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ABSTRACT As an important pre-processing step in clinical applications, automatic and accurate 3D cardio-
vascular image segmentation has attracted more and more attention. However, cardiovascular structures are
often with high diversity, blood pool and myocardium shapes are also with large variability, and ambiguous
cardiac borders make the segmentation task very challenging. In this paper, a novel deep neural network
to segment the blood pool and myocardium from three dimensional cardiovascular images is introduced by
fully exploiting the global context and complementary information encoded in different feature extraction
layers, referred to as GCEFG-R2Net briefly. In order to semantically locate the two kinds of regions in a
global manner, we design a global context pooling module which can effectively learn context information
in a global manner from the deep features extracted from the last two deep layers. Instead of directly using
or combining different levels of deep features, we develop an interactive feature aggregation strategy to
enhance different levels of deep features by embedding a series of interactive feature aggregation modules.
By using the enhanced features, a residual feature refining branch is designed for refining the side outputs in
a top-down stream with the guidance of global context features. Finally, the refined side outputs of different
layers and the enhanced deep features are combined to generate the final segmentation result by using a
feature fusion module. Extensive experiments on two challenge datasets are conducted to demonstrate that
the proposed GCEFG-R2Net can obtain appealing segmentation results for the blood pool and myocardium
and performs better than other state-of-the-art methods.

INDEX TERMS Cardiovascular image segmentation, deep neural network, blood pool and myocardium
segmentation.

I. INTRODUCTION
There are a large number of people that face the cardiovas-
cular diseases each year in the world. Therefore, timely car-
diovascular disease diagnosing and treatment is crucial [1].
As an intuitive manner, cardiovascular images can give
detailed visual morphology presentation for the blood pool
and the corresponding surroundingmyocardium. Segmenting
the heart in cardiovascular images plays an important and cru-
cial role in cardiovascular disease diagnosing and treatment
planning [2]–[4]. However, manually accomplishing this task
is laborious, tedious and much time is needed, especially
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when medical resources are scarce. As a result, designing
effective algorithms for accurately segmenting 3D cardiovas-
cular images in an automatic manner is imperious.

In the past few decades, there are many methods proposed
for segmenting the blood pool and surrounding myocardium
from cardiovascular images. In general, there are two mainly
kinds of methods for this task. One prominent family of meth-
ods that focus on multiple atlases and traditional deformable
models [5]–[11] and the other family of methods based on
deep neural networks (DNNs) [12]–[16]. As to the first
kind of methods, the high anatomical variations in different
parts should be taken into consideration. As to DNNs based
methods, learning discriminative deep features is critical, and
sufficient number of training data is also necessary to train an
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FIGURE 1. Some intuitive examples to show the challenging cases in
cardiovascular image segmentation. In the ground truth images, the blue
and red color denotes blood pool and myocardium, respectively.

effective network. Although great success has been achieved
by previous proposed methods, some challenging issues still
significantly influence the performance of different models
and hinder their practical applications. E.g., the diversity of
cardiovascular structures is often very high (As shown in
the red rectangles of Figure 1), the shapes of blood pool
and myocardium also vary widely, and ambiguous cardiac
borders (as shown in the yellow rectangles of Figure 1), and
the cardiac borders are ambiguous since the contrast between
cardiac and the surrounding tissues is often very low.

In order to boost the performance of existing 3D cardiovas-
cular image segmentation methods, we propose a novel deep
neural network (GCEFG-R2Net) which can automatically
segment the blood pool and myocardium from cardiovascular
images more accurately by fully exploiting the global context
and complementary information encoded in different feature
extraction layers. For capturing the heterogeneity of differ-
ent parts of the cardiovascular image in a global manner,
a global context pooling module is designed for learning
image content context information from the deep features
extracted from the last two deep layers. Instead of using origi-
nal different levels of deep features, we develop an interactive
feature aggregation strategy to enhance different levels of
deep features, which can sufficiently obtain more efficient
multi-scale information. Then, a hierarchical residual feature
refining branch is designed by using the enhanced features to
refine the side outputs in a top-down streamwith the guidance
of global context features generated from the global context
pooling module. At last, the refined side outputs from each
layer are fused by a feature fusion module to generate final
segmentation result. During the fusion process, the enhanced
deep features are also leveraged to boost the final segmenta-
tion map. In a nutshell, the major contributions of this work
are as follows:

• We propose a new deep neural network for blood pool
and myocardium segmentation from 3D cardiovascular
images;

• In order to capture the heterogeneity from different parts
of the cardiovascular image, we design a context pool-
ing module to learn the cardiovascular image content
context information from deep features; An interactive
feature aggregation strategy is introduced to enhance
different levels of deep features, which aims to obtain
more efficient multi-scale information;

• A residual feature refining branch is designed for refin-
ing the segmentation result in a hierarchical and top-
down manner. In addition, the learned global context
features are used as a guidance for fusing the side output
of each layer to get the final result;

• Extensive experiments are conducted to validate the
superiority of the proposed network when compared
with other state-of-the-art methods.

The rest of this paper are arranged as follows. Some
related works about cardiovascular image segmentation will
be firstly introduced in Section II. The detailed illustration of
our proposed modules and network construction are elabo-
rated in Section III and the experimental results with analysis
are shown in Section V. In Section VI, we draw the conclu-
sion of this work.

II. RELATED WORK
Medical images provide abundant information to help disease
diagnosing and treatment, a large number of medical image
segmentation methods have been designed during the past
decades. In this work, we focus on automatic blood pool and
myocardium segmentation from 3D cardiovascular images.

In the earlier years, segmentation methods rely heavily on
multiple atlases and traditional deformable models. In [2],
an interactive method is developed to accurately segment the
cardiac chambers and vessels. However, since this method
needs to be performed in an interactive manner, it is very
slow and laborious. By combining the active appearance
model and active shape model together, Mitchell et al. [6]
introduced a hybrid approach to separate the right ventricle
and left ventricle automatically. By using theMarkov random
field, a mixed flow model is designed to segment the right
ventricle as well as generate the target shape priority [11].
As a classic model used for natural image segmentation,
graph cut is also deployed for right ventricle segmenta-
tion [17] and myocardium segmentation [18]. Motivated by
the prior knowledge from atlas and the 4D Markov ran-
dom field, Lorenzo-Valds et al. [19] utilized the space-time
background information for ventricle and myocardium seg-
mentation from the cardiac MR image volume. Inspired by
the shape discrepancy compensation principle, Liu et al. [20]
found that the cross-constraint shape can be used to help
segment the myocardium over delayed enhancement and
T2-weight images. In order to exploit the multi-dimensional
information [21], 3D random field model [22], multi-atlas
as well as level sets [23] are also utilized (Atlas). In [24],
random forest is used to learn context information, and the
segmentation is obtained via appearance priori. Although
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these traditional methods based on atlases and deformable
models make remarkable progress for cardiovascular image
segmentation, their results are still not satisfactory due to the
limitation of existing priori and extracted features.

Due to the powerful feature representation learning capa-
bility, DNNs boost the performance of a tremendous number
of tasks such as computer vision, natural language processing
and biomedical data analysis in a bid step [25], [26]. There-
fore, DNN based methods have also been put forward for
cardiovascular image segmentation. In [27], dilated CNN is
used to demarcate blood pool andmyocardium, while 3D vol-
umetric information is neglected. In order to tackle this issue,
Xu et al. [28] combined convolutional neural network (CNN)
and recurrent neural network (RNN) to detect and segment
the myocardial from fraction areas, which considers the 3D
volumetric structure information. In [29], Payer et al. pro-
posed a pipeline of two fully convolutional networks for
automatic multi-label whole heart segmentation from CT
and MRI volumes (MLWHS), which learns from the relative
positions among labels and focuses on anatomically feasible
configurations. Considering that fully convolutional neural
network (FCN) can also obtain appealing performance for
image segmentation, Qin et al. [30] proposed to use FCN
for ventricles and myocardium segmentation. In addition, the
motion state of the heart can be also well estimated. In order
to preserve the maximum information flow between differ-
ent deep feature extraction layers, Yu et al. [15] added the
densely-connected mechanism into their network, and extra
auxiliary side paths are embedded to strengthen the gradient
propagation as well as stabilize the learning process. Since
there are plenty of complementary information contained in
multiple views of 3D cardiac data, Zheng et al. [31] utilized
asymmetrical 3D kernels and pooling to capture contextual
information. In order to avoid the domain shift in the field
of biomedical image analysis, Dou et al. [32] proposed an
unsupervised domain adaptation framework with adversar-
ial learning for cross-modality biomedical image segmenta-
tion (UCMDA). By combining hybrid pyramid pooling and
dilated residual learning, Du et al. [16] proposed a multi-task
framework for joint blood pool and myocardium segmenta-
tion. In [33], both up-sampling and down-sampling strategies
are used for blood vessels and the myocardium segmentation.
Compared to traditional methods that rely on hand-crafted
features or some pre-defined priori models, it is the fact meth-
ods based on deep leaning predominate the field of medical
image segmentation and obtain better performance. To this
end, we also focus on deep learning and propose a deep neural
network to segment the blood pool and myocardium from 3D
cardiovascular images.

III. PROPOSED NETWORK
In this section, we will illustrate the details of our proposed
modules and the construction of the whole GCEFG-R2Net,
which consists of four main components including a global
context pooling module (GCPM), an interactive feature
aggregation module (IFAM), a hierarchical feature refining

FIGURE 2. Flowchart of our proposed GCEFG-R2Net. Considering that the
blood pool and myocardium in an slice are often scattered with varying
shapes, we first design a global context pooling module (GCPM) which
can capture the global distribution information of image content. In order
to fully exploit the complementary information of different layers of
features, an interactive feature aggregation module (IFAM) is developed
and embedded into the network for deep feature enhancing. Then a series
of residual feature refining modules are designed and embedded in a
hierarchical manner to refine the side outputs of different layers. Finally,
the segmentation result is obtained by fusing all of the side outputs.

module (RFRM) and a deep feature guided feature fusion
module (DFGFM). In Figure 2, we give an overview of our
proposed GCEFG-R2Net. During our network implementa-
tion, we use the 3D ResNeXt structure [34] as our feature
extraction backbone and obtain five feature extraction layers.
For simplicity, we denote the features extracted from the five
layers as F1, F2, F3, F4 and F5, respectively. Since the size
of the slices used in the experiments is often small, in order
to obtain the final accurate result, we first upsample all of
the feature maps to the size of original input slice. In the
following sections, we will elaborate each module of the
proposed GCEFG-R2Net in detail.

A. GCPM
As can be seen from the example images in Figure 1, the
spatial distribution of different parts of an slice is often
scattered with varying shapes. Therefore, it is important to
capture the global context information to help locate different
parts in the whole slice. Considering that the higher layers
of the backbone network contains abundant semantic and
context information [35]–[37], we use F4 and F5 to learn the
global context information, as shown by Figure 3. Firstly,
we concatenate the upsampled F4 and F5 together. Then,
a series of convolutions with a hybrid dilation rate are used to
learn the global context features (GCF). The ‘‘hybrid dilation
rate assembled convolution’’ can be regarded as a manner to
aggregate the input features locally. From Figure 3, we can
see that the proposed GCPM is motivated from Atrous Spa-
tial Pyramid Pooling (ASPP) [38]. However, our proposed
GCPM differs ASPP significantly at least from following two
aspects:

• Firstly, the channel attention is embedded into the pro-
posed GCPM to adaptively fusemulti-scale information.

• Secondly, feature channel selection and receptive fields
enlarging are performed simultaneously in our GCPM
to exploit the global information for feature interaction.
In addition, the GCF learned from GCPM is used as a
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FIGURE 3. The architecture of the proposed GCPM.

FIGURE 4. The architecture of the proposed IFAM.

guidance for feature refining which will be introduced
in the later section.

B. IFAM
For the feature extraction backbone network, different lay-
ers of features reflect different degree of feature abstraction
for original image slice. The shallow layers extract most of
the details, the top layers often contain sufficient seman-
tic and global context information, and the middle layers
often contain both semantic and detailed information. It can
help enhance the representation capability of different layers
of features by exploiting their complementary information.
Therefore, we design a series of interactive feature aggrega-
tion modules to aggregate the deep features in an interactive
manner. Figure 4 gives a brief architecture of a IFAM corre-
sponding to the i-th layer. As can be seen, except for the first
and fifth layers, there are three input channels for each IFAM.

Without loss of generality, the input of the IFAM corre-
sponding to the i-th layer consists of features Fi, Fi+1 and
Fi−1. For each input, we implement an initial transformation
by a combination of a convolutional operation, a batch nor-
malization operation and a ReLU operation, the channel num-
ber of initial features can be reduced. For feature aggregation,
Fi, Fi+1 and Fi−1 interact with their corresponding layer of

FIGURE 5. The architecture of the proposed RFRM.

features. Finally, the three feature interaction branches are
fused together to obtain the enhanced features, i.e., Fi′, which
will be used for segmentation refinement.

As to the first and fifth IFAM, there are only two input
branch, i.e., F5 and F4 for the first IFAM, F1 and F2 for the
fifth IFAM. The enhanced features F5′ and F1′ can be learned
in a similar way. In such a manner, each IFAM performs
feature crossing to mitigate the discrepancy between different
layers of features. The common parts of continuous feature
layers are firstly extracted by element-wisemultiplication and
then original features are combined to capture complemen-
tary information by element-wise addition.

C. RFRM
By implementing a convolution operation on the enhanced
feature maps F5′, we can get an initial segmentation result,
i.e., O0. However, the resolution of the initial segmentation
map is very low due to a series of pooling operation, and
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some detailed information such as the edges of different parts
of original image content could be lost due to a series of
continual pooling operations consisted in different feature
extraction layers. Therefore, we design an RFRM and embed
it into the proposed network for segmentation refinement in a
hierarchical manner. In each RFRM, residual feature learning
is used for refining the stage-wise segmentation map. The
motivation of the proposed RFRM lies in two points. Firstly,
previous literatures demonstrate that deep neural network
embedded with residual feature learning can obtain better
results in many computer vision problems when compared
to commonly used plain network blocks. Secondly, gradi-
ent vanishing problem during deep neural network train-
ing can be effectively avoided and the training process of
deep neural network can reach convergence faster, especially
for the medical image segmentation task that the training
samples are limited. In Figure 5, we present the detailed
structure of an specific RFRM. In detail, we embed four
RFRMs in our GCEFG-R2Net. As to the t-th RFRM (t =
1, 2, · · · , 4), there are three inputs, including the output of
the (t − 1)-th RFRM, i.e., Ot−1, enhanced feature maps F ′5−t
and the GCF learned from the GCPM. Mathematically, the
residual learned from the t-th RFRM can be formulated as
follows:

Rt = 9(Cat(Ot−1 ⊗ GCF,F ′5−t )), t = 1, 2, · · · , 4, (1)

where Ot−1 denotes the output obtained from the
(t − 1)-th RFRM, 9(·) represents a mapping process which
consists of a set of convolution and ReLU operations, ⊗
represents element-wise multiplication of feature maps and
Cat is the channel-wise concatenation operation. By adding
Rt with Ot−1, the output of RFRM can be calculated as
follows:

Ot = Rt ⊕ Ot−1, t = 1, 2, · · · , 4, (2)

In addition, in order to improve the side output of each
refining step during the training process, we add the super-
vision signal to each RFRM [39].

D. DFGFM
Since different layers of features reflect different abstract
levels of original image slices, we develop a feature fusion
module to fuse the segmentation maps generated from differ-
ent RFRMs to obtain the final segmentation result. In addi-
tion, considering that information in original images is also
important to help segmentation, we produce guiding deep
features by using original enhanced features for guiding the
final fusion process. The deep guided features DGF can be
obtained as follows:

DGF = ReLU (W ∗ Cat(F ′1,F
′

2, · · · ,F
′

5)+ b), (3)

where the enhanced feature maps of the i-th layer are denoted
as F ′i .W and b are the convolution parameters that need to be
learned during the training process and ReLU is the ReLU

activation function [25]. Then, the final segmentation map O
can be generated by following operations:

O = ReLU (W ′ ∗ Cat(DGF,O1,O2, · · · ,O5)+ b′), (4)

whereW ′ and b′ are also the convolution parameters.

IV. IMPLEMENTATION DETAILS
In our experiments, we implement the proposed
GCEFG-R2Net by using the PyTorch framework and we
use the 3D ResNeXt [34] as backbone network for feature
extraction. In this work, the mean square error (MSE) is used
to compute the loss between the ground-truth G and outputs
of the network, and the final loss function is formulated as
follows:

L(O,O1, · · · ,O5,G; θ ) = Lmse(O,G)+
5∑
i=1

Li
mse

(Oi,G),

(5)

where Lmse(·, ·) is a function to compute the MSE between
two segmentation maps, Lmse(O,G) is the MSE between the
final fused output and the ground-truth, Li

mse
(Oi,G) is the

MSE between the i-th layer-wise side-output and the ground-
truth. The definition of MSE can be formulated as follows:

Lmse(O,G) =
1
WH

W∑
i=1

H∑
j=1

|O(i, j)− G(i, j)| (6)

Our network is trained in an end-to-end manner by using
the Adam algorithmwith the initial learning rate of 0.001 on a
single Nvidia Titan V GPU with 12Gb memory. We train the
network with the ‘‘poly’’ learning rate policy and the training
data are also augmented to reduce over-fitting, the training
batch size is fixed to 4.

V. EXPERIMENTAL RESULTS
In this section, we report the segmentation results of the pro-
posed network on two datasets including the 2016 HVSMR
dataset [2] and the 2017 MM-WHS CT dataset [40]. In addi-
tion, we also compare our network with other state-of-the-art
ones to validate its superiority.

TABLE 1. The statistic information of the two datasets used in our
experiments. ‘‘Yes’’ means the ground-truth of the data are publicly
released while ‘‘No’’ means the ground-truth of the data are not publicly
released.

A. DATASETS
The 2016 HVSMRdataset [2] aims to segment myocardium
and blood pool from cardiovascular MR images. There are 10
patients with 3D Cardiovascular MR images including 10
training sets and 10 testing sets. For different patients, the
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TABLE 2. Quantitative segmentation evaluation results of different methods on the 2016 HVSMR dataset.

numbers of MR images are different. This dataset can be
obtained from http://segchd.csail.mit.edu/index.html.

The 2017 MM-WHS CT dataset [40] aims to evaluate
algorithms that segment seven cardiac structures, i.e., the
left/right ventricle blood cavity (LV/RV), left/right atrium
blood cavity (LA/RA), myocardium of the left ventricle
(LV-myo), ascending aorta (AO), and pulmonary artery (PA).
Similar to [31], we randomly split the dataset into the training
subset (16 subjects) and testing subset (4 subjects) by follow-
ing the work in [32].

In Table 1, we present the details of the two datasets.

B. EXPERIMENTS ON THE 2016 HVSMR DATASET
Since the segmentation ground-truth of testing sets are not
available and the challenge submission system also dose
not work for online testing, we divide the training sets into
training subsets and a validation subset. In this experiment,
we use leave-one-out setting for performance evaluation of
our network. For each patient, the corresponding images are
used for testing and the images of other patients are used
for training. Therefore, there are totally 10 repeated training
and testing times. Six indicators including Dice coefficient
(Dice), Jaccard coefficient (Jac), positive predictive value
(PPV), sensitivity (Sens), specificity (Spec), and Hausdorff
distance of boundaries (HD) are used to evaluate the perfor-
mance of our different methods.

In Figure 6, we show the six indicators of the segmentation
results of 10 subjects in this dataset. As can be seen, for
the blood pool, the segmentation accuracy is much higher
than the myocardium, which indicates that segmenting the
myocardium is more difficult than the blood pool. This is
an also challenging problem faced by previous segmentation
methods, which is caused by the fact that the myocardium
areas in medical images are often small, scattered and with
varying shapes. As to the HD indicator, the score of the blood
pool is much smaller than that of the myocardium. In most
cases, our network can obtain stable results for different
patients for the blood pool.

In order to demonstrate our proposed network can obtain
better segmentation results, we also compare it with tra-
ditional method Atlas [23] and some classical segmenta-
tion network, i.e., U-Net [13]. In addition, previous cardiac
image segmentation networks including the SSLLN [41],
SDNet [42], HFA-Net [31] and DRHPPN [16] are also used
for comparison. In Table 2, we report the results of different
methods in terms of different indicators and the results also
demonstrate that our proposed network performs better than
other state-of-the-art ones.

C. EXPERIMENTS ON THE 2017 mm-WHS CT DATASET
For this dataset, the ground-truth segmentation maps for both
training subjects and testing subjects are available. As a
result, we use the training samples for network training
and test it on the testing subset. Four indicators including
Dice coefficient (Dice), Jaccard coefficient (Jac), average
surface distance (ADB) and Hausdorff distance of bound-
aries (HD) are used for evaluation. We compare the proposed
GCEFG-R2Net with HFA-Net [31] as well as its baselines.
In addition, we also compare the Dice indicator with [32]
and [29] which can be obtained from [31]. The results of
different method on this dataset are shown in Table 3, which
also validate the efficacy of our proposed network.

D. ABLATION STUDIES
As mentioned in previous sections, there are two critical
modules for our proposed network, i.e., GCPM which learns
the global context information that can be used to guide the
feature refining and the IFAMwhich enhances layer-wise fea-
tures in a cross layer manner. In order to validate the influence
of the two modules for the final results, we remove GCPM
and IFAMs respectively from GCEFG-R2Net (denoted as
noGCPMand noIFAM) and perform experiments on the 2016
HVSMR dataset and report the results in Table 4. As can be
seen, when GCPM is removed, the results degenerate signif-
icantly, which validate that the global context information is
critical for final segmentation. In order to give amore intuitive
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FIGURE 6. Six indicators of the segmentation results of 10 subjects in the 2016 HVSMR dataset.

demonstration, we also show the visual segmentation results
without the two modules in Figure 7. As can be seen, when
the GCPM module is removed, the segmentation refining
process is similar to tradition U-Net. Without GCPMmodule,
the global context information cannot be well embedded

for feature refining, which produces some missed regions
in the final results, as shown by the row titled ‘‘noGCPM’’
in Figure 7. When the IFAM module is removed, shallow
features and deep features are not well aggregated, which
induces incomplete segmentation results, especially for the
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TABLE 3. Segmentation results on the 2017 MM-WHS CT dataset in terms of four indicators.

TABLE 4. Ablation experimental results on the 2016 HVSMR dataset.

FIGURE 7. Intuitive segmentation results of ablation studies. 1© represent original images from different views, 2© represent the separated binary
results of blood pool and 3© represent the segmentation results of myocardium.
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details information, as shown by the row titled ‘‘noIFAM’’ in
Figure 7.

In addition, In order to demonstrate the efficacy of different
layers of our proposed network, we report the results of
different layers before the final DFGF module, which are
denoted by L0, L1, L2, L3 and L4, respectively. We show
the results in above Table 4. As can been seen, by aggre-
gating the final segmentation results of different layers, the
DFGFmodule can capture the complementary information of
layer-wise features and side-output results to generate better
final segmentation map.

VI. CONCLUSION
In this paper, we introduce a deep neural network for seg-
menting blood pool and myocardium from 3D cardiovascular
images. In order to capture the global context information of
the two kinds of regions, a global context pooling module
is designed to learn the context information from the deep
features extracted from the last two deep layers of backbone
network. Rather than directly using or combining different
levels of deep features, we design an interactive feature aggre-
gation strategy to enhance different levels of deep features by
embedding a series of interactive feature aggregation mod-
ules. Extensive experiments as well as ablation analysis are
conducted on two public datasets to validate the efficacy of
the proposed network, which can obtain higher segmentation
accuracy.

AVAILABILITY OF DATA AND MATERIALS
The datasets used in our experiments are available from
http://segchd.csail.mit.edu/ and https://zmiclab.github.io/
projects/mmwhs/, respectively.
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