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ABSTRACT The arterial pulse wave is a physiological signal which can reflect the function of the human
cardiovascular system. Owing to the measurement being convenient and safe, radial pulse waves have been
often used in noninvasive monitoring of human health, which can further reflect the health status of the
cardiovascular system, including information of the aorta and peripheral arteries. Moreover, radial pulse
waves can assist clinical diagnosis in the prevention and treatment of cardiovascular disease. This paper
systematically reviews the progress in analysis of pulse wave analysis, including pulse wave acquisition,
waveform processing, pattern classification, parameter estimation, and clinical applications. In terms of
waveform acquisition, this paper reviews a variety of methods to obtain radial pulse waves, including
tonometry, photoplethysmography, ultrasound manometry, and flexible tactile pressure sensors. In the aspect
of waveform processing, this paper summarizes the methods of radial pulse waves preprocessing and feature
extraction.With the rapid development of machine learning and deep learning algorithms, radial pulse waves
can be used to identify the status of human cardiovascular systems and to estimate parameters related to
cardiovascular function. This paper also discusses the applications of radial pulse waves in clinical practice,
including cardiovascular function evaluation and pulse diagnosis in traditional Chinese medicine. Some
open-source databases and analysis software are also listed. The current development trend, challenges,
and future directions of analysis of radial pulse waves are also offered.

INDEX TERMS Radial artery, pulse wave, waveform processing, feature extraction, pattern classification,
parameter estimation.

I. INTRODUCTION
Cardiovascular disease (CVD), including conditions such
as hypertension, diabetes, coronary artery disease (CAD),
is a leading non-communicable disease, and its mortality
accounts for 50% among non-communicable diseases [1].
The number of deaths due to CVD worldwide is increasing
year by year. The mortality rate of CVD has brought great
pressure to global health care [2]. High systolic blood
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pressure is positively correlated with the risk of CVD,
which is an index to predict CVD and identify the health
status [1]. Noninvasive detection of the arterial pulse wave
can effectively evaluate the blood pressure or blood flow,
which is useful for diagnosis, treatment, and prevention of
CVD.

Noninvasive detection of the arterial pulse wave is a
convenient and effective method to detect cardiovascular con-
ditions. Studies have shown that the pulse wave propagation
index (the ratio of body height to pulse wave propagation
time) is associated with reduced cardiac ejection fraction [3].
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The pulse wave is a pressure wave or flow wave due to the
heart’s periodic contraction and ejection of blood into aorta.
And this wave spreads along the arterial system from the heart
to the periphery. During the propagation along the arterial
system, the waveformmorphology is affected by the function
and structure of the arterial system [4], [5]. Therefore, the
arterial pulse wave reflects the information of the heart as
well as the vascular system [6]. The general health status of
the human body can be assessed by extracting the function
of the heart and arteries from pulse waves. For example,
the doctors of traditional Chinese medicine (TCM) can learn
about human health conditions by examining the pulse at the
wrist [4].

The radial pulse wave, an aortic pulse wave generated
by the heart, propagates along the arterial network to the
peripheral sites. Furthermore, the radial pulse wave is easy
to acquire [7]. In terms of obtaining radial pulse waves,
there are tonometry methods to detect the radial pressure
waveform [7]–[10], photoplethysmography (PPG) measure-
ment related to radial blood volume expansion [11]–[13],
and Doppler ultrasound technology to detect velocity of
the radial blood flow [14]–[16]. With the development of
sensor technologies, flexible sensors have been used to
record radial pulse waves [17], [18]. In addition, some
researchers have employed multi-sensor fusion methods
including multichannel signal fusion [19]–[24], and array
signal fusion [20], [25]–[27], to obtain rich information
related to the cardiovascular system from radial pulse waves.
However, comprehensive analysis of radial parameters,
morphological changes, and clinical applications has not been
reported.

The processing of the radial pulse wave includes waveform
preprocessing and feature extraction. During the acquisition
of the pulse wave signal, the recording can be affected
by the respiration and motion artefacts. The respiratory
signals can lead to baseline drift or distortion of radial
pulse waves [10]. It is difficult to accurately extract
the waveform features and describe the morphological
changes. To obtain a corruption-free and more stable
radial signal, the waveform preprocessing can not only
reduce the interference components [28]–[33], but should
also analyze the morphology of radial pulse waves over
a long period [34]–[38]. The purpose of feature extrac-
tion is to analyze the information represented by radial
pulse waves. The methods include time-domain analy-
sis [5], [6], [31], [39], frequency-domain analysis [11], [40],
time-frequency joint analysis [13], [15], [41]–[44], nonlin-
ear dynamics analysis [29], [45]–[48], and feature fusion
analysis [22], [49]. The features extracted by these methods
can assist in improving methods for diagnosis or treatment
of CVD.

With the rapid development of artificial intelligence
(AI), machine learning (ML) and deep learning (DL) have
been widely used in pattern classification of cardiovas-
cular conditions and estimation of cardiovascular param-
eters [50]–[59]. The commonly used algorithms include

support vectormachine (SVM) [6], [15], [28], [41], [48], [50],
artificial neural network (ANN) [28], convolutional neural
network (CNN) [52], [53], deep convolutional neural network
(DCNN) [12], [35], [54]. Some researchers have used
various radial characteristics to distinguish the different
physiological and pathological status [53]. Other researchers
have employed AI to estimate related cardiovascular param-
eters such as aortic blood pressure, aortic reflection index,
aortic reflection magnitude [58], [59]. Studies show that
AI can effectively provide qualitative and quantitative
characterization of cardiovascular function through the radial
pulse wave. However, there is no comprehensive review
on the clinical applications of radial pulse waves using
these methods. In clinical cardiovascular examination, the
electrocardiogram (ECG) is often used to reflect cardiac
functions but limited to the electrical activity of the heart.
Radial pulse waves can provide a more comprehensive char-
acterization of cardiovascular function [60]–[63] including
changes in properties of blood vessels [64]–[67], respiration,
and autonomic nerves [68]–[72].

Presently, there are a variety of measurement methods to
obtain radial pulse waves, but it is difficult to obtain high
accuracy in waveform analysis and pattern classification. It is
noted that many studies have explored pattern classification
and parameter estimation of radial pulse waves for clinical
applications [50]–[59]. However, there is no comprehensive
description on the whole process for analyzing cardiovascular
function. This review will present a systematic analysis and
description on the analysis of cardiovascular function based
on radial pulse waves from four main parts: (i) waveform
acquisition, (ii) waveform processing, (iii) pattern classifi-
cation and parameter estimation, (iv) clinical applications,
as shown in Fig. 1. Therefore, the purpose of this article is
to provide a comprehensive review about the research effort
so far spent in the radial pulse wave, the limitations and
challenge that remain to be addressed.

This paper is organized as follows. In Section II, mea-
surement methods and features of radial pulse waves are
introduced. Methods of preprocessing and feature extraction
of radial pulse waves are described in Section III. Pattern
classification and parameter estimation of radial pulse waves
are described in Section IV. In Section V, we focus on
the clinical applications of radial pulse waves. In Section
VI, the current trends for analyzing radial pulse waves are
discussed. In Section VII, the limitations, and challenges for
analyzing radial pulse waves are described. Finally, the main
conclusions of this review are given in Section VIII.

II. WAVEFORM ACQUISITION
To obtain radial pulse waves, there are two types of methods:
a single sensor and multi-sensor fusion. There are many
kinds of pulse wave sensors such as tonometry, PPG, Doppler
ultrasound, and flexible sensors. These types of sensors
can be fabricated together to obtain more comprehensive
information, a process known as multi-sensor fusion.
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FIGURE 1. Characterization of cardiovascular function based on radial
pulse wave analysis.

A. SINGLE-SENSOR MEASUREMENT
1) TONOMETRY
The tonometry measurement of radial pulse pressure is
performed by placing a handheld acquisition instrument
and applying pressure to radial artery at the wrist [7], [8].
It has been demonstrated that this method can provide
a high-fidelity noninvasive and continuous blood pressure
waveform and can be calibrated to a blood pressure value.
It is convenient and widely used in clinical practice, and
harmless to the patients [7]. However, when measuring radial
pulse waves, it can be affected by the contact pressure.
He et al. quantified the contact pressure on radial artery
using an adjustable pressure sensor and showed that the
radial characteristics gradually weakened with the increase
of contact pressure [9].

The tonometry method has also been used to estimate
the aortic pressure through mathematical transfer functions,
which is an accurate and repeatable non-invasive method
for evaluating the aortic pulse pressure [73]. Meidert et al.
compared the aortic blood pressure measured invasively
with the aortic blood pressure estimated from radial pulse
waves in ICU patients, and showed that mean and diastolic
arterial pressure can be determined accurately using both
methods [10].

2) PHOTOPLETHYSMOGRAPHY
Noninvasive assessment method of PPG involves the detec-
tion of the blood volume in the radial artery using the
infrared radiation. When the infrared radiation is transmitted
through the skin, the intensities of the light absorbed by
different components of the blood at the radial artery
are different. The intensity of the measured reflected or
transmitted light further reflects the changes of the radial

pulse waveform [11]–[13]. The PPG measuring radial pulse
waves is a reflection measurement, which means that the
light source and the detector are located on the same side
of the measured artery. There is a certain distance between
the light source and the detector [12]. Compared with other
peripheral locations such as fingers and earlobes, the more
accurate blood volume changes can be measured from radial
artery [11]. Besides, the main advantage of PPG is that it does
not need external pressure to measure radial pulse waves.
Radial pulse waves can be measured or monitored easily,
facilitating the applications range of radial PPG, such as
monitoring heart rate during exercise as well as use in pulse
transit time measurements [13].

3) ULTRASOUND
In contrast to tonometry which senses the pressure pulse
and can be affected by the applied pressure, measurement
of the flow velocity pulse in the radial artery can be readily
performed and unaffected by any contact pressure [14].

Ultrasonic measurement of the blood flow velocity in
the radial artery is achieved through Doppler ultrasound
scanning. The radial pulse wave can be obtained by extracting
the envelope of the Doppler ultrasonic signal [15]. The
Doppler ultrasound can also reflect the changes of peripheral
blood vessel dimensions at systole and diastole modulated by
sympathetic nerve activity. In the evaluation of sympathetic
vasoconstrictor functions, fingertip laser Doppler is often
used. However, it is difficult to distinguish systolic and
diastolic blood flow. Eicke et al. found that continuous-wave
Doppler ultrasound of the radial artery, which was used to
distinguish systolic and diastolic blood flowmore clearly, was
an effective alternative to fingertip laser Doppler [16].

4) FLEXIBLE SENSORS
The subjects may feel uncomfortable and display uncon-
scious jitter during a long measurement using traditional
pressure sensors, affecting the acquisition of radial pulse
waves. A problem revealed from traditional pressure sensors
is that a sensor with a large working range usually has a poor
sensitivity. Hence, a sensor with high sensitivity and a wide
working range is needed.

With the continuous progress of electronics, sensor tech-
nology also has rapid development. It is high flexibility,
light weight, low cost, and easy processing that these types
of sensors can be used to measure weak physiological
signals [17], [18]. For example, Tao et al. measured radial
pulse waves using a graphene oxide sheet pressure sensor
and demonstrated that this sensor had a large working range
and excellent sensitivity [18]. To test the performance of the
graphene sensor in measuring radial pulse waves, Xie et al.
compared the radial frequency components measured by
graphene sensor and traditional sensor, demonstrating that the
graphene flexible sensor had excellent accuracy [17].

B. MULTI-SENSOR FUSION MEASUREMENT
The pressure sensor and PPG sensor can detect the
pressure variation and the change of blood flow volume,
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respectively [19], [20]. The ultrasound sensor can also
be used to acquire the information of the blood flow
velocity [20]. The flexible sensor can improve the sensitivity
and working range for measuring radial pulse waves.
However, a single sensor can only detect part of the radial
information [19]. Therefore, the typical methods of multi-
sensor fusion are used to collect radial pulse waves, including
multichannel signal and array signal.

1) MULTICHANNEL SIGNAL
The measurement of the multichannel signals is to obtain
more comprehensive radial information using multichannel
sensors at the same time. The PPG combined with an
accelerometer sensor can be used to reduce motion artifact
during movement [21], [22]. Obviously, when there is any
movement or jitter, the magnitude of acceleration can change
significantly. However, it is not enough to use the acceleration
signal to reduce motion artifact. Therefore, Bashar et al.
have used the time-frequency joint analysis method to
further identify whether radial PPG were distorted by motion
artifact [22]. Besides, Fallot and Vesin proposed an adaptive
filtering method to effectively filter the noise in PPG signals
when evaluating heart rate during exercise [21].

There are two ways to fuse ultrasound and pressure
signals. One method, an ultrasonic probe combined with
a pressure sensor to detect the change of blood vessel
diameter, can reflect endothelial functions to a certain extent.
Arakawa et al. analyzed the relationship between radial
pressure and changes of arterial diameter, and determined
the hysteresis characteristics caused by viscoelasticity of
vascular wall [23]. The other method is to optimize the
quality of the pressure and flow waveform of arteries through
local pulse wave velocity (PWV) using ultrasound imaging.
Li et al. measured aortic waveform through ultrasound
imaging to correct pressure, and demonstrated that the peak
of the forward wave of the radial pulse wave was related
to the inflection point of aortic pulse wave in the healthy
subjects and prehypertension patients, which represented the
beginning of pressure increase [24].

2) ARRAY SIGNAL
The measurement of the array signal is obtained by using
a variety of sensors integrated in an array. Generally, the
sensor for measuring the array signal has the characteristics
of small size, high sensitivity and can be attached to the wrist.
Huang et al. used three highly sensitive pressure sensors
to form a linear array to measure radial pulse waves [25].
Roh et al. proposed a structure for a multi-array pressure
sensor with a hexagonal arrangement to reduce errors caused
by measurement position and direction [74]. These array
structures can greatly promote the measurement of the
radial pressure wave with higher signal quality. However,
most pressure sensors can be affected by temperature.
Yoo et al. used thermistor and simple compensation equations
to acquire accurate pressure [75]. To be applied in biomedical
signal measurement in vivo, Boutry et al. designed a

high-sensitivity pressure array sensor using biodegradable
flexible materials [26].

According to the wrist positions of ‘‘Cun’’, ‘‘Guan’’
and ‘‘Chi’’ described in the classic books on TCM,
Wang et al. designed a three-channel array system to obtain
the information of blood flow and pressure at the radial
artery [20]. Radial artery spatial and temporal information
simultaneously can be obtained from two different forms
using two different sensors. Lee et al. used the array sensor
combined with electromagnetic sensor and pressure sensor
to analyze the three-dimensional pulse image of the wrist,
obtaining the temporal and spatial information of the radial
pulse wave [27]. Some studies have shown that the accuracy,
sensitivity and specificity of the sensors combined together
are greater than those of any single sensor in the diagnosis of
diabetes [19].

A variety of methods for collecting radial pulse waves
are summarized in Table 1. Methods mainly focus on
single sensor and multi-sensor fusions. The single sensors
include a pressure sensor, a photoelectric sensor, an ultrasonic
sensor, a graphene flexible sensor. However, the information
obtained by a single type of single-channel signal is always
limited. In practice, different sensor types could be used,
perhaps in combination according to the measurement
position and the nature of the required signal analysis [76].
To obtain a signal with more complete information and
wider applications, the multi-sensor fusion is often used.
The multi-sensor fusion measurements include multi-channel
signal and array signal. In these methods, the acceleration
signal is used to reduce motion artifact in pulse wave signals.
The ultrasound image information and the pressure signal
of the radial pulse wave are used to reflect endothelial
functions [23]. The ultrasonic image information is also used
to optimize the quality of pulse wave signals. The array signal
can be obtained multi-dimensional signals.

III. WAVEFORM PROCESSING
Information from radial pulse waves is extracted by pro-
cessing and analysis of the waveforms. In this section, the
processing of the radial pulse wave is introduced from two
aspects: waveform preprocessing and feature extraction.

A. WAVEFORM PREPROCESSING
1) NOISE REMOVAL
During the acquisition of radial pulse waves, there may
be a variety of interferences, such as the influence of
ambient temperature and light, the high-frequency noise
in the measuring instrument, the baseline drift caused by
respiration and body movement. Therefore, it is necessary to
reduce these interferences and ensure accurate extraction of
the features. Paiva et al. used a low-pass filter with a cut-
off frequency of 30 Hz to filter the noise and enhance the
signal [28]. Rangaprakash et al. used wavelet to remove
the noise [6]. Similarly, Arunkumar and Sirajudeen removed
the high-frequency noise and the low-frequency interference
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TABLE 1. Summary of acquisition methods of the radial pulse wave.

to obtain the radial pulse wave with a higher SNR using
wavelet analysis [29]. Jiang et al. used a band-pass filter of
0.05-35Hz to reduce the noise in radial pulse waves [30].
Wang et al. used a Savitzky-Golay smoothing filter to remove
the random noise higher than 15 Hz and enhanced the pulse
waveform [31]. Combining with the method of empirical
mode decomposition, Xu et al. proposed an adaptive wavelet
threshold denoising method and showed that when the SNR
was low, the denoising performance of this method was better
than the traditional wavelet threshold denoising method [32].
Wang and Lu proposed a method based on adaptive cascade
thresholding to remove the disturbance intervals and showed
that an adaptive cascade threshold method could be used to
obtain a stable pulse wave [33]. The above studies show that
after removing interference, relatively smooth radial pulse
waves can be obtained, which is beneficial to analyze the its
characteristics.

2) BASELINE WANDER REMOVAL
The baseline drift of the radial pulse wave is mainly due
to respiration or body movement. Baseline drift, which
can cause errors in feature extraction, can be removed
by techniques such as sliding window filtering. Hu et al.
removed the baseline of the radial pulse wave using a
high pass filter [35]. To remove baseline drift and obtain a
stable signal under long-term pulse wave signals or other
physiological signals, Xu et al. attenuated baseline drift of
radial pulse waves using an adaptive cascade filter based
on wavelet [34]. Research work by Zhang et al. showed
that the iterative sliding window algorithm could remove
the baseline wander [77]. In order to remove respiratory
interference, Jiang et al. used a cubic curve as the component
of respiratory wave and then subtracted it from the original
signal to keep on the same horizontal line for the signal [78].
However, pulse waves can reflect a variation synchronous
with respiration [36].

Some cardiovascular information may be lost when the
respiratory signal is removed. Park et al. illustrated that
the changes of systolic and diastolic intervals of respiratory
signals in the radial pulse wave can reflect the changes of
stroke volume and pulse pressure [37]. Wang et al. developed
an apparatus to detect the heart rate and respiratory rate from
the radial PPG, and found that the correlation coefficient
could reach 0.97 compared with clinical medical equipment,
which is utilized to monitor heart and respiratory rates in
routine care [11]. The analysis of respiratory signals extracted
from radial pulse waves can be also helpful for further clinical
applications.

3) PERIOD SEGMENTATION
The measured radial pulse wave can be a long-term
continuous waveform. The period segmentation refers to
dividing a long-term waveform signal into several single-
period signals according to the cardiac cycle. In the period
segmentation, Wang et al. accomplished it through detecting
the lowest valley value as the segmentation point using the
adaptive sliding window [33]. Hu et al. utilized Hilbert
transform to find the peak point which could be regarded as
the marker of periodic segmentation [35].

4) WAVEFORM FITTING
Waveform curve fitting means that the radial pulse wave is
decomposed by multiple functions, and then the approximate
fitting wave is obtained by superposition. In this method,
the error can be obtained after comparing the fitted radial
pulse wave with the original waveform to evaluate the fitting
performance. Research work by Jo et al. showed that an
error of less than 6% can be obtained between the pulse
pressure waveform derived from the mathematical model and
the in vivo data [79]. Jiang et al. compared different fitting
functions including Raleigh, double exponential, Gaussian,
and lognormal functions, and found that the fitting accuracy
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of the radial pulse wave with the Gaussian function and
lognormal function was higher than other functions [30].
Liu et al. studied the influence of different Gaussian fittings
on the radial pulse wave and showed that the error was
small at 2% using three positive Gaussian functions [38].
Wang et al. combined the least squares method and Gaussian
function method to fit waves and showed that the number of
Gaussian functions could be adaptively determined according
to morphologies of the waveform [31]. Jiang et al indicated
that the errors of methods based on discrete Fourier series
were smaller comparedwithGaussianmixture functions [78].
Through this fitting modalities, cardiovascular physiological
and pathological information can be obtained by analyzing
the radial pulse wave.

5) WAVEFORM NORMALIZATION
The amplitude and period of the pulse wave have individual
differences and time-varying differences in the same individ-
ual. In analyzing the pulse wave, it is necessary to keep the
pulse wave consistent in amplitude and pulse period (length
of the cardiac period). Liu et al. determined the change in
a respiratory period in 10 radial pulse waves and adjusted
the signal to 1000 sampling points with the amplitude range
from 0 to 1 in the each waveform [38]. Similarly, Jiang et al.
also used the normalization with one unit amplitude and
1000 sampling points to eliminate the influence of pressure
and the various cardiac periods [30]. Waveform normaliza-
tion can facilitate the comparison of waveform characteristics
under the same physiological conditions, which can solve the
problem of data heterogeneity in parameter extraction to a
certain extent.

B. FEATURE EXTRACTION
1) TIME-DOMAIN CHARACTERISTICS
There are main characteristics in the time-domain. For
example, the period of the radial pulse wave in the time
domain represents the time of completing a cardiac cycle.
The time and amplitude of the first peak value is related
to the blood ejaculation by cardiac systolic pumping. The
notch point is associated with aortic valve closure at the
end of systole or the beginning of diastole. The time and
amplitude of the second peak value represent the artery
recovery following closure of the aortic valve [6].

According to wave propagation, a complete radial pulse
wave is divided into forward wave and backward wave in one
cardiac period [5], [31], as shown in Fig. 2. The forward wave
is caused by the ejection of blood into the aorta during cardiac
systole, which represents the cardiac function. The backward
wave is the reflected wave from the peripheral to the heart
due to impedance mismatching such as vascular branching or
peripheral vascular beds.

To obtain characteristic parameters in the time-domain, the
method of numerical operation based on each characteristic
point is used. Rangaprakash and Dutt extracted two types of
parameters and analyzed the radial pulse wave in detail [6].

FIGURE 2. Wave components and features of typical radial pulse wave.

Liu et al. extracted more time-domain features of the radial
pulse wave using the first derivative and the second derivative
to estimate cuffless blood pressure [80]. However, with
the increase of arteriosclerosis and age, the velocity of the
backward wave is faster. As a result, the position of the
backward wave is difficult to obtain accurately, resulting in
various morphologies. The waveform characteristics of the
radial pulse wave (e.g. peak characteristics, notch charac-
teristics) are not obvious. To reflect those characteristics,
Tang et al. proposed an equal pressure pulse transit time
(EP-PTT) method divided into 10 parts according to the
amplitude for cardiovascular function assessment [39]. Since
it is difficult to find a unified waveform to represent the
different morphologies of the radial pulse wave, a typical
radial pulse wave can be used to reflect features.

2) FREQUENCY-DOMAIN CHARACTERISTICS
The frequency-domain analysis is to transform the radial
pulse wave in the time-domain into the frequency-domain
by Fourier transform. The proportion of the first harmonic
component in whole frequency spectrum can be calculated.
Fast Fourier transform (FFT) is often used to extract features
in the frequency analysis. Liao et al. extracted the first
harmonic component of the radial pulse wave and indicated
that the harmonic analysis can improve the recognition of
the patients with type II diabetes who need further vascular
detection or therapy [40]. Besides, spectral analysis can
be used to predict and identify characteristics of CVD.
Wang et al. extracted frequency components of the radial PPG
using FFT and showed that the peak frequency of the radial
pulse wave was related to the respiratory rate and heart rate
of the subjects [11].

3) TIME-FREQUENCY JOINT CHARACTERISTICS
The time-frequency joint analysis is to analyze the waveform
combining the characteristics of time-domain and frequency-
domain. It includes the short-time Fourier transform (STFT),
wavelet transform, wavelet packet transform decomposition,
and Wigner-Ville distribution.

The STFT is that the Fourier transform is used on the local
signal through slidingwindow in a time-domain signal. In this
method, the size and structure of the window function are
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important parameters. Zong et al. analyzed radial PPG during
exercise using the STFT with Hamming window and showed
that the STFT could track the changes of heart rate during
exercise [13].

The wavelet transform is effective to analyze non-
stationary and non-periodic physiological signals. Its func-
tion is to solve and describe the irregularity, complexity,
or unpredictability of pulse wave signals. The wavelet
energy and wavelet entropy based on the wavelet coefficients
can quantify characteristics of cardiovascular system [41].
Sareen et al. extracted the different frequency components of
the radial pulse wave through wavelet transform and showed
that the feature parameters extracted by wavelet transform
were helpful to analyze the variability of the radial pulse
wave [42].

The wavelet packet transform can further decompose the
high-frequency components of the signal through wavelet
decomposition. According to the waveform characteristics,
the wavelet packet transform can adaptively adjust the wave-
form frequency bandwidth. Zhang et al. proposed a 4-scale
wavelet packet transform according to the characteristics
of the radial pulse wave and showed that the wavelet
packet transform was useful in analyzing the morphology
characteristics [15].

The Wigner-Ville distribution decomposes a signal
expressed as a function of time into a signal representing both
time and frequency through a series of short windows. The
main advantage of the Wigner-Ville distribution is that it can
reflect dynamic signals, such as heart rate and blood pressure
during exercise [43]. To suppress the cross-interference in
the Wigner-Ville distribution, Yan et al. analyzed radial PPG
using a smooth pseudo Wigner-Ville distribution and showed
that the motion artifacts in the radial PPG could be effectively
reduced [44].

4) NONLINEAR DYNAMICS CHARACTERISTICS
The nonlinear dynamic analysis is employed because of the
complexity of the structure and function of the circulatory
system. During the propagation of the pulse wave, the
cardiovascular system cannot be simply regarded as linear.
Instead, it is necessary according to specific hemodynamic
characteristics to identify the complex cardiovascular condi-
tions [45]. Chaos theory is helpful to describe the nonlinear
dynamic processes [46]. The commonly used indexes include
the Lyapunov exponent, approximate entropy (ApEn), and
sample entropy.

The Lyapunov exponent is the rate of local convergence or
divergence of the trajectory near the attractor. The positive
Lyapunov exponent indicates that the nearby trajectories
diverge locally, while the negative Lyapunov exponent
indicates that the nearby trajectories approach each other
exponentially. Yan et al. found that that the average Lyapunov
index of the healthy group was higher than the CAD group,
demonstrating that the cardiovascular system of the healthy
group is more chaotic and complex [46]. Li et al. calculated

the maximum Lyapunov exponent by least-square fitting to
quantify the chaotic degree of the cardiovascular system [47].

The ApEn can quantify the unpredictability of fluctuations
in a time series (such as an instantaneous heart rate time
series). The small ApEn indicates that the signal contains a
relatively stable time series, and the system process can be
predicted. On the contrary, the large ApEn indicates that the
signal contains complex time series, and the system process
is difficult to predict. Arunkumar and Sirajudeen used the
ApEn of pulse wave to analyze the nonlinear characteristics
of the healthy group and the diabetic group and showed that
the ApEn of the healthy group was higher [29].

Generally, the ApEn is suitable for the analysis of small
sample datasets. However, there are two problems when
ApEn is used to describe the nonlinear system. The first
problem is that the ApEn is related to the data length. If the
length of the dataset is too short, the estimated ApEn may
be too small. The other problem is that the dimension and
threshold might change, resulting in lack of consistency in
distinguishing signals. Yan et al. reduced the problem of data
length in the healthy group and CAD group using the sample
entropy parameter to solve these problems [48].

The above studies show that the nonlinear dynamic method
can analyze the radial pulse wave as an important means of
cardiovascular risk prediction. The cardiovascular systems of
healthy people have stronger physiological adaptability than
the cardiovascular system of the patients.

5) FEATURE FUSION
Sections 3.2.1-3.2.4 introduce four feature extraction meth-
ods. Each of them can reflect cardiovascular information.
However, the feature parameters extracted by these methods
may have heterogeneous data properties due to the difference
in the data structure. To solve the problem of heterogeneous
data, Liu et al. fused the seven features using the multi
kernel function and showed that the multi kernel function
was effective in enhancing the classification accuracy of pulse
waves [49]. Bashar et al. fused sample entropy and root mean
square of successive difference using the weighted method
and showed the new fusion features had good recognition
characteristics [22]. Through the analysis of feature fusion,
the accuracy of the pattern classification and parameter
estimation of the radial pulse wave can be improved, and
the potential cardiovascular information represented by radial
pulse waves can also be disclosed.

As shown in Table 2, this paper reviews the cur-
rent analysis methods of radial feature extraction. These
methods include four kinds of methods such as time-
domain, frequency-domain, time-frequency, and nonlinear
feature. In the analysis of waveform characteristics, the
greater the characteristic parameters extracted the higher
the accuracy of CVD diagnosis. However, too many
features can lead to data heterogeneity. To solve the
heterogeneous data, this paper introduces two methods of
multiple kernel fusion and weighted algorithm. The purpose
of feature fusion is to combine more characteristics to
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TABLE 2. Summary of extraction methods of radial features.

reflect more real cardiovascular conditions in the diagnosis
of CVD.

C. OPEN-SOURCE RESOURCE
At present, there are some open-source resources to analyze
radial pulse wave, which can help researchers to obtain
the information of cardiovascular systems and contribute
to the development and research of wearable medical
devices [81].

The open-source databases, which could help researchers
to recognize the morphologies of the pulse wave, are
summarized in Table 3. PhysioNet, an online platform, which
offers data and algorithms to analyze biomedical signals via
the website (http://www.physionet.org) [82]. At PhysioNet,
the Fantasia database (https://www.physionet.org/content/
fantasia/), aimed to reflect the age-related alterations
in cardiovascular physiological signals, contains twenty
120 min recordings of noninvasive pulse waves and
ECG signals collected from two groups of youths
and elders [83]. In contrast, the MIMIC-III Waveform
database (https://physionet.org/content/mimic3wdb/), also
from PhysioNet, contains 67830 recordings of approximately
30000 ICU patients, including ECG, pulse waves, respi-
ration, PPG and frequently other signals [84]. There are

many databases containing radial pulse waves in Phys-
ioNet, but there is no extensive database of pulse waves
in other parts of the body. To study propagation and
cardiovascular characteristics of pulse waves in the body,
the Pulse Wave database can be used. The Pulse Wave
database (https://peterhcharlton.github.io/pwdb/), an open-
source database of simulated pulse waves, contains pulse
waves from 4374 virtual subjects using one-dimensional
computational modeling, including pressure, flow velocity,
luminal area, and PPG [85]

Presently, some open-source software can simulate radial
pulse waves, and even simulate cardiovascular systems.
The details of the software are described in Table 4.
Ibrahim et al. presented a bio-impedance simulation
platform (http://www.github.com/TAMU-ESP/BioZPulse-
Sim-Platform) to create time-varying radial pressure
waveforms [86]. For medical modeling and simula-
tion in the training and clinical decision-making field,
Bray et al. developed an open-source software called
Pulse Physiology Platform (https://pulse.kitware.com) [87].
Vahedein and Liberson developed an open-source plat-
form entitled cardiovascular flow analysis (CardioFAN)
(https://github.com/YasharVahedein/CardioFAN) to analyze
pressure and flow wave propagation in cardiovascular
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TABLE 3. Summary of open-source databases of radial pulse waves.

TABLE 4. Summary of the open-source software for simulation and analysis of the radial pulse wave.

systems, which was used to calibrate arbitrary patient-
specific vascular networks to conduct noninvasive diag-
nostics [88]. Similarly, Manini et al. presented an open-
source framework entitled python Network Solver to
describe patient-specific models of the systemic circula-
tion and upper extremities and released the archToolkit
(http://archtk.github.com) [89]. The open-source simulation
platform can simulate the cardiovascular system, including
patient-specific vascular network and systemic circulation,
and further help clinicians to study the cardiovascular
characteristics in different conditions.

Other open-source software can analyze radial pulse
waves, including detecting the onset, evaluating PWV,
detecting heart rate and ultrasonic blood flow analysis,
As shown in Table 4 [90]–[93]. Zong et al. presented an
open-source algorithm for detecting the onset of radial
pulses and included the algorithm in the open-source
waveform database (WFDB) software package, which is
freely available from PhysioNet [90]. Jin et al. found that

radial pressure waves were used to estimate PWV using
ML, instead of carotid-femoral PWV (https://github.com/
WeiweiJin/Estimate-Cardiovascular-Risk-from-Pulse-Wave-
Signa) [91]. Kooij and Naber developed an open-source
method termed remote PPG (https://github.com/marnixnaber/
rPPG) to detect heart rate in a variety of conditions [92].
Coolbaugh et al. developed an open-source software entitled
FloWave.US (https://github.com/ccoolbaugh/FloWave.US),
which facilitated the analysis of radial ultrasound signals [93].
These open-source software can help researchers to identify
features of the radial pulse wave.

IV. PATTERN CLASSIFICATION AND
PARAMETER ESTIMATION
With the development of AI technology, researchers are
attracted to pattern classification and parameter estimation
of the radial pulse wave. The pattern classification is to
classify the radial pulse wave under different physiological
and pathological statuses. The parameter estimation uses
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various methods to estimate cardiovascular parameters based
on the radial pulse wave.

A. PATTERN CLASSIFICATION
1) CLASSIFICATION BASED ON MACHINE LEARNING
In the medical field, there are often high-dimensional and
multi-modal biomedical data that need to be analyzed.
ML can promote the objectivity of the decision-making
process, which is important in computer-aided diagnosis [50].
This paper reviews the ML algorithm for CVD analysis
using radial pulse waves. The classification algorithms ofML
include SVM, ANN, and fuzzy C-Means (FCM).

SVM is a binary classifier which establishes a hyperplane
between the two categories and separates them. In SVM, it is
necessary to determine the kernel function. The commonly
used kernel functions are linear and Gaussian radial basis.
Yan et al. distinguished the healthy subjects and the CAD
patients based on two types of the SVM with linear and
radial basis kernel functions and showed that SVM could be
beneficial to the noninvasive detection of CAD with more
than 80% accuracy [48]. Jiang et al. used SVM with the
radial basis function kernel to distinguish health and diabetes
with 90.37% the accuracy [78]. Zheng et al. used the SVM
with the radial basis to classify radial pulse waves of healthy
subjects and patients with 95% the accuracy [41]. Similarly,
Paiva et al. also used the SVM based on the radial basis
function to classify the noise signal, the radial pulse wave
of the healthy subjects and the patients with an accuracy of
99% [28]. To reduce the required features of the training set,
Rangaprakash and Dutt used the SVM based on recursive
elimination to classify and recognize radial pulse waves in
different statuses after exercise and lunch, with an accuracy
of 99% [6]. Zhang et al. proposed a soft marginal SVM based
on construct original problem’s dual problem to distinguish
healthy subjects and patients with over 80% accuracy [15].

ANN is used to process data in the working mode of
neurons. The main advantage of ANN is suitable for the
problem described by a sufficiently representative sample set
rather than a strict mathematical model. The network unit
of the ANN can be divided into three types including input,
processing, and output. The performance of ANN depends
on the activation function, the weights connected to each
input, and the number of hidden processing units. If the
number of hidden processing units is too small, it may lead
to poor approximation and generalization ability of decision.
Otherwise, it may lead to increase the complexity of the
model, resulting in over-fitting. To determine the number of
hidden processing units, Paiva et al. used the ANN method
of forward feedback and back propagation to classify radial
pulse waves of the healthy group and the disease group and
showed that the accuracy can reach more than 98%, which
can reduce the clinical error using radial pulse wave in the
diagnosis of CVD [28].

FCM is a common clustering analysis method in statistics.
Its purpose is to put all the data into each class so that items
in the same class are as similar as possible, while items in

different classes are as different as possible. This algorithm is
used to classify two or more different types. Chen et al. used
the FCM to distinguish between healthy subjects and patients
with over 85% accuracy and showed that the FCM improved
the accuracy of the diagnosis of disease [14]. Liu et al.
used the FCM to distinguish radial pulse waves between the
patients with myocardial ischemia and healthy subjects, and
showed that FCM was effective for the risk assessment of
myocardial ischemia [51].

2) CLASSIFICATION BASED ON DEEP LEARNING
DL is a model based on an algorithm set, which has a
unique ability to learn features from raw data [50], [52].
In the field of medicine, some researchers use DL tech-
nology to analyze one-dimensional physiological signals,
such as ECG, electromyogram [52]. The commonly used
classification algorithms include CNN, DCNN, fuzzy neural
network (FNN).

CNN uses two-dimensional data as input and extracts
abstract features through many hidden convolution layers.
To input one-dimensional physiological signals into the CNN
model, some researchers have transformed one-dimensional
signals into two-dimensional image [52]. Li et al. used
one-dimensional CNN to classify normal pulse wave from
the radial pulse in pregnancy and showed that the one-
dimensional CNN had a greater averaged accuracy of
97.08% [94]. Li et al. optimized the CNN and tested
the reliability of the algorithm in the same datasets using
two methods which included 6 groups of different pulse
waves based on pathological conditions with 95% accuracy
and 5 groups based on different physiological parameters,
such as blood pressure, brachial-femoral PWV, with 89%
accuracy [53]. When a single physiological parameter is used
to represent the whole pulse wave, there are some limitations.
In other words, the analysis of the radial pulse wave should
be considered in all aspects owing to it’s the result of a variety
of physiological parameters.

DCNN is composed of several convolution layers and a
fully connected layer before the output layer. The general
convolution process which is to extract features and reduce
dimension consists of convolution layer (filtering), nonlinear
layer, and pooling layer [12]. Mubashir et al. adopted an
optimization algorithm with a weight function and a batch
normalization and used a 15-layers one-dimensional DCNN
to distinguish healthy subjects and lung cancer patients with
99.96% accuracy [54]. Hu et al. added a noise module in
the training process to improve the generalization ability of
the DCNN classifier and classified two kinds of datasets
with a dataset included healthy and sub-health subjects with
72.31% accuracy and the other dataset included patients
with arteriosclerosis and non-atherosclerosis with 96.33%
accuracy [35]. Therefore, DCNN can mine the potential
features of the radial pulse wave, which is helpful to
distinguish different physiological conditions.

FNN is a network model combining fuzzy algorithm and
neural network. The main advantage of the fuzzy algorithm
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TABLE 5. Summary table of pattern classification of the radial pulse wave.

is that it can adjust the threshold adaptively to adapt to
the specific signal characteristics. Xu et al. extracted the
characteristics of pulse wave, such as period, width, shape,
position, and divided 320 groups of pulse wave data into
16 pulse wave patterns using 17 layers of FNN, achieving the
accuracy of 90.25% [55].

As listed in Table 5, the AI algorithm can effectively
distinguish radial pulse waves in different statuses. In ML,
the SVM algorithm is simple and fast. Besides, the SVM has
strong generalization ability and is suitable for solving the
small sample binary classification problem. Therefore, many
researchers often use the SVM to distinguish radial pulse
waves in two different conditions.

Some researchers used the ANN to distinguish radial
pulse waves of patients and healthy subjects. The FCM can
distinguish multiple types of radial pulse waves. Only the
binary classifications of the radial pulse wave have been
introduced in this paper. Besides, Luo et al. summarized five
ML methods including random forest, AdaBoost, to identify
hypertension using radial pulse waves and showed that the
ML methods were helpful to the pattern classification of the
radial pulse wave [56].

The main advantage of the DL algorithm is to extract
the abstract features from the original data. The hidden

layer of DL is used to analyze and process the features
in the pattern classification. As shown in Table 5, CNN
can classify radial pulse waves in different physiological
conditions and its accuracy is at least 89%. DCNN can
also be used to identify cardiovascular conditions and its
accuracy is over 72% even reaches 99.96%. The FNN can
be used to recognize different waves and its accuracy is
over 90%.

Therefore, the AI algorithm is an effective method to
analyze radial pulse waves. Through the information from the
radial pulse wave, we can further identify the cardiovascular
statuses to assist the diagnosis of CVD.

B. PARAMETER ESTIMATION
The pattern classification of the radial pulse wave is
to classify the physiological and pathological conditions
according to the characteristics of the waveform. Another
analysis method is to assess cardiovascular conditions
through evaluating cardiovascular parameters, which is called
parameter estimation. Parameter estimation methods include
traditional transfer functions and AI methods. The traditional
transfer functions can analyze aortic pulse pressure, and
aortic waveforms. The AI methods evaluate aortic blood
pressure, and aortic reflection index.
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TABLE 6. Summary of waveform parameter estimation.

1) TRANSFER FUNCTION METHODS
The pulse wave is produced by the heart ejection, including
aortic pulse waves, carotid pulse waves, brachial pulse waves,
radial pulse waves, and finger pulse waves. Although these
waveforms have different shapes, they can be related to each
other through transfer functions [3]. In clinical applications,
aortic pulse pressure and waveform have been shown to
provide additional information to the peripheral waveform
in evaluating the pathological conditions of patients. Some
studies have shown that the brachial pulse pressure maintains
a normal level in some hypertensive diseases, but the aortic
pulse pressure is different from the normal value [45], [57].
Therefore, an effective evaluation of aortic information is
helpful for identifying cardiovascular abnormalities.

At present, many researchers use the transfer function
to evaluate aortic information with the radial pulse wave.
The processes of transfer function estimation include mea-
surement and building the function. The aortic pulse wave
and radial pulse wave are obtained at the same time. And
then the transfer function between the aorta and radial
artery is obtained by Fourier analysis. The aortic pulse wave
can then be obtained using the inverse transfer function
and the radial pulse wave. However, this method is not
suitable for all cardiovascular systems. There are certain
errors in this method. Therefore, it is necessary to modify the
assessed aortic waveform to adapt to different cardiovascular
conditions. Akalanli et al. optimized the generalized transfer
function between the radial pulse wave and the aortic pulse
wave through parameterization based on the prediction error
method and showed that there was good consistency between
the reconstructed aortic waveform and the invasive aortic
waveform, and the correlation coefficient of systolic blood
pressure was 0.846 [45]. Williams et al. also evaluated aortic
systolic pressure using N-point moving average (NPMA) and
showed that the correlation coefficient between the aortic
systolic pressure estimated by the NPMA and the invasive
aortic systolic pressure reached 0.99 [57].

2) ARTIFICIAL INTELLIGENCE METHODS
The AI algorithm can also estimate the cardiovascular
parameters through radial pulse waves. The cardiovascular
parameters include blood pressure, and aortic parameters.
The commonly used methods include regression, back-
propagation neural network (BPNN), ANN, and DCNN.

According to the statistical regression, the estimated
parameters are compared with the reference parameters.
The quality of the estimated parameters is evaluated by the
determination coefficient. Huang et al. evaluated systolic
and diastolic blood pressures using a variety of regres-
sions and showed that the coefficient of determination
between the cuff-based referential blood pressure and the
estimated blood pressure using random forest regression was
more than 0.79 [25].

BPNN is a multi-layer feed-forward network, which is
one of the most widely used neural network models at
present. Based on the cardiovascular hemodynamics, Tu and
Chao estimated systolic blood pressure and diastolic blood
pressure using the BPNN and showed that the coefficient of
determination is more than 0.78 [95].

ANN can also estimate some cardiovascular parameters.
Xiao et al. estimated the aortic reflection index and mag-
nitude using the ANN and obtained over 0.9 correlation
after comparison with the reference parameters based on
transmission line theory [58]. Similarly, Bratteli et al.
studied the effect of age on cardiovascular function using
ANN [59]. Studies have shown that physiological aging was
reflected in pulse pressure rather than mean blood pressure or
heart rate [59].

DCNN can also estimate cardiovascular parameters.
Chiarelli et al. evaluated the correlation between actual age
and estimated age, which were used to reflect the degree of
cardiovascular aging, using DCNN and showed that when the
age difference was 7 years, the performance of DCNN with
0.92 correlationwas better than that ofmultivariate regression
and ANN [12]
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As listed in Table 6, the noninvasive detection of the
radial pulse wave can assess cardiovascular parameters. The
transfer function method can evaluate the aortic waveform.
It can be concluded from the Table 6 that the correlation
between the aortic systolic pressure estimated by the radial
pulse wave and the invasive aortic systolic pressure is at least
0.846, and the correlation can reach 0.99 using the NPMA
algorithm. Studies have shown that noninvasive detection of
aortic pressure is effective and feasible.

The AI method can estimate some cardiovascular param-
eters. Using the AI method, model parameters need to be
adjusted according to the specific situation and avoid the
occurrence of over-fitting and non-convergence. It can be
found from Table 6 that the correlation coefficient between
the parameters estimated by the AI method and the reference
parameters is more than 0.78, showing that the AI algorithm
is an effective method to estimate cardiovascular parameters.

V. CLINICAL APPLICATIONS
This section summarizes the analysis of the radial pulse wave
on cardiac function, vascular function, and quantitative pulse
diagnosis method of TCM.

A. ANALYSIS OF CARDIAC FUNCTION
1) ESTIMATION OF CARDIAC OUTPUT
Cardiac output (CO) refers to the volume of blood pumped
by the heart per minute [60]. Noninvasive detection of CO is
a method to calculate CO after the pulse wave is obtained
through the noninvasive detection. Cardiac output power
refers to the product of CO and mean arterial pressure [8].
Both CO and cardiac output power are indicators of cardiac
functions. Bikia et al. proposed an optimization algorithm
of CO based on the radial pulse waves of several heartbeats
obtained 0.96 correlation between the estimated CO and the
vivo CO [61]. It can be found that this study can show
that long-term recursive optimization can more accurately
estimate CO. This optimized method can also be used to
optimize other cardiovascular parameters to identify more
accurately cardiovascular function under different conditions.

2) SURROGATE ANALYSIS OF HEART RATE VARIABILITY
Heart rate variability (HRV) refers to the time difference
between one heartbeat and another. The R peak in the
ECG is often used to calculate the HRV. The pulse rate
variability (PRV) refers to the time difference between each
pulse wave, which is calculated by the difference between
the peak values of pulse waves. Compared with heart rate,
the pulse rate is easier to obtain. Constant et al. found that
PRV could not accurately reflect standing healthy subjects
and patients with low HRV [62].

In particular, the systole and diastole of peripheral blood
vessels are greatly affected by temperature, which means
that lowering body temperature can cause the systole of
peripheral blood vessels and reduce the vasomotor functions.
Therefore, when analyzing HRV through radial pulse waves,
it is also necessary to consider the body temperature of
subjects. Huang et al. simulated the body temperature change

of subjects using cold and hot tests and showed that the
spectral energywithin 10-50Hz of the radial pulse wave could
more indicate the condition of blood circulation in the hot
test [63]. In general, when analyzing HRV with radial pulse
waves, it is necessary to consider the changes of measured
body position and physiological conditions of subjects.

B. ANALYSIS OF VASCULAR FUNCTION
1) ARTERIOSCLEROSIS
Arteriosclerosis is a key risk factor in evaluating cardio-
vascular function and predicting CVD. In the early stage
of arteriosclerosis, vascular endothelial functions maybe be
weak. With the development of arteriosclerosis, endothelial
functions can produce lesions [23]. The endothelial cells
can adjust some arterial characteristics, including vascular
tone, permeability, and angiogenesis to slow down the
development of arteriosclerosis [64]. With the information
of pressure and diameter at the radial artery, Arakawa et al.
found that human vascular endothelial functions could
be evaluated by the hysteresis characteristics caused by
vascular wall viscoelasticity to further analyze the degree of
arteriosclerosis [23].

PWV, a marker of arterial stiffness, is one of the indexes to
evaluate arteriosclerosis and predict the risk of CVD.AsCVD
tends to occur earlier, some researchers are increasingly
interested in analyzing the increased PWV to evaluate the
degree of arteriosclerosis. Zhang et al. compared two-point
PWV (measuring PWV between the carotid artery and
the femoral artery) and single-point PWV(measuring PWV
at radial artery) and showed that there was a significant
correlation between the single-point PWV and the two-
point PWV of healthy subjects under 65 years old in the
measurement of arteriosclerosis [65].

With age, the degree of arteriosclerosis increases leading
to increase in cardiovascular risk factors. Specifically, with
the increase of age, vascular functions can gradually decline
while peripheral resistance can gradually increase. To balance
weakness of vascular functions and strengthen of cardiac
afterload, the heart needs to generate more pressure to deliver
blood to the vascular system [8]. Rising pressure can change
the heart structure. The change of heart structure can further
influence the morphology of the pulse wave. In short, age
is an independent factor affecting cardiovascular function
[66], [67]. To study the effect of age on vascular functions,
Houghton et al. compared the blood vessel of young and old
subjects and found that the vascular functions could be used
as a predictor of cardiac ejection capacity in the elderly [8].
Hickson et al. analyzed the influence of age on the degree
of arteriosclerosis and vessel diameter using the aortic pulse
wave calculated by the radial pulse wave found that the
biggest difference in aortic sclerosis was in the abdomen,
while the greatest difference in vascular diameter was in the
ascending aorta [68]. Bia et al. found that with the increase
of age, the systolic blood pressure of the aorta and the radial
artery both increased, and there would be a sudden increase
trend at about age 60 years [72].
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TABLE 7. Summary of clinical applications of the radial pulse wave.

2) ATHEROSCLEROSIS
The radial pulse wave can not only identify arteriosclerosis
but also analyze the effect of atherosclerosis. Atherosclerosis
is a particular form of arteriosclerosis, which refers to
the accumulation (plaque) of fat, cholesterol, and other
substances in the intima or wall of arteries. The plaques
can change blood flow and sometimes even block blood
vessels. Generally, the degree of atherosclerosis is related
to the situation of arterial blockage, such as CAD [69,
70], and peripheral artery disease [71]. According to the
morphological changes of the radial pulse wave, Xu et al.
evaluated the atherosclerotic status to distinguish healthy and
patients with CAD and found pulse morphology variability
of the healthy were higher than those of patients [69].
Kotecha et al. indicated that the evaluation of the radial
pulse wave was a useful noninvasive clinical trial, which
might stratify CAD and help determine whether patients
need diagnostic angiography [70]. Zahner et al. found that
the degree of atherosclerosis was independently related to
peripheral arterial disease, and the degree of atherosclerosis
in patients with peripheral arterial disease was higher than
that in healthy subjects [71].

C. QUANTITATIVE ANALYSIS OF THE TCM
PULSE DIAGNOSIS
The TCM relies on the finger to touch the wrist pulse and
identifies physiology and pathology through the pulse to
treat. However, the TCM lacks objective evaluation in the

diagnosis of human health statuses and relies on subjective
diagnosis. Shu and Sun analyzed 13 kinds of radial pulse
waves and quantified the differences between waveforms [4].
This quantitative method not only reduces the dependence of
TCM pulse conditions, but also can more accurately reflect
pathological value in TCM. Xu et al. summarized the modern
quantitative analysis methods of pulse diagnosis in TCM
and showed that modern signal processing methods could
facilitate the quantitative or digital analysis of TCM pulse
diagnosis [96].

In recent years, some studies have shown that analysis of
the three-dimensional radial pulse waves reflects the concept
of multi-dimensional pulse condition in TCM [97]–[99].
In order to make the TCM more intuitive and convincing,
Chen et al. used the array sensor to measure the three-
dimensional pulse wave, which is helpful for doctors to make
more accurate diagnosis [98]. Peng et al. used Fourier series
to analyze three types of pulse images, which can quantize
the pulse feeling in TCM [99].

In addition, the AI algorithm can also be used for digital
processing of TCM pulse diagnosis. Chen et al. used BPNN
based on Levenberg-Marquardt and a genetic algorithm
to classify four common kinds of pulse accurately [100].
Tang et al. used a four-layer ANN model to analyze six
parameters of radial pressure waves, showing that ANN
based on the Levenberg-Marquardt can be improved in
eight aspects of pulse diagnosis depth, speed, regularity,
width, length, smoothness, stiffness and strength [101]. These
studies showed that AI algorithms can effectively generate
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pulse conditions to evaluate the cardiovascular system, which
is beneficial to quantitative analysis of pulse diagnosis in
TCM.

As shown in Table 7, this review summarizes the three
clinical areas of investigations of cardiac functions, vascular
functions, and TCM pulse diagnosis reflected by the radial
pulse wave. In the analysis of cardiac functions, this paper
focuses on CO and HRV. Radial pulse waves can be used to
evaluate CO as an index of cardiac functions. HRV can reflect
the difference between heartbeats. Compared with HRV, PRV
is more convenient to measure. However, it is necessary to
consider the postural changes and physiological statuses of
subjects when analyzing PRV instead of HRV.

In the analysis of vascular functions, this paper mainly
focuses on arteriosclerosis and atherosclerosis. Arterioscle-
rosis includes the characteristics of early arteriosclerosis, the
assessment of arteriosclerosis through the radial PWV, and
the influence of age on arteriosclerosis. Early arteriosclerosis
is closely related to endothelial functions. With age, the
vascular wall can gradually become thicker and harder. The
degree of arteriosclerosis can be detected bymeasuring PWV.
The radial pulse wave can be used to analyze atherosclerosis
conditions, such as coronary artery, peripheral artery.

In addition, the TCM of pulse diagnosis has always relied
on experienced doctors to diagnose the patient’s condition,
which lacks objective indexes. Modern signal processing
methods and AI algorithms can quantify and digitize TCM
pulse diagnosis, which makes it easier for practitioners to
identify TCM pulse diagnosis.

VI. DISCUSSION
Pulse waves are produced by cardiac ejection and spread
through the arteries to the periphery. The pulse wave can
be measured on the surface of the body. Radial pulse
waves contain information on physiological and pathological
cardiovascular conditions. Through pulse wave analysis,
cardiovascular function can be assessed. In this paper,
the radial pulse wave is systematically summarized from
four aspects, which are waveform acquisition, waveform
processing, pattern classification and parameter estimation,
and clinical applications.

In thewaveform acquisition, themethods of the single-type
sensor include tonometry, PPG, ultrasonic, flexible sensors.
Among them, the commonly used method to measure radial
pulse wave signals is pressure measurement. This method is
greatly disturbed, such as the manipulation of the operator,
the wrist position, and physiological conditions of the subject.
The PPG is widely used to measure radial pulse waves.
Besides, radial PPG can analyze the respiratory signals
to further reflect cardiovascular conditions. However, this
method is greatly affected by the light intensity of the external
environment. The ultrasonic measurement can measure the
change of radial blood flow velocity. However, this method is
operator dependent.Measurement of radial pulse waves in the
long-term can make the subjects feel uncomfortable leading
tomoremotion artifact. To improve this shortcoming, flexible

sensors are used. In addition, they can adapt to changes
of the wrist position and have high sensitivity and a wide
working range. However, the measured signal using a single
sensor is only a certain aspect of the waveform which is
the pressure or flow signal. To detect the enhanced radial
information simultaneously, multi-sensor fusion methods can
be used.

The methods of multi-sensor fusion include multichan-
nel measurement and array signal measurement. Using
acceleration and radial PPG can accurately evaluate heart
rate during exercise in the multichannel measurement. The
method which combines the radial pressure signal and the
ultrasonic image reflects cardiovascular function from the
perspective of endothelial functions. The array measurement
utilizes multiple sensors to integrate measurement. Using
array measurement, a high-quality waveform signal can be
obtained without the necessity of locating the precise position
of the radial artery. The pressure array sensor combined with
the photoelectric sensor can accurately reflect the change
of blood flow and pressure at the same position. The array
combining electromagnetic sensor and pressure sensor can
accurately reflect the temporal and spatial information of
the radial pulse wave. However, in the measurement of the
radial pulse wave, the high-frequency interferences from the
measurement environment and the interferences generated by
the subjects should be reduced. To reduce the interference
signal, Wu et al. proposed a pressure sensing system and
indicated that the extracted arteriosclerosis indexes were
more reliable using this system in comparison with the
traditionally measured signal [102].

Preprocessing of the pulse waveform can reduce the
influence of interference to obtain high-quality radial pulse
waves, which is beneficial to accurately extract the character-
istics. The feature extraction methods include time-domain,
frequency-domain, time-frequency domain, and nonlinear.
When analyzing the waveform in time domain, the waveform
is specific and the waveform feature is obvious. However,
the waveform characteristics are easily affected by external
interference and noise can produce errors in the time domain,
for which it is difficult to identify the source. In analyzing
the waveform in the frequency domain, the frequency
components are comprehensive. However, the waveform
features are not obvious. The time-frequency joint analysis
means that the frequency domain is used to identify the
spectral characteristics of the radial pulse wave and the time-
domain waveform reflects the change with time. The time-
frequency joint methods include wavelet transform, wavelet
packet transform, STFT, and Wigner-Ville distribution. The
nonlinear analysis can analyze the complexity of systems
and signals. The indexes include the Lyapunov index,
approximate entropy, and sample entropy. A variety of
nonlinear indexes indicate that the cardiovascular system of
healthy subjects is more complex than the cardiovascular
system of patients. That means that the healthy physiological
adjustment ability is stronger. However, each analysis method
has some limitations, and the data structure is different.
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Therefore, the method of multiple parameters fusion can
improve data heterogeneity of various parameters to enhance
the accuracy of assistance in the diagnosis of CVD using
radial pulse waves.

In analyzing physiological signals, a variety of signal
combination methods can also be used to improve the
assessment of cardiovascular function. Liu et al. found that
the multimodal sensor device was easy to operate and could
quickly obtain stable and reliable physiological informa-
tion [103]. Similarly, Okano et al. measured multimodal
data to monitor cardiovascular information using a wearable
device at the wrist, such as HRV, PWV, and blood flow
velocity [104]. The multi-modality analysis can enrich the
physiological value of the radial pulse wave. In summary, the
analysis of the radial pulse wave tends to be rich in signal and
comprehensive features.

In pattern classification, the AI method can distinguish
between patients and healthy subjects through analysis of
radial pulse waves. In the pattern classification of radial pulse
waves, the SVM is suitable for solving the small sample-sized
binary classification problem. However, this method also has
some limitations, such as the selection of kernel function
and features, and the difficulty in processing nonlinear data.
Therefore, there are other ML methods to distinguish radial
pulse waves, such as ANN, and FCM. The ANN algorithm
processes the original data in the manner of the neuron.
In the ANN algorithm, the selection of hidden layers has a
great influence on the result of the decision classification.
Specifically, a small number of hidden layers may lead to
weak generalization of the ANN, poor approximation, and
inaccurate classification. A large number of hidden layers
may lead to overfitting of the ANN algorithm. The FCM
algorithm can not only deal with binary-classification prob-
lems but also deal with multi-classification problems. And it
can improve the accuracy of diagnosis in the diagnosis of a
certain type of disease. The DL algorithm can extract features
from original waveform, avoiding information loss caused
by preprocessing. The commonly used DL classification
algorithms include CNN, DCNN, and FNN. DL and ML
algorithms can distinguish radial pulse waves under different
physiological and pathological conditions, which show that
the AI method can effectively identify characteristics of
cardiovascular function.

Another way to identify cardiovascular function is to
estimate cardiovascular parameters, using analytical method
of parameter estimation. Aortic systolic pressure can be
obtained from the radial pulse waves through parameter-
ization and NPMA algorithm. However, this method still
needs to be individualized. The AI algorithm can also esti-
mate cardiovascular parameters. The typical cardiovascular
parameters include blood pressure and vascular function
indices such as aortic reflection index. The investigations
showed that the method of AI can effectively evaluate
cardiovascular parameters with a correlation above 0.78.
In the future, AI methods will be used to estimate many more
cardiovascular parameters.

In clinical applications, analysis of radial pulse waves
can not only be used to assess cardiovascular function but
also quantify the pulse diagnosis of TCM. In the study
of cardiac functions, CO obtained from the radial pulse
wave is analyzed in one cardiac cycle. The characteristics
of different radial pulse waves of the same individual can be
analyzed in long time-varying signal epochs. In the study of
vascular functions, both arteriosclerosis and atherosclerosis
can be assessed as cardiovascular risk factors. On one hand,
quantitative and three-dimensional TCM pulse diagnosis can
further quantify characteristics of pulse diagnosis. On the
other hand, it can provide reference indicators for the
diagnosis of CVD. In conclusion, in clinical applications
of the radial pulse wave, there is a tendency to analyze
cardiovascular physiological and pathological information
with multiple indexes and all aspects.

In addition, some researchers have explored the rela-
tionship between pulse wave and cerebral vessels, which
provides a new perspective for the study of radial pulsewaves.
Pase et al. explored the relationship between aortic pulse
pressure estimated by the radial pulse wave and cerebral
blood flow velocity and showed that there is a positive
correlation between them [105]. This study also further
supported the view that aging of arteries and atherosclerosis
of the aorta can greatly increase the pressure of brain
pulsation.

In conclusion, in investigations of the radial pulse wave
for analyzing cardiovascular function, the trend towards
obtaining high-quality and richer waveform components,
more comprehensive analysis methods, and more diverse
clinical applications. Especially in clinical applications,
pulse waves can be used for providing cardiovascular
and cerebrovascular information. Therefore, radial pulse
waves can be a reliable means for assessment of human
health.

VII. LIMITATIONS AND CHALLENGES
Although the radial pulse wave has a sound physiologic
basis and exciting potential in the arena of clinical medicine,
published researchmethods largely ignore its clinical applica-
tions. This review is meant to remedy this lack of awareness.
Another limitation is that there are few clinicopathological
studies related to the radial pulse wave, including tracking
the development process of chronic CVD, preventing the
occurrence of sudden CVD, detecting the features of cerebral
diseases, and analyzing the function of respiration and
metabolism. In the future, investigations of clinicopathologi-
cal characteristics of the radial pulse wave can be enriched
by combining medical images and biochemical indexes.
The third limitation is that AI has greatly improved the
pattern classification and parameter estimation of the radial
pulse wave. However, the interpretability of AI is relatively
weak. AI combined with hemodynamic characteristics can be
used to improve the classification accuracy of radial pulse
wave patterns and explain their physiological meaning in the
future. Therefore, future studies should not only analyze the
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physiological, and pathological characteristics of the radial
pulse wave but also pay attention to the combination of
research technologies and clinical knowledge to increase its
interpretability.

VIII. CONCLUSION
In recent years there has been reemerged in the computer-
based pulse wave analysis with development of AI. This
review has presented the analysis of the radial pulse
wave and described its potential for daily monitoring and
clinical applications. The radial pulse wave analysis has
made some rapid progress due to AI technology and some
technologies on multiple sensor fusion. In the future, the
radial pulse wave can be applied to the early monitoring of
cardio-cerebrovascular function to reduce the occurrence of
cardio-cerebrovascular diseases.

LIST OF ABBREVIATION
AI Artificial intelligence.
ANN Artificial neural network.
ApEn Approximate entropy.
BPNN Back-propagation neural network.
CAD Coronary artery disease.
CardioFAN Cardiovascular flow analysis.
CNN Convolutional neural network.
CO Cardiac output.
CVD Cardiovascular disease.
DCNN Deep convolutional neural network.
DL Deep learning.
ECG Electrocardiogram.
EP-PTT Equal pressure pulse transit time.
FCM Fuzzy c-means.
FFT Fast Fourier transform.
FNN Fuzzy neural network.
HRV Heart rate variability.
ML Machine learning.
NPMA N-point moving average.
PPG Photoplethysmography.
PRV Pulse rate variability.
PWV Pulse wave velocity.
STFT Short-time Fourier transform.
SVM Support vector machine.
TCM Traditional Chinese medicine.
WFDB Waveform database.
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