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ABSTRACT The OS kernel, which has full system privileges, is an attractive attack surface. A kernel fuzzer
that targets system calls in fuzzing is a popular tool for discovering kernel bugs that can induce kernel
privilege escalation attacks. To the best of our knowledge, the relevance of code coverage, which is obtained
by fuzzing, to the system call has not been studied yet. For instance, modern coverage-guided kernel fuzzers,
such as Syzkaller, estimate code coverage by comparing the entire set of executed basic blocks (or edges)
regardless of the system call relevancy. Our insight is that the system call relevancy could be an essential
performance indicator for realizing kernel fuzzing. In this regard, this study aims to assess the system
call-related code coverage of kernel fuzzers. For this purpose, we have developed a practical assessment
system that leverages the Intel PT and KCOV and assessed the Linux kernel fuzzers, such as Syzkaller,
Trinity, and ext4 fuzzer. The experiments on different kernel versions demonstrated that approximately
32,000–47,000 functions are implemented in the Linux kernel, and approximately 9.7–15.2% are related
to the system call. Our finding is that fuzzers that achieve higher code coverage in conventional metrics do
not execute more basic blocks related to system calls. Thus, we recommend that kernel fuzzers use both
system call-related functions and regular basic blocks in coverage metrics to assess fuzzing performance or
to improve coverage feedback.

INDEX TERMS Fuzzing, kernel fuzzing, evaluation, system call, code coverage.

I. INTRODUCTION
Software bugs can cause incorrect and unintended states
in a computer system, which can then be exploited as a
path for intrusion by attackers. The OS kernel is an attrac-
tive attack surface because of its entire system privileges.
Hence, it is important to discover and fix such bugs in
the OS kernel ahead of attacks to prevent attackers from
obtaining complete control over the system by exploit-
ing its vulnerabilities. Over the past five years, more than
1,000 CVEs have been assigned to the Linux kernel, further
indicating the presence of several latent vulnerabilities in
OS kernels [1].

Various analysis methods (static, dynamic, and combined)
have been used to discover latent bugs in the software.
Fuzzing is a dynamic bug-finding technique that automati-
cally generates or mutates inputs to trigger bugs, and it has
successfully discovered critical bugs in real-world software
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applications [2]. Fuzzing is also often used for finding bugs
in OS kernels by focusing on interfaces that handle user-mode
and kernel-mode communications. Most kernel fuzzers target
system calls that request a service from the kernel, including
but not limited to process control, file management, and
device management.

In this context, various kernel fuzzers have been pro-
posed [3]–[6], and are widely deployed for finding kernel
bugs. In particular, Syzkaller and its derivatives (and also
AFL-derivatives) are coverage-guided fuzzers. To assess the
performance of fuzzers, we generally consider the number
of distinct bugs that are discovered during fuzzing. How-
ever, for a more rigorous assessment, we must also con-
sider the number of code blocks that are explored during
fuzzing [7]. Although the primary goal of a fuzzer is to
find more bugs, a typical list of bugs discovered by a fuzzer
(e.g., CVE ID) is not sufficient for understanding the per-
formance of a fuzzer. Instead, code coverage can be used
as an indicator to determine whether a fuzzer is adequately
operated.
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Most kernel bugs discovered by the kernel fuzzer appear
in the system call relevant functions. For example, Syzkaller
applied KASAN to the Linux kernel and found 701 bugs
(83.1%) out of the 844 fixed bugs found via system calls.
Therefore, to assess the kernel fuzzer, we need to consider the
system call relevancy. However, most kernel fuzzers estimate
code coverage by comparing the entire set of executed basic
blocks (or edges) regardless of the system call relevancy.
This motivated us to assess the performance of kernel fuzzers
by measuring the code coverage of system call-related func-
tions and gaining insight for extending the existing fuzzers
(e.g., to find an uncovered kernel component).

In this study,1 we present a methodology to assess the
code coverage performance of kernel fuzzers with system
call-related functions, which can be executed through a
system call. To assess kernel fuzzers, we first extracted a
list of functions and basic blocks related to system calls
(Section III-A). Thereafter, we built a guest OS environment
on the virtual machine (e.g., KVM) and performed fuzzing
using the kernel fuzzer that had to be assessed in the built
guest OS environment. During the fuzzing process, we used
the Intel PT [9] to record the execution trace of the change
of flow instruction (CoFI) that affects the control flow, and
we used the KCOV [10] to record the executed basic blocks
(Section III-B). Finally, we assessed the performance of a
kernel fuzzer by comparing the list of functions and basic
blocks related to system calls and those that were executed
by the fuzzer (Section III-C). We implemented and evaluated
the proposed method using seven different Linux kernels
and three different fuzzers: Syzkaller [4], Trinity [3], and
ext4 fuzzer [11]. The evaluation results demonstrated that
32,000–47,000 functions were implemented in the Linux
kernel and 9.7–15.2% of themwere related to the system call.
Moreover, we demonstrated that the results obtained while
assessing fuzzers using system call-related basic blocks were
different from those obtained using all the executed basic
blocks.

The following are the contributions of this study:

• Novel indicator for coverage metrics in kernel
fuzzers. We have proposed a new method for measur-
ing the code coverage for kernel fuzzers regarding sys-
tem call relevancy. When measuring code coverage, our
method prioritizes the basic blocks executed by system
calls rather than the entire set of basic blocks. Thus,
it is easy to check which function the kernel fuzzer
was stuck in and could not explore a new execution
path. This method provides a new indicator for coverage
metrics in kernel fuzzers, which can be used to assess
the fuzzers in terms of code coverage performance, and
further improve the fuzzers.

• Engineering work to generate function call graphs of
Linux kernel binaries. When generating function call
graphs of Linux kernel binaries, the problems caused by

1A preliminary version of this paper was presented as a poster [8] at ACM
CCS 2019.

FIGURE 1. Steps to invoke a system call.

tail call optimization, retpoline, and dynamically regis-
tered functions (e.g., kernel driver) are challenging from
an engineering perspective. We analyzed these problems
in detail and resolved them in parts to implement our
assessment system. Our results can be used for further
studies.

• Concrete evaluation of open-source kernel fuzzers.
We performed coverage evaluation on the Linux kernel
fuzzers, such as Syzkaller, Trinity, and ext4 fuzzer, using
the proposed approach. The evaluation results support
the significance of system call relevancy in coverage
metrics for kernel fuzzers.

A. ORGANIZATION
Section II describes the technical background of this study.
Section III presents the design and implementation of the pro-
posed system. Section IV presents the experimental results.
Section V discusses the limitations of our approach, and
Section VI presents the related work. Finally, we present our
conclusions in Section VII.

II. BACKGROUND
A. SYSTEM CALL
A system call is used by user-level programs to request privi-
leged services to the OS kernel. For example, a user program
uses a system call to create a process, read/write a file,
or create a socket. The system call works as follows: At first,
the user program executes an int 0× 80 or a sysenter instruc-
tion to generate interrupts, after which context switching
to the kernel space occurs. In the kernel space, a system
call handler is executed to handle the exception; the system
call handler then finds the system call function in the
system call table according to the syscall number requested
by the user program and executes it. We defined the system
call function executed in the system call handler as the system
call entry function. Furthermore, we defined this system call
entry function and all the functions called by it as system
call-related functions.

Figure 1 shows the processing steps of the kernel when
read() is called from a user process. When read() is called,
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TABLE 1. Number of total functions and system call-related functions in
the Linux kernel extracted by previous study [8].

the system call handler finds its entry function from the
system call table and executes it. As the read system call has
number 0, the user program sets the rax register to zero when
requesting a read(). Finally, the entry function of read, the
first function of the system call table, is executed.

B. KERNEL FUZZING
Fuzzing is a widely used method for finding software bugs.
To find bugs in the OS kernels, the kernel fuzzing, which
generates a random sequence of system calls with random
arguments, is used. Trinity [3] is a widely used system call
fuzzer that targets the Linux system. It creates well-defined
structured inputs using a predefined system call template.
Because the number of arguments and the type of argument
used for each system call vary, fuzzing can be effectively per-
formed using a predefined template. Recently, Syzkaller [4]
has emerged as the most widely used kernel fuzzer targeting
the Linux kernel. Syzkaller is a coverage-guided fuzzer that
not only leverages template-based fuzzing, as in the case of
Trinity, but also measures the code coverage of the kernel
and feeds it to the fuzzer to discover a new code path.
Coverage-guided fuzzing has already exhibited its effective-
ness in finding bugs in user-level programs [12], [13], and
recently, Syzkaller has been successful in finding bugs in
the Linux kernel. Among the Linux kernel bugs reported by
Syzkaller, more than 3,000 bugs have been patched [14], and
out of the 844 bugs included in the KASAN report, 83.1%
were discovered through system calls. Many recent kernel
fuzzers have been researched based on Syzkaller [15].

Table 1 lists the number of system call-related functions
extracted from our previous study [8]. Note that the pre-
vious study is limited in that only the Radare command
aaa was used to analyze the kernel binary. In contrast, in this
study, we additionally used the af command to analyze func-
tions that Radare could not automatically analyze. The sys-
tem call-related functions account for less than 20% of the
functions implemented in the entire Linux kernel. Although
system call-related functions account for a relatively small
percentage of the total functions, more than 80% of the bugs
found in the Linux kernel have been discovered in these func-
tions. Therefore, we extracted system call-related functions
and used them to assess kernel fuzzers.

C. CODE COVERAGE MEASUREMENT
Coverage-guided fuzzing, which generates a new input by
feeding back code coverage information, is used to test
the code in the deep path. Because AFL and LibFuzzer

successfully found a large number of bugs in user-space
programs, coverage-guided fuzzers are also widely used in
kernel fuzzing. To implement a coverage-guided fuzzer, it is
necessary to collect the coverage information. The primary
requirement of the code coverage measurement method used
for fuzzing (especially in kernel fuzzing) is a low perfor-
mance overhead. As fuzzing is a time-consuming task, if a
high overhead occurs while measuring code coverage, fewer
code blocks will be executed within a limited time, and as a
result, fewer bugs can be found. The following are the details
of Intel processor trace (PT) and KCOV used for the coverage
measurement in the Linux kernel.

1) INTEL PROCESSOR TRACE
Intel PT records software execution traces in a packet format
using the processor’s hardware device [9]. It records the
packets when instructions that change the control flow of
an execution, called change of flow instructions (CoFIs), are
executed. The types of packets are taken not-taken (TNT)
packets, target IP (TIP) packets, and flow update packets
(FUP). The TNT packet records the result (true or false) of
the branch condition. The TIP packet records the address of
the next instruction to be executed when an indirect jump
instruction that uses the relative address is executed. The
FUP records information about asynchronous events such as
interrupts and traps. Intel PT has been utilized for binary-only
fuzzing in both user and kernel space [11], [16]–[18].

2) KCOV
KCOV is a tool that records code coverage information of
the Linux kernel tailored for coverage-guided fuzzing, which
has been supported since Linux kernel 4.6 [10]. KCOV aims
to measure basic block level code coverage for the functions
of system call inputs rather than measuring the whole func-
tions executed in the kernel. To achieve this, code coverage
of soft/hard interrupts and some non-deterministic parts of
the kernel is not measured by default; only the code cov-
erage of user threads that handle system calls is recorded.
As a result, the background processes and irrelevant code
are ignored to enable a more efficient fuzzing performance.
Tomeasure code coverage, KCOV inserts the function __san-
itizer_cov_trace_pc(), which tracks the process counter of
the executed basic block in every basic block. The process
counters are then stored in a coverage buffer.

III. SYSTEM DESIGN AND IMPLEMENTATION
In this section, we explain the construction of our assessment
system (Figure 2). At first, we used the system call list,
System.map, and kernel images to retrieve the memory
addresses of the functions related to the system call. There-
after, we performed kernel fuzzing with a target fuzzer on
the guest OS environment, and the addresses of the executed
functions were recorded by Intel PT and KCOV. Finally,
we compared the system call-related functions with the exe-
cuted functions to assess the code coverage performance of
the kernel fuzzer. In this paper, code coverage performance
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FIGURE 2. System architecture for fuzzer assessment.

assessment compares the number of functions and basic
blocks executed on fuzzing.

A. EXTRACT SYSTEM CALL-RELATED FUNCTIONS
To assess the code coverage performance of the kernel
fuzzers, we first need to extract the system call-related
functions among the functions implemented in the kernel
and determine the address loaded onto the memory. System
call-related functions refer to the kernel functions that con-
struct a function call graph (FCG) of the entry function that
can be executed when the system call is called. We extracted
only system call-related functions from all functions and
focused on their coverage because not all functions in the
kernel could be executed by requesting system calls. The
kernel fuzzer aims to discover bugs triggered through system
calls that can be exploited by attackers with user privileges.
Therefore, it is reasonable to focus on system call-related
functions rather than on the entire set of functions imple-
mented in the kernel to assess the kernel fuzzers. There
could exist some kernel bugs which are caused by worker
threads that use shared resources that could be controlled
through system calls. However, it is difficult to identify and
analyze functions that can be indirectly executed through
system calls. Therefore, we first assessed the kernel fuzzer
using system call-related functions and we shall consider the
identification of functions that could trigger bugs through
worker threads in the future work.

System call-related functions are extracted in four steps:
1) The list of system call entry functions from the system
call table is obtained. 2) The address of each entry function
is extracted by referring to the System.map. 3) The FCG of
the functions implemented in the kernel binary are generated.
4) A list of all functions generated by the system call entry
function is obtained. Because code coverage in the basic
block level is used as a de facto standard for kernel fuzzing,
we also extracted the basic block address of the system
call-related functions. The details of each step are as follows.

1) EXTRACTION OF SYSTEM CALL ENTRY LIST
We used the arch/x86/entry/syscalls/syscall_64.tbl to obtain
the names of the system call entry functions, which manages
system calls from the Linux source code. The syscall_64.tbl

lists the system call number, ABI, system call name, and
entry function. We extracted the names of the entry functions
from syscall_64.tbl for use in the subsequent step. From
Linux kernel v4.17, ksys_xxx, which functions similarly with
respect to the system call, was added. The existing system
call entry functions (sys_xxx) were changed to simply call
ksys_xxx. The problem caused by this change is that the FCG
was not completely generated because of the application of
compiler optimization in entry functions. Therefore, from
kernel version v4.17, we added the functions named ksys_xxx
to the system call entry list. From Linux kernel v5.7, the entry
function name in the tbl file omits the __x64_ prefix, and
hence to extract the entry functions properly, we appended
__x64_ prefix to the entry function.

2) EXTRACTION OF SYSTEM CALL ENTRY FUNCTION
ADDRESS
We used the System.map, which contains kernel image sym-
bols and corresponding addresses, to find the kernel mem-
ory address of the entry function of the system call from
the loaded kernel image. Because System.map also con-
tains functions that cannot be executed via a system call
(i.e., functions not related to the system call), we obtained the
address of entry functions obtained in 1) and collected other
system call-related functions through the following steps.
System.map is located in the root of the source directory after
building the Linux kernel; for some Linux distributions, it is
located in the /boot directory.

3) FUNCTION CALL GRAPH GENERATION
To obtain all of the system call-related functions, we created
an FCG for each entry function obtained in 2). We gen-
erated the FCG from the vmlinux, a Linux kernel image,
which can be obtained by building a Linux kernel from the
source code or by decompressing the vmlinuz. In general,
a FCG generated from source code is more accurate than
a FCG generated from binary. However, numerous macros
are implemented in the Linux kernel. Different execution
paths are created according to build configurations; thereby,
many engineering efforts are required to extract a precise
FCG from the source code. We decided to generate FCG
from binary, considering the application to the COTS OSes
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and device drivers in the future. To decompress vmlinuz,
we used extract-vmlinux provided by the Linux project [19].
We used Radare2 [20], a reverse-engineering framework,
to generate an FCG.2 We first ran the aaa command to
analyze the binary kernel, and thereafter ran the af command
to analyze functions listed in the System.map. Later, we ran
the agCj command to generate the global FCG in the JSON
format. The JSON format of the FCG is as follows:

[‘‘name’’:‘‘func1’’,‘‘size’’:100,‘‘imports’’:

[‘‘sub1’’,‘‘sub2’’], . . .]

The name, size, and imports represent the function name,
size of the function implemented in a binary, and symbols
used in the function, respectively. Because not all symbols
in the imports are functions, only symbols in a range of text
areas of the kernel are considered as functions. The text area
ranges from _stext to _etext, and these addresses are listed in
the System.map.

4) EXTRACTION OF SYSTEM CALL-RELATED FUNCTION
ADDRESSES
Finally, we obtained the address of all system call-related
functions in the FCG that was generated from the Sys-
tem.map. For coverage assessment at the basic block level,
we extracted the addresses of the basic blocks for each func-
tion. The afb command of Radare2 extracts the start and end,
and the size of the basic blocks.

From the abovementioned process, the address list of sys-
tem call-related functions and a list of their basic blocks were
generated.

B. CODE COVERAGE MEASUREMENT
The code coverage of the Linux kernel can be measured
using both static and dynamic instrumentation. To measure
code coverage statically, the code for coverage measurement
was inserted into the original code during the compilation
process. However, the static method requires the source code
for instrumentation, and thus, it is difficult to apply it to
closed-source OS kernels such as Windows. For example,
KCOV, which is a coverage sanitizer in the kernel, only sup-
ports open-source OS kernels such as Linux. In this section,
we have demonstrated the dynamic instrumentation method
using Intel PT, which can be applied regardless of the envi-
ronment of the kernel fuzzer to be assessed, and the static
instrumentation method using KCOV for Syzkaller-based
fuzzers. After Intel PT and KCOV recorded the address of
the executed basic blocks, we extracted the address of the
executed functions from the recorded basic block addresses.

1) INTEL PT
Dynamic instrumentation uses a virtual machine to handle
the instructions executed on the guest OS. However, this
method is software-intensive; therefore, it incurs a significant

2Radare2 v5.3.1 is used in our system.

performance overhead. To address this issue, we used the
Intel PT (supported by CPU-level features) and a modified
version of kAFL [11], a coverage-guided kernel fuzzing
framework that uses Intel PT.

kAFL consists of a VM infrastructure, a user-mode
agent, and fuzzing logic. The VM infrastructure tracks
the control flow of the guest OS by leveraging VT-x for
hardware-assisted virtualization and Intel PT for tracking
execution records. The user agent manages the entire pro-
cess, including the initiation and termination of the fuzzer.
We modified the user agent to trace the coverage of the
target kernel fuzzer. To handle asynchronous events such as
interrupts, the kAFL filters out the TIP that is marked with
FUP from the Intel PT trace.

To measure the code coverage of the kernel fuzzer, we ran
a target kernel fuzzer on a guest OS. A large number of
system calls and their related functions were executed during
fuzzing, and the Intel PT logged the address of the executed
kernel basic blocks.

2) KCOV
The KCOV measures code coverage by inserting an instru-
ment code for coverage measurement into the source
code while compiling. Syzkaller is the most representa-
tive coverage-guided fuzzer using KCOV, and many recent
kernel fuzzers, such as HFL [21], Agamotto [22], Moon-
shine [23], and Charm [24], were implemented along with
Syzkaller. Because these fuzzers already measure code cov-
erage using KCOV, the use of Intel PT is not always required.
Because Syzkaller manages a coverage buffer that contains
de-duplicated addresses of the executed basic blocks, the
raw addresses can be obtained by running the following
command:
wget http://localhost:<syz-manager port>/rawcover
The syz-manage port is an HTTP port number, as described

in the Syzkaller configuration. To assess the fuzzer,
we extracted coverage information at regular intervals
(e.g., 1 min).

C. ASSESSMENT OF KERNEL FUZZERS
To assess the performance of kernel fuzzers, we compared the
list of system call-related functions generated in Section III-A
with the list of executed functions generated in Section III-B.
Because functions that can be executed through the system
call are listed in the system call-related function list, it is
possible to assess the performance of the kernel fuzzer by
analyzing the number of functions executed during fuzzing.
We evaluated the validity of this strategy in the section that
follows.

IV. EVALUATION
To evaluate our assessment system, we analyzed the appli-
cability of system call-related functions and basic blocks as
fuzzer assessment indicators. Thereafter, we directly assessed
several kernel fuzzers using our system. For this purpose,
we posed the following questions:
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• RQ1: Can the proposed system extract a larger number
of system call-related functions and basic blocks com-
pared to the previous study? (Section IV-B)

• RQ2: Can system call-related functions assist in the
improvement of the fuzzer? (Section IV-C)

• RQ3: Can system call-related functions and basic
blocks be used as metrics for assessing kernel fuzzers?
(Section IV-D)

A. SETUP
To answer these research questions, we evaluated several
fuzzers with different Linux kernels.

1) KERNELS
We used seven different versions of Linux kernels, four of
which were compiled from the source code, and the remain-
ing were downloaded Ubuntu distributions. The four com-
piled versions, 4.14, 4.19, 5.4, and 5.10, are the LTS version
of the Linux kernel, and the downloaded kernels,
4.4.0-87-generic, 4.15.0-88-generic, and 5.4.0-72-generic are
used in the LTS version of the Ubuntu. We compiled the ker-
nels with GCC 6.5, and used the default kernel configuration
for Syzkaller.

2) FUZZERS
We used three different fuzzers: Syzkaller, Trinity, and ext4
fuzzer. Syzkaller and Trinity were compiled from git commit
fdb2bb and 03f10b, respectively. We used the ext4 fuzzer
included in kAFL v0.1. Syzkaller fuzzes the kernels that we
compiled, and other fuzzers fuzz the downloaded kernels.

3) EXPERIMENT ENVIRONMENT
We tested our system on 384GB RAM, and Intel(R) Xeon(R)
Gold 6148 CPU@ 2.40GHz that supports VT-x and Intel PT.
Ubuntu 16.04, with Linux kernel 4.6.2, ran on the machine as
the host OS.

B. EXTRACTION OF SYSTEM CALL-RELATED FUNCTIONS
AND BASIC BLOCKS (RQ1)
To answer RQ1, we extracted system call-related functions
from seven different versions of Linux kernel binaries and
compared the number of extracted functions with those men-
tioned in a previous study [8]. This indicates that our system
can successfully extract system call-related functions and
basic blocks from various Linux kernel binaries and that the
related functions occupy a small proportion in the Linux
kernel binary. In addition, it indicates whether the process
improved in Section III-A helps in the extraction of the
system call-related functions that the previous work could not
extract. Because most kernel bugs are discovered in system
call-related functions, it is possible to perform more efficient
fuzzing by assigning a high priority to the related functions.

Table 2 lists the results of the extracted system call-related
functions according to the Linux kernel version. The first
column indicates the Linux kernel version. The second and
third columns list the number of total functions extracted

TABLE 2. Number of total functions and system call-related functions in
the Linux kernel.

TABLE 3. Number of total basic blocks and system call-related basic
blocks in the Linux kernel.

from the Linux kernel image and the number of system
call-related functions, respectively. As listed in the Table 2,
32,000–47,000 functions were implemented in the Linux
kernel, and 9.7–15.2% of themwere system call-related func-
tions. Table 3 lists the number of system call-related basic
blocks. We can see that 11–18% of the total basic blocks are
related to the system call.

From Table 2, we can see that Linux kernel 4.19 has
a lower ratio of system call-related functions compared to
other versions. According to our analysis, this is due to the
mitigation technique added to the Linux kernel since v4.15.
Retpoline [25] was applied in the Linux kernel to prevent
side-channel attacks using the Specter V2 [26] vulnerability.
It prevents Specter V2, which can occur in the indirect branch
predictor, by not using an indirect jump/call. An example of
an indirect jump is a switch statement. When the switch state-
ment is compiled, an indirect jump is executed by referring
to the jump table generated by the compiler. The size of the
jump table can be obtained by referring to the operand of the
cmp instruction of the previous basic block of the basic block
where the indirect jump instruction exists.

However, if retpoline is applied, an __x86_indirect_thunk
_rax symbol can be added as a trampoline to avoid an indirect
jump. As a result, Radare2 cannot accurately analyze the
switch statement in this case and therefore restores only
the control flow corresponding to one of the several cases.
In Linux kernels 5.4 and 5.10, this problem did not occur
because the jump table was not used for the switch statement.

Figure 3 shows the number of system call-related func-
tions extracted by previous [8] and current studies. As shown
in the figure, this study extracted more related func-
tions than those in a previous study in all target Linux
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FIGURE 3. Comparison of the number of system call-related functions
extracted by previous study [8] and this study.

kernel versions. In 5.4.0-72-generic, the previous study failed
to extract related functions because of compiler optimization
caused by the use of ksys_xxx. Our system treats ksys_xxx
as system call entry functions, so the system call-related
functions can be extracted even in the latest version of the
Linux kernel. In addition, because we analyzed the func-
tions manually using the Radare2 command by referring to
the System.map for functions that were not automatically
analyzed by Radare2, we could extract more than 30% of
system call-related functions compared to the previous study.
Because the previous study was tested on different environ-
ments (different compilers andRadare2 versions), the number
of extracted related functions depicted in Figure 1 is slightly
different from those listed in Table 1.
From Tables 2 and 3, we can see that, our system suc-

cessfully extract the system call-related functions and basic
blocks from the various versions of the Linux kernel. From
Figure 3, we can see that our system extracts more than 30%
of related functions compared to the previous study. These
observations allowed us to positively answer RQ1.

C. ANALYZING KERNEL FUZZERS (RQ2)
To answer RQ2, we performed 24h fuzzing using Syzkaller,
Trinity, and ext4 fuzzer. Thereafter, we compared the number
of total related functions and basic blocks with the number
of executions among them. Because system call-related func-
tions can be executed directly by the kernel fuzzer, all related
functions and basic blocks should be tested by the fuzzer.
Therefore, if we can identify a system call-related function
that has not been tested by the fuzzer, the reason for not
executing the function would be determined to improve the
fuzzer.

Figure 4 shows the number of executed system call-related
functions and basic blocks as a result of the 24h fuzzing
by Syzkaller. The ratios of executed related functions were
53.5%, 57.8%, 58.5%, and 59.3% for kernels 4.14, 4.19,
5.4, and 5.10, respectively. The ratios of the executed related
basic blocks were 31.3%, 35.0%, 35.4%, and 35.1%, respec-
tively. We investigated why more than 40% of the system
call-related functions were not tested by Syzkaller. According

FIGURE 4. Number of system call-related functions and basic blocks
executed by 24h fuzzing of Syzkaller.

TABLE 4. Number of unexecuted functions by 24h fuzzing of Syzkaller.

to our analysis, these functions failed to execute for the
following two reasons. The first is that the fuzzer overlooked
a large portion of the related functions and basic blocks
while fuzzing. In this case, the reason for Syzkaller failing to
execute the functions could be manually analyzed and used to
improve the related fuzzers, including Syzkaller. The second
reason is that many of the executed functions, classified
as a system call-related function by our system, were not
recorded by KCOV for coverage measurement. In this case,
the related functions that are actually executed were classified
as unexecuted functions in the experiment. Because KCOV is
designed for fuzzing, it does not measure the coverage of the
entire set of functions, but only the coverage of the functions
related to the syscall input.

Table 4 lists the number of unexecuted functions as a result
of 24h fuzzing by Syzkaller. To improve the fuzzers, it is nec-
essary to identify the unexecuted functions and induce them
to execute these functions. For example, if a target program
needs to satisfy a complex conditional statement to execute
a specific function, we can update the mutation strategy of
the fuzzer to satisfy the statement. However, because there
are a large number of functions implemented in the kernel,
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TABLE 5. Number of system call-related functions and basic blocks by
24h fuzzing of Trinity and ext4 fuzzer.

it is difficult to know which functions the fuzzer can test but
not tested. In Table 4, we can see that Syzkaller failed to
execute more than 30,000 functions, which is about 60% of
the total functions implemented in the Linux kernel listed in
Table 2. Analyzing all 30,000 functions to improve Syzkaller
takes a very long time, so it is more efficient to improve
the fuzzer by first analyzing unexecuted system call-related
functions, which are considerably smaller in number. There
are approximately 2,000 related functions that have not been
executed, which occupy 5–7% of the total functions.

Table 5 lists the results of the 24h fuzzing by Trinity and
ext4 fuzzer. The Trinity and ext4 fuzzer executed 36.5%
and 32.2% of the related functions and 19.1% and 16.9%
of the related basic blocks, respectively. Because the Trinity
and ext4 fuzzers are relatively simple fuzzers compared to
Syzkaller, they executed a lower percentage of related func-
tions and basic blocks compared to Syzkaller, although they
fuzzed different kernel binaries. Because we can easily iden-
tify functions that are not executed among system call-related
functions, it can be used to improve the fuzzer efficiently by
analyzing these functions first.

D. ASSESSING KERNEL FUZZERS (RQ3)
To answer RQ3, we compared the total number of functions
and basic blocks executed as a result of the 24h fuzzing with
the number of related functions. Figure 5 shows the result
of code coverage as a result of the 24h fuzzing by Trinity
and ext4 fuzzer. As depicted in Figure 5a, Trinity achieved
a higher function coverage compared to the ext4 fuzzer for
all the functions and related functions. Trinity achieved most
of the function coverage at the start of fuzzing because it
called the entire set of system calls randomly. However,
because it called the system call without information about
the dependency across them, the coverage did not increase
during fuzzing. In contrast, the ext4 fuzzer found a new
code block during fuzzing because the kAFL gives coverage
feedback on coverage to the fuzzer.

In Figure 5b, the basic block coverage results for both
fuzzers are slightly different from those depicted in Figure 5a.
As a result of the 24h fuzzing, the basic block coverage of
the ext4 fuzzer was higher than that of Trinity; however, the
Trinity executed more system call-related basic blocks. It can
be considered that ext4 fuzzer achieved higher code coverage
than Trinity when it compared only the total number of basic
blocks; however, while comparing system call-related basic
blocks, Trinity achieved higher code coverage. Therefore,
rather than comparing only the total number of executed

FIGURE 5. Number of executed functions and basic blocks by 24h fuzzing
of Trinity and ext4 fuzzer.

functions and basic blocks, we can assess different aspects of
fuzzers using system call-related functions and basic blocks.
In the future study, we plan to experiment with whether our
metric is helpful in terms of bug finding.

V. DISCUSSION
We have proposed a method to assess a kernel fuzzer using
system call-related functions in this study. We address the
limitations of this study and discuss further direction in this
section.

A. KERNEL DRIVERS
System call-related functions were extracted using the FCG
generated from the kernel binary. However, not all related
functions implemented in the Linux kernel appear in the
FCG. Some components register functions dynamically dur-
ing kernel execution; therefore, these functions cannot be
extracted through statically generated FCG. The kernel driver
is one such component. Because the Linux kernel sup-
ports various devices, it is difficult to control them using
general system calls. Therefore, each device uses a driver
that includes an operation function that controls the device
itself.

Among the operations used in the driver, ioctl sup-
ports device-specific input/output and other operations
required by a device. Because ioctl enables direct access
to the device driver from the user-level process, it is con-
sidered to be an important attack vector for attackers.
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FIGURE 6. The struct tty_operations in Linux kernel v4.15.

Therefore, while assessing kernel fuzzer, the code coverage of
functions implemented in a device driver should bemeasured.
However, because the current FCG does not cover dynami-
cally registered driver functions, assessment of the driver may
not be accurate.

Figure 6 shows the tty_operations of the tty device.
As depicted in the figure, the driver has 16 operations (when
CONFIG_COMPAT is defined). When open is requested
on the device, con_open is executed, and when write is
requested, con_write is executed. These driver operations
are registered when the driver is initialized. To extract these
functions as system call-related functions, it is necessary to
identify the operation functions registered during the initial-
ization of the device driver and thereafter add them as entry
functions.

B. ACCURACY OF BINARY ANALYSIS
As we extract system call-related functions through the FCG,
the accuracy of related functions depends on the accuracy
of the generated FCG. Unfortunately, FCG extracted by
binary analysis was not soundly generated for reasons such as
compiler optimization and vulnerability mitigation. Figure 7
shows the disassembly code of the __x64_sys_read function
of the Linux v4.19 kernel. This is the entry function of
the read system call, and it executes ksys_read. As shown
in the last line of the disassembly code, ksys_read is exe-
cuted through the jmp instruction. For calling a function,
call instruction is generally used, but jmp instruction is used
instead of call because of the tail call optimization [27]. As a
result, Radare2 failed to analyze the relationship between
__x64_sys_read and ksys_read. The problem that occurs in
the system call entry function can be solved by adding the
ksys_xxx functions to the entry function, but other incorrectly
extracted system call-related functions could be attributed
to this.

FIGURE 7. Disassembly of __x64_sys_read in Linux kernel v4.19.Due to
tail call optimization, ksys_read is called through jmp instruction rather
than call-ret pair.

C. SELECTIVE ANALYSIS
We extracted system call-related functions that can be used in
further kernel analyses. Because the kernel has a large number
of implemented functions, kernel analysis methods incur a
high performance overhead. The selective analysis of kernels
using related functions makes it possible to perform efficient
analysis.

Sanitizers such as KernelAddressSanitizer [28] (KASAN),
UndefinedBehaviorSanitizer [29] (UBSan), andKernelMem-
orySanitizer [30] (KMSAN)were applied to the kernel to find
vulnerabilities. While fuzzing with a sanitizer, we can effi-
ciently fuzz by selectively sanitizing system call-related func-
tions. Additionally, symbolic/concolic execution [31], [32]
or dynamic taint analysis [33], [34] are also used for ker-
nel analysis. However, such methods make kernel analysis
impractical because the performance overhead ranges from
tens to thousands of times as a result. Therefore, it would
be more efficient to analyze the system call-related functions
prior to analysis of other functions. We expect a fruitful result
employing this direction in further research.

VI. RELATED WORK
Many kernel-fuzzing studies have been proposed to detect
kernel vulnerabilities. Most kernel fuzzing techniques target
system calls and are divided into cases with and without
coverage information.

A. KERNEL FUZZING
Kernel fuzzers without coverage information include the
Trinity [3] and IMF [6]. Trinity performs fuzzing by calling
system calls randomly to the Linux targets. It stores informa-
tion about the arguments and its type as a template so that
the system call can be correctly executed. The IMF performs
fuzzing on macOS by leveraging a model for learning the
inferred dependencies among API function calls.

B. COVERAGE-GUIDED KERNEL FUZZING
Kernel fuzzers with coverage information include kAFL [11],
Syzkaller [4], and TriforceAFL [35]. kAFL measures the
kernel code coverage using virtualization and Intel PT to
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provide coverage information to the fuzzer in a feedback loop.
However, kAFL does not automatically generate valid system
calls. The Syzkaller runs a target kernel on the QEMU virtual
machine and requires the target kernel compiled with KCOV
to measure coverage. TriforceAFL leverages QEMU to pro-
vide coverage information of the entire system, including the
OS kernel. TriforceLinuxSyscallFuzzer [5] is a Linux system
call fuzzer based on the TriforceAFL.

Recently, advanced fuzzing techniques based on Syzkaller
have been studied [15]. DIFUZE [36] analyzed the ioctl inter-
faces using static analysis to discover vulnerabilities in the
kernel driver. MoonShine [23] used a static analysis to detect
dependencies across different system calls. RAZZER [37]
leveraged static analysis and deterministic thread interleaving
to detect race conditions in the Linux kernel. HFL [21] is
a hybrid kernel fuzzer that combines fuzzing with symbolic
execution. These fuzzers evaluate code coverage using the
basic block or edge coverage measured by the KCOV. System
call-related basic blocks can be used as another metric to
assess the code coverage of these fuzzers. This will help to
identify the missed basic blocks that can be executed by the
fuzzer and thus, improve the fuzzer.

C. EVALUATING FUZZERS
Since the early 1990s, many fuzzing techniques have been
studied to find software bugs [38]. Each fuzzing technique
targets different types of programs, and each fuzzer has differ-
ent strengths; consequently, it is very difficult to evaluate their
performance. Recent studies have evaluated fuzzers based on
the guidelines presented by Klees et al. [7].

The ground-truth metrics used to evaluate fuzzing tech-
niques are discovered bugs and code coverage. Because the
primary purpose of fuzzing is to find bugs in the target
program, the fuzzer that detects a greater number of bugs is
considered superior. However, the comparison of the number
of bugs found alone is insufficient to evaluate the effec-
tiveness of the fuzzing algorithm. Because the number of
bugs used for the experiment is usually insufficient, a more
efficient fuzzer may discover fewer bugs depending on the
target program. To address this limitation, the automatic
bug-injection frameworks LAVA and EvilCoder [39], [40]
inserted a large number of artificial bugs into a real program.
However, because these bugs have low diversity, they are
still limited as a dataset for evaluating fuzzing. Magma [41]
created high-quality ground-truth fuzzing benchmarks by
considering diversity, verifiability, and usability, but these are
still a small number of benchmarks for evaluating fuzzers.

There are still limitations in the evaluating of fuzzers by
comparing the number of bugs found. Code coverage is used
as a secondary metric to evaluate fuzzing techniques [7].
Because the kernel is larger than the user program, and var-
ious tasks are performed in the background, evaluating the
kernel may not be an accurate approach when using the entire
code coverage. To alleviate this problem, we extracted system
call-related functions and basic blocks targeted by kernel

fuzzers and used them for the code coverage assessment of
kernel fuzzers.

VII. CONCLUSION
We have proposed a method to assess the code coverage of
kernel fuzzers using system call-related functions and basic
blocks. The evaluation results show that 32,000–47,000 func-
tions were implemented in the Linux kernel, out of which
9.7–15.2% are related to the system call. Furthermore, as a
result of the 24h fuzzing by Syzkaller, Trinity, and ext4
fuzzer, approximately 53.5% (v4.14), 36.5%, and 32.2% of
system call-related functions were executed. Moreover, our
evaluation results show that while assessing fuzzers with
system call-related basic blocks, the evaluation result can be
different from those obtained when assessing fuzzers with
all the executed basic blocks. In future studies, we intend
to analyze functions that are not covered by existing kernel
fuzzers and extend the target for fuzzers that support other
OS kernels such as Windows and macOS.
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