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ABSTRACT This paper investigates the unsupervised automatic feature extraction method with a large
amount of unlabeled data for the fault diagnosis of rolling bearings in automobile production line, where
the fault information is hard to identify due to the low-level features of a single category and the massive
fault data is difficult to process. Different from the existing methods, which only combine the compressive
sensing with single category of low-level features, or extract features from raw data, a novel intelligent fault
diagnosis method for rolling bearings based on the compressive sensing and a stacked multi-granularity
convolution denoise auto-encoder network is proposed, which utilizes the nonlinear projection to achieve
the compressed acquisition and resolves issues with character unicity by extracting a diverse category of
high-level features. Moreover, a regularization method called ‘dropout’ is used to prevent overfitting during
the training process. The amount of measured data that contained all the information of faults is reduced and
the classification accuracy is improved by extracting more robust features based on the proposed method.
Finally, the effectiveness of the proposed method is validated using data sets from rolling bearings in an
automotive production line and the analysis result show that it is superior to the existing methods and is able
to obtain high diagnostic accuracies.

INDEX TERMS Bearing fault, intelligent diagnosis, feature extraction, compressive sensing, stacked

auto-encoder.

I. INTRODUCTION

Rotating machinery plays an important role in modern
automobile industry. With the upgrading of automotive pro-
duction capacity, the line stop caused by the faults of rotat-
ing machinery will cause heavy economic losses and even
endanger the personal safety of producers. Hence, the con-
dition monitoring of the rotating machinery has attracted
great attentions [1]. According to the statistics of historical
machinery failures, almost 40% of the faults about rotating
machinery come from rolling bearings, which will suffer
various faults due to the harsh production conditions [2], [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Prakasam Periasamy

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Consequently, the reliable bearing fault diagnosis methods
are meaningful and practical.

Vibration analysis is widely adopted in the bearing fault
diagnosis [4]. After a literature review, signal processing
and intelligent diagnosis are two main methods that have
proved to be effective [5], [6]. Intelligent diagnosis meth-
ods mainly include two steps: feature extraction and fault
recognition. It should be noted that feature extraction is more
significant which intends to obtain representative character-
istic from raw signals based on signal processing methods.
For instance, spectral analysis, time-domain statistical analy-
sis [7], [8], transform domain analysis [9], [10], entropy and
adaptive decomposition [11]-[13]. Nevertheless, some insen-
sitive or redundant information may be in these extracted fea-
tures. Then some dimension reduction strategies and feature
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selection methods are presented to obtain sensitive charac-
teristic, which affect the computational efficiency as well
as the diagnosis results, such as feature discriminant analy-
sis [14] and principal component analysis. On the other hand,
some artificial intelligence methods are adopted to identify
the bearing faults. For example, support vector machine
(SVM) [15], random forest [16], artificial neural network
(ANN), and k-nearest neighbor [17]. The general procedure
is shown as Figure 1, and the left hand side is the traditional
method.

However, intelligent fault diagnosis methods still have two
deficiencies. Firstly, traditional feature extraction methods
not only rely heavily on diagnostic expertise and profes-
sional technology, but also need to extract features manually.
Also, these methods are ordinarily studied according to one
specific diagnosis issue with low generalization. Secondly,
traditional artificial intelligent methods cannot distinguish
the primary differences between the complex information
effectively from massive raw signals. It generally uses high-
dimensional signals to show the information in the complex
mechanical system. The Shannon-Nyquist theorem is the
common way to extract the vibration signals. In this tradi-
tional way, multiple sensors with long operation periods over
high sampling could produce a large amount of data, which
put forward high requirements on the transmission band-
width, data storage, acquisition hardware, and subsequent
processing [18]. Thus how to extract features effectively from
massive raw data and identify the faults accurately are worth
researching.

In this paper, we adopt the compressive sensing (CS) to
extract the raw data, which is fundamentally different from
Nyquist theory. In recent years, CS has attracted considerable
attention in some areas, such as signal-pixel camera [19],
radar imaging [20], and electrocardiogram [21]. CS reduces
the amount of sampled data while retaining most of the useful
information. To a certain extent, CS provides a new thinking
in the field of data acquisition and processing because of
its low requirement for the storage and computational [22].
The general procedure of the CS method introduced by some
researchers includes three parts: the projection acquisition of
the raw data, compressed and reconstruction. The procedure
has shown in the middle of the Figure 1.

Obviously, the methods based on CS are still draw support
from the conventional ways, although it reduces the demands
for data storage and computational. Histon ez al. developed
the deep learning (DL) theory [23], which provides the the-
oretical support for the above difficulties. The fundamental
of the DL is that it can map the original space data into the
feature space by learning a nonlinear input function under
the structure of a multilayer neural network. DL is applied in
different fields successfully with the function of dealing with
massive data analysis automatically since its emergence, such
as the image recognition, the speech identification [24], and
other applications. The development of DL has significantly
reduced the dependence on expertise and the manual selection
of features in intelligent diagnosis [25]. The procedure has

154778

shown in the right hand of the Figure 1. Common DL algo-
rithms include convolution neural networks (CNN), recur-
rent neural network (RNN), deep belief network (DBN), and
auto-encoder (AE) [26]. Among these algorithms, CNN is
more popular because of its character of sparse connections
and weight shares. However, this technique need a back-
propagating (BP) error approach [27] to train the network
using massive labeled datasets. Hence, the acquisition of
data set requires extensive resources, which restricts the
application and development of CNN. Under these circum-
stances, unsupervised learning [28] becomes a better choice,
which can automatically extract features via unlabeled data.
The auto-encoder (AE) has the unsupervised neural network
structure. Nevertheless, too many network parameters were
introduced in AE, due to its performance of the full connec-
tivity between layers [29]-[32]. Thus both CNN and AE have
a common limitation about feature extraction. To solve these
problems, Shao et.al. proposed an improved convolutional
deep belief network with compressed sensing [33]. He et al.
put forward a new framework based on small labeled infrared
thermal images and enhanced convolutional neural network
from convolutional auto-encoder [34].

Rolling bearing Vibration signal

Compressive sensing

Nyquist sampling 4 Compressive sensing N

Compressed samples Compressed samples

(.. Reconstructed signal

(" Feature extraction
T

Time domain sample signal

(" Inteligent feature )
extraction and
classification of deep
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~- =
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FIGURE 1. The procedure of different methods.

Summing up the above, existing DL methods have
the difficulties in acquiring massive labeled data. On the
other hand, feature extraction also has many limitations.
Instead, unmarked data can be easily obtained. So we
propose a novel fault diagnosis framework based on CS
and stacked multi-granularity convolution denoising auto-
encoder (SMGCDAE) method. This framework provides
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a new bearing fault classification solution for bearing
fault diagnosis. Firstly, CS reduces the amount of sam-
pled data while retaining most of the useful information.
Then, multi-granularity convolution denoising auto-encoders
(MGCDAE) combines an ensemble learning thought called
multi-granularity convolution kernel [35]-[37] and the
denoising auto-encoder (DAE), which can use fewer param-
eters and lower computational learning cost to extract robust
features from unlabeled data. We can obtain different fea-
tures, because the size of the kernels varies. This approach
adds the receptive fields due to the function of the convo-
lution kernels, allowing them to acquire multifarious fault
features. In addition, dropout [38] is utilized in the hidden
layer of the auto-encoders to prevent the overfitting by aver-
aging the model. In brief, the generalization performance in
fault diagnosis is improved, because of the diversify of the
attributes. Finally, we stack several multi-granularity con-
volution denoising auto-encoders (MGCDAESs) to form a
SMGCDAE structure and use a pre-training method to train
this network [39]. We summarize the main insights and con-
tributions of this work as follows:

1. Employed a novel bearing fault diagnosis framework,
which integrates CS with SMGCDAE method in this paper.
Compared to other techniques, this framework can reduce
environmental demands, transmission costs and computa-
tions. The original vibration data is linearly mapped into a
lower dimension space. The small amount of compressed sig-
nal not only gets rid of the dependence on diagnostic expertise
and prior knowledge, but also contains most of the informa-
tion. In addition, this framework can obtain more comprehen-
sive key features using diverse characteristics exhibited and
acquire robust features based on unsupervised learning.

2.In the diagnosis case of a real data set from an automotive
production line, the effects of the key parameters and the
selection of the proposed method are thoroughly studied.
In addition, the experiment shows the superiority of our
proposed framework by comparing with traditional methods.

The remainder of this paper is organized as follows.
Section 2 overviews the theory of CS and AE utilized
in the proposed technique, and presents the details of the
SMGCDAE with dropout. Section 3 describes the proposed
CS-SMGCDAE intelligent method for rotating machinery
fault diagnosis. Section 4, the performance of the raised
method is verified by experiments from an automotive
production line. Finally, conclusions and future work are
included in section 5.

Il. COMPRESSIVE SENSING

This section gives a brief introduction to CS [40], which is a
special case of sparse representation. To a certain extent, CS is
even an extended of sparse representation. The sample idea of
CS is that so many real-world signals have sparse features in
some domain, e.g., Fourier Transform (FT), we can use fewer
measurements to reconstruct it under some conditions. CS has
two principles: one is the sparsity of the signals; the other
one is that the measurements matrix from the original signals
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FIGURE 2. Compressive sampling framework.

could be compressed by their sparse representations. In other
words, the measurements matrix in the second principle must
satisfy the data minimal information loss, i.e., Restricted
Isometry Property (RIP). Briefly, we describe CS as
follows.

Assuming an unknown original signal X, x; € R", which
has n data points. To allow these data points produce a set of
sparse components, for a given sparse transformation matrix
o, ;i € R, the mathematical definition of X can be
expressed as Equation (1):

n
x=) gisi e))
i=1
Or more efficiently

X = @S )

where s represent the sparse elements and a n * 1 column
vector of coefficients. When the dictionary (sparse transfor-
mation) ¢ is incoherent with the measurement matrix ¢, the
original signal X can be reconstructed by the compressed
measurements y based on the theory of the compressive sam-
pling, and y can be written as follows:

y = Vs = 0s 3)

where y is the compression measurement, represented by a
m * 1 column vector. 6 is the measurement matrix, 6 = @¢,
and the matrix 6 must satisfy the data minimal information
loss, i.e., Restricted Isometry Property (RIP) [41].

Definition 1.1: The measurement matrix 0 satisfies the
Restricted Isometry Property (RIP) if there is a parameter
6 € (0, 1) as follows:

(1=38)lIsll3 <O lxl3 < (1 +8)lIsl3 )

The size of the measurement matrix 6 is m * n, which
depends on the compressive sampling rate (), and the length
of m is significantly lower than the Nyquist rate (m < n).
Figure 2 show the compressive sampling framework.

To some extents, the compressed data can cover most of the
raw signal information if the measurement matrix satisfies the
RIP. [42] proved that the random Gaussian matrix satisfies
the RIP with good universality. Hence, the measurement
matrix employs the random Gaussian matrix to obtain the
compressed data.
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FIGURE 3. The architectural of AE.

IIl. STACKED MULTI-GRANULARITY CONVOLUTION
DENOISING AUTO-ENCODER WITH DROPOUT

A. DEEP NEURAL NETWORK AND AUTO-ENCODERS

The deep neural network (DNN) is developed from deep
learning with the deep architectures. In this network, the
representative information in the approximate complex non-
linear functions and compressed measurements can be cap-
tured with small errors. In addition, DNN has the ability
of amplifying the differences in the explanatory information
contained from the original data and suppressing irrelevant
parts that cause interference, thus can distinguish the different
fault classes.

An auto-encoder is a widely used unsupervised neural
network, which has three layers. The target of the output
in an auto-encoder is to reconstruct the input data via the
backpropagation [25]. As depicted in Figure 3, an auto-
encoder consist of encoder part and decoder part like many
unsupervised feature learning methods. The encoder network
not only transforms the high-dimensional input data into the
low-dimensional output codes, but also produces the feature
vectors. The decoder network reconstructs the inputs from
these feature vectors.

The encoder network can be defined as a feature extraction
function fp. For each measured signal x”, that can compute a
feature vector 4™, as shown in Equation (5):

1" = fy (") §)

where A" is the feature representation obtained from x™.

The decoder network can be denoted by a recovery func-
tion gg, which can transform the feature space 4™ into the
input space ™, producing a reconstruction:

A" = go (") ©)

The parameter sets of the auto-encoder are learned simul-
taneously on an approximation such that x™ is similar to x™,
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also attempting to attain the lowest possible reconstruction
error L(x, x). Where the loss function L(x, X) can measure
the discrepancy between x and x. Hence, we can obtain the
following equation:

N o
L(x,x) = 3 ||x —x” 7)

In fact, affine mapping is the most common used form
for auto-encoder [43], and that keep collinearity followed by
nonlinearity:

fo @) = s (Wx +b) ®)
g0 (0) = 5 (WTx +d) ©)

where sy and s, are the activation functions of the encoder
and decoder, respectively, e.g. hyperbolic and sigmoid. b and
d are bias vectors, and W and W7 are the weight matrices.

Although the original input data can be reconstructed by
the learned feature representation perfectly, the generaliza-
tion performance of the model is not good.

B. DROPOUT

Dropout is a technique used to prevent overfitting in the fully
connected layers. The network will remove some hidden units
in each layer randomly with a certain probability during each
training iteration, thus the hidden units can change their states
without the help of other hidden units. In this study, the
dropout technique is applied to avoid the extraction of the
same feature repeatedly and prevent complex co-adaptations
on the training data.

C. SIGNAL MULTI-GRANULARITY CONVOLUTION
DENOISING AUTO-ENCODER WITH DROPOUT

In real implementation, achieving sufficient feature learn-
ing is susceptible to interference because of complicated
factors. For instance, instrumentation errors and inaccurate
data collection could cause data deviation. Consequently,
capture more information to measure the latent high-level
feature representation is highly necessary. In order to learn
high-level features effectively in this paper, we adopt the
multi-granularity convolution kernels. Under this concept,
each convolution layer contains convolution kernels of vary-
ing sizes, with each convolution kernels corresponding to a
unique feature. This structure integrates high-level features
to present more comprehensive information through various
mappings.

In this paper, the proposed MGCDAE pipeline contains
three dimensions of convolution kernels: 1 x 1, 3 x 3, and
5 x 5. As the number of kernel increases, the amount of
computation and required runtime increases. Therefore, the
1 x 1 kernel was mainly applied to alleviate computational
bottleneck, reduce network parameters, and decrease dimen-
sionality. The first part of the multi-granularity is a 1 x 1
convolution layer. To allow local connection of each pipeline
as sparse as possible, another 1 x 1 convolution layer is also
constructed (see Figure 4).
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FIGURE 4. The MGCDAE architecture.

To optimize the network, convolution kernels are trained by
DAE with dropout technique in the training stage of the pro-
posed network. DAE was firstly introduced in 2008, which is
an unsupervised approach used for extracting robust features.
In this study, we firstly contaminate the original data to
obtain the noisy data, then extract the robust features, which
can ensure stability and improve generalization performance.
Here, we choose random Gaussian noise to destroy the raw
data.

In the encoder process as shown in Figure 4, add the
Gaussian noise randomly into the original input vector x’,
thus can obtain a corrupt input vector X’, then get into
the nonlinear activation function by linear mapping. Next,
the ' is mapped to a latent vector representation o’ by the
function f.

o :f(Wl *scf+b1) (10)

where W7 and b; are the weighting matrix and encoding bias
vectors, and * is the convolution operation.

In brief, we use the benefits of variability of the number
of convolution kernels to obtain different high-level repre-
sentations. When the obtained features were extracted from
a given pipeline, it could be integrated using a weighted
average, because of the same dimensions. In other words,
we put forward a feature fusion method by matching the
dimensions of the convolution layer. This method is bene-
ficial for improving the generalization performance of the
network.

After that, to optimize the training process, the dropout
technique is applied to the network, which can prevent
overfitting in the fully connected layers. Technically, the
“dropout” can be realized by omitting the neural units in the
hidden layers randomly with a probability g. Then we can
get a dropped representation &’ by a scalar product with a
masking vector m.

ad=m.d (11

A unique network is trained in each iteration, since the net-
work is updated iteratively by dropping the neurons randomly
in the hidden layer. This operation improves the subsequent
classification performance greatly.
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FIGURE 5. The SMGCDAE network architecture.

Instead, in the decoding process, the reconstructed input
vector z' was output by a nonlinear activation function g using
the potential feature representation &'.

7 =g(W2*5/+b2) (12)

In this expression, g, W5, and b; are the decoding function,
matrix, and decoding bias vector. Assuming a given training
set X = {(x1,y1), (x2,), ..., (xp, ym)}, the overall cost
function can be defined as:

. 12
xi—7

1 M
J(W,b):ﬁ;‘ (13)

D. STOCKED MULTI-GRANULARITY CONVOLUTION
DENOISING AUTO-ENCODER WITH DROPOUT
Inspired by [44], [45], we find out the remarkable
abstractness of the deep neural networks. Hence, multiple
MGCDAE:s are stacked in a deep neural network. The BP
algorithm is used to train the first MGCDAEIL. Then the
output of the encoder ali become the input for the next
MGCDAE?2. This process is shown in Figure 5.

Finally, a deep stacked MGCDAE (SMGCDAE) is formed
by N MGCDAEs. We can calculate the latent feature repre-
sentation oe,i\,:

oy =1 (W sy, +5Y) (14)

where WIN is the weight matrix, l/lV is the bias vector.

The aim of the SMGCDAE network is to improve the non-
linear mapping capabilities of the MGCDAE. We can obtain
and fuse the high-level features by abstracting the initial
feature layers. At last, the features are put into the classifier
to complete the final classification.
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IV. SOFTMAX CLASSIFIER
In this study, we use the softmax classifier [46], [47] to
classify the fault types as follows:

elﬂio WiXi
1 eZ?io WiXi
JX)=—F—1 2 (15)
sk Eiow
e
] J ZM -
et i=0 WiXi

where k and w; are the data category and the weight of the
sample x;. To minimize the reconstruction error, we also need
a cost function during the training process in this deep net-
work, thus we can obtain more similar data with the original
data.

V. PROPOSED FAULT DIAGNOSIS METHOD

In consideration of the challenges caused by the restrictions
of traditional approach and the difficulties in processing mas-
sive raw data in bearing fault diagnosis. This paper initially
adopts a data acquisition method, which can realize fault
signal acquisition by using the transform domain projection
in the CS domain. Moreover, a SMGCDAE deep learning
algorithm is constructed to realize intelligent diagnosis. The
procedure of the proposed framework is shown in Figure 6.

Acquire bearings vibration signals
'

Obtain compressed measurements based on CS
|

v v
Training datasets Testing datasets

MGCDAE 1

|
MGCDAE 2

MGCDAE n
'

Softmax classifier

Trained stacked

li‘r?dlcted " MGCDAE
training labels

Target
training labels

Predicted testing _ Target testing
labels labels

Classification
accuracy

FIGURE 6. Procedure of the proposed method.

Firstly, acquire the compressed data via a specific compres-
sion ratio. Then obtain a dataset x = {xi, di}?il, where M is
the total number of samples, d' is the label corresponding to
x', x! is the i-th compressed sample. The original dataset is
divided into two parts, the training set x4, = {x", d ’”}izl
and the testing set Xzog = {x¥, d* }le. The former is used
to train the constructed SMGCDAE network, which is a
greedy training method including two main processes: one

is to initialize the weight in the network through pre-training
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FIGURE 7. (a) Bearing test for the experiment. (b) Transmission
mechanism and sensor locations.

Bearing2

the MGCDAE. another one is to improve the performance of
the network by further fine-tuning the networks with BP algo-
rithm. The test set has responsible to validate the performance
of the proposed diagnosis network.

VI. EXPERIMENTAL VERIFICATION

A. DATASET DESCRIPTION

This subsection aims to verify the superiority of the proposed
method by conducting the fault diagnosis of ‘scissor’ lifter
located in the assembly production line of an automotive
company as shown in Figure 7. In the automotive production
line, the ‘scissor’ lifter is a kind of car lifting equipment
with car lifting stability and has a wide range of applications.
It is mainly used for cars transportation between the height
difference of production line. Hence, it will cause huge losses
once this important equipment breaks down. The most easily
damaged part of the equipment is the rolling bearing on
the rotating spindle. The vibration signal of the bearings is
extracted and analyzed.

In the experiment, seven kinds of rolling bearing conditions
were existing in the test: normal (NOR), outer race fault
(Stripping with a size of 40mm*3mm, ORF1), outer race fault
(pitting, ORF2), inner race fault (Stripping with a size of

VOLUME 9, 2021



C. Liang et al.: Novel Intelligent Fault Diagnosis Method for Rolling Bearings

IEEE Access

TABLE 1. Detailed information of the bearing datasets.
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FIGURE 8. Rolling bearings with different health states.
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FIGURE 9. (a) The time domain waveforms; (b) the frequency domain
waveforms.

40mm*3mm, IRF1), inner race fault (pitting, IRF2), rolling
element fault (REF), and lubrication shortage fault (LSF),
as illustrated in Figure 8. Each type has 150 samples with
4800 in length, which is marked as set A.

Then, the compressed data under different compression
ratios (CRs) with measurement matrix can be obtained by
compressed acquisition theory. For example, a 1440 x 4800
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Data Set o . Fault Fault
Training Testing o Labels
(A /A" Types Description
Samples Samples
50 100 NOR none 1
50 100 ORF1 pitting 2
stripping
50 100 ORF2 with a size of 3
40mm*3mm
4800/
1440 50 100 IRF1 pitting 4
stripping
50 100 IRF2 with a size of 5
40mm*3mm
50 100 REF pitting 6
lubrication
50 100 LSF 7
shortage

random Gaussian matrix is generated if given the CR =
70%, and which matrix can be used to obtain the compressed
sample A’. The raw dataset and the compressed dataset are
marked as A and A’ in the subsequent processing. Table 1
details the bearing datasets information.

As seen in Figure 9, the time domain waveforms and
frequency domain waveforms of ‘scissor’ lifter can hardly
distinguish the conditions because of the complexity test
condition.

B. EFFECT OF COMPRESSION RATIO(CR)

The CR is related to the length of the original signal and the
size of the measurement matrix. The sampling points required
by CS decrease with the increase of CR. In a limited number
of observations, it could not obtain complete information
from raw data if the value of CR is too small. Hence, the CR
has an upper bound based on the limited of the RIP theory.
When the value of CR is less than 40%, it cannot exhibit a
good compression effect. Figure 10 shows the influence of
CR changes on diagnostic accuracy and computing time.

As shown in Figure 10, the computing time increases
gradually with the decrease of CR within the scope of our
research. However, the accuracy rate has been very high,
and there is no positive or negative correlation with CR.
Finally, 70% is selected as the CR by analyzing the results
and influenced factors. We can conclude that a higher CR
can be adopted if the computing time requirement is strict,
which also could slightly reduce the accuracy. In addition, the
requirements of communication and data storage are lower
for the higher value of CR.

C. COMPARISON
This section mainly contains two phases of experimentation.
Firstly, we investigate the differences in accuracy between
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FIGURE 10. Recognition accuracy and computing time with different CRs.

TABLE 2. Classification accuracy on different datasets.

Datasets
Approach dataset 1 dataset 2 dataset 3 dataset 4
(label 1) (label 2&3)  (label 4&5)  (label 6&7)
CAE(1x1) 85% 88% 84% 81%
CAE(3x3) 87% 88.5% 85.5% 83.5%
CAE(5x5) 87% 90% 86.5% 84%
MGCAE 90% 91% 87% 85.5%
CDAE(1x1) 86% 89% 86% 82%
CDAE(3x3) 88% 90.5% 86.5% 84.5%
CDAE(5x5) 89% 92% 87% 86%
MGCDAE 91% 93% 90% 87%

our proposed method and the prototype. Then to evaluate
the effectiveness of our approach, we compare the proposed
method with other existing classification approaches.

The parameters of the model were conventional taken from
literatures. The number of the filter is set to 96. Set stride to 2.
Moreover, the activation function for neurons is typically a
Leaky Relu function [48].

In this part, each method was run for 10 times. Thus we
can obtain a general comparison after averaging the value
of each experiment. The average classification accuracy is
shown in Table 2. To facilitate analysis, we divided all the
conditions into four kinds of dataset. Let normal condition
be the datasetl, ORF1 and ORF2 be the dataset2, IRF1
and IRF2 be the dataset3, REF and LSF be the dataset4.
We initially focus on the influence between single-grained
and multi-granularity convolution kernels on classification
performance. In this study, we use three convolution kernel
sizes of CAE to compare with the multi-granular convolution
kernel as shown in Table 2. In addition, the 20% random
Gaussian noise was added into the raw data to improve the
generalization performance in the process of the training, and
the further comparison verifies the effective of our approach.
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The results show that the accuracy of the MGCAE
method on the dataset] was 90%, the dataset2 was 91%, the
dataset3 was 87%, and the dataset4 was 85.5%, respectively.
The above accuracy results are meaningfully higher than
CAE(5 x 5), CAE(3 x 3), and CAE(1 x 1). It is evident that
the others across all four datasets are inferior to our approach.

In addition, the accuracy of the MGCDAE method on the
dataset] was 91%, the dataset2 was 93%, the dataset3 was
90%, and the dataset4 was 87%, respectively. Comparing
with the condition of no noise, the accuracy of noise adding
has been increasing by 1%, 2%, 3%, and 1.5%, respectively.
Hence, we can obtain the robust features to improve the
classification accuracy by adding the Gaussian noise.

Figure 11 illustrates the effect of varied noise levels
on classification performance. In each dataset, the perfor-
mance for different proportions of added Gaussian noise
were indicated in Figure 11 (a), (b), (c), (d), respectively.
Among these figures, signal MGCDAE was represented
by ‘MGCDAE’, the stack of three MGCDAEs was repre-
sented by ‘stack-3’, the stack of five MGCDAEs was rep-
resented by ‘stack-5’, the stack of seven MGCDAEs was
represented by ‘stack-7’. The results show that the general-
ization performance of the model increased with the number
of the layers. Furthermore, compared to noise-free conditions
(the proportion of added Gaussian noise is 0), adding noise
will improve generalization performance during the training
phase. In the datasetl, when the proportion of added noise
is 10%, the accuracy of the model is the highest. In other
datasets, the proportion corresponding to the highest accuracy
is different. Hence, the proportion of added noise has a certain
impact on the prediction accuracy of the model.

To evaluate the feasibility and stability of our approach
(MGCDAE-7), we compare it with different types of tradi-
tional machine learning classification methods, for instance,
random forests (RF), convolution neural network (CNN),
support vector machine (SVM), and deep belief network
(DBN). Moreover, the 20% random Gaussian noise was
added into the raw data. As shown in Table 3, the proposed
SMGCDAE method has the highest average accuracy of 97%,
99%, 98%, and 93%, respectively, demonstrating superior
performance, across all four datasets. These performances
benefit from that the proposed method not only can extract the
robust features, but also includes a sparse network structure.

D. ANALYSIS OF DROPOUT

Finally, as a supplement, we also investigate the effect of
dropout on performance of the proposed method. Here, we set
the step size to 0.1 and the dropout rate is changed from 0
to 0.5, the 20% random Gaussian noise was added into the
raw data, and the number of the stack was 7. As shown in
Figure 12, different dropout rates have different classifica-
tion performances. The result show that when the dropout
rate was close to 0.2, we can obtain the best classification
performance. When the dropout rate was more than 0.2,
the performance would decrease. This result indicated that
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TABLE 3. Classification accuracy for the existing traditional machine
learning method.

Datasets
Approach
dataset 1 dataset 2 dataset 3 dataset 4
RF 92% 95% 95% 86%
CNN 94% 97% 95.5% 89%
SVM 95% 93.5% 93% 86.5%
DBN 94% 97.5% 97% 90%
Our
97% 99% 98% 93%
Approach
100 e I s o e e e i |
99 4 A/\ ]

98| —~ .

97} .\‘

9 i
>
E % / .\o
3 95 ® - : E
o
< ga} / Dataset1 || i .
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0.0 0.1 0.2 0.3 0.4 0.5
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FIGURE 12. Study on the effect of dropout.

appropriate dropout is beneficial for the performance of the
proposed method.

E. DISSCUSION
As reported above experiments, our approach has the better
generalization performance for general classification tasks.
Among these comparative experiments, we discussed the
influence of some parameters on experimental results, such
as the size of the convolution neural, whether to add the
noise, the proportion of the added noise, the number of the
MGCDAE stacked and whether to add dropout method. In a
word, add certain proportion of noise and stack MGCDAE
with dropout method can improve the accuracy of the model.
Although the results show that our approach achieved high
quality generalization performance, there still remain some
issues. For example, it is not superior to other methods in
computing time. In some cases, it even exceeds the compar-
ison method. With increase of the number of superposition
on MGCDAE, the computing time could increase further, but
the accuracy is unlikely to continue to grow. Furthermore,
we use three size convolution kernels to optimize the model,
but the further problem is that how to automatic select the
type of convolution kernel for different data types. The larger
the convolution kernel, the greater the time and complexity
of calculation.
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VIi. CONCLUSION AND FUTURE WORK

This paper proposed a novel intelligent bearing fault diag-
nosis method based on the CS and an unsupervised feature
extraction approach (SMGCDAE). The compressed data has
the ability to capture the discriminative information that can
be used to extract features automatically. Then, a CNN based
on DAE is built to mine the useful information and finish
the fault classification by softmax classifier. In addition, the
SMGCDAE improved on existing approach via introducing
the concept of the multi-granularity convolution kernels and
used the dropout to prevent overfitting. The case studies
of bearing data sets demonstrated the robustness and effec-
tiveness of this technique. The CS-SMGCDAE intelligent
diagnosis method can obtain relatively high identification
accuracy with small amount of measure data. The proposed
method provides a new idea for mechanical big data pro-
cessing. In the future work, we will further explore a general
model and apply it to other datasets.
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