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ABSTRACT Fast rotating machines require special attention to ensure accurate rotor placement within the
air gap. For this reason, the active magnetic bearings (AMB) system is used to levitate the rotor in the
air gap using an electromagnetic feedback control force. The contact-less support AMB system improves
the rotor dynamic performance and helps in the success of machine operations. However, the control
design for the five degrees-of-freedom (DOF) AMB system is intricate because of its complex nonlinear
dynamics. Moreover, these systems are often subjected to model uncertainties, harmonic disturbances, and
sensor noises. Therefore, this paper proposes a robust control strategy using an adaptive second-order
non-singular fast terminal sliding mode control (SMC) design. The proposed control law employs the
higher-order SMC scheme to alleviate the chattering problem from the discontinuous SMC input, which
would otherwise restrict its practical applicability. Further, a non-singular fast terminal sliding surface is
selected to achieve a faster system response. The adaptive law estimates the switching gain to relax the upper
bound assumption of disturbance. The theoretical stability analysis of the proposed methodology proves the
finite-time convergence of system states to a small residual bound in the neighborhood of zero. The numerical
analysis with a comparative study is also carried out to illustrate the efficacy of the proposed strategy.

INDEX TERMS Uncertain nonlinear system, regulation control, sliding mode control, input chattering,
adaptive gain, practical finite-time stability, homogeneity theory, Lyapunov theory.

I. INTRODUCTION
The rotor mass anomaly in a fast rotating machine causes
the rotor to vibrate like a harmonic disturbance. Thereby, the
rotation of the shaft about its geometric axis creates imbal-
anced forces. The sources of such discrepancy are undesired
electromagnetic forces, external disturbances, model uncer-
tainties, coupling, and gyroscopic effects [1]. Henceforth, the
active magnetic bearing (AMB) system is widely used in
fast rotating machines to levitate the rotor in the nominal air
gap without physical contact. The AMBs balance the rotor
displacement using controllable electromagnetic forces and
makes the rotor suspension stable [2]. The AMB system is
a better alternative to the conventional mechanical bearing
system because of the following reasons: no use of lubri-
cants, contact-less support, low maintenance cost, longer life,
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stable rotor operation at higher speed, strong disturbance
rejection capability, faster rotor-dynamic with direct control,
adjustable bearings, and small parasitic power loss, etc. Over
the past few years, AMBs have been employed in various
industrial areas, for instance, in turbo-machinery for oil and
gas production, energy-storing flywheels, high-speed electric
drives, and many more. [3]–[6].

In recent years, various control methodologies have been
employed for the feedback control design of AMB systems.
The PID control with updated gains is applied to the AMB
system for the rotor stabilization [7], [8]. Gain-scheduling
and iterative learning control scheme is presented in [9] for
AMBs to compensate for the effects of imbalance over a
wide range of rotational speed. In [10], decentralized control
is proposed to ensure the high damping and stiffness of the
closed-loop AMB system. Other control methods studied for
the AMB system are optimal control [11], H∞ control [12],
fuzzy logic control [13], and the references therein. In the
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above schemes, the controllers are designed under no or
less complex uncertainties. So, these control strategies might
not provide satisfactory performances in the presence of
unknown harmonic disturbances, parametric uncertainties,
and sensor noises. Besides, the accurate measurement of rotor
speed is also necessary for the practical realization of these
control methods.

On the contrary, the sliding mode control (SMC) method
is a well-known robust control technique that effectively
deals with the matched model uncertainties and disturbances
[14]–[16]. The traditional SMC schemes have been explored
for the AMB systems that ensure the asymptotic stabil-
ity [17]–[20]. However, the main issue with the conventional
SMC method is the high-frequency switching component
called input chattering. The chattering phenomenon can
excite the high-frequency components of unmodeled dynam-
ics that may cause damage to the actuator. Moreover,
this could also lead to the destabilization of the system
response [21], [22]. The simple solution for the chattering
problem is the boundary layer technique. In this approach,
a continuous approximation function replaces the switching
function in the SMC that causes chattering. Although the
input chattering is removed through this technique, the invari-
ance property of SMC is compromised, and a true sense of
the sliding phase gets lost (i.e., s 6= 0). This approach also
generates a residual error that is directly dependent upon
the width of the boundary layer. Further, the fast unmodeled
dynamics of the system are vulnerable under this method
which may lead to the unpleasant performance [23], [24].
Inevitably, a compromise is made between allowable chatter-
ing and performance accuracy while selecting the thickness
of the boundary layer.

A more persuasive method to resolve the problem of chat-
tering without compromising the properties of SMC is the
higher-order SMC (HOSMC) technique [25]–[27]. In addi-
tion to the alleviation of chattering, the HOSMC yields a
better control accuracy than the conventional SMC even
under measurement noises and switching delays [28]. The
HOSMC scheme has been employed for various applications
in [29]–[32]. Lately, it has also been explored for the control
of AMBs [1], [33]–[37]. In [33], a super twisting based
second-order SMC (SOSMC) scheme is designed for the four
degrees-of-freedom (DOF) AMB system. Further, a multi-
variable continuous SOSMC strategy is presented for the five
DOF AMB system [34]. These two schemes stabilize the
rotor dynamics under the assumption of a priori upper bound
knowledge of disturbance and its derivative, which is not
always practically feasible. Moreover, comparison analysis
with other methodologies is also not presented to validate
their effectiveness. Later, in [34], the assumption about dis-
turbance is relaxed with the use of an adaptive-based SOSMC
technique. However, the theoretical analysis only shows the
uniformly bounded convergence of sliding surface and adap-
tation error, while the system states are proved to be asymp-
totically stable. The SOSMC schemes are also incorporated
to design the controller for single DOF AMB and MAGLEV

systems [35]–[37]. In these systems, harmonic disturbances
are not present because there is no rotatorymotion. Hence, the
controller design for such a system is more straightforward,
and their control designs cannot be generalized for complex
systems.

Recently, a composite control using PID and twisting
SOSMC method is proposed that guarantees the finite-time
stability of the system states [1]. However, the controller
is designed based on a priori upper bound knowledge of
disturbance. This assumption is relaxed in [27], [38], where
adaptive-based integral second and third-order SMC schemes
are presented for the AMB system, respectively. Although
these schemes prove the finite-time stability of system
states, their convergence time is comparatively large, and
the input chattering is still evident in the control response
of [38].

Considering that the problems of input chattering,
dependency on the known bound of disturbance, faster
convergence, and finite time stability have not been explored
collectively using an advanced SMC scheme. Therefore,
this paper employs an adaptive SOSMC method with a
non-singular fast terminal sliding surface to stabilize rotor
dynamics through five DOF AMBs, which is under the influ-
ence of various sources of uncertainties. The main contribu-
tions of this work are itemized below.
• This paper investigates the controller design for a
five DOF AMB system subjected to multiple chal-
lenges such as parametric model uncertainties, exter-
nal disturbances, and sensor noises. In this regard,
a new robust controller is proposed using an adap-
tive gain-based second-order non-singular fast terminal
SMC (ASNFTSMC) design.

• Instead of designing the actual control law, an aux-
iliary control law is formulated using equivalent and
discontinuous control components (which causes chat-
tering). Whereas the actual control input of the system is
the time integral of the proposed auxiliary control law.
Consequently, due to integration action, the switching
component is filtered out from the actual input, and thus
chattering problem is attenuated to a great extent.

• The non-singular fast terminal sliding surface is
employed in the proposed strategy that gives a faster
response and better convergence bound.

• Unlike [1], the switching gain of the proposed method is
estimated through an adaptation law that has a dual-rate
of adaptation. Consequently, the use of a priori upper
bound knowledge of disturbance is averted. Moreover,
the dual rate of adaptive law overcomes the problem of
overestimation.

• The stability analysis is established through Lyapunov
and homogeneity theories that guarantee the practical
finite-time stability of the closed-loop system. Hence,
the system states converge to a uniform bound in the
vicinity of zero within finite time.

• The comparative numerical analysis with the state-
of-the-art method shows the effectiveness of the
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proposed methodology under various control perfor-
mance measures.

The rest of the paper is organized in the following way.
In Section II, a detailed description of five DOFAMB system
is given. Section III presents the problem formulation and
devises the proposed control law. In Section IV, stability
analysis is conducted using Lyapunov and homogeneity theo-
ries, which ensures the practical finite-time stability of sliding
variables and state trajectories. Then, Section V discusses
the numerical analysis with a comparative study. Lastly,
SectionVI concludes this paper with a remark on the potential
future extensions.

II. MATHEMATICAL MODEL OF THE AMB SYSTEM
A simplified layout of five DOF AMB system is presented in
Fig. 1, which comprises a motor, position sensors, one thrust
AMB (TAMB) at themiddle, and two radial AMBs (RAMBs)
at both ends. The RAMBs handle the orientation of four radial
DOF, and TAMB takes care of axial orientation. Bearings of
the AMB system are made of electromagnetic coils that gen-
erate corrective electromagnetic forces to stabilize the rotor
suspension using an appropriate feedback control current.
The nonlinear attractive electromagnetic forces acting in the
directions of X , Y , and Z axes are expressed as [4]

Fxj = α

[
(ī+ ixj )

2

(x̄ − xj)2
−

(ī− ixj )
2

(x̄ + xj)2

]
, (1a)

Fyj = α

[
(ī+ iyj )

2

(ȳ− yj)2
−

(ī− iyj )
2

(ȳ+ yj)2

]
, (1b)

Fz = α
[
(īt + iz)2

(z̄− z)2
−

(īt − iz)2

(z̄+ z)2

]
, (1c)

where Fxj , Fyj , and Fz are the attractive electromagnetic
forces on X , Y , and Z axes with j = 1, 2, and α represents
the electromagnetic parameter. The terms x̄, ȳ, and z̄ denote
the nominal air-gap position of rotor in the respective axes,
and x1, y1, x2, y2, and z represent the displacements of rotor
in the respective axes. The bias current in the RAMBs of X
and Y axes is denoted by ī and for TAMB, it is expressed
by īt . The controlling currents for five independent DOF are
denoted by ix1 , ix2 , iy1 , iy2 , and iz.

The Taylor series expansion of the nonlinear electromag-
netic forces (1) around a nominal point (i.e., at the origin with

FIGURE 1. Sketch of a five DOF AMB system.

zero bias currents) yields the following linearized model [4]

Fxj (xj, ixj ) ∼= αsi ixj + αsp xj, (2a)

Fyj (yj, iyj ) ∼= αsi iyj + αsp yj, (2b)

Fz(z, iz) ∼= αti iz + αtpz, (2c)

where αsp and αtp are the respective position stiffness of radial
and thrust AMBs and likewise αsi and αti are their current
stiffness values.

The rotor deviation dynamics is governed by the state vari-
ables x = [x1 x2 y1 y2 z]T ∈ R5. Although the rotor displace-
ment dynamics is a coupled system, the authors of [18], [39]
have already developed a decoupled displacement dynamical
equation for the five-axis rotor, including a lumped coupling
effect term � ∈ R5. Therefore, the decoupled rotor displace-
ment dynamics are expressed as [18]

Mẍ = Ax+ Bu+M�, (3)

where u = [ix1 ix2 iy1 iy2 iz]
T
∈ R5 is the control input and

� = [�x1 �x2 �y1 �y2 �z]T is the decoupled coupling effect
term. The matricesM ∈ R5×5, A ∈ R5×5, and B ∈ R5×5 are
the mass matrix, stiffness matrix, and controller gain matrix,
respectively and they are defined as [18], [40]

M = I5×5, (4)

A = diag(αsp$1, αsp$3, αsp$1, αsp$3, αtp$4), (5)

B = diag(αsi$1, αsi$3, αsi$1, αsi$3, αti$4). (6)

The coupling effect terms are given as

�x1 = 2$2(αspx2 + αsiix2)+ δ1(ẏ2 − ẏ1)+ µ1fdtx ,

�x2 = 2$2(αspx1 + αsiix1)+ δ2(ẏ1 − ẏ2)+ µ2fdtx ,

�y1 = 2$2(αspy2 + αsiiy2)+ δ1(ẋ1 − ẋ2)+ µ1fdty − g,

�y2 = 2$2(αspy1 + αsiiy1)− δ2(ẋ1 + ẋ2)+ µ2fdty − g,

�z = µ3fdtz, (7)

where αsp, αtp, αsi, and αti are constants while $1 = ( 1m ) +
(a2
J ),$2 = ( 1m )−(ab

J ),$3 = ( 1m )+(b2
J ),$4 = ( 1m ). Besides,

m is the mass of the rotor, a, b, and c are the distance between
the center of gravity (CG) and the left RAMB, between CG
and the right RAMB, and between CG and the end of the
rotor, respectively, and J is the transverse moment of inertia.
The terms δ1 =

aJzω
Jl , δ2 =

bJzω
Jl , l is the length between

both RAMBs, and Jz is the polar moment of inertia. Further,
µ1 = ( 1m )− (ac

J ), µ2 = ( 1m )+ (bc
J ), µ3 = ( 1m ), and fdtx , fdty,

and fdtz are the disturbance forces.

A. CONTROL OBJECTIVE
This paper aims to develop a stabilizing control law for the
uncertain AMB system that suspends the rotor inside the
nominal air gap. To put it another way, the proposed robust
controller must converge the rotor displacement trajectories
(x1, x2, y1, y2, z) to a small neighborhood of zero in finite-time
while attenuating the effects of unknownmodel dynamics and
input chattering.
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III. PROPOSED CONTROL DESIGN STRATEGY
In this section, the dynamic model of AMB is simplified into
a first-order dynamic system with known and unknown parts
separated. Later, the proposed control strategy is constituted
using the adaptive and SMC techniques.

A. PROBLEM FORMULATION
The mechanical systems often suffer from the variation of
system parameters due to wear and tear, aging, and environ-
mental effects. Henceforth, the exact knowledge of system
design parameters (e.g., A and B) is challenging to realize,
and there is always some uncertainty involved in themodeling
of these parameters. Accordingly, this paper also considers
the model uncertainties within the parameters of A and B
in (3). To further simplify the Equation (3), the effects of
these uncertainties can be separated from the nominal part
and combined with the coupling effect term. As a result, the
dynamical equation (3) is rewritten as [18]

ẍ = (A0 + Aδ)x(t)+ (B0 + Bδ)u(t)+�(t),

= A0x(t)+ B0u(t)+ d(t), (8)

where A0 ∈ R5×5, Aδ ∈ R5×5, B0 ∈ R5×5, and Bδ ∈ R5×5

are the corresponding nominal and uncertain components of
A and B, respectively. The time-varying lumped disturbance
d ∈ R5×5 comprises of system uncertainties, disturbances,
and coupling effect term, and it is described as

d(t) = Aδx(t)+ Bδu(t)+�(t). (9)

In this paper, the following assumptions are considered
while designing the control law for system (8).
Assumption 1: The information of state variable (x) is

available for the design of feedback control law.
Assumption 2: The disturbance d is first order differen-

tiable and bounded, i.e., ‖ḋ‖ ≤ dM and ‖d‖ ≤ dm, where
the constant values of dM > 0 and dm > 0 are unknown.
Remark 1: The supporting arguments for the Assump-

tion 2 (i.e., boundedness and smoothness of disturbance) are
as follows. First of all, the system uncertainty components
(Aδ and Bδ) are always bounded since they are comprised of
physical quantities, namely, moment of inertia, mass, length,
etc. Secondly, the designed control methodology is based
on the SOSMC technique that devises the time derivative of
u(t) as an auxiliary control input v(t), which is expressed in
(19). Consequently, u̇(t) will always exist under the proposed
scheme. Moreover, the electromagnetic coils of AMBs are
energized by bounded input current from a rated output power
circuit, which can only produce a saturated output. Hence,
input u(t) will also be bounded. Lastly, one can see from (7)
that the coupling effect term �(t) includes state variables,
constant coefficients, control inputs, gravitational force, and
sinusoidal exogenous disturbance. Since all these functions
are bounded and first-order differentiable; therefore, �(t) is
also finite and continuous [18], [41]. This implies all the
terms within (9) are bounded and differentiable.

The system dynamics (8) can also be expressed in terms
of first-order differential equations by selecting the following
new sets of variables:

x1 = x ∈ R5,

x2 = ẋ ∈ R5. (10)

Substituting (10) in the dynamics of (8) yields

ẋ1 = x2(t),

ẋ2 = A0x1(t)+ B0u(t)+ d(t). (11)

Therefore, the control objective is to converge the states
x1(t) and x2(t) in the neighborhood of zero within finite time.

B. PROPOSED ADAPTIVE SECOND-ORDER
NON-SINGULAR FAST TERMINAL SMC DESIGN
Consider a sliding variable σ ∈ R5, which is defined as

σ = x1. (12)

From the system dynamics (11), the subsequent time
derivatives of σ yields

σ̇ = ẋ1 = x2(t), (13a)

σ̈ = ẋ2 = A0x1(t)+ B0u(t)+ d(t), (13b)
...
σ = ẍ2 = A0x2(t)+ B0v(t)+ D(t), (13c)

where the auxiliary input, v(t) = u̇(t) ∈ R5 and
D(t) = ḋ(t) ∈ R5.
Remark 2: Since u(t) appears in the second derivative of

σ , the sliding variable has a relative degree 2.
With the use of sliding variable σ and its time derivatives,
a non-singular fast terminal sliding manifold s ∈ R5 is
proposed as

s = σ̈ + λ1dσcρ1 + λ2dσ̇cρ2 , (14)

where λ1 > 0, λ2 > 0 are control design constants, ρ1 ∈
(0, 1), ρ2 ∈ (0, 1), and the operator dσcρ is expressed as

dσcρ = [sign(σ1)|σ1|ρ, · · · , sign(σ5)|σ5|ρ]T ∈ R5. (15)

The time derivative of (14) using (13) yields

ṡ =
...
σ + λ1ρ1diag(|σ |(ρ1−1))σ̇ + λ2ρ2diag(|σ̇ |(ρ2−1))σ̈ ,

= (A0x2 + B0v+ D)+ λ1ρ1diag(|σ |(ρ1−1))x2
+ λ2ρ2diag(|σ̇ |(ρ2−1))(A0x1 + B0u+ d),

= F(x1, x2,u)+ B0v+D(D,d), (16)

where

F(·) = A0x2 + λ2ρ2diag(|σ̇ |(ρ2−1))(A0x1 + B0u)

+ λ1ρ1diag(|σ |(ρ1−1))x2, (17)

D(·) = D+ λ2ρ2diag(|σ̇ |(ρ2−1))d. (18)

From (16), the obvious choice for the control v is

v = B0
−1
(
−F(·)− βs− k̂sign(s)

)
, (19)
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where β > 0 is a constant gain, k̂ is a time-varying adaptive
gain whose governing equation is inspired from [42], [43] and
it is defined as

˙̂k =

{
k̄‖s‖sign(‖s‖ − ε̄) if k̂ = µ̄
µ̄ if k̂ ≤ µ̄

(20)

where k̂(0), k̄ , ε̄, and µ̄ are all positive parameters, which are
to be selected. The parameter µ̄ helps in restricting the adap-
tive gain k̂(t) from reaching to a negative value. Therefore,
a strong condition would be k̂(t) > µ̄ ∀ t > 0. Moreover,
to limit the unbounded increase in the value of gain k̂(t),
parameter ε̄ is employed. This will stop further increment in
k̂(t) when the sliding surface approaches the region around
ε̄, because an ideal sliding mode with absolute s = 0 is not
possible in a real-time applications.
Remark 3: The auxiliary control (19) employs the sliding

surface s that requires the information of σ̇ and σ̈ , i.e., ẋ1 and
ẍ1. These measurements can be obtained by employing the
Levant’s 2nd order exact robust finite-time differentiator [25].
The Levant’s differentiator determines the time derivatives of
input variable. Therefore, the known input variable σ under
this methodology gives the output σ̇ and σ̈ . The Levant’s 2nd

order differentiator takes the following form [25]

ϕ̇0 = w0 = −η0dϕ0 − σc
2
3 + ϕ1, (21a)

ϕ̇1 = w1 = −η1dϕ1 − w0c
1
2 + ϕ2, (21b)

ϕ̇2 = −η2 sign(ϕ2 − w1), (21c)

where ϕ0, ϕ1, and ϕ2 ∈ R5 are the real-time estimates of σ ,
σ̇ , and σ̈ , respectively, and the parameters η0, η1 > 0, and
η2 > 0 are all positive constants.

IV. STABILITY ANALYSIS
The following Lemmas are adopted to establish the stability
proof of the closed-loop system.
Lemma 1 [44]: Consider a system

ϑ̇ = f (ϑ) ∈ Rn, ϑ(t0) = ϑ0, f (t0) = 0 and t0 = 0, (22)

where f (ϑ) is continuous. Suppose there exist a Lyapunov
function V(ϑ) : Rn

→ R with β > 0 and γ ∈ (0, 1), such
that

V̇(ϑ) ≤ −βVγ (ϑ). (23)

Then, the origin is a finite-time stable point for (22) and
the settling time of state ϑ(t) is given as Tsettling ≤

V1−γ (ϑ0)
β(1−γ ) .

Lemma 2 [45]: Considering the same scenario of
Lemma 1 with a bounded set φ > 0. Now, if the given
inequality is satisfied

V̇(ϑ) ≤ −βVγ (ϑ)+ φ, (24)

then, the system states of (22) are practically finite-time
stable (PFS). Moreover, given a scalar λ ∈ (0, 1], the state
trajectories ϑ converge to a small bound in a finite time,
which is defined as

lim
λ→λ0

ϑ ∈ Vγ (ϑ) ≤
(

φ

(1− λ)β

)
, (25)

where λ0 ∈ (0, 1), and Tsettling ≤
V1−γ (ϑ0)
βλ0(1−γ )

.

Lemma 3 [42]: Given the sliding dynamics (16) and the
adaptation law (20), the switching gain k̂ has an upper bound,
i.e., ∃ a non-negative constant k such that

k̂(t) ≤ k,∀ t > 0. (26)

A. CONVERGENCE OF SLIDING SURFACE, s
Theorem 1: Consider the sliding dynamics (16) under

Assumption 2. The proposed auxiliary control (19) guaran-
tees the practical finite-time convergence of sliding manifold
to a small bound in the vicinity of zero.

Proof: In this Theorem, the Lyapunov theory is used
to demonstrate the convergence of s. On the other hand, the
subsequent Theorem will establish the convergence of state
trajectories by employing the homogeneity theory.

Consider a Lyapunov candidate function V1 as

V1 =
1
2
sT s+

1
2θ

(k̂ − k)2, (27)

where k̃ = k̂ − k is the adaptive estimation error, k is an
unknown constant such that k > ‖D‖ = Dmax, and θ >

0 decides the rate of adaptation. Time derivative of (27) yields

V̇1 = sT ṡ+
1
θ
(k̂ − k) ˙̂k. (28)

Substituting (16) into (28) gives

V̇1 = sT (F + B0v+D)+
1
θ
(k̂ − k) ˙̂k. (29)

Incorporating the auxiliary control law (19) in (29), and
after simplification it results in

V̇1 = sT (−βs− k̂sign(s)+D)+
1
θ
(k̂ − k) ˙̂k,

≤ −β‖s‖2 − k̂‖s‖ +Dmax‖s‖ +
1
θ
(k̂ − k) ˙̂k. (30)

Adding and subtracting a term k‖s‖ in (30) and substituting
(20) gives

V̇1 ≤ −k̂‖s‖ + k‖s‖−k‖s‖ +Dmax‖s‖ + (k̂ − k)
k̄
θ
‖s‖

× sign(‖s‖ − ε̄),

= −(k −Dmax)‖s‖ − (k̂−k)‖s‖ + (k̂ − k)
k̄
θ
‖s‖

×sign(‖s‖ − ε̄),

= −kd‖s‖ + (k̂−k)
(
−‖s‖ +

k̄
θ
‖s‖sign(‖s‖ − ε̄)

)
,

where kd = (k − Dmax) > 0 because k > ‖D‖ = Dmax.
Now, introducing a positive term ζk > 0 as

V̇1 = −kd‖s‖ − ζk‖k̂−k‖ + ζk‖k̂−k‖

+ (k̂−k)
(
−‖s‖ +

k̄
θ
‖s‖sign(‖s‖ − ε̄)

)
. (31)

From Lemma 3, ∃ k such that (k̂ − k) < 0 ∀ t > 0.
Implementing this result in (31) gives

V̇1=−kd‖s‖−ζk‖k̂−k‖−
(
−‖s‖+

k̄
θ
‖s‖sign(‖s‖−ε̄)−ζk

)
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×‖k̂−k‖,

= −kd‖s‖ − ζk‖k̂−k‖ −8, (32)

where 8 =

(
−‖s‖ + k̄

θ
‖s‖sign(‖s‖ − ε̄)− ζk

)
‖k̂ − k‖.

Rewriting Equation (32) as

V̇1 = −kd
√
2
‖s‖
√
2
− ζk
√
2θ
‖k̂ − k‖
√
2θ
−8,

≤ −min(kd
√
2, ζk
√
2θ )

(
‖s‖
√
2
+
‖k̂ − k‖
√
2θ

)
−8,

≤ −γV 1/2
1 −8, (33)

where γ =
√
2min(kd , ζk

√
θ ) > 0. The polarity of variable

8 and the subsequent stability analysis depends on the condi-
tion of ‖s‖. Therefore, the following two cases are discussed:
Case (i). When ‖s‖ > ε̄. In this case, 8 is positive if

−‖s‖ +
k̄
θ
‖s‖ − ζk > 0,

⇒ θ <
k̄ ε̄

ζk + ε̄
. (34)

With8 being positive under this scenario, the derivative of
Lyapunov function from (33) yields

V̇1 ≤ −γV
1/2
1 . (35)

Therefore, according to Lemma 1, s will converge to the
bound ε̄ within a finite time.
Case (ii). When ‖s‖ ≤ ε̄. Under this scenario, 8 can be

negative, and thus, Equation (33) is written as

V̇1 ≤ −γV
1/2
1 +8. (36)

The above inequality (36) satisfies the practically finite
time stability condition given in Lemma 2. This implies
that ‖s‖ reaches the region ε̄ in finite time. However, the
behaviour of ‖s‖ inside the bound of ε̄ can not be ascertained.

Moreover, suppose at some point of time (say tF1) if the
sliding manifold escapes from the region ε̄, i.e., ‖s(tF1)‖ > ε̄.
Then, there always exists another finite time tF2 when ‖s‖
will re-enter inside the region ε̄. Hence, this establishes that
the variable s achieves a real sliding mode. �

B. CONVERGENCE OF STATE VARIABLES, x1 & x2
As the sliding surface s converges into a small set ε̄ around
the origin, the analysis of the state trajectories is demonstrated
through the following steps.

When real sliding mode is attained, i.e., ‖s‖ < ε̄, finite
time convergence of x1 and x2 is guaranteed. This fact can
also be established through the sliding variable dynamics
from (14) as [46]

σ̈ + λ1dσc
ρ1 + λ2dσ̇c

ρ2 < ε, (37)

where ε(t) ∈ R5 such that ‖ε(t)‖ ≤ ε̄. Similar to the notion
given in [47], Equation (37) can be redefined in the first order
derivatives using (11), (12), and (13) as

ẋ1 = x2, (38a)

ẋ2 = −λ1dx1cρ1 − λ2dx2cρ2 + ε. (38b)

Remark 4: The reduced closed-loop dynamic Equation
(38) is in the form of a double integrator system. Now,
by selecting the parameters ρ1 and ρ2 such that

ρ1 =
ρ2ρ3

2ρ3 − ρ2
, where ρ3 = 1, (39)

then, the proposed Equation (38) becomes equivalent to the
condition presented in the proof of Theorem 2 in [47]. Con-
sequently, the states x1 and x2 will converge to an invariant
set within finite time.
Theorem 2: Consider the reduced system dynamics (38)

when the real sliding mode phase is obtained (‖s‖ ≤ ε̄).
Under the given scenario, the system state trajectories steered
to the neighborhood of origin in finite-time, and their residual
bounds are

‖x1‖ ≤
(
λ2ξ (1+ ρ1)

λ1

) 1
1+ρ1

, ‖x2‖ ≤
(
ε̄

λ2

)1/ρ2
, (40)

where ξ > 0 is defined later.
Proof: The proposition for the finite-time stability of

chain integrator system with nth order dynamics using homo-
geneity theory, without the ε̄ bound, has already been pre-
sented in [48]. Further, in [47], the preceding result is
extended for the system with a narrow convergence bound,
like ε in (38). Accordingly, two steps are required to guaran-
tee the finite-time stability of such a dynamical system. These
steps include two affirmations: (i) asymptotic stability of the
system (38), and (ii) negative degree of homogeneity of the
associated vector field.

The first part of the proof can easily be presented using the
following Lyapunov function

V2(x1, x2) =
λ1

λ2

1
1+ ρ1

|x1|1+ρ1 +
1
2λ2

xT2 x2. (41)

Note that d
dt |x1|

1+ρ1 = (1 + ρ1)dx1cρ1 ẋ1 [38]. Therefore,
substituting this fact in the time derivative of V2 gives

V̇2(x1, x2) =
λ1

λ2
|x1|ρ1sign(x1)ẋ1 +

1
λ2

xT2 ẋ2 (42)

Substituting (38) into (42) yields

V̇2 =
λ1

λ2
xT2 dx1c

ρ1 +
1
λ2

xT2 (−λ1dx1c
ρ1 − λ2dx2cρ2 + ε)

≤ −|x2|ρ2+1 +
1
λ2
‖x2‖‖ε‖

≤ −|x2|ρ2+1 +
1
λ2
ε̄‖x2‖. (43)

For V̇2 to be negative definite, i.e., V̇2 < 0, the condition
|x2|ρ2 > ε̄/λ2 must be satisfied. Suppose, theminimum value
that V2 can achieve be given by ℘min, which means

|x1|1+ρ1 =
1+ ρ1
λ1

(
λ2℘min −

1
2

(
ε̄

λ2

)2/ρ2
)
. (44)
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Now, for |x1|1+ρ1 to exist in the real space R, ℘min should
satisfy

℘min >
1
2λ2

(
ε̄

λ2

)2/ρ2
. (45)

Moreover, if ℘min =
1

2λ2

(
ε̄
λ2

)2/ρ2
is achieved, then |x1|

converges to zero in finite time, which ultimately means the
asymptotic stability is guaranteed. Hence, the invariant set of
system states become

ψ1 =

{
(x1, x2) ∈ R5

∣∣∣∣ ‖x1‖ = 0, ‖x2‖ ≤
(
ε̄

λ2

) 1
ρ2

}
. (46)

Another aspect is also possible when the given value of
℘min is not achieved in a finite time. Accordingly, the invari-
ant set of the closed-loop system is modified as follows.

Define a variable ξ > 0 that represents the difference in the
instantaneous and steady-state values of ℘min. By following
the steps given in [47], the revised invariant set of system state
is

ψ2 =

{
‖x1‖ ≤

(
λ2ξ (1+ ρ1)

λ1

) 1
1+ρ1

, ‖x2‖ ≤
(
ε̄

λ2

) 1
ρ2

}
.

(47)

Hence, the asymptotic convergence of the closed-loop sys-
tem to the above invariant set is guaranteed. Thus, the first
condition for finite-time stability is fulfilled.

Now, the second part of the proof, i.e., negative homogene-
ity of the associated vector field, can be easily ensured by
adopting the simple steps given in [47]. For brevity and to
avoid repetition, this part of the proof is omitted from here.

Therefore, in view of Remark 4 and the above analysis, the
finite-time stability of the dynamical system (38) to a residual
set ψ2 is guaranteed. Henceforth, the proof of Theorem 2 is
completed. �

Figure 2 presents the schematic diagram of the proposed
control methodology for 5 DOF AMB system.

FIGURE 2. Block diagram of the proposed control algorithm.

V. NUMERICAL ANALYSIS
This section presents the numerical results of the pro-
posed adaptive second-order non-singular fast terminal SMC
(ASNFTSMC) (19) for the uncertain AMB system. The com-
parative analysis with a recently developed adaptive integral

SOSMC (AISOSMC) scheme [38] is also demonstrated to
illustrate the effectiveness of the proposed strategy.

The various physical parameters of the five DOF AMB
system is given in Table 1, and these values are taken from
[18], [41]. In order to suspend and neutralize the weight of
the rotor, the following bias DC currents are supplied in the
RAMB and TAMB coils: ī = 0.9 A and īt = 1.1 A. The
nominal air gap of RAMB and TAMB (i.e., (x̄, ȳ) and z̄) is
selected as 0.4 mm and 0.5 mm, respectively. The sources
of uncertainties in AMB is considered from uncertain system
parameters, disturbances, and noises. Therefore, the system
model uncertainties, i.e., Aδ and Bδ , are chosen as 15% and
20% of their respective nominal values. Further, the external
disturbance forces is taken asfdtxfdty

fdtz

 =
 0.1 sin(t)
0.2 sin(5t)
0.3 sin(8t)

+ 0.05η,

where η ∈ R3 is the white noise. Moreover, randomGaussian
noise of amplitude 1× 10−4 mm is also selected as a sensor
noise in the closed loop system to determine the effectiveness
of the control strategies under noisy measurements.

TABLE 1. Design parameters of the given AMB system [18], [41].

The initial conditions of the rotor position are chosen as

x(0) =
[
0.3 0.1 0.2 0.15 0.4

]T mm.

The control parameters of the proposed scheme (19) and
the comparative algorithm are given in Table 2. The follow-
ing subsection presents the simulation performance of both
control strategies for the comparative analysis.

TABLE 2. Parameters of both control schemes.

A. COMPARATIVE PERFORMANCE RESULTS
The performance of the proposed and comparative control
strategies are illustrated in Fig. 3–12 for the duration of 1.5s.
The time response of rotor displacement from the unbalanced
initial position to the nominal air gap position (i.e., origin)
is presented in Fig. 3 and Fig. 4 for both the strategies.
It is evident from these plots that the convergence of rotor
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FIGURE 3. Trajectories of rotor positions under proposed ASNFTSMC
scheme.

FIGURE 4. Trajectories of rotor positions under AISOSMC scheme.

FIGURE 5. Control input response of the proposed scheme (19).

position x to the neighborhood of origin under the pro-
posed ASNFTSMC scheme is faster than the comparative
AISOSMC scheme. Moreover, the settling time of x is mea-
sured when it converges to the bound ‖x‖ ≤ 2 × 10−6 m
and stays within it. Hence, the calculated values of settling
time (tsettling) under both cases are given in the performance
measure Table 3, which also indicates that the proposed
scheme is exhibiting a better response.

FIGURE 6. Control input response of AISOSMC.

FIGURE 7. Time history of TV for both the schemes.

FIGURE 8. Time response of auxiliary control v(t) of ASNFTSMC.

The transient and steady-state response of x is also mea-
sured via integral squared error (ISE), integral absolute error
(IAE), integral time square error (ITAE), and integral time
absolute error (ITAE). These performance indices are defined
as [49]:

ISE =
∫ t

t0

(
5∑
i=1

|xi(τ )|2
)
dτ, (48)

VOLUME 9, 2021 155669



S. M. Amrr, A. Alturki: Robust Control Design for AMB System Using Advanced Adaptive SMC Technique

TABLE 3. Comparative performance measure of different control approaches.

FIGURE 9. Trajectories of sliding surface under both SMC scheme.

FIGURE 10. Trajectories of sliding variable under proposed ASNFTSMC
scheme.

FIGURE 11. Response of adaptive gain under ASNFTSMC scheme.

IAE =
∫ t

t0

(
5∑
i=1

|xi(τ )|

)
dτ, (49)

ITSE =
∫ t

t0

(
5∑
i=1

τ |xi(τ )|2
)
dτ, (50)

FIGURE 12. Response of adaptive gains under AISOSMC scheme.

ITAE =
∫ t

t0

(
5∑
i=1

τ |xi(τ )|

)
dτ, (51)

where t0 and t are the initial and final time, respectively. The
obtained values of ISE, IAE, ITSE, and ITAE under both the
schemes are tabulated in Table 3. These performance results
illustrate that the proposed ASNFTSMC algorithm achieves
a better error response than the AISOSMC scheme.

The control input response of ASNFTSMC andAISOSMC
scheme is presented in Fig. 5 and Fig. 6, respectively. The
control input attains the steady-state around 0.4s under the
proposed approach, and with the AISOSMC method, it is
around 1s. In both control responses, there are two control
components (iy1 , iy2 ) that have non-zero steady-state values.
This is because these corrective inputs are nullifying the
effects of system uncertainties even when the rotor position
reaches the nominal air gap location. Moreover, on close
observation, one can notice that in Fig. 6, there is some chat-
tering in the control input. Therefore, to quantify the amount
of chattering, the total variation (TV) of control input is
calculated, which is the summation over time of the absolute
change in the present and the immediate past values of each
control component. The expression of TV is given as

TV =
5∑
i=1

n∑
j=0

|ui(j+ 1)− ui(j)| , (52)

where n is the total number of iterations. The time-varying
response of absolute input variation is illustrated in Fig. 7, and
the value of TV under both SMC schemes is given in Table 3.
Thus, the input variation plot (Fig. 7) and the TV values from
Table 3 shows that the proposed ASNFTSMC methodology
reduces the input chattering remarkably as compared to the
algorithm of [38]. The performance of control input is also
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compared in terms of energy consumption, and it is measured
using an energy index (EI) function defining as:

EI =
5∑
i=1

∫ t

t0
|ui(τ )|2 dτ. (53)

The calculated value of EI is also given in Table 3 that cor-
roborates that the proposed approach (19) is consuming less
energy than AISOSMC method. The response of auxiliary
control input v(t) is presented in Fig. 8. This plot illustrate
that the chattering component of proposed control input is
occurring in the derivative of actual input, i.e., v(t) = u̇(t).
Hence, the actual control input u(t) is able to alleviate the high
frequency component from its time response (as depicted
in Fig. 5).

The time history of sliding surfaces of both schemes is
presented in Fig. 9. The trajectories of the proposed second-
order non-singular fast terminal sliding surface are shown
on the top subplot of Fig. 9, and the second-order sliding
surface of [38] is depicted at the bottom subplot. It is evident
from these two surface responses that the proposed strategy
achieves a faster sliding mode phase with a better conver-
gence bound. As a result, the proposed scheme provides
a stronger robustness characteristic. Furthermore, Fig. 10
presents the time response of sliding variables which are
employed for the design of the proposed control algorithm.
It can be observed from Fig. 10 that the variables σ , σ̇ , and
σ̈ are all converging to the neighborhood of zero around
0.4s. This implies that the higher order sliding variables
are also effectively converging to zero under the proposed
methodology.

The time-varying response of the proposed adaptive gain
(k̂) is plotted in Fig. 11. The adaptive gain settles to a value
around 0.14within 0.4 s. One thing to note is that the response
of k̂ is slowly decreasing once it reaches an appropriate gain
value, and this is because of the governing equation of adap-
tation law (20). Therefore, when ‖s‖ ≤ ε̄ and k̂ > µ̄, the rate
of k̂ is decreasing in nature. Consequently, as s reaches to the
steady state after 0.4 s, ˙̂k becomes less than zero. Hence, gain
k̂ starts decreasing marginally, as shown in Fig. 11. On the
other hand, in AISOSMC [38], two adaptive gains are used,
and their responses are depicted in Fig. 12. These adaptive
estimates α̂ and β̂ are settling to a value of around 527 and
6.8× 10−3, in 0.6 s and 0.9 s, respectively.

The above comparative study establishes that the proposed
ASNFTSMC method has a faster response, better conver-
gence bound with a preferable error performance measure,
lesser energy consumption, and a better alleviation of input
chattering.

VI. CONCLUSION
This paper investigates an adaptive second-order non-
singular fast terminal SMC strategy for the five DOF AMB
system to achieve faster response, finite-time convergence,
and alleviation of input chattering. The adaptive gain relaxes
restrictive assumptions about the bound disturbance and

escapes the overestimation problem of switching gain. The
stability analysis is proved through Lyapunov theory that
guarantees the practical finite-time stability of the AMB sys-
tem where the rotor position converges to a narrow bound in
the vicinity of origin. The proposed methodology is also vali-
datedwith a comparative study using simulation analysis. The
numerical results illustrate the effectiveness of the proposed
algorithm in terms of faster convergence, better transient
and steady-state performances, reduction in input chattering,
and lesser energy consumption. The future extension of the
proposed work will incorporate more complexity in the AMB
system, such as the rotor flexibilities and gyroscopic effects.
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