j = 1: SD
if(fi < fgbest )

The location of sparrows is updated by Eq.(5.1)
else
The location of sparrows is updated by Eq.(5.2)

End if
End for

for m = 1: N
if(rand > ρ)
The location of sparrows is updated by Eq.(14).

End if
End for
The best solution and positon are updated.
if(rand < ρ)
the optimal sparrow individual is mutated by
Eq. (15).
End if
The best solution and positon are updated.
k = k + 1;

End while
Return Xgbest and fgbest

useful information to guide the population to converge to
the global optimum. If the algorithm can finally achieve
global optimum, the search space of the global optimum will
inevitably include the search space of the elite individuals.
Hence, the way to strengthen the search space neighborhood
of elite individuals can improve the convergence speed
and convergence accuracy of the algorithm. In addition,

to improve the diversity of the population, the population
of SSA is initialized by the elite opposition-based learning
mutation, and when the SSA falls into local optimum,
it is perturbed by the elite reverse learning mutation. The
EOBLSSA algorithm is proposed by the elite opposition-
based learningmutation. Some definitions of elite opposition-
based learning are as follows [104]–[106].
Definition 1: Opposite number. Consider p = [x1, x2, . . . ,

xD] is a point in D-dimension space, and x1, x2, . . . , xD ∈
R, xj ∈ [aj, bj], then the opposite point of p denoted by
p∗ =

[
x∗1 , x

∗

2 , . . . , x
∗
D

]
can be calculated by Eq. (16).

x∗j = k ′ × (aj + bj)− xj (16)

where k ′ is a random number within [0,1].
Definition 2: Opposition-based optimization. For the

minimum optimization problem, the fitness function is set as
f . If there is a feasible solution X , the reverse solution is X ′.
If f (X ) < f (X ′), then X ′ is replaced by X .
Definition 3: Elite individuals. Consider xi (t) =

[xi1, xi2, . . . , xiD] is a solution of the t-th iteration. And x∗i (t)
is the opposite solution of xi (t), when f (xi (t)) ≥ f (x∗i (t)),
then xi (t) is denoted as the elite individuals Ni(t). when
f (xi (t)) < f (x∗i (t)), then xi (t) is denoted as the common
individuals Qi(t). Consider the size of elite individuals is
ρ(0 < ρ ≤ n, ρ ∈ N+), then the elite individuals Nρ(t)
can be denoted as Eq. (17).

Nρ (t) =
[
N1 (t) ,N2 (t) , . . . ,Nρ (t)

]
∈ [x1 (t) , x2 (t) , . . . , xn (t)] (17)

where n is the total number of solutions.
Definition 4: Elite opposition-based learning solution.

Consider xi,j(t) is the solution by the common individuals,
then the elite opposition-based learning solution x∗i,j(t) can be
denoted as Eq. (18).

x∗i,j (t) = k ′′ ×
(
aj(t)+ bj(t)

)
− xi,j(t) (18)

where k ′′ is a random number within [0,1], aj (t) =
min(N1j (t) ,N2j (t) , . . . ,Nρj (t)), bj (t) = max(N1j (t) ,
N2j (t) , . . . ,Nρj (t)). Nj (t) ∈ [aj (t) , bj (t)].
Thus, the pseudo code of EOBLSSA can be expressed in

Algorithm 4.

D. VARIABLE RADIUS PERTURBATION-SSA (VRSSA)
In this section, to enhance the ability to avoid falling to
the local optimum and to improve the global convergence,
the variable radius perturbation operator is introduced into the
SSA, as shown in Fig. 2. The variable radius can be expressed
by Eq.(19).

R = 1− k/max_iteration (19)

where k is the current iteration, and max_iteration is the
maximum iteration, respectively.

Therefore, based on the random roulette strategy, the
individual position of sparrows xk

′

iD is mutated by the Eq. (20).

xk
′

iD = xkbest + R× (ub+ lb)− lb (20)
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Algorithm 4 Pseudo Code of EOBLSSA
Set the parameters of EOBLSSA the population of sparrows
N , the number of discovers PD, the number of sparrows SD
who to be on guard, the safety factor ST, max_iteration, the
number ED of the elite individuals respectively.
Initialize the population X by Eq.(16), (17) and (18),
respectively.
While (k < max_iteration)

Calculate the fitness vaule F by Eq.(2), and the
best solution fbest and worst solution fworst by sort (F),
respectively.

Update the R2.
for i = 1: PD

if (R2 < ST)
The location of sparrows is updated by Eq.(3.1)

else
The location of sparrows is updated by Eq.(3.2)
End if

End for
for i = (PD+1): N

if (i < N /2)
The location of sparrows is updated by Eq.(4.1)

else
The location of sparrows is updated by Eq.(4.2)
End if

End for
for j = 1: SD
if(fi < fgbest )
The location of sparrows is updated by Eq.(5.1)

else
The location of sparrows is updated by Eq.(5.2)
End if

End for
for m = 1: ED
The location of elite individuals is updated by
Eq. (17).
The elite solution fn is updated by Eq.(18).
if (fn < f (xn))
The elite solution and location of elite individuals
are updated.
End if

End for
The best solution and positon are updated.
k = k + 1;

End while
Return Xgbest and fgbest

where ub and lb are the upper and lower bounds of variables,
respectively.

In Fig. 2, with the current optimal solution as the reference
point, as the number of iterations increases, R gradually
becomes smaller and smaller, so that the search space is
constantly shrinking. In the early iteration, both R and
the search space are larger, which is conducive to further
improving the global search ability. In the latter iteration,

Algorithm 5 Pseudo Code of VRSSA
Set the parameters of VRSSA, the population of sparrows
N , the number of discovers PD, the number of sparrows
SD who to be on guard, the safety factor ST, max_iteration,
respectively.
Initialize the population X by Eq.(1).
While (k < max_iteration)

Calculate the fitness vaule F by Eq.(2), and the
best solution fbest and worst solution fworst by sort (F),
respectively.

Update the R2, and R is obtainde by Eq. (19),
repsectively.

for i = 1: PD
if (R2 < ST)
The location of sparrows is updated by Eq.(3.1)

else
The location of sparrows is updated by Eq.(3.2)
End if

End for
for i = (PD+1): N

if(i < N /2)
The location of sparrows is updated by Eq.(4.1)

else
The location of sparrows is updated by Eq.(4.2)
End if

End for
for j = 1: SD
if(fi < fgbest )

The location of sparrows is updated by Eq.(5.1)
else
The location of sparrows is updated by Eq.(5.2)

End if
End for

The best solution and positon are updated.
if (rand < R)
the optimal sparrow individual is mutated by
Eq. (20).
End if
The best solution and positon are updated.
k = k + 1;

End while
Return Xgbest and fgbest

both R and the search space are relatively smaller, which is
conducive to improving the ability of the algorithm to jump
out of the local optimum.

The VRSSA algorithm is proposed based on the variable
radius perturbation operator, and the pseudo code of VRSSA
is shown in Algorithm 5.

E. COMBINED MUTATED-SSA (CMSSA)
A variety of mutation operators can improve the local
and global search capability of the SSA algorithm to
some extent. However, a single mutation operator is often
unable to balance between exploration and exploitation

VOLUME 9, 2021 159229



B. Ma et al.: Enhanced Sparrow Search Algorithm With Mutation Strategy for Global Optimization

comprehensively. In order to further improve the performance
of SSA, CMSSA is proposed by the combination of the
improved Tent chaos map mutation operator, Lévy flights
mutation operator, elite opposition-based learning mutation
operator, and variable radius perturbation mutation operator.
Initially, the population of SSA is initialized by the improved
Tent chaos map mutation operator to enrich the diversity of
the population. In addition, after the position of all sparrows
is updated for the first time, the updating position mode with
the combination of Lévy flights and elite opposition-based
learning is introduced into the SSA to improve the global
search ability of the algorithm. Finally, the optimal sparrow
individual is mutated with the combination of variable radius
perturbation operator and improved Tent chaos perturbation
operator by the random roulette strategy to improve the local
search ability of the algorithm. In the CMSSA, especially,
the updating position of sparrows is different from that in the
LFSSA, which is shown in Eq. (21).

xk
′

iD = xkiD + L (β)×
(
xkiD − x

k
worst

)
(21)

Thus, the pseudo code and flowchart of CMSSA can be
described in Algorithm 6 and shown in Fig. 3.

F. COMPUTATIONAL COMPLEXITY ANALYSIS
In this part, all the proposed SSA variants mainly consist of
the following phases: initialization, fitness evaluation, and
sorting, and the sparrow’s location update. Among them, N
denotes the number of sparrows, D denotes the dimension of
functions, T denotes the maximum number of iterations, PD
denotes the number of discoverers, SD denotes the number
of sparrows who to be on guard, ED denotes the number of
sparrows who updated by the EOBL, and LD denotes the
number of sparrows who updated by the LF. In SSA, the
computational complexity of initialization is O(N × D),
the computational complexity of fitness evaluation and
sorting is O(N × D), the computational complexity of the
sparrow’s location update is O(T × (PD × D + SD × D
+ (N-SD-PD) × D), namely O(T × N × D). Therefore, the
computational complexity of SSA is O(N ). Compared with
SSA, the computational complexity of all the proposed SSA
variants is mainly different from that of the sparrow’s location
update phase. In terms of the sparrow’s location update phase,
the computational complexity of both ITSSA and VRSSA is
equal to the SSA, namely O(T × N × D). The computational
complexity of EOBLSSA is O(T × (N+ED) × D), namely
O(T × N × D). The computational complexity of LFSSA is
O(T × 2N × D). The computational complexity of CMSSA
is O(T × (N + (ED + LD)) × D), namely O(T × 2N × D).
To sum up, the computational complexity of all the proposed
SSA variants and the basic SSA is O(N ).

IV. EXPERIMENTAL RESULTS
In this section, the proposed algorithms are tested on 31
well-known benchmark test functions [107]–[109] and the
results are compared to other state-of-the-art algorithms.

Algorithm 6 Pseudo Code of CMSSA
Set the parameters of CMSSA, such as the population of sparrows
N , the number of discovers PD, the number of sparrows SD who to
be on guard, the safety factor ST max_iteration, the number ED of
position updated using Lévy flights, and the number LD of position
updated using elite opposition-based learning, respectively.
Initialize the population X by Eq.(6) and (7).
While (k < max_iteration)

Calculate the fitness vaule F by Eq.(2), and the best solution
fgbest and worst solution fworst by sort (F), respectively.

Update the R2
for i = 1: PD

if (R2 < ST)
The location of sparrows is updated by Eq.(3.1)

else
The location of sparrows is updated by Eq.(3.2)
End if

End for
for i = (PD+1): N

if(i < N /2)
The location of sparrows is updated by Eq.(4.1)

else
The location of sparrows is updated by Eq.(4.2)
End if

End for
for j = 1: SD
if(fi < fgbest )
The location of sparrows is updated by Eq.(5.1)

else
The location of sparrows is updated by Eq.(5.2)
End if

End for
The best solution and position are updated.
for m = 1: ED
The location of elite individuals is updated by
Eq. (17).
The elite solution fn is updated by Eq.(18).
if (fED < f (xn))
The elite solution and location of elite individuals
are updated.
End if

End for
for l = 1: LD
The location of the rest sparrows is updated by
Eq. (21).
if(fLD < f (xn))
The elite solution and location of sparrows
are updated.
End if

End for
The fitness value and position
are updated.
R is obtainde by Eq. (16).
if (rand < R)
the optimal sparrow individual is mutated by
Eq. (20).
else
the optimal sparrow individual is mutated by
Eq. (9).
End if
The best solution and position are
updated.
k = k + 1;

End while
Return Xgbest and fgbest

There are four groups of these benchmark test functions in
Appendix A including the unimodal functions (see Table 5),
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FIGURE 1. The flowchart of SSA algorithm.

FIGURE 2. The variable radius perturbation.

the multimodal functions (see Table 6), the fixed-dimension
multimodal functions (see Table 7), and 8 hybrid and
composition functions on CEC2017 (see Table 8). The 2D
landscapes of a few benchmark functions are shown in Fig. 4.
The experiments are mainly divided into four parts. In the
first part, the performance of the proposed algorithms is tested
on 31 benchmark test functions compared to the basic SSA.
In the second part, the scalability test of the best of these

proposed algorithms. In the third part, the performance of
the best-proposed algorithm is evaluated on 31 benchmark
test functions compared to other algorithms. In the fourth
part, to demonstrate the efficiency of the best-proposed
algorithm, the best-proposed algorithm is also employed on
eight constrained real-world optimization problems.

A. EXPERIMENTAL SETUP
All experiments and algorithms are carried out in MATLAB
R2019a version software. The simulation environments are
performed on Windows 8.1 (64 bit) systems with a Core
i7 processor with 2.3 GHz and 64 GB memory. All the
experimental results are obtained by all the algorithms
running 30 times independently in terms of Average (Avg.),
Median (Med.), and Standard deviation (Std.) values. The
Wilcoxon rank-sum test at a 5% level of significance [110]
and the Friedman test [111] are performed in a statistically
significant way. By the results of these algorithms running
30 times independently, the p-values of the Wilcoxon
statistical test and the average ranking value (ARV.) of the
Friedman test were obtained.

B. THE PERFORMANCE EVALUATION OF ALL THE
PROPOSED VARIANTS COMPARED TO BASIC SSA
In this section, initially, the parameter tuning on the proposed
SSA variants is performed. In addition, the performance of
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FIGURE 3. The flowchart of CMSSA algorithm.

the proposed SSA variants is evaluated on 31 benchmark test
functions.

1) INVESTIGATING THE INFLUENCE OF PARAMETERS ON
SSA VARIANTS
The parameter tuning plays an essential role in the perfor-
mance evaluation of metaheuristics. The SSA variants mainly
involve five parameters namely the maximum number of
iterations, number of search agents, PD, SD, and ST. The
sensitivity analysis of these parameters has been discussed
by varying their values on F1, F5, F12, F13, and F22 functions.
All results in this section are obtained under the 30 times
independent experiments.

a: MAXIMUM NUMBER OF ITERATIONS
All proposed algorithms were run by the different maximum
number of iterations. The maximum number of iterations
was set to 100, 500, 1000, respectively. The obtained Avg.
values were shown in Table 9. For all proposed algorithms,
the results reveal that the Avg. values become better when
the maximum number of iterations increases.

b: NUMBER OF SEARCH AGENTS
In order to evaluate the effect of the number of search agents
on all test functions, for all proposed algorithms, the number
of search agents was set to 10, 30, 50, respectively. All
proposed algorithms were run by different search agents.
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FIGURE 4. 2D landscapes of some benchmark functions.

Table 10 shows the Avg. values obtained by different search
agents. It was found that all proposed algorithms could
provide better results on most of the test functions with the
increase of search agents.

c: VARIATION IN PARAMETER PD
All proposed algorithms were run for different values of
parameter PD keeping other parameters fixed (i.e., the
maximum number of iterations, number of search agents,
SD and ST). The values of PD used in experiments were
set to 0.1, 0.2, and 0.3, respectively. Table 11 represents
the results of Avg. values for all proposed algorithms with

different PD values. As it can be seen in Table 11, for ITSSA,
LFSSA, EOBLSSA, and VRSSA algorithms, it is observed
that PD = 0.3 is a reasonable value for most of the test
functions. However, it shows that PD = 0.2 is an appropriate
value for the CMSSA algorithm on most of the test
functions.

d: VARIATION IN PARAMETER SD
All proposed algorithms were run for different values of
parameter SD by fixing other parameters (i.e., the maximum
number of iterations, number of search agents, PD and ST).
The values of SD used in experiments were set to 0.1 and
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TABLE 9. The obtained average values under different iterations.

TABLE 10. The obtained average values under different search agents.

TABLE 11. The obtained average values under different PD.

0.2. For all proposed algorithms, the Avg. values are attainted
by different SD which is shown in Table 12. The results
demonstrate that when SD is set to 0.1, the CMSSA and
ITSSA algorithms provide better results on most of the test
functions. And when SD is set to 0.2, EOBLSSA, LFSSA,
andVRSSA algorithms attain better results onmost of the test
functions. Therefore, SD= 0.1 is a suitable value for CMSSA

and ITSSA algorithms, and SD= 0.2 is a reasonable value for
EOBLSSA, LFSSA, and VRSSA algorithms.

e: VARIATION IN PARAMETER ST
All proposed algorithms were run for various values of
parameter ST when other parameters (i.e., the maximum
number of iterations, number of search agents, PD and SD)
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TABLE 12. The obtained average values under different SD.

TABLE 13. The obtained average values under different ST.

TABLE 14. Parameter setting of all proposed algorithms and SSA.

were fixed. In these experiments, the values of ST were set
0.1, 0.2, 0.3, 0.4 and 0.5, respectively. The Avg. values of all
proposed algorithms are shown in Table 13. It is observed that
ST= 0.5 is a proper value for ITSSA, LFSSA, and EOBLSSA
algorithms in many cases, and ST = 0.6 is suitable for the

VRSSA algorithm, and ST= 0.8 is an advisable value for the
CMSSA algorithm on most of the test functions.

2) THE PERFORMANCE OF ALL THE PROPOSED
ALGORITHMS
In this section, to evaluate the performance of the proposed
SSA variants more comprehensively, compared to the basic
SSA algorithm, the performance of all proposed algorithms
(i.e. ITSSA, LFSSA, EOBLSSA, VRSSA and CMSSA) is
tested on 31 benchmark test functions. According to the
results of the parameter tuning of all proposed algorithms,
the parameter settings of all proposed algorithms and SSA
are given in Table 14. Table 15 reveals the optimal values
obtained by all proposed algorithms compared to the basic
SSA algorithm. As it can be seen from Table 15, the CMSSA
algorithm can attain the global optimum value on 11 out of
31 benchmark functions (i.e., F1, F2, F3, F4, F9, F11, F16,
F17, F18, F19, and F22) with the smallest Std. value. For F1,
F2, F3, and F4, CMSSA provides the best results in terms
of Avg., Std. and Med. values. EOBLSSA and LFSSA attain
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TABLE 15. The statistical experimental results of 31 benchmark functions.
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TABLE 15. (Continued.) The statistical experimental results of 31 benchmark functions.

the second and third best results. For F4, the results obtained
by SSA are better than VRSSA and ITSSA in terms of Avg.
and Std. values. For F5, the CMSSA attains the best results.
ITSSA and VRSSA obtain better results than LFSSA and
SSA in terms of Avg. and Med. values. For F6, CMSSA
obtains the best results. LFSSA and EOBLSSA provide the
second and third best results. For F7, the results obtained
by EOBLSSA are better than other algorithms, and CMSSA
attains the second-best results. For F8, SSA provides the
best Avg. and Med. values, and VRSSA attains the best Std.
value. For F9, F10 and F11, all algorithms provide the same
results in terms of Avg., Med. and Std. values. For F12,
CMSSA and EOBLSSA obtain the first and second results,

VRSSA attains competitively better results than ITSSA,
LFSSA, and SSA. For F13, CMSSA and EOBLSSA can
obtain the first and second results in terms of Avg. and Med.
values. CMSSA and SSA provide the first and second Std.
value. For F14, VRSSA and EOBLSSA attain better results
of Avg. and Med. values, and LFSSA obtains the best Std.
value. For F15, CMSSA provides the best results. VRSSA
and EOBLSSA obtain competitive results which are better
than LFSSA, ITSSA, and SSA. For F16, VRSSA provides
the best results. CMSSA and EOBLSSA obtain competitive
results.

For F17 and F18, all algorithms attain the same Avg. and
Med. values. However, CMSSA and VRSSA provide the
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TABLE 16. The scalability results on 13 benchmark functions.
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FIGURE 5. Convergence curves on 9 benchmark functions.

first and second Std. value on F17. LFSSA and ITSSA attain
the first and second Std. value on F18. For F19, F22, and
F23, CMSSA obtains the best results compared to other
competitors. For F20, ITSSA provides the best Std. value,
and LFSSA attains the best results of Avg. and Med. value.
For F21, the Avg. value obtained by LFSSA is better than
other algorithms, and VRSSA attains the best Std. value.
In addition, LFSSA, EOBLSSA, CMSSA and SSA obtain
the same Med. value. For F24, CMSSA obtains the best
results compared to other algorithms. In terms of Avg. and
Med. values, LFSSA can obtain better results than ITSSA,
EOBLSSA, VRSSA and SSA. In terms of Std. value, ITSSA

obtains the second-best results. For F25 and F26, ITSSA
and CMSSA provide better results than other algorithms
in terms of Avg., Med. and Std. values. For F27, CMSSA
obtains the first-best results than other competitors in terms
of Avg. and Med. values. In addition, ITSSA and CMSSA
provide the first and second Std. value. For F28, the Std.
value obtained by LFSSA and SSA is better than other
algorithms. For F28 and F30, the Avg. and Med. values
obtained by CMSSA are the best among these competitors.
For F30, SSA attains the best Std. value. For F29 and
F31, CMSSA provides the best results compared with other
algorithms.
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FIGURE 6. Convergence curves on 6 benchmark functions with D = 1000.

Therefore, the CMSSA algorithm is selected as the further
research objective. In order to show the advantages of the

CMSSA algorithm, some convergence curves of ITSSA,
LFSSA, EOBLSSA, VRSSA, CMSSA, and SSA on some
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FIGURE 7. Convergence curves on 9 benchmark functions compared to other algorithms.

benchmark functions (i.e., F3, F5, F7, F9, F11, F13, F15, F22,
and F23) are given in Fig. 5. As it can be seen from Fig. 5,
in terms of the convergence rate, the CMSSA algorithm ranks
the first convergence rate for F3, F5, F7, F9, F11, F13, F15, F22,
and F23. However, the basic SSA algorithm ranks the worst
for F3, F5, F7, F9, F11, F13, and F15. For many benchmark
functions, all the proposed SSA variants are superior to the
basic SSA algorithm in terms of the convergence rate. This is
due to the improvement of the convergence performance of
SSA by various mutation operators. To sum up, these results
show that the CMSSA algorithm is the best compared to other
proposed variants.

In addition, the results of the Friedman test demonstrate
that the CMSSA algorithm can obtain the smallest AGV.
index, and then in terms of AVG. index, the CMSSA ranks
first, followed by EOBLSSA, LFSSA, VRSSA, ITSSA, and
the basic SSA. Therefore, it shows that the CMSSA algorithm
is still the best method for handling 31 benchmark functions.

C. THE SCALABILITY TEST FOR CMSSA COMPARED TO
BASIC SSA
In this section, to further compare the performance of
CMSSA and the basic SSA more effectively and compre-
hensively, the scalability test is carried out. In this test,
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it focused on the different dimensions of benchmark functions
affecting the performance of the CMSSA and basic SSA.
Therefore, the dimensions on F1-F13 are set to 30, 500, and
1000, respectively. The population size is set to 30 and the
maximum number of iterations is set to 1000. The scalability
results on 13 benchmark functions are shown in Table 16.

As the dimensions gradually increase, it becomes more
challenging to obtain the global optimal solution for uni-
modal and multimodal benchmark functions. As it can be
seen from Table 16, when the dimension is set to 30, 500, and
1000, SSA is better than CMSSA on F8 and SSA is equal to
CMSSA on F9, F10,and F11, respectively. However, CMSSA
outperforms the basic SSA on other benchmark functions
when the dimension is set to 500 and 1000, respectively. The
convergence curves of some benchmark functions with the
dimension of 1000 are described in Fig. 6. As it can be seen
in Fig. 6, for different dimension problems, especially for the
high dimension problems, the convergence rate of CMSSA
is faster than that of the basic SSA, and the ability to jump
out of local optimum in CMSSA is better than that of the
basic SSA. This may be because the combination of improved
Tent chaos, Lévy flights, elite opposition-based learning, and
variable radius perturbation mutation operator can increase
the population diversity and the search space, and strengthen
the ability to jump out of the local optimum and the global
search ability. All in all, it can be concluded that the CMSSA
is superior to the basic SSA in the different dimensions,
especially for the high dimension problems.

D. THE PERFORMANCE EVALUATION OF CMSSA
From the above results, it shows that the CMSSA outperforms
other SSA variants. To evaluate the performance of the
CMSSA in terms of six aspects (i.e., the exploitation
capability, the exploration capability, the ability to escape
from local minima, the convergence behavior, the statistical
testing, and the wall-clock time cost), in this section, the
CMSSA is compared to some state-of-the-art and advanced
meta-heuristic algorithms. All the algorithms are carried out
in the same experimental environment and all the experiments
are carried out by 30 independent runs. The state-of-the-
art and advanced meta-heuristic algorithms are as follows:
PSO [7], CS [11], DA [16], GWO [12],WOA [17],MFO [15],
SOA [23], SCA [43], MVO [44], SSA [30], EPO[21],
STOA [24], TSA [29], SHO [19], RSO [31], TAPSO [112],
MPSO [113], IPSO [114] and GWOCS [115], respectively.
The parameter settings of these algorithms are shown in
Table 17.

1) ANALYSIS OF EXPLOITATION CAPABILITY
(FUNCTIONS F1-F7)
The unimodal benchmark functions (i.e., functions F1-F7)
have only one global optimal solution in the search space.
These functions are usually used to evaluate the exploitation
capability of meta-heuristic algorithms. In this experiment,
the exploitation capability of the CMSSA was tested by
unimodal benchmark functions compared to PSO, CS, DA,

TABLE 17. The parameter setting values of mentioned algorithms.

GWO, WOA, MFO, SOA, SCA, MVO, EPO, TSA, STOA,
SHO, and RSO, respectively. The experimental results were
shown in Table 18. As it can be seen from Table 18, for
F1, F2, F3, F4, CMSSA can obtain the global optimum. For
F1, in terms of Avg., Med. and Std. values, CMSSA, SOA,
SHO, and RSO can provide the global optimum. In addition,
EPO and WOA obtain the second and third best results.
For F2, CMSSA and SHO attain the best results. SOA
and RSO obtain second and third best results, which are
better than the rest of other algorithms. For F3, CMSSA,
SHO, and RSO attain the best results. The results obtained
by GWO and TSA are superior to PSO, CS, DA, MFO,
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SCA, SOA, STOA, MVO, EPO, and WOA algorithms.
For F4, the results obtained by CMSSA and SHO are better
than other algorithms, and RSO and SOA provide the third
and fourth best results. For F5, CS is the best optimizer
compared to other algorithms. However, CMSSA can obtain
the competitive results which are better than DA, GWO,
MFO, MVO, SCA, SOA, EPO, TSA, STOA, SHO, RSO, and
WOA algorithms. For F6, CMSSA obtains the best results
compared to other competitors. CS and EPO provide the
second and third best results which are superior to PSO, DA,
GWO, MFO, MVO, SCA, WOA, STOA, SHO, TSA, RSO,
and SOA algorithms. For F7, CMSSA is inferior to SOA in
terms of Avg. and Med. values, but the Std. value of CMSSA
is superior to SOA and the results obtained from CMSSA are
superior to PSO, CS, DA, GWO, MFO, MVO, SCA, WOA,
EPO, TSA, STOA, SHO, and RSO algorithms.

These results show that CMSSA can obtain the best
solution or at least the second-best solution on all unimodal
benchmark functions compared with other meta-heuristic
algorithms. Therefore, CMSSA is significantly competitive
and has a very good exploitation capability.

2) ANALYSIS OF EXPLORATION CAPABILITY
(FUNCTIONS F8-F23)
Compared with unimodal functions, multimodal functions
(i.e., functions F8-F23) often have multiple local optima,
so it is difficult to obtain the global optimum. Therefore,
in this experiment, these functions were tested to evaluate the
exploration capability of CMSSA compared to PSO, CS, DA,
GWO, WOA, MFO, SOA, SCA MVO, EPO, TSA, STOA,
SHO, and RSO, respectively. The experimental results are
shown in Table 18. For F9, F11, F15, F16, F17, F18, F19, F21,
and F23, CMSSA can attain the global optimum in terms
of Avg. and Med. values. For F8, SOA provides the best
results. Whereas, the results obtained by CMSSA are inferior
to WOA, SOA, MVO, MFO, EPO and CS, and are superior
to PSO, DA, GWO, TSA, STOA, SHO, RSO, and SCA in
terms of Avg., Std. and Med. values. For F9, CMSSA, WOA,
SOA, EPO, SHO, and RSO can obtain the global optimum in
terms of Avg., Med., and Std. values. The results produced
by GWO are better than the rest of other algorithms. For
F10, the results obtained by CMSSA, SHO and SOA are the
best compared to other approaches. RSO and EPO attain the
second and third best results. For F11, the results obtained
from CMSSA, SOA, SHO, and RSO are the same which are
better than other algorithms. For F12, the results produced by
CMSSA are superior to other optimizers. SHO and PSO are
the second and third best optimizers.

For F13, CMSSA is the best optimizer. In addition, EPO
and MVO obtain the second and third best results in terms of
Avg., Med. and Std. values. For F14, CS is the best optimizer.
The results obtained by CMSSA are superior to PSO, GWO,
MFO, TSA, RSO, and SOA. For F15, CMSSA provides the
best Avg. value. CS obtains the best Std. value. In addition,
GWO and CS attain the bestMed. value. CMSSA can provide
competitive results which are better than PSO, DA, MFO,

MVO, SCA, SOA, EPO, TSA, STOA, SHO, RSO, andWOA.
For F16, CMSSA is the first best optimizer. CS and MFO
are the third-best optimizers. For F17, PSO, CS, and MFO
are the best optimizers. CMSSA is the second-best optimizer.
For F18, the results obtained by MFO are the best. CMSSA
obtains better results than DA, GWO, MVO, SCA, SOA,
EPO, TSA, STOA, SHO, RSO, andWOA. For F19, the results
produced by CMSSA are better than DA, GWO, SCA, SOA,
EPO, TSA, STOA, SHO, RSO, and WOA. MFO obtains the
best results. For F20, CS is the best optimization approach.
CMSSA can obtain better results than SCA, EPO, STOA,
SHO, RSO, and SOA. For F21, CMSSA provides the best
results compared to other competitors. For F22, CS provides
the best results compared to other competitors. The results
obtained by CMSSA are better than PSO, DA, MFO, MVO,
SCA, SOA WOA, EPO, TSA, STOA, SHO, and RSO. For
F23, CS is the best optimizer. CMSAA can obtain better
results than other algorithms except for CS.

The results show that CMSSA is better than other
competitors for many multimodal functions so that CMSSA
has a very good exploration capability. This is due to the
mixing of various mutation operators to improve the ability
to search for the global optimum in CMSSA.

3) ABILITY TO ESCAPE FROM LOCAL MINIMA
(FUNCTIONS F24-F31)
To better evaluate the ability to escape from local minima,
some hybrid and composition benchmark functions are
selected to test the ability to escape from local minima.
Four well-known advanced algorithms were added, namely,
TAPSO, MPSO, IPSO, and GWOCS. In this experiment,
the performance of CMSSA is evaluated compared with
SSA, SCA, WOA, TAPSO, MPSO, IPSO, and GWOCS. The
experimental results are reported in Table 19. For F24 and F25,
in terms of Avg., Std. and Med. values, CMSSA provides the
best results compared to other algorithms. For F26, TAPSO
obtains the best Avg. and Std. values, and GWOCS provides
the best Med. value. The results obtained by CMSSA are
better than WOA and SSA in terms of Avg., Std. and Med.
values, For F27, CMSSA provides the best Std. value. MPSO
and TASO can obtain better results than others in terms of
Avg. and Med. values. The results produced by CMSSA are
superior toWAO, IPSO, SSA, andGWOCS. For F28, CMSSA
obtains better results with the second Std. value than other
algorithms. For F29, CMSSA is the best optimizer. For F30,
GWOCS is the best optimizer in terms of Avg. and Med.
values. The results obtained by CMSSA are superior toWOA,
TAPSO, IPSO, and SSA. For F31, CMSSA can provide better
results than others in terms of Avg. and Std. values. The Med.
value of CMSSA is the second-best result compared to other
algorithms.

The results demonstrate that CMSSA is better than other
algorithms for many functions. Therefore, it shows that the
CMSSA algorithm still has a very good ability to escape
from local minima. This may be due to the sparrow individual
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TABLE 18. The experimental results of 23 benchmark functions.
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TABLE 18. (Continued.) The experimental results of 23 benchmark functions.
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TABLE 18. (Continued.) The experimental results of 23 benchmark functions.

TABLE 19. The experimental results of 8 hybrid and composition benchmark functions.

mutated by the introduction of a variety of mutation operators
to the ability to escape from local minima in CMSSA.

4) ANALYSIS OF CONVERGENCE BEHAVIOR
In order to better evaluate the convergence rate of the CMSSA
algorithm, some convergence curves of PSO, CS, DA, GWO,

WOA, MFO, SOA, SCA, MVO, EPO, TSA, STOA, SHO,
RSO, and CMSSA on 9 benchmark functions were provided
in Fig. 7, and the convergence curves of SCA,WOA, TAPSO,
MPSO, IPSO, SSA GWOCS and CMSSA on 6 hybrid and
composition benchmark functions were provided in Fig. 8.
As it can be seen from Figs. 7 and 8, the CMSSA has a faster
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TABLE 20. Wall-clock time cost for 23 benchmark functions.

TABLE 21. Wall-clock time cost for hybrid and composition benchmark functions.

convergence rate than other algorithms in most cases except
for F5 and F24. The convergence behavior of CMSSA can be
divided into three types. In the first type, with the increase
of the number of iterations, the convergence rate of CMSSA
is gradually accelerated, which is evident in F1, F10, F25,
and F28. In the second type, the best solution is attained by
the last iteration phase, which is evident in F7, F21, and F23.
In the third type, the convergence is rapid in the early iteration
phase, which is evident in F27, F30, and F31.

These results show that the CMSSA’s ability to balance
exploration and exploration has been improved, especially for
hybrid and composition problems.

5) ANALYSIS OF WALL-CLOCK TIME COST
The wall-clock time cost implemented by CMSSA and
19 other competitors on 23 benchmark functions and
8 hybrid and composition benchmark functions were shown
in Tables 20 and 21, respectively. As it can be seen in
Table 20 and 21, it is obvious that the CMSSA consuming
time is slightly longer than the basic SSA. This is due
to the introduction of four mutation operators (i.e., the

improved Tent chaos map mutation operator, Lévy flights
mutation operator, elite opposition-based learning mutation
operator, and variable radius perturbation mutation operator)
in CMSSA, which enhances the balance between exploitation
and exploration of CMSSA algorithm. Therefore, it is
reasonable to increase the time-consuming of the CMSSA
algorithm. Moreover, it is demonstrated that the wall-clock
time cost of DA, SHO, and MFO is longer than CMSSA on
most of 23 benchmark functions, and that of GWOCS is also
longer than CMSSA on 8 hybrid and composition benchmark
functions. In general, CMSSA takes longer than many
other algorithms. However, according to all the experimental
results, the performance of CMSSA outperforms other
algorithms in most cases. Therefore, it is very worthwhile to
introduce a variety of mutation operators into the basic SSA
to strengthen the performance of the algorithm.

6) STATISTICAL TESTING
Apart from standard statistical analysis such as mean value,
median value, and standard deviation value, the Wilcoxon
statistical test at 5% level of significance and the Friedman
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FIGURE 8. Convergence curves on 6 hybrid and composition benchmark functions.
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TABLE 22. The p-value of Wilcoxon’s rank-sum test on 31 benchmark functions.

test are performed in a statistically significant way. The
p-values of theWilcoxon statistical test are shown in Table 22.
The statistical results of the Friedman test are tabulated in
Tables 23 and 24. Compared with other algorithms, it is
observed from Table 22 that the p-value obtained from
CMSSA is much smaller than 0.05 for most of the 31
benchmark functions. Tables 23 and 24 show that the AVG.
value obtained from CMSSA is the smallest compared with
other competitor approaches. Therefore, the results reveal
that the proposed CMSSA is statistically different from other
competitor algorithms, and outperforms other algorithms.

In conclusion, the discussions and findings in this part
illustrate the exploitation and exploration capability, local
optimum avoidance, convergence behavior, statistical testing,
andwall-clock time cost of the CMSSA algorithm. Compared
to other algorithms, the performance of the CMSSA algo-
rithm is better than that of other algorithms inmost cases. This
is mainly due to the various mutation operators introduced

into SSA to balance between the exploitation and exploration
capability. In the following section, the applicability of the
CMSSA algorithm is evaluated on 8 real-world problems
with complex constraints.

E. CMSSA FOR CONSTRAINED REAL-WORLD
OPTIMIZATION PROBLEMS
In this section, to effectively evaluate the applicability
of CMSSA in terms of constraint handling to optimize
constrained problems as well. 8 well-known engineering
problems (i.e., gear train design problem, three-bar truss
design problem, cantilever beam design problem, tension
spring design problem, pressure vessel design problem, speed
reducer problem, welded beam design problem, and main
girder design problem) were optimized by CMSSA. These
problems have various constraints, so some constraint han-
dling methods are used to solve these optimization problems.
There are different types of penalty functions to deal with
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TABLE 23. The statistical results of Friedman test on 23 benchmark functions.

TABLE 24. The statistical results of Friedman test on 8 hybrid and composition functions.

TABLE 25. Comparison results of the gear train design problem.

constraint problems [17] as follows: (a) The static penalty
does not rely on the current number of generations and
remains constant in the whole computation process. (b) The
annealing penalty coefficient changes only once in many
iterations and only active constraints that are not trapped
in the local optimal value are considered in each iteration.
(c) The dynamic penalty in which the current generation
is involved in the computation of the equivalent penalty
coefficient with the increase of generations. (d) The adaptive
penalty attains feedback from the previous search process
and only changes when the feasible/infeasible solution is
considered to be the best solution in the population. (e) The
co-evolutionary penalty is divided into two values (i.e., coeff.
and vio.) which are used to find out the constraints that are
violated and the corresponding amount of violation. (f) The
death penalty deals with a solution that may violate con-
straints, and its fitness value is zero. It can eliminate infeasible
solutions in the optimization process. Compared to other

FIGURE 9. Simplified model of the gear train.

constraint handling techniques, the death penalty approach
does not employ the information of infeasible solutions which
can better deal with the problems with dominated infeasible
regions. Therefore, the CMSSA algorithm is equipped with
the death penalty function to solve these constraint problems
in this section.
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TABLE 26. Comparison results of the three-bar truss design problem.

FIGURE 10. The convergence curve of the gear train problem.

1) GEAR TRAIN OPTIMIZATION DESIGN PROBLEM
According to Ref. [116], the optimal design of the gear
train aims to find the minimum gear transmission ratio,
making it closer to 1/6.931. The structure of the composite
gear train was shown in Fig. 9. TA, TB, TD, and TF are
the number of teeth on gears A, B, D, and F respectively.
Because the number of teeth for each gear must be the integer
between 12 and 60, the optimization problem is converted to
a constrained optimization problem with discrete variables.
The optimization problem is expressed by Eq. (22).

min f =
(

1
6.931

−
TDTB
TATF

)2

s.t. 12 ≤ TA ≤ 60, 12 ≤ TB ≤ 60, 12 ≤ TD ≤ 60,
12 ≤ TF ≤ 60

(22)

The convergence curve of the gear train problem is shown
in Fig. 10. This problem is solved by the CMSSA and
compared to MIBBSQP [116], IDCNLP [117], SA [118],
MVEP [119], Kannan BK [120], GA [121], Gene AS [122],
HSIA [123], UPSO [124], CS [11], CAPSO [125], and
BOA [22]. Comparison results with the reference methods
are shown in Table 25.

As it can be seen in Table 25, the CMSSA algorithm
obtains the four optimal solutions as follows: the first group

FIGURE 11. Simplified model of the three-bar truss design.

of optimal solutions is at X = (49, 16, 19, 43) with a
corresponding fitness value equal to fmin = 0.14428097.
The second group of optimal solutions is at X = (49, 19,
16, 43) with a corresponding fitness value equal to
fmin = 0.14428097. The third group of optimal solutions is at
X= (43, 16, 19, 49) with a corresponding fitness value equal
to fmin = 0.14428097. The fourth group of optimal solutions
is at X = (43, 19, 16, 49) with a corresponding fitness value
equal to fmin = 0.14428097. By observing Fig. 10, CMSSA
converges towards the best solution using low computational
efforts.

The results of CMSSA algorithms are superior to MIBB-
SQP, IDCNLP, SA, MVEP, Kannan BK, Gene AS, UPSO,
CAPSO, and BOA, and slightly inferior to GA, HSIA, and
CS. The results reveal that CMSSA can effectively solve the
discrete problems.

2) THREE-BAR TRUSS OPTIMIZATION DESIGN PROBLEM
The objective function of the three-bar truss design is to
minimize its weight with complex and nonlinear constraints
of stress, deformation, and buckling [11]. The structure of
the three-bar truss design is depicted in Fig. 11. In this
case, the design variables are the cross-sectional area A1(x1)
and A2(x2), and the mathematical optimization model is
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FIGURE 12. The convergence curve of the three-bar truss problem.

illustrated by Eq. (23).

X = [x1, x2] = [A1,A2]

min f (X) =
(
2
√
2x1 + x2

)
L

s.t. g1(X) =

√
2x1 + x2

√
2x21 + 2x1x2

p− σ ≤ 0

g2(X) =
x2

√
2x21 + 2x1x2

p− σ ≤ 0

g3(X) =
1

√
2x2 + x1

p− σ ≤ 0

0 ≤ x1, x2 ≤ 1

(23)

where L = 100cm, p = 2KN/cm2, σ = 2KN/cm2.
This problem is solved by CMSSA and compared to

CS [11], SSA [20], DEDS [126], MBA [127], PSO-DE [128],
and TAS [136] in literatures. The convergence curve of
the three-bar truss problem is described in Fig. 12. The
comparison results of the three-bar truss design problem
are illustrated in Table 26. As can be seen in Table 26,
the CMSSA algorithm provides the optimal solutions at
X = (0.788671835599963,0.408258294610664) with a cor-
responding fitness value equal to fmin = 263.895910694497.
And the results obtained by the TAS method are infeasible
due to violating one of the constraints.

The results indicate that the CMSSA algorithm attains very
competitive results and its best solution obtained is superior
to CS, and it also attains the best results close to SSA,
DEDS, MBA, and PSO-DE. These results demonstrate that
the CMSSA algorithm can also effectively solve non-linear
constrained problems.

3) CANTILEVER BEAM OPTIMIZATION DESIGN PROBLEM
As shown in Fig. 13, there are 5 structural parameters
(i.e., the side length of the square-shaped cross-section Li
(xi) (i = 1, 2, 3, 4, 5)) in the cantilever beam problem.
The objective is to minimize the weight of the cantilever

FIGURE 13. Simplified model of the cantilever beam design.

FIGURE 14. The convergence curve of the cantilever beam design
problem.

beam with the vertical deformation constraints. The problem
formulation is expressed by Eq. (24) [13].

min f (X) = 0.0624× (x1 + x2 + x3 + x4 + x5)

s.t. g(X) =
61

x31
+

37

x22
+

19

x32
+

7

x34
+

1

x35
− 1 ≤ 0

0.01 ≤ x1, x2, x3, x4, x5 ≤ 100

(24)

The convergence curve of the cantilever beam design
problem is presented in Fig. 14. And this problem has been
solved by CMSSA and compared with GOA [18], ALO [14],
MMA [129], GCA(I) [129], GCA(II) [129], CS [11], and
SOS [13] in Table 27. The CMSSA obtains the optimal
solution at X = (6.010729, 5.318938, 4.499154, 3.494689,
2.150293) with the corresponding fitness value equal to
fmin = 1.33996. The results show that CMSSA outperforms
the MMA, GCA(I), GCA(II), and CS. And it is observed the
best solution of CMSSA is equal to or close to those of GOA,
SOS and ALO with the different optimal design parameters.
Therefore, the CMSSA algorithm has some advantages for
dealing with such problems.

4) TENSION SPRING OPTIMIZATION DESIGN PROBLEM
This problem is the tension spring design, and the objective is
to obtain the minimum fabrication cost [130]. Fig. 15 shows
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TABLE 27. Comparison results of the cantilever beam design problem.

TABLE 28. Comparison results of the tension spring design problem.

FIGURE 15. Simplified model of the tension spring design.

the structure. There are three parameters: wire diameter
d ′, mean coil diameter D′, and the number of active coils
N ′. Under some complex constraints, the mathematical
formulation of this problem is obtained by Eq. (25).

X = [x1, x2, x3] =
[
d ′,D′,N ′

]
min f (X) = (x3 + 2) x2x21

s.t. g1(X) = 1− x32x3/71785 x
4
1 ≤ 0

g2(X) =
(
4x22 − x1x2

)
/12566

(
x2x31 − x

4
1

)
+ 1/5108 x21 − 1 ≤ 0

g3(X) = 1− 140.45x1/x22x3 ≤ 0

g4(X) = (x1 + x2) /1.5− 1 ≤ 0

0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15

(25)

There are some solutions obtained by using meta-heuristic
algorithms such as SSA [20], GSA [38], CPSO [130],
ES [131], GA [132], and RO [133]. The convergence curve

FIGURE 16. The convergence curve of the tension spring design problem.

of the tension spring design problem is shown in Fig. 16. The
best solutions of CMSSA are shown in Table 28 compared
to those of all the above-mentioned algorithms. The CMSSA
attains the optimal solution at X = (0.0520769, 0.3661089,
10.7606604) with a corresponding fitness value equal to
fmin = 0.0126699.
These results show that CMSSA outperforms other meth-

ods when dealing with this problem and attains the best
design with the lowest cost.
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FIGURE 17. Simplified model of the pressure vessel design.

5) PRESSURE VESSEL OPTIMIZATION DESIGN PROBLEM
The pressure vessel design problem has four parameters
(i.e., thickness of spherical shell TS , thickness of ball head
Th, radius of spherical shell R′, and length of spherical
shell L ′). The structure and parameters are shown in Fig. 17.
The objective of this problem is to minimize the fabrication
cost with some constraints. The mathematical model of this
problem is obtained by Eq. (26).

X = [x1, x2, x3, x4] =
[
Ts,Th,R′,L ′

]
min f (X) = 0.6224x1x2x3 + 1.7781x2x23 + 3.1661x21x4

+ 19.84x21x3
s.t. g1(X ) = −x1 + 0.0193x3 ≤ 0

g2(X) = −x2 + 0.0095x3 ≤ 0

g3(X) = −πx23 −
4
3
πx33 + 1296000 ≤ 0

g4(X) = x4 − 240 ≤ 0

1× 0.0625 ≤ x1, x2 ≤ 99× 0.0625, 10 ≤ x3 ≤ 200,

10 ≤ x4 ≤ 240

(26)

The pressure vessel design problem is optimized by
CMSSA and the results are compared to SMA [28],
WOA [17], HHO [26], SHO [19] and MCOA [134]. The
convergence curve and comparison results of this problem
are shown in Fig. 18 and Table 29, respectively. The CMSSA
provides the optimal solution at X = (0.778216, 0.384684,
40.323097, 199.954457) with a corresponding fitness value
equal to fmin = 5885.4120443.

The results demonstrate that CMSSA can find the first low-
cost design compared to other algorithms.

6) SPEED REDUCER OPTIMIZATION
DESIGN PROBLEM
The speed reducer design problem has seven design variables
as shown in Fig. 19. There are seven design variables
(x1-x7) which represent the face width B1 (x1), module of
teeth Z1 (x2), a number of teeth in the pinion Z2 (x3),
length of the first shaft between bearings B2 (x4), length
of the second shaft between bearings B3 (x5), the diameter
of first shafts D1 (x6), and the diameter of the second
shaft D2 (x7), respectively. The objective of this problem
is to attain the minimum construction cost of the speed

reducer with the constraints of bending stress of the gear
teeth, surface stress, transverse deflections of the shafts,
and stress in the shafts. The mathematical model of this
problem is obtained by Eq. (27). The comparison results of
the obtained optimal solution with other various competitors
(i.e., CS [11], SHO [19], STOA [24], TAS [136], SBS [137],
PSO-DE [128], and Ray and Sain [138]) are shown in
Table 30.

X = [x1, x2, x3, x4, x5, x6, x7]
= [B1,Z1,Z2,B2,B3,D1,D2]

f (X) = 0.7854x1x22
(
3.3333x23 + 14.9334x3 − 43.0934

)
−1.508x1

(
x26 + x

2
7

)
+ 7.4777

(
x36 + x

3
7

)
+ 0.7854(x4x26 + x5x

2
7 )

S.t.g1 (X) =
27

x1x22x3
− 1 ≤ 0

g2 (X) =
397.5

x1x22x
2
3

− 1 ≤ 0

g3 (X) =
1.93x34
x2x46x3

− 1 ≤ 0

g4 (X) =
1.93x35
x2x47x3

− 1 ≤ 0

g5 (X) =
[(745(x4/x2x3))2 + 16.9× 106]

1/2

110x36
− 1 ≤ 0

g6 (X) =
[(745(x5/x2x3))2 + 157.5× 106]

1/2

85x37
− 1 ≤ 0

g7 (X) =
x2x3
40
− 1 ≤ 0

g8 (X) =
5x2
x1
− 1 ≤ 0

g9 (X) =
x1

12x2
− 1 ≤ 0

g10 (X) =
1.5x6 + 1.9

x4
− 1 ≤ 0

g11 (X) =
1.1x7 + 1.9

x5
− 1 ≤ 0

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28

7.3 ≤ x4, x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5
(27)

According to Table 30, the results obtained by the TAS and
Ray and Sain methods violate the constraints and are infeasi-
ble. It is observed that the CMSSA algorithm can provide an
optimal solution at X = (3.500081, 0.700032, 17, 7.323278,
7.737604, 3.350819, 5.286683) with a corresponding fitness
value equal to fmin = 2995.564917. The results indicate
that the proposed CMSSA algorithm obtains better results
which outperform other competitors (i.e., CS, SHO, STOA,
SBS, and PSO-DE). The convergence analysis of the best
optimal solution obtained by the CMSSA algorithm is shown
in Fig. 20.

159254 VOLUME 9, 2021



B. Ma et al.: Enhanced Sparrow Search Algorithm With Mutation Strategy for Global Optimization

TABLE 29. Comparison results of the pressure vessel design problem.

TABLE 30. Comparison results of the speed reducer design problem.

TABLE 31. Comparison results of the welded beam design problem.

TABLE 32. Comparison results of main girder design problem.

7) WELDED BEAM OPTIMIZATION DESIGN PROBLEM
The main objective of the welded beam problem is to
minimize the fabrication cost. The simplified model of the
welded beam design is described in Fig. 21. There are four
design variables of this problem which can be described as
the thickness of weld (h), length of the clamped bar (l), the

height of the bar (t), and thickness of the bar (b), respectively.
This problem is subjected to the constraints of shear
stress in the beam, bending stress in the beam, buckling
load on the beam, and end deflection of the beam. The
mathematical model of this problem is obtained by Eq. (28).
The comparison results of the obtained optimal solution

VOLUME 9, 2021 159255



B. Ma et al.: Enhanced Sparrow Search Algorithm With Mutation Strategy for Global Optimization

FIGURE 18. The convergence curve of the pressure vessel design problem.

FIGURE 19. Simplified model of the speed reducer design.

FIGURE 20. The convergence curve of the speed reducer design problem.

with other various competitors (i.e., MFO [15], WOA [17],
RO [133], SHO [19], STOA [24], SOA [23] SSA [20],
MVO [44], and GWO [12]) are shown in Table 31. As it
can be seen in Table 31, the CMSSA algorithm can attain
the optimal solution at X = (0.205410, 3.258999, 9.036343,
0.2057659, 1.695799) with a corresponding fitness value

FIGURE 21. Simplified model of the welded beam design.

equal to fmin = 1.695799. The results show that the CMSSA
algorithm can find the best optimal design compared to
other algorithms (i.e., MFO, WOA, RO, SHO, STOA, SOA,
SSA, MVO, and GWO). By observing Fig. 22, the CMSSA
algorithm can obtain the near-optimal solution in the initial
iteration process.

X = [x1, x2, x3, x4] = [h, l, t, b]
f (X) = 1.0471x21x2 + 0.04811x3x4(14+ x2)
S.t.g1 (X) = τ (X)− τmax ≤ 0
g2 (X) = σ (X)− σmax ≤ 0
g3 (X) = x1 − x4 ≤ 0
g4 (X) = δ (X)− δmax ≤ 0
g5 (X) = 1.0471x21x2 + 0.04811x3x4(14+ x2)− 5.0 ≤ 0
g6 (X) = 0.125− x1 ≤ 0
g7 (X) = F − FC (X) ≤ 0

τ (X) =
√
(τ ′)2 + 2τ ′τ ′′

x2
2R
+ (τ ′′)2

τ ′ =
F

√
2x1x2

, τ ′′ =
MR
J

M = F
(
L +

x1
2

)
,R =

√
x22
4
+ ((x1 + x3)/2)2

J = 2

{
√
2 x1x2

[
x22
4
+ ((x1 + x3)/2)2

]}
σ (X) =

6FL

x4x23
, δ (X) =

6FL3

Ex23x4

Fc (X) =
4.013E

√
x23x

6
4/36

L2

(
1−

x3
2L

√
E
4G

)
F = 6000lb,L = 14in,E = 30× 106psi
G = 12× 106psi, τmax = 13.6× 103psi
σmax = 30× 103psi, δmax = 0.25in
0.1 ≤ x1,4 ≤ 2, 0.1 ≤ x2,3 ≤ 10

(28)

8) MAIN GIRDER OPTIMIZATION DESIGN PROBLEM
The lightweight design of the main girder in the bridge
crane should meet the requirements of strength, stiffness, and
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FIGURE 22. The convergence curve of the welded beam design problem.

stability, etc. The simplified structure of the main girder is
shown in Fig. 23. There are four design variables of this
problem such as the height of the main girder (b1), the width
of the main girder(b2), the thickness of the web plate(b3),
and thickness of the flange plate(b4), respectively. The
mathematical model of this problem is obtained by Eq. (29).



X = [x1, x2, x3, x4] = [b1, b2, b3, b4]
min f (X) = x1x3 + x2x4
s.t. g1(X) = 0.75× 10500

×


120000+7.8×10−5×10500 (x1x3+x2x4)

3x1x2x4 + x21x3

+
12000

3x1x2x3 + x22x4

−140≤0

g2(X) =
120000× 105003(

3x21x2x4 + x
3
1x3
)
× 1.68× 106

−
10500
700

≤ 0

g3(X) =
x2
x4
− 60 ≤ 0

g4(X) =
x1
x3
− 160 ≤ 0

700 ≤ x1 ≤ 800, 350 ≤ x2 ≤ 400, 5 ≤ x3, x4 ≤ 10

(29)

The comparison results of the obtained optimal solution
with other various competitors (i.e., CGA [139], GA-
AN2 [140], and Normal way [141]) are shown in Table 32.
As it can be seen in Table 32, the CMSSA algorithm can attain
the optimal solution at X = (747.6007, 350, 5.000, 5.8333)
with a corresponding fitness value equal to fmin = 5779.6702.
The results show that the CMSSA algorithm can find the
best optimal design compared to other algorithms (i.e., CGA,
GA-AN2, and Normal way). By observing Fig. 24, the
CMSSA algorithm can obtain the near-optimal solution with
low computational cost.

To sum up, the results of eight real-world engineering
problems indicate that the CMSSA algorithm has high

FIGURE 23. Simplified model of the main girder design.

FIGURE 24. The convergence curve of the main girder design problem.

performance in solving various challenging problems. The
optimization results show that the CMSSA algorithm has
a better capability to handle different combinatorial opti-
mization problems. Thus, the CMSSA algorithm is the best
optimizer that can provide better optimization results with
low computational cost and a fast convergence rate.

V. CONCLUSION AND FUTURE WORK
To further improve the performance of the SSA algorithm,
this paper presents a new series of SSA variants, namely,
ITSSA, LFSSA, EOBLSSA, VRSSA, and CMSSA. All
the proposed algorithms are tested on a set of thirty-
one benchmark functions to evaluate the exploration and
exploitation phases for avoiding local optimum. Initially, the
results reveal that the CMSSA algorithm is the best among
these variants.

Moreover, compared to 19 well-known optimization
algorithms, the CMSSA algorithm is tested on thirty-one
benchmark functions to analyze the exploration, exploitation,
local optima avoidance, convergence behavior, and time-
consuming. The results on these test functions show that
the CMSSA algorithm is the best optimizer which provides
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very competitive results as compared to other optimizers.
Statistical testing has been carried out to demonstrate the
superiority of the CMSSA algorithm compared to other
metaheuristics. In addition, the CMSSA algorithm has been
employed to eight real-world constrained engineering design
problems (i.e., gear train, three-bar truss, cantilever beam,
tension spring, pressure vessel, speed reducer, welded beam,
and main girder) which demonstrates that the CMSSA
algorithm has high-performance capability in unknown
search spaces.

This paper puts forward several research directions like
the CMSSA algorithm that may be applied to solve multi-
objective optimization problems in future work. Also, Binary
and multi-objective versions of the CMSSA algorithm can be
seen as an interesting direction for future contribution.

APPENDIX A
See Tables 5–8.
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