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ABSTRACT Electric utilities deploy Conservation Voltage Reduction (CVR) and Volt-VAR Optimiza-
tion (VVO) programs to reduce energy consumption and peak demand by lowering the voltage on the
distribution system. These programs offer a cost-effective way to improve system-wide energy efficiency
and to provide benefits to customers. This paper focuses on conducting a comprehensive study, modeling,
simulation, and comparison to identify the sensitivity of various CVR Measurement and Verification
(M&V) methodologies to various data anomaly issues. A major challenge in evaluating the results of
CVR M&V methodologies is the lack of benchmark load consumption measurement when CVR is active.
Therefore, a benchmark test system is created in this paper to allow access to pre-CVR measurements and
enable analyses on the impact of various data anomaly issues. This benchmark is created based on real
utility data (considered as pre-CVR data), and through a detailed ZIP load modeling and post-CVR data
generation. The studies show that a time-varying ZIP load model, accompanied by a constrained and bounded
Sequential Least-Squares Quadratic Programming (SLSQP) method for parameter identification, is suitable
for precise load modeling. In this paper, SCADA data is used as it shows higher accuracy in load modeling
compared to its corresponding AMI data. Consequently, the sensitivity of multiple commonly used CVR
M&V methodologies, including regression-based, comparison-based, and constant CVR factor, against data
anomaly issues is examined using this benchmark system. The simulation results advocate that regardless of
the methodologies utilized, data anomaly issues cause divergence of the results from their original values,
however, with various degrees of sensitivity.

INDEX TERMS Conservation voltage reduction, data anomaly, distribution network, energy savings, ZIP
load modeling.

I. INTRODUCTION
The steppingstone in Conservation Voltage Reduction (CVR)

is the fact that the permissible voltage band for distribution
consumers can be lowered based on the ANSI standard [1],
[2] or applicable state level voltage bands, without adversely
affecting customer appliances and utility assets. Through
CVR, numerous customer devices draw less power at lower
voltages, resulting in energy consumption reduction and
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savings [3]-[7]. For example, the US Department of Energy
(DOE) reports savings from 1% to 4% based on the prior
implementation of CVR and Volt-VAR Optimization (VVO)
programs [8].

To report energy savings to the public utility commis-
sions or examine the cost-benefit ratio to decide on further
CVR deployment, the energy savings and benefits of CVR
need to be quantified through Measurement and Verification
M&V) [9]-[12]. The M&V of CVR effects has always
been a technical challenge in its application, considering
a lack of benchmark load consumption measurement when
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CVR is active [13]. In addition, distinguishing the changes
in load and energy consumption due to voltage reduction
from other impact factors (e.g., weather) is challenging but is
required for quantifying CVR effects [14]. CVR effects can
be evaluated by a CVR factor, which indicates the relationship
between energy savings and changes in voltage from CVR
operations. The CVR factor is defined as the ratio between
the percentage change in energy and the associated percent-
age change in voltage. Therefore, a substantial amount of
load and voltage data over an extended period and for each
CVR-enabled circuit must be collected to estimate the CVR
factor.

Utilities face several challenges in applying CVR M&V.
One of the main challenges is the discrepancy in data man-
agement. This discrepancy may cause significant divergence
in obtaining CVR impacts and alters CVR calculation results.
Most notably, inadequate and anomalous data can jeopardize
the analysis regardless of the methodology used to derive
the savings or CVR factor. A lack of defined guidelines
on selecting the CVR M&V methodology is another major
challenge in CVR deployment, however there are existing
standardization efforts at IEEE.

Based on our previous benchmarking studies in [15], util-
ities primarily leverage three CVR M&V methodologies as
discussed in the following:

o Comparison-based methods: The comparison-based
methods leverage operational data under CVR treatment)
and non-CVR (control) conditions and accordingly
determine the CVR factor by comparing these
two cases [16]. There are two general categories
for comparison-based methods: correlated-feeder and
correlated-weather. The comparison-based methods are
straightforward and easy to implement [17], [18].

o Regression-based methods: Regression-based methods
model load and nodal voltage as a function of various
factors, including temperature and CVR impact [19].
The CVR factor is calculated by generating this func-
tion using data associated with CVR-on and CVR-off
conditions. Commonly used approaches to estimate
the load model in regression-based methods are linear
and nonlinear regressions. In regression-based methods,
physical interpretations are potentially embedded in the
regression models, so electric utilities can understand
the model behavior based on impact factors [14], [20].

« Simulation-based methods: Simulation-based methods
simulate the load consumption in CVR-off condition
and further use this model within power flow calcula-
tions to determine the difference with measured load
consumption and calculate the CVR factor accordingly.
Simulation-based methods show high precision if the
load models are highly accurate while allowing the
system to run continually [21]-[23].

In addition to the methodologies mentioned above, there
have been cases where utilities have calculated the CVR
factor for a selected number of circuits and used the result,
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commonly an averaged CVR factor, for other circuits in their
service territory.

Considering that there is a lack of benchmark load
consumption measurement during the CVR-on period,
assessment and verification of CVR factor and energy savings
are challenging tasks. This paper aims to conduct a com-
prehensive study, modeling, simulation, and comparison to
identify the sensitivity of various CVR M&V methodologies
to data quality and availability. This paper contains mainly
two parts: first, a benchmark load consumption measurement
is created, and then the sensitivity of various methods in find-
ing CVR effects under various data quality and availability
scenarios is investigated. The rest of the paper is organized
as follows. Section II elaborates the model outline of the
proposed benchmarking studies. Section III explains load
modeling, and Section IV represents CVR M&V method-
ologies. Numerical simulations are presented in Section V.
Section VI concludes the paper.

Il. MODEL OUTLINE
Figure 1 illustrates the outline of benchmark development
and comparative analysis to identify the sensitivity of various
CVR M&V methodologies to data quality and availability
issues. A major challenge in evaluating the results of CVR
M&V methodologies is the lack of benchmark load consump-
tion measurement when CVR is active. In other words, when
CVR is on, the pre-CVR data for that specific time is lost and
there is no simple way to accurately find that missing baseline
data. Various CVR M&V methodologies attempt to estimate
this pre-CVR data, however, there is no concrete way to
evaluate which methodology has estimated the pre-CVR data
more accurately. To resolve this issue, and to ensure that we
have a complete picture of the pre-CVR data before analyzing
various methodologies, we create a benchmark test system
that includes both pre-CVR data (from real utility feeders)
and post-CVR data (generated using ZIP load modeling).
Load modeling is the first step to create the benchmark
load consumption measurement during the CVR-on period.
The goal of load modeling is to create post-CVR data based
on available pre-CVR data. A time-varying ZIP load model is
proposed based on various time resolution scenarios. In terms
of available data to create the benchmark, three datasets, i.e.,
single-customer AMI dataset, aggregated AMI dataset, and
SCADA dataset, are inspected to determine the best dataset
for further studies. The benchmarking is done by creating
post-CVR data. The post-CVR data is used in (1) comparing
the pre- and post-CVR data to find the benchmark CVR factor
and energy savings; and (2) application in various CVR M&V
methodologies to calculate CVR factor and energy savings
from each methodology. Together, these two applications
enable a comparative analysis of the performance of various
CVR M&V methodologies. Comprehensive information on
the overall comparative analysis approach and the use of ZIP
load models in creating post-CVR data is provided in the
following sections.
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FIGURE 1. Benchmark development and comparative analysis.

The studies are conducted in the following order, and based
on the outline in Figure 1:

o In Step 1, one feeder is selected. The power and volt-
age data associated with the feeder are cleaned and
reconstructed to minimize errors in the subsequent steps.
Dataset of the feeder is used as “pre-CVR data” since
no voltage change is yet applied.

« In Step 2, associated ZIP load models are generated.

o Step 3 uses pre-CVR data and the generated ZIP load
models to create the post-CVR data. It is done by apply-
ing a voltage adjustment for selected CVR hours to
pre-CVR data.

o Step 4 records the post-CVR data generated in Step 3.

e Step 5 compares the pre-CVR and post-CVR power
data and finds the benchmark values of the CVR fac-
tor and energy savings. These values are utilized as a
baseline to assess the sensitivity of various CVR M&V
methodologies.

« In Step 6, various methodologies, including regression-
based, comparison-based, and constant CVR factor are
applied to the post-CVR voltage and power data of
Step 4 to estimate CVR factor and energy savings. The
sensitivity of each methodology is evaluated through the
comparison of results out of Step 5 (benchmark) and
Step 6 (estimated).

As both baseline and CVR-on results are available, the sen-
sitivity of each method against data anomaly can be observed.
This paper compares the results based on multiple anomalies,
including: (i) sensitivity to data availability and complete-
ness, i.e., missing data, (ii) sensitivity to bad data and outliers,
and (iii) sensitivity to load shifts.

lll. LOAD MODELING

Load modeling is an essential task in power system analysis,
planning, and control. One of the load modeling applications
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is energy savings assessment from CVR and VVO programs
[24], [25]. Load modeling is used in this paper to create a
benchmark system for CVR M&V studies.

There are two main steps in load modeling. The first step is
to determine and select the mathematical load model structure
that properly represents the load characteristics. Once the
load model structure is selected, the next step is to esti-
mate the load model parameters. The load model structure
explains the mathematical relationship between the power
and voltage of a load (single or aggregate). Load models
are categorized into static and dynamic models, and various
load model structures can be derived from these models [26].
There are various load models in the literature [27]-[30];
however, this paper selects the time-varying ZIP load model,
based on a comprehensive initial study by the authors, as the
most relevant to create the benchmark system. A constrained
and bounded Sequential Least-Squares Quadratic Program-
ming (SLSQP) method is proposed in this paper to estimate
model parameters.

In a practical network, load composition changes over
seasons, days of the week, and hours of the day. In other
words, various factors such as weather, customers’ behavior,
and switching on/off individual loads can impact the load.
As aresult, a fixed static load model may not be sufficient to
model the dynamic nature of the load. Instead, time-varying
load models can be used to capture the time-variant load
behaviors. The time-varying ZIP load model is one of the
most discussed load models in the literature and can be
represented as in (1) and (2) [31].

V(1)\? V(1)
Pzip (t1)=Po () |Zp () (To) +1, (1) <7>+Pp(1) (D

Vo
V()\? 1%
Ozip (1)=0Qp (1) (Zq ®) (%) +1; (1) (%) +Py (t)> )

where ¢ is the time index based on the selected resolution. Vj

is the nominal voltage, and Py () and Qg (¢) are the real and
reactive power at Vj, respectively. Z, (t), I, (t), and P, () are
the real power ZIP coefficients, and Z; (), 1, (¢), and P, (¢)
are the reactive power ZIP coefficients. ZIP coefficients show
the proportion of three parts of the composite load model, i.e.,
constant impedance, constant current, and constant power;
thus, the summation of the ZIP coefficients should be one as
in (3):

Zy )+ 1, (1) + Py (1) =Z, (1) +1, (1) + P, (1) =1 (3)

As the CVR factor calculations are commonly done on
real power, further discussion in this paper will focus on
real power. However, similar studies can be done for reactive
power. The voltage and real power datasets include erro-
neous data points that need to be removed from the data
before employing the CVR M&V methodologies, which is
explained as follows.
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A. DATA PREPARATION

Itis assumed that voltage and real power datasets are recorded
in a proper time interval and correctly time-stamped to be
usable for ZIP load modeling. We follow a cleaning process
as described below:

« Removing non-numeric, missing, and interpolated data
points: The available datasets for voltage and real power
are contaminated with non-numeric, missing, and inter-
polated data points. These data points are thoroughly
identified and removed from the datasets.

o Reconstructing removed data points: The removed data
points mentioned above are reconstructed from volt-
age and real power datasets. To this end, the removed
data points are replaced with the most nearby available
prior/future time-stamped data points.

« Removing outlier values in voltage dataset: Values less
than 0.95 p.u. or above 1.05 p.u. of nominal voltage are
assumed to be voltage outliers. These voltage outliers
and the corresponding values in real power are identified
and removed from the datasets.

« Removing outlier values in real power dataset: Values
greater/less than 5 standard deviations from the real
power mean value are assumed to be real power outliers.
These real power outliers and the corresponding values
in voltage are identified and removed from the datasets.

It should be highlighted that erroneous data leads to losing
data points and reducing the available number of data points
for M&V methodologies, which can adversely impact the
accuracy of the CVR calculations.

B. SCENARIO CREATION

The cleaned datasets prepared in the above step are utilized
to create various scenarios for employing in time-varying ZIP
load model. The scenarios are listed below. Note that the
studies are done for one year.

o Scenario 1: Hour: Yes, Day Type: No, Days: No, Month:
No, Season: No
This scenario will find an hourly function for each hour
of a day. Therefore, there will be one function for the
entire year for each hour. (generating a total of 24 func-
tions)

o Scenario 2: Hour: Yes, Day Type: Yes, Days: No, Month:
No, Season: No
This scenario will find an hourly function for each hour
of weekday/weekend. Therefore, there will be one func-
tion for the entire year for each hour in each day type.
(generating a total of 48 functions)

o Scenario 3: Hour: Yes, Day Type: No, Days: No, Month:
No, Season: Yes
This scenario will find an hourly function for each hour
of a day in each season. Therefore, there will be four
functions for the entire year for each hour. (generating a
total of 96 functions)

o Scenario 4: Hour: Yes, Day Type: Yes, Days: No, Month:
No Season: Yes
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This scenario will find an hourly function for each hour
of weekday/weekend in each season. Therefore, there
will be four functions for the entire year for each hour in
each day type. (generating a total of 192 functions)

o Scenario 5: Hour: Yes, Day Type: No, Days: Yes, Month:
No, Season: No
This scenario will find an hourly function for each hour
of each day of a week. Therefore, there will be an hourly
function for the entire year for each day of a week.
(generating a total of 168 functions)

o Scenario 6: Hour: Yes, Day Type: No, Days: No, Month:
Yes, Season: No
This scenario will find an hourly function for each hour
of a day in each month. Therefore, there will be twelve
functions for the entire year for each hour. (generating a
total of 288 functions)

o Scenario 7: Hour: Yes, Day Type: Yes, Days: No, Month:
Yes, Season: No
This scenario will find an hourly function for each
hour of weekday/weekend in each month. Therefore,
there will be twelve functions for the entire year for
each hour in each day type. (generating a total of 576
functions)

o Scenario 8: Hour: Yes, Day Type: No, Days: Yes, Month:
No, Season: Yes
This scenario will find an hourly function for each hour
of each day of a week in each season. Therefore, there
will be four functions for the entire year for each hour in
each day of a week. (generating a total of 672 functions)

o Scenario 9: Hour: Yes, Day Type: No, Days: Yes, Month:
Yes, Season: No
This scenario will find an hourly function for each
hour of each day of a week in each month. Therefore,
there will be seven functions for the entire year for
each hour in each month. (generating a total of 2016
functions)

Table 1 summarizes the scenarios described above.
According to each scenario, voltage and real power
datasets are created to be used in the load modeling approach.

TABLE 1. Scenario creation (Selected time resolutions are marked with x).

Hour 1{)}, 1}; Day Month Season ﬁﬂgiigﬂs

Scenario 1 X 24

Scenario 2 X X 48

Scenario 3 X X 96

Scenario 4 X X X 192
Scenario 5 X X 168
Scenario 6 X X 288
Scenario 7 X X X 576
Scenario 8 X X X 672
Scenario 9 X X X 2016
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C. CONSTRAINED BOUNDED REGRESSION-BASED

ZIP LOAD MODEL

After selecting the load model structure, data cleaning,
and scenario creation process, the next step is to esti-
mate the load model parameters. Component-based and
measurement-based load models are the two most common
approaches in load model parameter estimation.

One of the most popular methods employed for ZIP load
model parameter estimation is the regression-based least
square method which falls into the measurement-based load
modeling category. In this regard, a regression-based method
is used in this paper for estimating the coefficients of the
time-varying ZIP load model shown in (1). In this model,
Py () is considered as a variable and is estimated alongside
the ZIP coefficients. As a result, the number of parameters
that need to be estimated for real power would be 4 and the
parameter vector is defined as a 4-dimension vector, i.e., 6;,
asin (4).

6 =[Po(1). 2, (1)1, (1) . P, (0)]" “

In addition to the equality constraint associated with
the ZIP load model in (3), parameters in (4) need to
be limited by their proper ranges. To satisfy both the
equality constraint and bounds over the parameters, the
constrained and bounded SLSQP is employed. SLSQP uses
the Han-Powell quasi-Newton method with a Broyden-
Fletcher-Goldfarb-Shanno (BFGS) update of the B-matrix
and an L1-test function in the step-length method. A com-
prehensive discussion on SLSQP can be found in [32].

Sequential quadratic programming supports both equality
and inequality constraints [33], where the equality constraint
is represented in (3), and the inequality ones (bounds) are
defined in (5) and (6):

Py, <zl Il <Py Pl <Pl <PY )

where Pg’ﬁ ; and P%h ; are the lower and upper bounds for Z, (1)

and I, (1), while Pg’ and sz are the lower and upper bounds
for P, (t), respectively. Moreover,

PP < Py (1) (©6)

where Pf)b is a lower bound for Py (¢), where Pg (¢) is bounded
to be greater than or equal to a positive number.

Additionally, for each selected resolution, a set of
time-dependent model parameters would be obtained. The
post-CVR dataset is formed using the obtained model param-
eters, a CVR schedule, and a voltage reduction percentage.
Once post-CVR data is created from the time-varying ZIP
load model, it is used to compare the CVR M&V method-
ologies explained in the following section.

IV. CVR M&V METHODOLOGIES

In this paper, the comparison-based, regression-based, and
constant CVR factor methodologies are considered. Different
utilities have widely used these methodologies in pilot and
program level studies [11], [15]. These methodologies are
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explained below. It should be noted that this paper does not
assess which methodology may be superior to others. Instead,
the purpose of the study is to show how various data anomaly
issues can impact the CVR M&V analysis.

A. COMPARISON-BASED METHODOLOGY

The comparison-based M&V methodologies include
correlated-weather and correlated-feeder approaches. The
correlated-weather approach conducts CVR-on (treatment
group) and CVR-off (control group) testing on a single
feeder to collect the power and voltage measurements for
comparison. To determine the CVR effects resulting from
CVR operation (i.e., different voltage levels), the treatment
and control groups should share similar characteristics such
as temperatures, time of the day, and day of the week. The
correlated-feeder approach conducts CVR-on testing on one
feeder (treatment group), and at the same time, compares its
operation with another feeder (control group) where CVR is
off. The feeders in the treatment and control groups should
be geographically close to each other to experience similar
temperatures. In addition, these feeders should have the same
characteristics such as customer (RCI) mix, load behaviors,
circuit miles, and feeder topologies.

Both comparison-based approaches are straightforward to
implement. Ideally, the correlated-weather approach requires
the treatment and control groups to have the same tem-
perature data. However, the temperature difference always
exists during different testing periods, while the control group
required by the correlated-feeder method may not always
exist. Besides, the feeders need to restrain themselves from
load shifting during the test periods in both approaches.

There are different ways to carry out time-period match-
ing in the correlated-weather approach, with the rule-based
approach being the most common. The rule-based correlated-
weather approach is framed around available CVR-on data,
specifically around the CVR-on temperature mean. To avoid
potential skewing of CVR-on/off data points, all data points
(during CVR-on and CVR-off conditions) outside +/—1
standard deviations of the CVR-on temperature mean are
eliminated. Accordingly, the voltage and power data for each
hour is segmented to calculate hourly mean voltage reduction
percentage (AV %) and power reduction percentage (AP%).
The hourly mean voltage reduction percentage is calculated
as the difference between CVR-off and CVR-on voltages,
divided by the CVR-off voltage. This value is accordingly
multiplied by 100 to represent its percentage value. The
hourly mean power reduction percentage is calculated in a
similar way. Using these hourly voltage and power reduction
percentages, hourly CVR factors are calculated as in (7):

AP% py
AV % py

The above steps are repeated for multiple iterations to
ensure an equal sample size of CVR-on and CVR-off hourly

datasets is achieved since during the hourly data segmenta-
tion, one dataset may contain more data points than the other.

CVRY ,, = (7)
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The balance in sample size is processed randomly so that
all data points can be part of the sample size. The final
CVR factor and voltage reduction will be the mean of these
iterations. This method is denoted as comparison (rule-based)
method.

The optimization-based correlated-weather approach is a
specific type of the comparison-based method that is under
investigation by the authors and is further considered in this
paper. This approach follows the same procedure as explained
above but uses an optimization-based time-period matching
process. In other words, to match every CVR-on time-period
to a CVR-off time-period, in order to identify the pre-CVR
voltage and power values and estimate hourly CVR factor
and energy savings, an optimization model is run. This model
minimizes the weighted temperature, season, day type, and
time of the day difference between CVR-on and CVR-off
time-periods and accordingly determines the best match.
In this paper, this methodology is referred to as comparison
opt-based.

B. REGRESSION-BASED METHODOLOGY
Regression-based methods model the load and/or voltage as
a function of the different predictors or explanatory variables
using multivariable linear regression. These characteristics
include but are not limited to, temperature, season, type of
day, hour of day, and the CVR status. Based on the captured
power and/or voltage measurements and predictors, the coef-
ficients of the corresponding power and voltage functions can
be determined. Next, the counterfactual power and voltage
can be estimated based on these coefficients and contrary
explanatory variables (i.e., CVR status). Then, using the dif-
ference in energy consumption and voltage level, CVR effects
are revealed.

The multivariable linear regression has an advantage con-
sidering the physical meanings are embedded in the regres-
sion model itself, making the model and analysis results
easier to interpret and understand. However, the regres-
sion model can have estimation errors due to inaccurate
CVR effects estimation. In addition, the nonlinear effect of
load consumption may not be captured precisely in linear
regression.

The two functions in (8) and (9) are defined to represent
power and voltage:

Py = a1VOjr + arH; + a3D; + a4S; + asTy ®)
Vie = B1VOis + B2H; + B3D; + BaS; + BsTy 9

where, VO represents the CVR status; H, D, and S denote the
associated indices of time of day, type of day (i.e., weekday/
weekend), and season of the year (i.e., spring, summer, fall,
and winter); and 7 corresponds to the absolute value of
degrees above/below a reference temperature; MW, and V;
designate the feeder-specific power and voltage data; i and ¢
represent the feeder and time indices, respectively.

The CVR factor and energy savings are calculated by first
utilizing (8) and (9) to estimate the coefficients. Using 1 and
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B1 along with the mean CVR-off energy (Pcvroy) and voltage
data (Vcyrefr), voltage reduction (AV %) and power reduc-
tion (AP%) are calculated, respectively, using (10) and (11).
oy

AP% = x 100 (10)
Pcvrog
Bi
AV% = x 100 (11)
Vevrofr

which are accordingly used to estimate the CVR factor as
in (12):
AP%

CVRf =
f AV %

(12)

C. CONSTANT CVR FACTOR METHODOLOGY

Several utilities consider a constant CVR factor as their
system-wide or feeder-wide CVR factor. Based on this con-
stant CVR factor, they accordingly obtain baseline energy and
energy savings [15]. A constant or deemed CVR factor can be
chosen based on the studies conducted on a set of feeders and
their simple or load-weighted average. Once the CVR factor
is obtained from either of the methodologies, it can be utilized
along with the voltage reduction to estimate energy savings
and baseline energy.

V. SIMULATION RESULTS

One feeder from a major electric utility in the U.S., here called
feeder F1 to ensure confidentiality, is selected for this study.
In addition, one single customer from F1 is selected, which is
here called meter M 1. Aggregated AMI data for all customers
in F1 is also calculated for the studies in this section. No DER
is connected to this feeder.

Utilizing the SLSQP method, the SCADA data measured
for feeder F1, AMI data collected from M1, and aggregated
AMI data (i.e., S1) are utilized to create ZIP load models
based on the nine predefined scenarios. The predefined lower
and upper bounds for Z and I coefficients are considered as
—8.48 and +6.85, respectively, while for the P coefficient
these values are to be —2.69 and +4.45, respectively. These
assumptions are made based on the existing literature [34].
To evaluate the performance of the proposed ZIP load model
under these scenarios, the Mean Absolute Percentage Error
(MAPE) index is utilized. Table 2 summarizes the average
and standard deviation of the MAPE for the three datasets
under these scenarios.

Figures 2, 3, and 4 summarize the MAPE results pertaining
to the single-customer AMI, aggregated AMI, and SCADA
data, respectively.

Following is a summary of the major findings of dataset
and scenario selection:

o The simulations are performed using SCADA data,

aggregated AMI data, and single-customer AMI data.
The simulation results associated with the SCADA
data outperform the aggregated AMI as well as
single-customer AMI data. The obtained findings
demonstrate that using SCADA data results in a
better solution, i.e., a smaller MAPE, compared to
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TABLE 2. Summary of MAPE values in considered scenarios.

Single-customer Aggregated AMI
AMI data (M1) data (S1) SCADA data (F1)
Scci::ar Avg Std. Avg Std. Avg Std.
1 34.01 10.66 12.14 1.22 11.56 0.89
2 34.49 12.04 12.01 1.32 11.39 0.91
3 32.64 22.71 6.57 3.05 6.35 2.94
4 33.81 27.65 6.06 3.44 5.85 3.30
5 32.50 11.56 11.96 1.88 11.41 1.44
6 32.53 28.31 6.27 451 5.94 4.15
7 33.80 34.34 6.10 5.24 5.79 4.85
8 30.28 24.77 6.04 3.76 5.75 3.46
9 30.49 31.95 6.08 5.26 5.78 4.88
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FIGURE 2. MAPE range for a single-customer AMI data in studied

scenarios.
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FIGURE 3. MAPE range for aggregated AMI data in studied scenarios.

single-customer AMI data. In addition, SCADA data
leads to more accurate results compared to aggregated

AMI data.

o The simulations show that scenario 8 has the best per-
formance, evaluated based on average and overall range
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of MAPE, amongst all the scenarios studied in this
paper. The average MAPE, when using SCADA data,
is consistent with the existing values in the literature.

Now that the best scenario and dataset are selected
(i.e., Scenario 8 and SCADA data), the sensitivity of three
methodologies, i.e., comparison-based, regression-based, and
constant CVR factor, are investigated under data anomaly
issues. Note that the weather data is available, and the time
resolution associated with weather data is matched with
post-CVR power and voltage data for the selected feeder.
Datasets used in this study have 30-minute resolution, which
is a common practice in utilities. Constant CVR factor is
considered to be 0.8 in this study. The constant CVR factor
of 0.8 is obtained based on the M&V benchmarking studies
performed in [15] and the fact that numerous utilities calcu-
late a similar or close CVR factor to this value.

The proposed testbed is employed to assess the impact
of data anomaly issues on various CVR M&V methodolo-
gies. To evaluate the impact of data anomaly issues on these
methodologies, two metrics including annual CVR factor and
annual energy savings are utilized. The following cases are
studied:

Case 0: Post-CVR data creation

Case 1: Simulations based on no data anomalies

Case 2: Simulations based on missing data

Case 3: Simulations based on bad data (outliers)

Case 4: Simulations based on load shifting

Case 0 creates the post-CVR data for further studies in
this report. Post-CVR data is created by using the available
pre-CVR data and the CVR schedule, and will further pro-
vide the baseline energy, CVR factor, and energy savings
for the studied feeder. In Case 1, the created post-CVR data
is utilized in each methodology to estimate annual CVR
factor and energy savings. No data anomaly is considered
in this case. Cases 2-4 use a modified post-CVR data that
represent a specific data anomaly (missing data, outliers, and
load shift, respectively) to further show the impact of various
data anomaly issues on the methodologies. Note that the
performance of each methodology under data anomaly cases
is studied with respect to its own results in Case 1. In other
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TABLE 3. CVR deployment schedules for the studied feeder.

TABLE 5. Simulation results for Case 1.

Feeder No. of CVR-ON Instants CVR-ON (%) Baseline Annual  Annual Energy
(out of 17520) Feeder Method Energy .
MWh CVRf Savings (MWh)
Fl 8832 50.41 (MWh)
Comparison
(rule-based) 24432.18 0.2107 154.19
TABLE 4. Simulation results for Case 0. Comparison 24518.98 0.3120 239.98
F1 (opt-based)
Baseline Post-CVR Annual Annual Energy Regression 24895.88 0.8280 616.89
Feeder Energy Energy Savings C
CVRf onstant
(MWh) (MWh) (MWh) CVRF 24876.02 0.8000 597.02
F1 24527.13 24278.99 0.3309 248.14

words, this paper does not compare the methodologies against
each other to show the superiority of one over the others;
instead, the sensitivity of each methodology to various data
quality and availability issues is studied.

Case 0: In this case, post-CVR data is generated based
on the available pre-CVR data and the CVR schedule.
Table 3 shows the CVR deployment schedules for the feeder.
As shown in this table, CVR is active for approximately
50% of the year under study. A 4-day-on/4-day-off cycling
is utilized for the feeder.

The baseline energy, post-CVR energy, annual CVR factor,
and annual energy savings associated with this feeder are
calculated and tabulated in Table 4.

Case 1: In this case, baseline energy, annual CVR factor,
and annual energy savings associated with comparison-
based, regression-based, and constant CVR factor method-
ologies are calculated for the selected feeder. Table 5 shows
the simulation results for this case. Moreover, Figure 5 shows
the percentage difference in CVR factor and energy savings
of these three methodologies in Cases 0 and 1. The main pur-
pose of this case is to show how each methodology performs
when no data anomaly is considered in the simulations.

Case 2: In this case, a portion of the data is removed to
see the impact of data anomaly on each methodology. The
result of this case shows the sensitivity against missing data.
A random function generator is used to remove a known
percentage of data. The following cases for missing data are
investigated:

o Case 2A: Missing 5% of data (randomly)

o Case 2B: Missing 10% of data (randomly)
o Case 2C: Missing 20% of data (randomly)
o Case 2D: Missing 30% of data (randomly)

Table 6 shows the post-CVR energy under various missing
data scenarios in Case 2. As expected, by increasing the per-
centage of missing data from Cases 2A to 2D, the post-CVR
energy is reduced.

Tables 7-10 demonstrate the simulation results for Cases
2A-2D, respectively.

As shown in these tables, by considering missing data,
results of each CVR M&V methodology are changed com-
pared to Case 1. In other words, if we have missing data, the
results are different from the ones utilizing the original data.
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FIGURE 5. CVR factor and energy savings differences in Case 1.

Therefore, regardless of the methodology used, missing data
can cause divergence of the results from the results in Case 1.
Figure 6 summarizes the percentage difference in CVR factor
and energy savings of these three methodologies in Case 2.
Figure 6 shows that the regression-based and comparison-
based (opt-based) methods have less overall sensitivity
to missing data while the comparison-based (rule-based)
method is extremely sensitive. However, all methods deviate
from their Case 1 results and this discrepancy occurs regard-
less of the CVR M&V methodology utilized. The results fur-
ther advocate that the number of missing data would impact
the CVR factor and energy savings calculations, however
the methodologies are able to account for the missing data
and find the values although with some errors. However,
to achieve more accurate results, the gaps created because of

TABLE 6. Post-CVR energy under various missing data scenarios in Case 2.

Missing Data Post-CVR Energy (MWh)
Case 0 0% 0 24278.99
Case 2A 5% 876 23073.61
Case 2B 10% 1752 21842.97
Case 2C 20% 3504 19420.16
Case 2D 30% 5256 16980.67
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TABLE 7. Simulation results for Case 2A (5% missing data).

Baseline
Annual Annual Energy
Feeder Method Energy .
(MWh) CVRf Savings (MWh)
Comparison
(rule-based) 24411.18 0.1718 125.74
Comparison 24527.03 03119 239.31
F1 (opt-based)
Regression 24902.96 0.8255 615.24
Constant
CVRF 24884.95 0.8000 597.24

TABLE 8. Simulation results for Case 2B (10% missing data).

Baseline

Annual Annual Energy
Feeder Method Energy .
(MWh) CVRf Savings (MWh)
Comparison
(rule-based) 24392.46 0.1724 125.83
Comparison
. (opt-based) 24509.60 0.3119 240.07
Regression 24883.58 0.8246 614.05
Constant
CVRF 24866.32 0.8000 596.79

TABLE 9. Simulation results for Case 2C (20% missing data).

Baseline

Annual  Annual Energy
Feeder Method Energy .
(MWh) CVRf  Savings (MWh)
Comparison
(rule-based) 24435.59 0.2207 161.57
Comparison 5451955 03157 24330
Fl (opt-based)
Regression 24885.89 0.8217 611.94
Constant
CVRF 24870.85 0.8000 596.90

TABLE 10. Simulation results for Case 2D (30% missing data).

Baseline Annual Annual Energy
Feeder Method Energy .
(MWh) CVRf Savings (MWh)
Comparison 145493 02234 163.49
(rule-based)
Comparison
o (opt-based) 24496.12 0.3072 236.94
Regression 24877.37 0.8304 618.20
Constant
CVRF 24855.71 0.8000 596.54

the missing data may need to be carefully and systematically
filled out.

Case 3: In this case, bad data (outliers) is added to selected
times to investigate the performance of each methodology
under data anomaly issues. The data cleaning process does
not detect this bad data. The outlier data is generated by
increasing the original data by 40% of its value. If the
increased value exceeds 110% of the peak demand, it is
reduced to prevent detection by the cleaning process. The
following cases are investigated:
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FIGURE 6. CVR factor and energy savings differences in Case 2.

o Case 3A: Adding 1% of bad data (randomly): 1% of
power data is randomly increased by 40% of its original
value.

o Case 3B: Adding 2% of bad data (randomly): 2% of
power data is randomly increased by 40% of its original
value.

Table 11 shows the post-CVR energy under various bad
data scenarios in Case 3.

Tables 12 and 13 show the simulation results for Cases 3A
and 3B, respectively.

As shown in Tables 12 and 13, by considering bad data,
the results of each CVR M&V methodology are changed
compared to Case 1; meaning if we have bad data, the results
are different from the ones utilizing the original data. There-
fore, bad data scenarios impact the results of all three studied
methodologies. The percentage differences in CVR factor
and energy savings of the three methodologies are shown in
Figure 7 for Case 3.

As shown in Figure 7, it can be observed that there is a dis-
crepancy in the results, and this discrepancy occurs regardless
of the CVR M&V methodology employed. However, this dis-
crepancy is more apparent in comparison-based (rule-based)
and constant CVR factor methods.

Case 4: In this case, the impact of load shifting on the
methodologies is investigated. The result of this case shows
the sensitivity against load shifting and a sudden change of
the load. The load shift is generated by increasing the original
data by 150% of its value. If the increased value exceeds
110% of the peak demand, it would be increased by 110% to

TABLE 11. Post-CVR energy under various bad data scenarios in Case 3.

Outlier Post-CVR Energy (MWh)
Pct Type F1
Case 0 0% N/A 24278.99
Case 3A 1% randomly 24355.41
Case 3B 2% randomly 24431.43
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TABLE 12. Simulation results for Case 3A (1% bad data).

TABLE 14. Post-CVR energy under various load shifting events in Case 4.

Baseline Annual Annual Energy
Feeder Method Energy .
(MWh) CVRf Savings (MWh)
Comparison
(rule-based) 24491.64 0.1861 136.57
Comparison
. (opt-based) 24615.29 0.3363 259.88
Regression 24961.75 0.8117 598.94
Constant
CVRF 24954.32 0.8000 598.90
TABLE 13. Simulation results for Case 3B (2% bad data).
Baseline
Annual  Annual Energy
Feeder Method Energy .
(MWh) CVRf  Savings (MWh)
Comparison
(rule-based) 24618.22 0.2537 187.35
Comparison
. (opt-based) 24688.88 0.3323 257.45
Regression 25061.16 0.8397 629.74
Constant
CVRF 25032.20 0.8000 600.77

prevent removal by the cleaning process. The following load
shift events are studied:

o Case 4A: Load shifting in 10% of the year (continu-
ously): 10% of power data is consecutively increased by
150% of its original value.

o Case 4B: Load shifting in 20% of the year (continu-
ously): 20% of power data is consecutively increased by
150% of its original value.
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FIGURE 7. CVR factor and energy savings differences in Case 3.

Table 14 shows the post-CVR energy under various load
shifting events in this case. As expected, by increasing the
percentage of load shifting, the post-CVR energy is accord-
ingly increased.

Tables 15 and 16 demonstrate the simulation results for
Cases 4A and 4B, respectively.

As shown in Tables 15 and 16, by considering load shifting
in the original data, results of each CVR M&V methodology

157212

Load Shifting Post CVR Energy (MWh)
Pct Type F1
Case 0 0% N/A 24278.99
Case 4A 10% continuously 25403.07
Case 4B 20% continuously 26485.07

TABLE 15. Simulation results for Case 4A (10% load shifting).

Baseline

Annual  Annual Energy
Feeder Method Energy .
(MWHh) CVRf Savings (MWh)
Comparison 25785.13  0.4947 382.05
(rule-based)
Comparison 2557635 0.2154 173.28
Fl (opt-based)
Regression 26202.59 1.0196 799.52
Constant
CVRF 26027.74 0.8000 624.67

TABLE 16. Simulation results for Case 4B (20% load shifting).

Baseline Annual Annual Energy
Feeder Method g\‘;{‘:{/%l}; CVRf  Savings (MWh)
(Crzizplj‘;;se‘;‘)‘ 2691529 0.5381 43325
Comparison 26749.03 0.3132 263.96
Fl (opt-based)
Regression 27065.73 0.7169 580.66
Cgf\l/s;fpt 2713634 0.8000 651.27
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FIGURE 8. CVR factor and energy savings differences in Case 4.

are changed compared to Case 1; meaning if we have load
shifts, the results are different from the ones utilizing the
original data. Load shifting events impact the results of all
studied methodologies.

Figure 8 demonstrates the difference between the annual
CVR factor and energy savings in Case 4. By analyzing
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the sensitivity of comparison-based, regression-based, and
constant CVR factor methodologies against 10% and 20%
load shift events, a deviation from the original results in
Case 1 can be seen. While this deviation is more evident in the
comparison-based (rule-based) method, we conclude that this
deviation occurs regardless of the CVR M&V methodology
employed.

VI. CONCLUSION

This paper conducted a comparative study to identify the
sensitivity of various CVR M&V methodologies to data
quality and availability, including missing data, outliers,
and load shifts. Three widely-used CVR M&V methodolo-
gies, i.e., comparison-based, regression-based, and constant
CVR factor, were employed to investigate the sensitivity
of these methodologies against data anomaly issues. The
optimization-based correlated-weather approach proposed by
the authors was also studied in this paper which showed
promising results against data anomaly issues. Numerical
simulations based on real utility data captured from CVR
deployed feeders demonstrated that regardless of the method-
ology used, missing data, outliers, and load shift events
impact the CVR factor and energy savings calculations and
cause divergence from baseline scenarios utilizing original
data. This paper concludes that: (1) electric utilities could
reap the benefits of the studies conducted in the paper to
determine how sensitive each CVR M&V methodology is
against data anomaly issues and accordingly decide on the
best way forward in methodology selection and dealing with
various data anomaly issues; and (2) since these data anoma-
lies are leading towards different results by utilizing various
methodologies, a standard approach is required to define data
management processes, including data collection, cleaning,
and reconstruction. There is an ongoing effort within the
IEEE to develop this standard, which will also be investigated
in our future work.
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