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ABSTRACT The segmentation of piecewise polynomial signals arises in a variety of scientific and
engineering fields. When a signal is modeled as a piecewise polynomial, the key then becomes the detection
of breakpoints followed by curve fitting and parameter estimation. This paper proposes HOPS, a fast High-
Order Polynomial Segmenter, which is based on `0-penalized least-square regression. While the least-
squares regression ensures fitting fidelity, the `0 penalty takes the number of breakpoints into account.
We show that dynamic programming can be applied to find the optimal solution to this problem and that
a pruning strategy and matrix factorization can be utilized to accelerate the execution speed. Finally, we
provide some illustrative examples, and compare the proposed method with state-of-the-art alternatives.

INDEX TERMS Piecewise polynomials, breakpoint detection, segmentation, curve fitting, sparse modeling.

I. INTRODUCTION
Many real-world signals can be modeled as piecewise poly-
nomials. For example, in bioinformatics, read depth signals
from next generation sequencing (NGS), and log2 ratio signal
from comparative genomic hybridization (CGH) are approx-
imated as piecewise constants (polynomials of zero order)
for genomic copy number variation (CNV) detection [1], [2].
In geoscience, the global temperature is modeled as a
piecewise linear (polynomial of order one) to study global
warming [3]. In nanotechnology, the force curve of an unfold-
ing protein measured during the retraction phase of atomic
force microscopy (AFM) can be modeled as a set of worm-
like chains (WLC) or freely jointed chains (FJC) [4], which
can be approximated as piecewise parabolas (polynomials of
order two).

The analysis of piecewise polynomials consists of two
main problems: segmentation and fitting. Most applications
focus on the fitting problem. For the aforementioned AFM
force curve, each piece is fitted with a WLC model; then,
the contour length can be estimated, as this is an important
property of proteins. It is obvious that the quality of curve
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fitting is highly dependent on segmentation, and a model that
can combine segmentation with fitting is desirable.

Several signal processing tools can be applied, and we
classify them into two categories: optimal and nonoptimal
methods.

A. NONOPTIMAL METHODS
Spline [5], [6] is an elegant method for fitting signals with
piecewise polynomials, however, knots must be known in
advance. Therefore, most spline-based methods perform
segmentation before fitting. Additionally, spline enforces
consistency regarding the joint point [7] constraints,
and piecewise-constant signals are excluded under this
framework.

Circular binary segmentation (CBS) [8] employs statistical
testing to detect breakpoints in a binary search manner, and
this is indeed a greedy method with N log(N ) computational
complexity.

The change points (CP) model [3] is a parametric model
used to fit piecewise linear signals, and it is solved by utiliz-
ing a Markov chain Monte-Carlo (MCMC) simulator. Since
MCMC is involved, asymptotic optimality is achieved.

In [9]–[11], the authors proposed an `21-norm penalized
least-squares cost function to smooth piecewise polynomials.
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The `1 trend filter [7] is a method using the famous total
variation (TV) [12] and `1-norm based approaches, but it
is confined to piecewise linear signals. In [13], the authors
extended the `1 trend filter to high-order polynomials.

Even though the solution of an `1-norm penalized or con-
strained least-squares objective is guaranteed by the least
absolute shrinkage and selection operator (LASSO) [14] and
least angle regression (LARS) [15], these methods are nonop-
timal since `1-norm is a relaxation of the `0-norm for the
purpose of avoiding an NP-hard problem. Some conditions
(e.g., the restricted isometry property (RIP), mutual coher-
ence condition (MCC), strictly diagonally dominant condi-
tion (SDDC), etc. [16], [17]) are needed to guarantee that the
solution supports of the `0-norm and `1-norm are consistent.
In addition, the `1-norm penalizes the amplitudes of nonzero
entries, yielding biased estimates [18].

The Hodrick–Prescott filtering technique [19] also falls
in the same category; it uses the `2-norms of the TV of
the second-order derivatives to smooth piecewise linear sig-
nals. The finite-dimensional piecewise continuous (FPC) sig-
nals [20] was proposed, and discontinuities were detected by
exploiting sparsity hidden in a tight-dimensional representa-
tion space.

B. OPTIMAL METHODS
By regressing with the `0-norm, optimal segmentation can
be expected. The authors in [21] proposed a brute-force
search method for optimal solutions, but the computa-
tional complexity was extremely high for signals of large
sizes. The researchers in [22] employed dynamic program-
ming (DP) [23] to search a given segmentation pattern.
In [24], partition regression was proposed, and the compu-
tational complexity and optimality of DP were also discussed
comprehensively. In [25], the authors proposed a weak string
model, which is a truncated `2-norm penalized least-squares
model for smoothing piecewise signals. Based on the model,
a DP-based fast optimization algorithm was also proposed.

The pruned exact linear time (PELT)method [26] is a prun-
ing strategy by which a portion of unnecessary computations
can be avoided, and hence, its computational complexity is
almost linear in most cases. A similar pruning strategy can
be found in [27]. However, PELT approach is dedicated to
piecewise constant signals, and optimal segmentation algo-
rithm for high-order polynomial is needed, which is therefore
the focus of the current paper.

The paper is organized as follows: in Sec. II, a joint
segmentation and fitting model is proposed (Subsec. II-A),
followed by a computation of the fitting cost (Subsec. II-B).
In Sec.III, an optimization algorithm based on preexisting
dynamic programming is presented (Subsec. III-A), fol-
lowed by its initialization (Subsec. III-C) and implementation
issues (Subsec. III-D). In Sec. IV, the proposed method is
compared with alternative methods (Subsec. IV-A), analyzed
in terms of its computational complexity (Subsec. III-E) and
tested on real atomic force microscopy data (Subsec. IV-C).
In the appendix, we present a detailed derivation of the

iterative calculation of the fitting cost (A) and the usage of
Hausdorff distance (B).

II. MODELLING
A. PIECEWISE POLYNOMIALS AND BREAKPOINTS
A piecewise polynomial y = [y1, y2, . . . , yN ]T is a signal
with K consecutive pieces (or segments) that are separated
by K − 1 breakpoints (or discontinuities) v1, v2, . . . , vK−1
(v0 = 0, vK = N are also introduced for convenience). The
k-th segment (k = 1, 2, . . . ,K ) is denoted as Ik = {vk−1 +
1, vk−1 + 2, . . . , vk}, which obeys P-th order polynomial:

yi =
P∑
p=0

cp,k (i− vk−1)p, ∀ i ∈ Ik , (1)

where cp,k is the p-th polynomial coefficient of the k-th piece,
and the k-th breakpoint is the boundary where the polynomial
coefficients of k-th and k + 1-th pieces change, i.e., cp,k
and cp,k+1.

Following the framework of analyzing piecewise dis-
tributed signals [28], the segmentation and fitting of such
kinds of signals can be formulated as

min
C,I

{
K∑
k=1

ε(yIk |ck )+ λK

}
, (2)

where yIk is the k-th piece of y, i.e., a sub-vector of y with
indices Ik , ck = [c0,k , c1,k , . . . , cP,k ]T ∈ R

P+1, which
is the collection of P + 1 polynomial coefficients of the
k-th piece, C = [c1, c2, . . . , cK ] ∈ R(P+1)×K is the col-
lection of K coefficients vectors, I = {I1, I2, . . . , IK }
is the segmentation scheme, ε(yIk |ck ) is the fitting error
(given ck ) or the negative log-likelihood chosen as the least-
squares fitting error in this paper, and λ is the penalty for
each introduction of a piece. Therefore, a larger/smaller λ
yields fewer/more segments and hence controls the trade-off
between fitting fidelity and smoothness. For a list of strategies
on turning λ, interested readers can refer to [28].

In this paper, we refer to term segmentation as the esti-
mation of I and to term fitting as the estimation of C.
We also note that K is defined as the number of pieces
(number of breakpoints plus one), so it is a variable that
depends on the set I and is in fact the cardinality of this
set. As a result, Eq. (2) can be viewed as a least-squares
regression penalized by an `0-norm, which takes the number
of breakpoints into account.

Since the estimation for segmentation (I) and fitting (C)
are coupled in (2), further simplification is needed. In fact,
if the best segmentation I is known, the estimation of C can
be decoupled into K subproblems, and each can be solved
separately (which will be shown later in Subsec. II-B). As
a result, problem (2) can be reformulated as the following
segmentation problem:

min
I

{
K∑
k=1

ε(vk−1 + 1, vk )+ λK

}
, (3)
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where ε(vk−1 + 1, vk ) is the least-squares fitting error of the
k-th segment, whose computation will be presented in the
next subsection.

B. COMPUTATION OF THE FITTING ERROR ε(u, v )
1) DIRECT COMPUTATION
Without loss of generality, suppose that a segment starts
at u and ends at v, (v > u + P) and is denoted by z =
[yu, . . . , yv]T ∈ Rl , where l = v − u + 1 is the length of
segment z. For the sake of simplicity, the dependency of k is
omitted in the following derivation. The least-squares fitting
residual of z with a P-th order polynomial yields:

ε(u, v) , ε(z|c) = ‖z− Vc‖2 (4)

where c = [c0, . . . , cP]T ∈ RP+1 is the fitting coefficient
vector, and V ∈ Rl×(P+1) is a Vandermonde matrix [29]
([V ]ij = ij−1) which reads

V =


1 1 12 · · · 1P

1 2 22 · · · 2P

1 3 32 · · · 3P
...

...
...

. . .
...

1 l l2 · · · lP

 . (5)

Denoting the inverse Gram matrix as G = (VTV )−1 ∈
R

(P+1)×(P+1) and β = VT z ∈ RP+1, it is easy to obtain

c = V+z = Gβ

z∗ = Vc = VGβ

ε(u, v) = ε(z|c) = zT z− z∗T z∗

= zT z− βTGβ, (6)

where V+ = (VTV )−1VT is the Moore–Penrose pseudo
inverse of V .

2) ITERATIVE COMPUTATION
Since the aforementioned direct method computes the ε’s
separately, and the computation of a single ε(u, v) needs
(O( 52 l

2)) flops [30] due to utilizing the Vandermonde struc-
ture, the computational complexity of obtaining all ε’s is
approximately O( 14N

4), (
∑N

u=1
∑N

v=u+P+1
5
2 (v − u + 1)2),

which is burdensome. In this paper, we introduce a speedup
method, and the idea is to calculate ε(u, v + 1) based on
ε(u, v) by iteratively updating a few matrices and vectors.
As a result, the total computational complexity is reduced to
O( 32 (P+2)

2N 2) for theworst case. The detailedmathematical
derivation is shown in Appendix A, and the detailed compu-
tational complexity is shown in Subsec. III-E.

III. OPTIMIZATION ALGORITHM
A. PREEXISTING ALGORITHMS
With all fitting errors ε in hand, the optimization problem (3)
involves finding the best segmentation among all possibil-
ities. A well-known search method is so-called dynamic

TABLE 1. Algorithm I: basic dynamic programming.

TABLE 2. Algorithm II: Algorithm I with pruning.

programming [31], which solves the following problem iter-
atively [22], [23]:

φ(v+ 1) = min
16u6v

[φ(u)+ ε(u, v)]+ λ, (7)

where φ(v) is the minimal criterion value of only the first v−1
points of y under the assumption that v−1 is a breakpoint. The
pseudo code of this method is shown in Tab. 1 as Algorithm I,
where u∗ is the optimizer of problem (7), q is a set of vectors,
with q{v} a vector which stores the obtained breakpoints of
only the first v−1 points of y under the assumption that v−1
is a breakpoint. The outputs φ(N+1) and q{N+1}−1 are the
optimal objective value and set of breakpoints of problem (3),
respectively.

Algorithm I provides the optimal solution to this problem,
but since it explores all ε(u, v) with u + P < v, the number
of ε to be computed is quadratic with respect to the signal
length N . Early works discovered that under a specific con-
dition (e.g., Theorem 3.1 of [26], Algorithm 3 of [27]), some
indices u are inutile and hence are pruned to avoid computing
large amounts of ε(u, v) in successive iterations. The benefit
of this discovery is that the optimality of the solution is main-
tained meanwhile the efficiency of computation is improved.
To incorporate this pruning strategy, a set S is introduced to
store only these utile indices:

S = {u|1 6 u 6 v, φ(u)+ ε(u, v) < φ(v+ 1)}. (8)

As a result, the exploration space of ε in each iteration
(problem (7)) is reduced from 1 6 u 6 v to u ∈ S , which
may involve up to linear complexity with respect to the signal
length N in many cases [26], [27]. The pseudocode of this
improved method is shown in Tab. 2 as Algorithm II. In fact,
if the pruning step is disabled in Algorithm II, or the insert
step is modified to S = [1 : v+1]), Algorithm II degenerates
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TABLE 3. Algorithm III: modified initialization and definition of ε.

TABLE 4. Algorithm IV: HOPS.

to Algorithm I; if P = 0, Algorithm II degenerates to the
PELT method.

To clarify the amount of ε being explored, let us define a
matrix E = [ε(u, v)] ∈ RN×N , where ε(u, v) is the least-
square fitting error from data point yu to yv, and has been
calculated explicitly at the termination of execution.

Several typical E’s are demonstrated in Fig. 3, in which
black is used to illustrate the elements of E being calculated.
Since Algorithm I explores all ε(u, v) with u + P < v, the
black region of E is an upper triangle. For the PELT method,
if ε(u0, v0) violates the condition in (8), u0 is removed from
set S, implying that it is not necessary to compute ε(u0, v) for
v > u0, forming a horizontal white line. As a result, the black
region obtained by the PELT method is a pileup of irregular
horizontal lines, which are effective computations.

B. PROPOSED ALGORITHM
Here we introduce the proposed high-order polynomial seg-
menter (HOPS), which uses dynamic programming to solve
problem (3). The HOPS combines both the iterative compu-
tation of ε and the pruning strategy of S, and hence it can
segment piecewise polynomials of arbitrary order efficiently.
The pseudo code of the HOPS is listed in Tab. 4.

Subsec. II-B and Appendix A provide the detailed deriva-
tion of the iterative computation of ε(u, v + 1) based on
ε(u, v). According to (25), ε(u, v + 1) depends on ε(u, v)
from the previous iteration, the new data point yv+1, and
the three intermediate variables: ρ, β, and γ . The last
three variables further depend on α and G, which are
described as follows. (a) according to (16), α depends
only on the length of the analyzed segment; (b) according

to (17), γ depends on G from the previous iteration and the
value of α computed in (16); (c) according to (18), ρ depends
on the value of α computed in (16) and that of γ from (17);
(d) according to (21), β depends on β from the previous
iteration, the value of α computed in (16), and the new data
point yv+1; (e) according to (22), G depends on the previous
iteration, the value of γ computed in (17), and the value of ρ
from (18).

C. INITIALIZATION
The initialization process is nontrivial when P 6= 0. Accord-
ing to the common definition of φ(v) (the minimal criterion
value for the first v − 1 points), φ(1 : P + 1) is initialized
with φ(1 : P+ 1) = [0, λ, . . . , λ] as shown in Tabs. 1 and 2.
q and S are initialized in the same manner. This initialization
method makes sense but is redundant.

In fact, if we redefine φ(v) as the minimal criterion value
of the first v− 1+P points, an alternative and more compact
initialization method is φ(1) = 0, q{1} = [ ],S = [1].
Tab. 3 shows the modified pseudocode of Tab. 2 with an
alternative initialization and definition of φ. Note that since
the alignment of φ and ε is destroyed, the index of φ
(S and q)) should be modified by following a pointwise
function ‘md,’ which is defined as

md(t) =


1, t = 1;
2, 2 6 t 6 P+ 1;
t − P, t > P+ 1.

(9)

Note that when P = 0, both initialization methods are
identical.
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D. IMPLEMENTATION
In each iteration of the proposed algorithm, a batch of ε’s
(a column in E) are calculated. For each ε, five intermediate
variables α, γ , ρ,β, and G should be computed or loaded
from the previous iteration. Therefore, an efficient data struc-
ture is needed to store these variables for further operation.

More specifically, to calculate ε(u, v + 1) from ε(u, v),
∀u ∈ S, Appendix A shows that six sets (five for the interme-
diate variables, plus one for ε) are needed, and each set has
s elements, where |·| is the cardinality of a set. Therefore, we
introduce four matrices A ∈ R(P+1)×s,0 ∈ R(P+1)×s,B ∈
R

(P+1)×s, and � ∈ R(P+1)2×s and two vectors e ∈ Rs and
ρ ∈ Rs to store all the elements of the sets of α, γ , β, G,
ε, and ρ in Appendix A, respectively. Note that each column
of � is a column-wise vectorized version of matrix G.

Here A is a Vandermonde matrix, whose columns can be
calculated simply from (16), and the segment length l of each
column is calculated from the elements in S and v. More
specifically,

A = [α1,α2, . . . ,αs], (10)

where αj = [1, lj, l2j , . . . , l
P
j ]
T , 1 6 j 6 s, and

lj = v− S(j)+ 3.
According to (21), updating of B reads

B+ = B+ yv+1A. (11)

According to (18), calculation of ρ reads

ρ = 1s � (1s + (0T � AT )1P+1), (12)

where � and � represent pointwise division and multiplica-
tion (the Khatri-Rao product); 1s and 1P+1 are all-one vectors
of length s and P+ 1, respectively.
The computation of 0 is complicated, and it reads as

0 = sum(�� (A⊗ 1P+1)), (13)

where ⊗ is the Kronecker product. This formulation should
be understood as the following steps: first, according to (17)
we calculate �� (A⊗ 1P+1), yielding a matrix of size (P+
1)2×s; then, we reshape this matrix to a (P+ 1)× (P+ 1)×s
three way tensor; and finally, we sum the tensor across the
second dimension to obtain the matrix 0 of size (P + 1)× s.

According to (22), the updating of � reads

�+ = �− [(0 ⊗ 1P+1)diag(ρ)]� (1P+1 ⊗ 0), (14)

where diag(ρ) is the diagonal matrix of vector ρ.
At last, according to (25), updating of e reads

e+ = e+ ρ � (yv+11s − (0T � BT )1P+1)2, (15)

where the square should be understood as pointwise
operation.

The pseudocode of the HOPS is shown in Tab. 4. V0 is the
initial matrix of V , i.e., l = P + 1 in (5), so it is a definition
of the Vandermonde matrix V ; G0 is the initial vector of
matrix G, i.e., the vectorized version of G with l = P + 1.
The outputs φ(N − P+ 1) and q{N − P+ 1} + P− 1 are the

TABLE 5. The computational complexity of variables in an iteration of
HOPS algorithm.

optimal objective value and set of breakpoints of problem (3),
respectively.

In summary, since the HOPS algorithm relies on a set S to
prune unnecessary calculations of ε, and uses four matrices
and two vectors to execute the necessary calculation of ε iter-
atively, one can achieve improved computational efficiency.

E. COMPUTATIONAL COMPLEXITY
Since the above pruning strategy is incorporated into the
HOPS, the computational complexity varies according to the
number of breakpoints and the value of λ. The best case
occurs when breakpoints are everywhere, or λ is small; the
worst case occurs when no breakpoint is detected, or λ is
large. In the best case, pruning occurs during each iteration
and the setS is a singleton; hence the cardinality s is always 1.
In the worst case, no index is pruned from the setS, and hence
the cardinality s increases from 1 to N − P.
Tab. 5 lists the computational complexities for computing

the variables in an iteration (|S| = s) of the HOPS algorithm.
Hence, in the worst case, the total computational complexity
of the HOPS is upper

∑N−P
s=1 [3(P + 1) + 4](P + 1)s ≈ 3

2
(P + 2)2N 2, which is quadratic with respect to the signal
length N . In the best case the computational complexity is
3(P+ 2)2N , which is linear with respect to N .

IV. RESULTS
A. SEGMENTATION PERFORMANCE
1) REPRESENTATIVE METHODS
Since many methods have been developed to segment piece-
wise polynomial signals, we selected two representatives, one
for P = 0 and another for P = 1:
• The `1-penalized total variation [2], [32], is a hybridized
model that utilizes total variation [12] to segment and fit
piecewise constant signals. The model was first trans-
formed into a standard LASSO problem by the formulae
in [33], and then solved by the LASSO solver solveLasso
of SparseLab at http://sparselab.stanford.edu/. In the fol-
lowing simulations, the results of this method are labeled
with L1TV.

• The `1 trend filter by Kim et al. [7], uses the `1-norm
to penalize the second-order differences for recovering
piecewise linear signals. The package l1_tf was down-
loaded from https://web.stanford.edu/~boyd/l1_tf/, and
it is an MATLAB implementation of the interior-point
method. In the following simulations, the results of this
method are labeled with L1TF.
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2) SIMULATION I: PIECEWISE CONSTANT SIGNALS (P = 0)
This simulation aimed to test the performance of the HOPS
with regard to the segmentation of piecewise constant signals
(P = 0) and to compare it with that of L1TV. Since the HOPS
extends the PELT method to high-order polynomials, both
always obtained the same results in this simulation, yielding
overlapping curves; hence, the results of the PELT method
are not shown.

First, a piecewise constant signal of length N = 1000 was
simulated, with break points following a Bernoulli-Gaussian
distribution [34], i.e., the Bernoulli probability of a break-
point was 0.01, and its amplitude followed a normal distri-
bution. Specifically, i.i.d. Gaussian noise was added, with
mean 0 and standard deviation 0.1. A typical signal is shown
in Fig. 1(b) as a black dotted curve.

Then, the signal was segmented with both the HOPS and
L1TV methods, with 9 values of penalty parameters from
1e-2 to 1e2 with common ratio of 1e 0.5. Typical fitting and
detection results are demonstrated in Fig. 1(b) and (c), with
1e-0.5 as the value of the penalty parameter. This example
shows that both the HOPS and L1TV reconstruction pre-
served the piecewise characteristics of the original data, but
L1TV tended to yield several minor breakpoints with small
amplitudes.

To quantitatively evaluate the segmentation performance,
theHausdorff distances between the ground-truth breakpoints
and detected breakpoints were evaluated. For the detailed
calculation of the Hausdorff distance, readers are referred to
Appendix B. Fig. 1 (a) shows the average Hausdorff distance
for 100 Monte-Carlo replications with respect to the penalty
parameters. It is shown that the HOPS achieved better per-
formances than L1TV in terms of breakpoint detection when
the penalty parameter was not too small. Panels (b) and (c)
are the results corresponding to the lowest points (starts) in
Panel (a).

3) SIMULATION II: PIECEWISE LINEAR SIGNALS (P = 1)
In this subsection we tested the performance of HOPS on
piecewise linear signals, and compared it with that of the
`1 trend filter developed by Kim et al. [7].
One hundred piecewise linear signals whose length is 1000

were simulated, and breakpoints were distributed uniformly
along the loci with a Bernoulli probability of 0.005. For each
segment of a signal, both the intercept and the slope followed
a Gaussian distribution; for each signal, i.i.d. Gaussian noise
was added. All three Gaussian distribution (intercept, slope,
and noise) had means of zero, and they had standard devia-
tions of 1, 0.001, and 1, respectively.

The 100 simulated piecewise linear signals were processed
with the HOPS and `1 trend filter following the same pro-
cess as in Simulation I, and the results are shown in Fig. 2.
Panel (a) shows that the HOPS achieved slightly better per-
formances than those of the `1 trend filter in terms of the
Hausdorff distance metric, and similar performances in terms

FIGURE 1. Results of Simulation I: piecewise constant signals (P = 0).
(a) is the average Hausdorff distance with respect the penalty parameters
(λ of HOPS, and µ of the L1TV). (b) demonstrates a typical signal and its
recoveries at the stars in (a). (c) demonstrates the corresponding
breakpoints detected.
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FIGURE 2. Results of Simulation II: piecewise linear signals (P = 1). (a) is the average Hausdorff and Euclidean distance with respect the penalty
parameters (λ of HOPS, and µ of L1TF). (b) demonstrates a typical signal and its recoveries at the stars in (a). (c) demonstrates the corresponding
breakpoints detected.

of Euclidean distance. The blue star is the lowest point on
Euclidean distance curve instead of on the Hausdorff dis-
tance curve, providing larger penalty parameters and fewer
breakpoints. The corresponding signals and breakpoints are
displayed in panels (b) and (c). The conclusion is the same
as that in Simulation I: the `0 norm can achieve higher
sparsity level for the breakpoints than that obtained using the
`1 norm, which tends to detect more breakpoints with smaller
amplitude.

B. COMPUTATIONAL PERFORMANCE
In this subsection, comprehensive studies were conducted to
test the computational performance of the HOPS. TheMatlab
codes were run on a desktop with an Intel i7-3770 processor
and 32 GB of memory. The stopwatch commands ‘tic’ and
‘toc’ were used to record the execution time.

1) SIMULATION III: COMPUTATIONAL BEHAVIOR OF E
First, a signal y of length 100 with only i.i.d. Gaussian noise
was generated, and each point obeyed a normal distribution
(zero mean and unit variance). Then, this signal was pro-
cessed with P = 0 and λ = 100, which is a relatively large
penalty such that no breakpoint should have been detected.
Fig. 3 panel (a) demonstrates the elements of matrix E being
explicitly calculated (in black). Note that since no pruning
event occurred, E wan an upper triangle.

Second, a breakpoint of amplitude 5 was inserted at loca-
tion 50, yielding y, which is a step signal whose first (y1 to
y50) and second (y51 to y100) halves had means of 0 and 5,
respectively. y was also processed with λ = 100, and E is
shown in penal (b). Note, since a pruning event happened at
location 50, a white square appeared, and hence the compu-
tational burden was reduced by almost half.

A breakpoint of amplitude −10 was further inserted at
location 80, and the resultant E is shown in panel (c). It is
shown that the computational burdenwas further reduced by a
quarter. Panels (d) and (e) used the same data as panels (a) and
(b) respectively, but with λ = 1, which is a relatively small
penalty value such that breakpoints were detected almost
everywhere. Note that (d) and (e) are close, but not the same.
In addition, (f) used the same data from (c) but with λ = 10 to

demonstrate the evolution ofEwith respect to λ.We conclude
that as λ increases (or the number of breakpoints decreases),
the computational burden increases.

2) SIMULATION IV: COMPUTATION TIME WITH RESPECT TO
THE BREAKPOINT PERCENTAGE
The study of E’s behavior showed that the number of break-
points greatly influences the computation time, hence in this
test breakpoints were inserted into random Gaussian signal.
The simulation was generated following the same approach
as in the previous simulation (zero mean, unit variance).
Breakpoints were inserted as follows: (1) the number of
breakpoints was calculated from the length of the signal N
and the percentage of breakpoints (1%,0.5%, and 0.1% for
the three sparsity scenarios); (2) the locations and ampli-
tudes of the breakpoints were generated, where each location
obeyed a uniform distribution from 1 to N , and the amplitude
obeyed a standard normal distribution; (3) each breakpoint
was inserted into the random Gaussian signal according to
the obtained locations and amplitudes.

Ten Monte-Carlo replicates were processed in the same
way as in the previous simulation (λ = 100,P = 0), and the
segmentation results are shown in Fig. 4 (a). It is shown that
as the number of breakpoints increases, the computational
time decreases greatly, especially for long signals. From this
figure, we can estimate that the computational time of a
signal with millions of points and thousands of breakpoints
is approximately three hours. This is helpful for the segmen-
tation of long signals such as DNA sequencing data.

3) SIMULATION V: COMPUTATIONAL TIME IN THE WORST
CASE
We also tested the computational time required in the worst
case for the proposed HOPS algorithm, with respect to the
polynomial order P and signal length N .

In this test, 10 simulated signals were generated for each
configuration of N and P; this was done in the same way as
in Simulation II. λ was set to 100 to mimic the upper bound
computation.

The results are shown in Fig. 4 (b), which shows that
(1) the logarithm of the computational time increases linearly
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FIGURE 3. Results of Simulation III: computational behavior of matrix E (N = 100). The black color indicates that the element ε(u, v ) of E is
computed. (a) and (d) use the same data y with no breakpoint. (b) and (e) use the same data with a breakpoint at 50. (c) and (f) use the same data
with two breakpoints at 50 and 80. λ of (a) (b) and (c) is 100, (d) and (e) is 1, (f) is 10.

FIGURE 4. Results of Simulation IV and V. (a) computation time with respect to signal length N and percentage of breakpoints. (b) the
computation time with respect to signal length N and polynomial order P in the worst case.

as the signal length increases with slope of approximately 2,
indicating quadratic computational complexity in the worst
case; (2) the polynomial order P has limited influence on the
computational time.

C. REAL DATA PROCESSING: AFM FORCE CURVES OF
UNFOLDING PROTEINS
Atomic force microscopy (AFM) is a high-resolution scan-
ning probe microscopy [4]. The data acquired by AFM is
a set of force curves f (z), where f is the interaction force
between the probe and sample, and z is the indentation of

the piezoelectric scanner related to the distance between the
probe and sample. By analyzing the force curves, important
properties of the samples, such as Young’s modulus, can be
investigated [35]. Due to its high-resolution (usually up to
nanometer and nano Newton levels), AFM is widely utilized
in nanotechnology, biotechnology, etc.

An insightful application of AFM is to investigate pro-
tein unfolding [36]. Here, we used AFM data sampled on
Xenopus laevis oocytes, to study the cyclic nucleotide-gated
channel subunit alpha 1 (CNGA1) [37]. CNGA1 consists
of secondary structure units, and when a stretching force
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FIGURE 5. Results of real data processing: Segmenting and fitting of a protein unfolding AFM force curves [37]. (a) is the result of HOPS with P = 2,
(b) is the result of Fodis [36].

FIGURE 6. Results of high order performance (P = 3). (a) the noiseless signal with six pieces of cubic polynomials, (b) signal
with noise (blue) and fitting (red), detected breakpoints are 2.06, 5.08, 8.05, 11.05 and 14.05.

is applied, the conformation changes. As a result, AFM
retraction force curves contain several breakpoints, and each
segment between two neighboring discontinuities can be
modeled with a worm-like chain (WLC) or freely jointed
chain (FJC) [4]. By fitting these segments, structural parame-
ters, such as the contour length and persistence length can be
estimated.

Several methods have been proposed to segment this kind
of data [35]–[38], but they are still not automatic and contain
several parameters that need to be turned manually. Here we
show that the HOPS can provide great results, with only
two parameters: P and λ. The AFM force curve data was
download at https://github.com/nicolagalvanetto/Fodis/blob/
master/Datasets/ TXT%20universal%20import%20files/
104_CNGA1_selected.txt, and the 9th and 10th columns
were extracted as f and z, respectively, which are shown as
the blue curve in Fig. 5(a). After preprocessing [38], the force
curve was processed with the HOPS, and the result is shown
as the red curve. The detected 7 breakpoints are displayed

with vertical dashed lines. In this analysis, polynomials with
order P = 2 and λ = 2e3, were used. As a comparison,
the result of Fodis [36] is shown in panel (b), for which the
breakpoint near 50 nm is cumbersome.

D. HIGH ORDER PERFORMANCE
Previous experiments demonstrated the performance of
HOPS with low order polynomials (P 6 2), hence in the last
experiment, we showcase a high order example (P = 3).

First, a noiseless signal with six pieces of cubic polynomi-
als (Fig. 6(a)) was generated:

y(x) =



x(x − 1)(x − 2), x ∈ [−1, 2)
(x − 3)(x − 4)(x − 5)+ 6, x ∈ [2, 5)
(x − 4)(x − 6)(x − 8)+ 3, x ∈ [5, 8)
(x − 7)(x − 9)(x − 11), x ∈ [8, 11)
(x − 11)(x − 12)(x − 13), x ∈ [11, 14)
(x − 14)(x − 15)(x − 16)+ 6, x ∈ [14, 17)
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Second, white Gaussian noise was added to mimic signal-
to-noise ratio of 6 dB (blue curve in Fig. 6(b)). Then the sig-
nal was processed with the proposed HOPS algorithm, with
P = 3, λ = 10. The fitted curve is shown in Fig. 6(b) as the
red curve, with detected breakpoints 2.06, 5.08, 8.05, 11.05
and 14.05, which is pretty close to the ground-truth.

V. CONCLUSION AND DISCUSSION
In this paper, we introduce the high-order polynomial seg-
menter (HOPS), a fast algorithm for segmenting piecewise
polynomials. The proposed algorithmwas tested on both sim-
ulated and real datasets, and the results support the potential
of the HOPS for a broad spectrum of applications.

Several highlights of the HOPS include: (i) it performs the
joint segmentation and fitting of piecewise polynomials of
arbitrary order; (ii) global optimization is guaranteed; (iii)
the computational complexity is linear in most cases. In the
worst case, the computational complexity is upper-bounded
by quadratic.

Since the HOPS extends the pruned exact linear time
(PELT) method [26] to the segmentation of polynomials of
arbitrary order, it maintains the same computational advan-
tages as those of the PELT approach. As noted in [26],
although the worst-case complexity is O(N 2), in most cases
the complexity is ‘linear time.’ Our analysis (iii) in the last
paragraph agrees with this assessment. Furthermore, HOPS
uses matrix factorization to accelerate the calculation of ε,
and hence, it can segment long signals with high efficiency.

Finally, as general guidance for piecewise signal fitting and
segmentation, if the average distance between breakpoints
is below 1e4, the HOPS is recommended. If computational
speed is the main concern (within seconds) for long signals
(N > 1e6) with a handful of breakpoints, `1-based methods
or other suboptimal methods, e.g., CBS, are recommended.

APPENDIX A
ITERATIVE COMPUTATION OF ε(u, v + 1) BASED
ON ε(u, v )
For a segment of length l + 1 = v− u, denote

α = [1, l + 1, (l + 1)2, . . . , (l + 1)P]T , (16)

γ = Gα, (17)

ρ = (1+ αT γ )−1, (18)

z+ =
[

z
yv+1

]
∈ R

l+1, (19)

V+ =
[
V
αT

]
∈ R

(l+1)×(P+1), (20)

so

β+ = VT
+z+ =

[
VT α

] [ z
yv+1

]
= VT z+ yv+1α

= β + yv+1α. (21)

From Woodbury’s matrix identity, the augmented Gram
inverse matrix reads

G+ = (VT
+V+)

−1

= (VTV + αTα)−1

= G− ργ γ T . (22)

So from (6) the augmented fitting residual reads

ε(u, v+ 1) = zT+z+ − β
T
+G+β+ (23)

= zT+z+ − (β + yv+1α)T

·(G− ργ γ T )(β + yv+1α)
= zT+z+ − [βTGβ − ρ(βT γ )2

+y2v+1(α
TGα)− ρy2v+1(α

T γ )2

+2yv+1(βTGα)
−2ρyv+1βT γ γ Tα] (24)

= zT z+ y2v+1 − [βTGβ + y2v+1
−ρ(yv+1 − βT γ )2]

= zT z− βTGβ + ρ(yv+1 − βT γ )2

= ε(u, v)+ ρ(yv+1 − βT γ )2 (25)
= ε(u, v)+ ρ(yv+1 − cTα)2. (26)

Note that in Eq. (23), Eqs. (21) and (22) were used, and in
Eq. (24), the following equation (deduced from Eq. (18)) was
used

αT γ = αTGα =
1− ρ
ρ

,

which indicates that 0 < ρ < 1. Up to several manipulations,
we also have

ρ =

P∏
p=0

l − p
l + p+ 1

.

APPENDIX B
THE HAUSDORFF DISTANCE BETWEEN TWO SETS OF
BREAKPOINTS
A sparse vector x ∈ R

N is used to represent a set of
breakpoints in a signal, and a nonzero entry xi indicates a
breakpoint at the i-th locus with amplitude xi. Herein, the
Hausdorff distance between two sets of breakpoints x and
y is defined as:

dH (x, y) = max{d(x, y), d(y, x)} (27)

where d(x, y) is the directional Hausdorff distance:

d(x, y) = max
i

min
j

√
(xi − yj)2 + ν2(i− j)2 (28)

ν is a parameter that measures the relative weight between
breakpoints’ amplitudes and distances. A small value of
ν encourages the significance of the amplitude, and vice-
versa. Generally, we propose to set ν as A

N , where A and
N are the average absolute value of the breakpoint amplitude
and the length of the signal, respectively.

The function Hausdorff_Dist by Zachary Danziger is used
to calculate dH , and it is available at https://ww2.mathwor-ks.
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TABLE 6. The comparison of different distances. ν = 0.2 for Hausdorff
distance.

cn/matlabcentral/fileexchange/26738-hausdorff-distance?
requestedDomain=zh.

In Tab. 6 a toy example is used to show the motiva-
tion behind the usage of the Hausdorff distance instead of
other commonly used distances, namely, the `2-, `1- and
`0- (pseudo)norms. Consider the following five sets of break-
points: x1, x2, x3, x4, x5 as is shown in Tab. 6. x1 is the ground
truth, and x2, x3, x4, and x5 are four breakpoint estimates
sharing the same `0 distance from x1. Among these estimates,
x2 has the smallest Hausdorff distance from x1 since this
breakpoint is located only one point away from the ground
truth. Although the `1 and `2 distances from x5 to x1 are the
smallest, the Hausdorff distance is the largest. This is a good
example that shows the advantage of the Hausdorff distance
over other norm distances in terms of encouraging separated
discontinuities rather than small adjacent discontinuities. The
Hausdorff distances of x3 and x4 to x1 are in between because
of their amplitude biases.
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