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ABSTRACT In this paper, we first introduce the concept of T-spherical hesitant fuzzy set (T-SHFS) on the
basis of the combination of T-spherical fuzzy sets (T-SFSs) and hesitant fuzzy sets (HFSs). This model can
provide more accuracy in expressing fuzzy and indeterminate data. Then, we develop the basic operational
laws of T-SHFSs and study their properties. Also, we propose the T-spherical hesitant fuzzy weighted
averaging (T-SHFWA) operator and the T-spherical hesitant fuzzy weighted geometric (T-SHFWG) operator
and investigate their properties. Furthermore, two newly approaches tomulti attribute decisionmakingwithin
the framework of T-SHFS are developed on the basis of the proposed aggregation operators. An illustrative
example is given to demonstrate the effectiveness of the developed approaches in dealing with uncertain
and indeterminate decision making problems. Finally, the proposed models’ performance is evaluated to the
existing models. Results from this comparison analysis reveal a great similarity and consistency while using
other models.

INDEX TERMS Aggregation operators, hesitant fuzzy set, MADM, spherical fuzzy set, T-spherical fuzzy
set.

I. INTRODUCTION
Decision theory has been a chief field of investigation
in many scientific disciplines were the area of choice
under uncertainty represents the heart of decision the-
ory. The process of decision-making, in the majority of
cases, consists of the evaluation of alternatives and the
choice of the most preferable from them [1]–[3]. Multiple
attribute decision making (MADM) - firstly proposed by
Churchman et al. [4] - refers to rank alternatives or
select the best choice based on multiple attribute evaluation
values of the different alternatives. In traditional MADM
problems, decision-makers usually provide deterministic
measurements to express their preference. On account of
the time limitations, decision-makers’ capability, and the
increasing uncertainty of problems and the complexity of
human’s cognitive information, decision-makers frequently
find it difficult to provide deterministic measurements when
attempting to solve MADM problems. To tackle this issue,
Zadeh [5] originated fuzzy set (FS) to process the fuzzy
information, and then it was used to easily characterized
the attribute values in uncertain MADM problems. However,
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in some cases, fuzzy set alone cannot precisely describe
vague, ambiguous, incomplete and indeterminate information
in MADM problems. To effectively deal with these cases,
many generalizations and variations of fuzzy sets have been
generated. Among them, we underline, for their relevance in
this paper, hesitant fuzzy sets (HFS) [6], intutionistic fuzzy
set (IFS) [7], Pythagorean fuzzy set (PYFS) [8] and picture
fuzzy set (PFS) [9].

PFS is a generalization of FS and IFS which is charac-
terized by a truth membership function (T), indeterminacy
membership function (I), and falsitymembership function(F),
each of which lies in the standard interval of [0, 1] and their
summation is greater than or equal 0 and less than or equal 1,
i.e., 0 ≤ T + I + F ≤ 1. Basically, PFS has been originated
to express the indeterminacy, which cannot be accurately
expressed in the traditional FS and IFS. PFS has further
been developed to picture hesitant fuzzy set(PHFS) [10] and
spherical fuzzy set (SFS) [11]. In SFS memberships grades
are gratifying the condition 0 ≤ T 2

+ I2 + F2
≤ 1 instead

of 0 ≤ T + I + F ≤ 1 as is in PFS. SFS has further been
extended to spherical hesitant fuzzy set (SHFS) [12] which
is a generalization of PHFS. Comparing with PHFS to model
uncertain information, SHFS haswider feasible region, which
can handle more room of uncertainty.
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In addition, IFS and PYFS has been extended to q-rung
orthopair fuzzy set (q-ROFS) [13] which is more flexible
than IFS and PYFS since the sum of the qth power of the
truth membership and falsity membership less than 1. In other
words, q-ROFSs relax the constraint of IFS and PYFSs.

In order to enhance the quality of q-ROFS, so it can
deal with vagueness and impreciseness, Li et al. [14]
proposed q-rung picture fuzzy set (q-RPFS), which takes
the advantages of both q-ROFS and PFS. To effectively
aggregate q-RPF data, some aggregation operators have been
developed [14]–[19]. In [14], the authors proposed the q-rung
picture linguistic weighted Heronian mean (q-RPLWHM)
and the q-rung picture linguistic geometric Heronian
mean (q-RPLGHM) operators. He et al., developed some
q-RPF Dombi Hamy mean (q-RPFDHM) operators in [15].
Akram et al. [16], proposed Einstein operational laws for
q-rung picture fuzzy numbers and introduced some q-rung
picture fuzzy Einstein weighted averaging operators. Specific
types of q-RPF Yager average and geometric aggregation
operators have been studied in [17]. Yang et al., [18]
presented the interval q-RPF Heronian mean (IVq-RPtFHM)
operators based on the new operational laws of the IVq-
RPtF numbers. Pinar and Boran [19] introduced a novel
distancemeasure for q-RPFS. The proposed distancemeasure
is used in q-RPF ELECTRE integrated with TOPSIS
method.

Meanwhile, to consider human’s hesitance, q-ROFS has
been extended to q-rung orthopair hesitant fuzzy set (q-
ROHFS) by Liu et al. [20]. Authors proposed the dis-
tance measures between q-ROHFSs and developed TOPSIS
method into the proposed measures. Hussain et al. [21]
also presented a new concept of hesitant q-rung orthopair
fuzzy set (HqROFS) and proposed the HqROF weighted
averaging (HqROFWA) and HqROF weighted geometric
(HqROFWG)operators. Wang et al. [22] defined the dis-
tance, similarity measures and the entropy of q-ROHFSs.
Based on these concepts, they constructed a TOPSIS model
under the q-ROHF environment. Wang et al. [23] presented
the dual hesitant q-rung orthopair fuzzy set (DHq-ROFS) for
handling realMADMproblems. To aggregate the information
in DHq-ROFSs some Muirhead mean operators are defined.
Afterward, the defined operators are used to solve theMADM
with DHq-ROF numbers. In the same year Wang et al. [24]
proposed some power Heronian mean operators under the
q-ROHF environment to deal with green supplier selec-
tion in supply chain management. Yang and Pang [25]
developed a new MADM based on the q-ROHFS, where
the linear programming technique for multidimensional
analysis of preference (LINMAP) and TOPSIS have been
extended to q-ROHF environment in order to handle MADM
problems.

Mahmood et al. [11] proposed T-spherical fuzzy set (T-
SFS) as a generalization of q-ROFS and q-RPFS. Some
aggregation operators have been developed on T-SFS. [11],
[26]–[31]. In [11], the authors proposed the T- spherical
fuzzy weighted geometric operator. Garg et al., developed

some weighted ordered weighted and hybrid geometric
aggregation operators in [26]. Garg et al. [27], define
several weighted averaging and geometric power aggregation
operators. The stated operators named as T-spherical fuzzy
weighted, ordered weighted, hybrid averaging and geometric
operators for the collection of the T-SFSs. Zeng et al. [28]
proposed some new Einstein operations for TSF numbers
on which they define some T-spherical Einstein interactive
averaging and geometric operators. In [29], a generalized
parameter is defined for TSFSs and based on the proposed
parameter, a group generalized TSF geometric operators are
proposed. In the complex space, Ali et al. [30] proposed two
aggregation operators to the complex TSF numbers, includ-
ing weighted geometric and weighted averaging operators.
In addition, Karaaslan et al. [31], introduced some complex
TSF Dombi weighted aggregation operators on the basis of
the Dombi t-norm and t-conorm.

Summarizing above discussion, we combine the advan-
tages of both T-SFS and HFS by proposing the notion of
T-spherical hesitant fuzzy set(T-SHFS) which is a more
comprehensive model to cope with the most real complicated
situations that can not be handled by the existing models.
In the T-SHFS, for each element of the reference set,
the grades of truth, indeterminacy and falsity memberships
consist of the set of several values in the interval [0, 1] rather
than a single value. Furthermore, the sum of the qth power
of the truth membership, the qth power of the indeterminacy
membership and the qth power of the falsity membership is
not more than 1, which makes it more influential and resilient
than other current models. Thus, the contributions of this
paper are stated as follows: (1) the novel notion of T-SHFS
with its operations are proposed; (2) to effectively aggregate
T-SHF data, we propose the aggregation operators, called
T-SHFWA and T-SHFWG operators; (3) MADM problem
is addressed based on T-SHFNs by utilizing the T-SHFWA
and T-SHFWG operators. To examine the efficiency and
validity of the proposed models, we solve an example by
using the proposed operators;(4) the proposed operators
are compared with existing operators with an MADM
example.

The remaining portions of the paper is set out as follows.
In section 2, we present some essential concepts related to
PHFS, SHFS, q-ROFS, T-SFS and q-ROHFS. In Section 3,
we provide the formal concept of the T-SHFS and define the
score and accuracy function of the T-SHFNs. The operational
rules of the T-SHFNs along with their properties are also
introduced in this section.We propose the T-SHFWAoperator
and the T-SHFWG operator in Section 4. Properties of these
operators are also investigated in this section. On the basis
of the T-SHFWA operator and the T-SHFWG operator, two
new methods for MADM are proposed in Sction 5. To verify
the application of the suggested models, Section 6 provides
real example about the ranking of mobile phone products.
The comparison analysis with other existing models has been
conducted in Section 7. Finally, Section 8, outlines the main
results in this research.
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II. BASIC CONCEPTS
We shortly review the basic concepts of PHFS, SHFS,
q-ROFS, T-SFS and q-ROHFS which be utilized in the
subsequent research.

A. PHFS
Definition 2 [10]: Let M be a finite set, M 6= φ. A PHFS F
on M is represented as:

F = {< m, α(m), β(m), γ (m) > |m ∈ M},

where α(m) = {µ : µ ∈ α(m)}, β(m) = {ν : ν ∈ β(m)},
γ (m) = {ξ : ξ ∈ γ (m)} are three sets of values in
[0, 1], representing the truth, neutral, and falsity membership
degrees, where 0 ≤ µ+ + ν+ + ξ+ ≤ 1 , such
that µ+ = ∪µ∈α(m)max{µ}, ν+ = ∪ν∈β(m)max{ν}, and
ξ+ = ∪ξ∈γ (m)max{ξ}.
In order to rank the picture hesitant fuzzy numbers, Wang

and Li [10] developed the score and accuracy function as:
Definition 3 [10]: Suppose N = {α, β, γ } is a picture

hesitant fuzzy number, the numbers of values in α, β, γ are
l,m, n, respectively. The score function is stated as

0(N ) =

1+
1
l

l∑
i=1

µi −
1
m

m∑
i=1

νi −
1
n

n∑
i=1

ξi

2
, 0(N ) ∈ [0, 1]

The accuracy function is stated as

λ(N ) =

1
l

l∑
i=1

µi +
1
p

p∑
i=1

νi +
1
q

q∑
i=1

ξi

2
, λ(N ) ∈ [0, 1].

As an extension of PHFS, Khan et al. [12] proposed the
SHFS which is more powerful and flexible since the sum
of the square power of the positive membership, the square
power of the neutral membership and the square power of the
negative membership is not exceed 1. The formal definition
of the SHFS is as follows.

B. SPHERICAL HESTANT FUZZY SET (SHFS)
Definition 2 [12]: Consider the ground set M 6= φ. A SHFS
F on M can be defined as follows.

F = {< m, α(m), β(m), γ (m) > |m ∈ M},

where α(m) = {µ : µ ∈ [0, 1]}, β(m) = {ν : ν ∈ [0, 1]},
γ (m) = {ξ : ξ ∈ [0, 1]} are three sets of values in [0, 1],
representing the positive, neutral, and negative membership
degrees, with the condition 0 ≤ (µ+)2+ (ν+)2+ (ξ+)2 ≤ 1 ,
such that µ+ = ∪µ∈α(m)max{µ}, ν+ = ∪ν∈β(m)max{ν}, and
ξ+ = ∪ξ∈γ (m)max{ξ}.

C. Q-ROFS
Definition 4 [13]: IfM is a finite set. Then the q-ROFS H on
M is defined as

H = {(µ,TH (µ),FH (µ)) : µ ∈ M},

where TH (µ) and FH (µ) represent degree of positive mem-
bership and the degree of negative membership respectively,
where TH (µ) and FH (µ) belong to the unit interval [0, 1] and
0 ≤ (TH (µ))q + (FH (µ))q ≤ 1 (q ≥ 1),∀µ ∈ M . The
indeterminacy degree of µ in M is

πH (µ) =
(
T qH (µ)+ F

q
H (µ)− T

q
H (µ)F

q
H (µ)

)1/q
.

Mahmood et al. [10] define the T-SFS by taking the neutral
membership degree into account in q-ROFSs.

D. T-SPHERICAL FUZZY SET (T-SFS)
Definition 5 [10]: If M is a fixed set. A T-SFS H on M is
defined as follows.

H = {(µ,TH (µ), IH (µ),FH (µ)) : µ ∈ M},

where TH (µ), IH (µ) and FH (µ) belong to the unit interval
[0, 1] and 0 ≤ (TH (µ))q+ (IH (µ))q+ (FH (µ))q ≤ 1 (q ≥ 1),
for all µ ∈ M . The degree of refusal membership of µ to M
is defined as

πH (µ) =
(
1−

[
(TH (µ))q + (IH (µ))q + (FH (µ))q

])1/q
E. Q-ROHFS
Based on the q-ROFS and HFS, Liu et al. [20] define the
q-ROHFS as follows.
Definition 6 [20]: Let M = {m1,m2, . . . ,mn} be a fixed

set. The q-ROHFS onM is defined as

H = {< mi,D(mi),E(mi) >q: mi ∈ M}(q ≥ 1),

where D(mi) and E(mi) are two sets of values in [0, 1],
denoting all the possible qth rung memberships and the qth
rung nonmemberships of the elements mi ∈ M , and they
satisfy:

0 ≤ α, β ≤ 1, 0 ≤ (α+)q + (β+)q ≤ 1, where
α ∈ D(mi), β ∈ E(mi), α+ = maxα∈D(mi) {α}, β

+
=

maxβ∈E(mi) {β} for all mi ∈ M .
The qth rung orthopair hesitancy membership degree ξ can

be defined as ξ = (1− αq − βq)1/q.
The basic operational rules of q-ROHFNs are defined as

follows.
Definition 7 [20]: Let Q̃ = 〈DQ̃,EQ̃〉q, Q̃1 = 〈DQ̃1

,EQ̃1
〉q

and Q̃2 = 〈DQ̃2
,EQ̃2
〉q be three q-ROHFNs. λ > 0, q ≥ 1.

Then the operational laws of q-ROHFNs are represented as:

1) Q̃1 ⊕ Q̃2 =

⋃
αQ̃i
∈DQ̃i

,βQ̃i
∈EQ̃i

〈{(
α
q
Q̃1
+ α

q
Q̃2
−

α
q
Q̃1
α
q
Q̃2

) 1
q
}
,
{
βQ̃1

βQ̃2

}〉
q
, i = 1, 2.

2) Q̃1⊗Q̃2 =
⋃

αQ̃i
∈DQ̃i

,βQ̃i
∈EQ̃i

,

〈{{
αQ̃1

αQ̃2

}
,
{(
β
q
Q̃1
+β

q
Q̃2
−

β
q
Q̃1
β
q
Q̃2

) 1
q
}〉
q
, i = 1, 2.

3) λQ̃ =
⋃

αQ̃∈DQ̃,βQ̃∈EQ̃

〈{(
1− (1− αq

Q̃
)λ
) 1
q
}
,
{
β
q
Q̃

}〉
q
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4) Q̃λ =
⋃

αQ̃∈DQ̃,βQ̃∈EQ̃

〈{
α
q
Q̃

}
,
{(
1− (1− βq

Q̃
)λ
) 1
q
}〉
q

5) Q̃c =
⋃

αQ̃∈DQ̃,βQ̃∈EQ̃

〈{
βQ̃

}
,
{
αQ̃

}〉
q
, where Q̃c is the

inverse of Q̃.

The following is the definition of the score and accuracy
functions of the q-ROHFN.
Definition 8 [20]: If Q̃ = 〈DQ̃,EQ̃〉q is a q-ROHFN, such

that γ (DQ̃) and γ (EQ̃) equal the number of objects in setsDQ̃
and EQ̃, respectively, then a score function 0(Q̃) is:

0(Q̃) =
1

γ (DQ̃)

∑
αQ̃j
∈DQ̃

α
q
Q̃j
−

1
γ (EQ̃)

∑
βQ̃j
∈EQ̃

β
q
Q̃j
.

Accuracy function of q-ROHFN λ(Q̃) can be stated as

λ(Q̃) =
1

γ (DQ̃)

∑
αQ̃k
∈DQ̃

α
q
Q̃k
+

1
γ (EQ̃)

∑
βQ̃k
∈EQ̃

β
q
Q̃k
.

Hussain et al. [21] provide the basic notions of related
aggregation operators of the q-ROHFN as follows.
Definition 9 [21]: Let Q̃k = 〈DQ̃k ,EQ̃k 〉q(k = 1, 2, . . . , n)

be a collection of q-ROHFNs. The q-ROHFWA operator is a
mapping q − ROHFWA : q − ROHFN n

−→ q − ROHFN ,
defined by
q− ROHFWA(Q̃1, Q̃2, . . . , Q̃k ) = w1Q̃1 ⊕ w2Q̃2 ⊕ . . .⊕

wnQ̃n, where w = (w1,w2, . . . ,wn) represents the weight

vector ofQ̃k (k = 1, 2, . . . , n), 0 6 wk 6 1 and
n∑

k=1
wk = 1.

Based on the operational rules of the q-ROHFNs,
the aggregation result for the q-ROHFNs is given as
in Theorem 1.
Theorem 1 [21]: If Q̃k = 〈DQ̃k ,EQ̃k 〉q(k = 1, 2, . . . , n) is

a set of q-ROHFNs, then the aggregated value by using the
q-ROHFWA operator remains q-ROHFN and

q− ROHFWA(Q̃1, Q̃2, . . . , Q̃n)

=

⋃
αQ̃k
∈DQ̃k

,βQ̃k
∈EQ̃k

〈(
1−

n∏
k=1

(
1− αq

Q̃k

)wk) 1
q
,

n∏
k=1

β
wk
Q̃k

〉
q
,

k = 1, 2.

q-ROHFWG operator is also defined in [21], as follows.
Definition 10 [21]: Consider the collection Q̃j =

〈DQ̃j ,EQ̃j〉q(j = 1, 2, . . . , k) of q-ROHFNs. The q-
ROHFWG operator is a mapping q − ROHFWG : q −
ROHFNK

−→ q− ROHFN , defined by
q − ROHFWG(Q̃1, Q̃2, . . . , Q̃k ) = Q̃1

w1
⊗ Q̃2

w2
⊗ . . . ⊗

Q̃k
wk , where w = (w1,w2, . . . ,wk ) is the weight vector

ofQ̃j(j = 1, 2, . . . , k), 0 6 wj 6 1 and
k∑
j=1

wj = 1.

The aggregation result for q-ROHFNs through operation
rule is given as in Theorem 2.
Theorem 2 [21]: If Q̃k = 〈DQ̃k ,EQ̃k 〉q(k = 1, 2, . . . , n) is

a set of q-ROHFNs, then the aggregated value by utilizing the

q-ROHFWG operator is still q-ROHFN and

q− ROHFWG(Q̃1, Q̃2, . . . , Q̃n)

=

⋃
αQ̃k
∈DQ̃k

,βQ̃k
∈EQ̃k

〈 n∏
k=1

β
wk
Q̃k
,
(
1−

n∏
k=1

(
1− αq

Q̃k

)wk) 1
q
〉
q
,

k = 1, 2.

In the following, we propose the notion of T-SHFS as
an extension of q-ROHFS by adding the hesitant neutral
membership function to the structure of the q-ROHFS.

III. T-SPHERICAL HESITANT FUZZY SET
We will propose the definition of T-SHFS as follows:
Definition 11: Let M be a fixed set such that M =

{m1, . . . ,mn}. Then a T-SHFS on M can be defined as Q =
{〈mi,T (mi), I (mi),F(mi)〉q : mi ∈ M}. Where T (mi), I (mi),
and F(mi) are three sets of values in [0, 1], denoting,
respectively all the possible truth membership degrees,
indeterminacy membership degrees and falsity membership
degrees of the elements mi ∈ M to the set Q and they satisfy
the following conditions:
x, y, z ∈ [0, 1], 0 ≤ (x+)q + (y+)q + (z+)q ≤ 1 (q ≥ 1),

for all x ∈ T (mi), y ∈ I (mi), z ∈ F(mi), where x+ =
maxx∈T (mi){x}, y

+
= maxy∈I (mi){y}, z

+
= maxz∈F(mi){z},

for each mi ∈ M .
The degree of refusal membership can be defined

as π = [1− (xq + yq + zq)]
1
q .

If the set M has only one element, i.e. M = {m}, then the
T-SHFS Q is reduced to 〈T (m), I (m),F(m)〉q. For conve-
nience, we call 〈T (m), I (m),F(m)〉q a T-spherical hesitant
fuzzy number (T-SHFN), denoted by Q̃ = 〈TQ̃, IQ̃,FQ̃〉q.
Remark 1: If each of T(m), I(m) and F(m) has only one

value in [0, 1], then the T-SHFN 〈T (m), I (m),F(m)〉q is
reduced to a T-SFN.
Remark 2: If q = 1, the T-SHFN 〈T (m), I (m),F(m)〉q is

reduced to SHFN.
Definition 12: Let Q̃ = 〈T (m), I (m),F(m)〉q be a T-SHFN,

where J ,K and L represent the number of values in the
sets T (m), I (m) and F(m) respectively. Then a score function
0(Q̃) is defined as:

0(Q̃) =

1+
1
Jq

(
∑

x∈T (m)

x)
q
−

1
K q (

∑
y∈I (m)

y)
q
−

1
Lq

(
∑

z∈F(m)

z)
q

2
,

0(Q̃) ∈ [0, 1]

The accuracy function is defined as:

λ(Q̃) =

1
Jq

(
∑

x∈T (m)

x)
q
+

1
K q (

∑
y∈I (m)

y)
q
+

1
Lq

(
∑

z∈F(m)

z)
q

2
According to the definition of score and accuracy functions

above, the method for comparing two T-SHFNs can be
defined as follows.
Definition 13: If Q̃1 and Q̃2 are two T-SHFNs. Then we

can define the comparison method as follows.
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1) If 0(Q̃1) > 0(Q̃2). Then Q̃1 is greater than Q̃2, denoted
by Q̃1 > Q̃2.

2) If 0(Q̃1) = 0(Q̃2) and λ(Q̃1) > λ(Q̃2). Then Q̃1 is
greater than Q̃2, denoted by Q̃1 > Q̃2.

3) If 0(Q̃1) = 0(Q̃2) and λ(Q̃1) = λ(Q̃2). Then Q̃1 equals
Q̃2, that is, Q̃1 is indifferent to Q̃2 denoted by Q̃1 = Q̃2.

In the following, we propose the operational laws of
T-SHFNs, namely, addition, multiplication, scalar mul-
tiplication, and power operations. The operations for
T-SHFNs are defined based on the Archimedean t-conorm,
and t-norm and are as follows.
Definition 14: Let Q̃ = 〈TQ̃, IQ̃,FQ̃〉q, Q̃1 = 〈TQ̃1

,

IQ̃1
,FQ̃1
〉q and Q̃2 = 〈TQ̃2

, IQ̃2
,FQ̃2
〉q be three T-SHFNs.

λ > 0, q ≥ 1. Then the operational laws of T-SHFNs are
represented as:
1) Q̃1 ⊕ Q̃2 =

⋃
xQ̃i
∈TQ̃i

,yQ̃i
∈IQ̃i

,zQ̃i
∈FQ̃i

〈{(
xq
Q̃1
+ xq

Q̃2
−

xq
Q̃1
xq
Q̃2

) 1
q
}
,
{
yQ̃1

yQ̃2

}
,
{
zQ̃1

zQ̃2

}〉
q
, i = 1, 2.

2) Q̃1 ⊗ Q̃2 =
⋃

xQ̃i
∈TQ̃i

,yQ̃i
∈IQ̃i

,zQ̃i
∈FQ̃i

〈{{
xQ̃1

xQ̃2

}
,
{(
yq
Q̃1
+

yq
Q̃2
− yq

Q̃1
yq
Q̃2

) 1
q
}
,
{(
zq
Q̃1
+ zq

Q̃2
− zq

Q̃1
zq
Q̃2

) 1
q
}〉
q
, i = 1, 2.

3) λQ̃ =
⋃

xQ̃∈TQ̃,yQ̃∈IQ̃,zQ̃∈FQ̃

〈{(
1 − (1 − xq

Q̃
)λ
) 1
q
}
,
{
yq
Q̃

}
,

{
zq
Q̃

}〉
q

4) Q̃λ =
⋃

xQ̃∈TQ̃,yQ̃∈IQ̃,zQ̃∈FQ̃

〈{
xq
Q̃

}
,
{(
1− (1− yq

Q̃
)λ
) 1
q
}
,

{(
1− (1− zq

Q̃
)λ
) 1
q
} 〉

q

5) Q̃c =
⋃

xQ̃∈TQ̃,yQ̃∈IQ̃,zQ̃∈FQ̃

〈{
zQ̃
}
,
{
yQ̃
}
,
{
xQ̃
}〉
q
, where Q̃c

is the inverse of Q̃.
In view of the above definition, we prove the following

results.
Theorem 3: If Q̃ = 〈TQ̃, IQ̃,FQ̃〉q, Q̃1 = 〈TQ̃1

, IQ̃1
,FQ̃1
〉q

and Q̃2 = 〈TQ̃2
, IQ̃2

,FQ̃2
〉q are three T-SHFNs. λ > 0, q ≥ 1.

Then,
1) Q̃1 ⊕ Q̃2 = Q̃2 ⊕ Q̃1
2) Q̃1 ⊗ Q̃2 = Q̃2 ⊗ Q̃1
3) λ(Q̃1 ⊕ Q̃2) = λQ̃1 ⊕ λQ̃2

4) (Q̃1 ⊗ Q̃2)λ = Q̃1
λ
⊗ Q̃2

λ

Proof:We give the proofs of (1) and (3).
1) Based on Definition 14,

Q̃1 ⊕ Q̃2 =
⋃

xQ̃i
∈TQ̃i

,yQ̃i
∈IQ̃i

,zQ̃i
∈FQ̃i

〈{(
xq
Q̃1
+ xq

Q̃2
−

xq
Q̃1
xq
Q̃2

) 1
q
}
,
{
yQ̃1

yQ̃2

}
,
{
zQ̃1

zQ̃2

}〉
q
, i = 1, 2.

=

⋃
xQ̃i
∈TQ̃i

,yQ̃i
∈IQ̃i

,zQ̃i
∈FQ̃i

〈{(
xq
Q̃2
+ xq

Q̃1
− xq

Q̃2
xq
Q̃1

) 1
q
}
,

{
yQ̃2

yQ̃1

}
,
{
zQ̃2

zQ̃1

}〉
q
, i = 1, 2.

= Q̃2 ⊕ Q̃1

2) The proof is similar to that of (1).
3) According to (1) and (3) in Definition 14, we can get

for the left side of the Equation
λ(Q̃1 ⊕ Q̃2) =⋃
xQ̃i
∈TQ̃i

,yQ̃i
∈IQ̃i

,zQ̃i
∈FQ̃i

λ
〈{(
xq
Q̃1
+ xq

Q̃2
− xq

Q̃1
xq
Q̃2

) 1
q
}
,

{
yQ̃1

yQ̃2

}
,
{
zQ̃1

zQ̃2

}〉
q
, i = 1, 2.

=

⋃
xQ̃i
∈TQ̃i

,yQ̃i
∈IQ̃i

,zQ̃i
∈FQ̃i

〈{[
1 −

(
1 − (xq

Q̃1
+ xq

Q̃2
−

xq
Q̃1
xq
Q̃2
)
)λ] 1q }, {(yQ̃1

yQ̃2
)λ
}
,
{
(zQ̃1

zQ̃2
)λ
}〉
q
, i = 1, 2.

=

⋃
xQ̃i
∈TQ̃i

,yQ̃i
∈IQ̃i

,zQ̃i
∈FQ̃i

〈{(
1 − (1 − xq

Q̃1
)λ(1 −

xq
Q̃2
)λ
) 1
q
}
,
{
(yQ̃1

)λ(yQ̃2
)λ
}
,
{
(zQ̃1

)λ(zQ̃2
)λ
}〉
q
, i = 1, 2.

For the right side of the Equation, we can get:

λQ̃1 =
⋃

xQ̃1
∈TQ̃1

,yQ̃1
∈IQ̃1

,zQ̃1
∈FQ̃1

〈{(
1− (1− xq

Q̃1
)λ
) 1
q
}
,

{
(yQ̃1

)λ
}
,
{
(zQ̃1

)λ
}〉
q
,

λQ̃2 =
⋃

xQ̃2
∈TQ̃2

,yQ̃2
∈IQ̃2

,zQ̃2
∈FQ̃2

〈{(
1− (1− xq

Q̃2
)λ
) 1
q
}
,

{
(yQ̃2

)λ
}
,
{
(zQ̃2

)λ
}〉
q
, moreover, since λQ̃1 + λQ̃2 =⋃

xQ̃i
∈TQ̃i

,yQ̃i
∈IQ̃i

,zQ̃i
∈FQ̃i

〈{[
1 − (1 − xq

Q̃1
)λ +

(
1 −

(1 − xq
Q̃2
)λ −

(
1 − (1 − xq

Q̃1
)λ
(
1 − (1 −

xq
Q̃2
)λ
] 1
q
}
,
{
(yQ̃1

)λ(yQ̃2
)λ
}
,
{
(zQ̃1

)λ(zQ̃2
)λ
}〉

q
,

=

⋃
xQ̃i
∈TQ̃i

,yQ̃i
∈IQ̃i

,zQ̃i
∈FQ̃i

〈{(
1 − (1 − xq

Q̃1
)λ(1 −

xq
Q̃2
)λ
) 1
q
}
,
{
(yQ̃1

)λ(yQ̃2
)λ
}
,
{
(zQ̃1

)λ(zQ̃2
)λ
}〉
q
, i = 1, 2.

Thus, we get λ(Q̃1 ⊕ Q̃2) = λQ̃1 ⊕ λQ̃2.
4) The proof is similar to that of (3).

Example 1: Let Q̃1 =
〈
{0.3, 0.2}, 0.7, {0.5, 0.6}

〉
3, and

Q̃2 =
〈
0.8, {0.5, 0.1}, {0.4, 0.6}

〉
3 be two 3-SHFNs. If λ = 4,

then

1) Q̃1 ⊕ Q̃2 =
〈
{0.8068, 0.802}, {0.35, 0.07},

{0.2, 0.3, 0.24, 0.36}
〉
3

2) Q̃1 ⊗ Q̃2 =
〈
{0.24, 0.16}, {0.7519, 0.7004},

{0.5656, 0.6796, 0.6432, 0.7276}
〉
3

3) λQ̃1 =
〈
{0.4698, 0.3162}, 0.2401, {0.0625, 0.1296}

〉
3

4) λQ̃2 =
〈
0.9807, {0.0625, 0.0001}, {0.0256, 0.1296}

〉
3

5) λ(Q̃1 ⊕ Q̃2) =
〈
{0.9827, 0.9813}, {0.015, 0},

{0.0016, 0.0081, 0.0033, 0.0167}
〉
3

6) λQ̃1 ⊕ λQ̃2 =
〈
{0.9827, 0.9813}, {0.015, 0},

{0.0016, 0.0081, 0.0033, 0.0167}
〉
3

Obviously, λ(Q̃1 ⊕ Q̃2) = λQ̃1 ⊕ λQ̃2

7) Q̃1
λ
=
〈
{0.0081, 0.0016}, 0.9335, {0.7451, 0.8537}

〉
3

8) Q̃2
λ
=
〈
0.4096, {0.7451, 0.1586}, {0.6148, 0.8537}

〉
3
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9) Q̃1
λ
⊗ Q̃2

λ
=
〈
{0.0033, 0.0006}, {0.9621, 0.9337},

{0.8192, 0.9199, 0.8921, 0.9499}
〉
3

10) (Q̃1 ⊗ Q̃2)λ =
〈
{0.0033, 0.0006}, {0.9621, 0.9337},

{0.8192, 0.9199, 0.8921, 0.9499}
〉
3

That is Q̃1
λ
⊗ Q̃2

λ
= (Q̃1 ⊗ Q̃2)λ.

IV. T-SHF AGGREGATION OPERATORS
On the basis of the operational rules of T-SHFNs in Section 3,
we will propose the T-SHFWA operator and the T-SHFWG
operator and investigate their properties.

A. THE T-SHFWA OPERATOR
Definition 15: Suppose Q̃k = 〈TQ̃k , IQ̃k ,FQ̃k 〉q(k =

1, 2, . . . , n) is a collection of T-SHFNs. The T-SHFWA
operator is a mapping T − SHFWA : T − SHFN n

−→

T − SHFN , defined by
T − SHFWA(Q̃1, Q̃2, . . . , Q̃n) = w1Q̃1 ⊕ w2Q̃2 ⊕ . . . ⊕

wnQ̃n, where w = (w1,w2, . . . ,wn) is the weight vector
ofQ̃k (k = 1, 2, . . . , n), 0 6 wk 6 1 and

∑k
k=1 wk = 1.

On the basis of the operators rules of the T-SHFNs,
we derive the following theorem.
Theorem 4: If Q̃k = 〈TQ̃k , IQ̃k ,FQ̃k 〉q(k = 1, 2, . . . , n) is a

collection of T-SHFNs, then the accumulated value by using
the T-SHFWA operator is still T-SHFN and

T − SHFWA(Q̃1, Q̃2, . . . , Q̃n)

=

⋃
xQ̃k
∈TQ̃k

,yQ̃k
∈IQ̃k

,zQ̃k
∈FQ̃k

〈(
1−

n∏
k=1

(
1− xq

Q̃k

)wk) 1
q
,

n∏
k=1

ywk
Q̃k
,

n∏
k=1

zwk
Q̃k

〉
q

(1)

Proof: We will use the method of mathematical
induction to prove this theorem.

1) For n = 2, since w1Q̃1 =
⋃

xQ̃1
∈TQ̃1

,yQ̃1
∈IQ̃1

,zQ̃1
∈FQ̃1〈{(

1− (1− xq
Q̃1
)w1
) 1
q
}
,
{
yw1

Q̃1

}
,
{
zw1

Q̃1

}〉
q

w2Q̃2 =
⋃

xQ̃2
∈TQ̃2

,yQ̃2
∈IQ̃2

,zQ̃2
∈FQ̃2

〈{(
1−(1−xq

Q̃2
)w2
) 1
q
}
,

{
yw2

Q̃2

}
,
{
zw2

Q̃2

}〉
q
, then T − SHFWA(Q̃1, Q̃2) = w1Q̃2 +

w2Q̃2

=

⋃
xQ̃k
∈TQ̃k

,yQ̃k
∈IQ̃k

,zQ̃k
∈FQ̃k

〈{[
1 − (1 − xq

Q̃1
)w1 +(

1 − (1 − xq
Q̃2
)w2
)
−
(
1 − (1 − xq

Q̃1
)w1
)(
1 − (1 −

xq
Q̃1
)w2
)] 1

q
}
,
{
(yQ̃1

)w1 (yQ̃2
)w2
}
,
{
(zQ̃1

)w1 (zQ̃2
)w2
}〉

q
, for

k = 1, 2
=

⋃
xQ̃k
∈TQ̃k

,yQ̃k
∈IQ̃k

,zQ̃k
∈FQ̃k

〈{(
1 − (1 − xq

Q̃1
)w1

(1− xq
Q̃2
)w2
) 1
q
}
,
{
(yQ̃1

)w1 (yQ̃2
)w2
}
,
{
(zQ̃1

)w1 (zQ̃2
)w2
}〉
q
,

k = 1, 2.

=

⋃
xQ̃k
∈TQ̃k

,yQ̃k
∈IQ̃k

,zQ̃k
∈FQ̃k

〈{(
1−

2∏
k=1

(
1− xq

Q̃k

)wk ) 1q },
{ 2∏
k=1

ywk
Q̃k

}
,
{ 2∏
k=1

zwk
Q̃k

}〉
q
.

Obviously Equation (1) holds for n = 2.
2) If Equation (1) holds for k = n, then

T − SHFWA(Q̃1, Q̃2, . . . , Q̃n)

=

⋃
xQ̃k
∈TQ̃k

,yQ̃k
∈IQ̃k

,zQ̃k
∈FQ̃k

〈{(
1−

n∏
k=1

(
1− xq

Q̃k

)wk ) 1q },
{ n∏
k=1

ywk
Q̃k

}
,
{ n∏
k=1

zwk
Q̃k

}〉
q
.

When k = n+ 1, based on the operational rules of the
T-SHFNs, we have

T − SHFWA(Q̃1, Q̃2, . . . , Q̃n, ˜Qn+1) = T −
SHFWA(Q̃1, Q̃2, . . . , Q̃n)⊕ wn+1Qn+1

=

⋃
xQ̃k
∈TQ̃k

,yQ̃k
∈IQ̃k

,zQ̃k
∈FQ̃k

〈{(
1−

n∏
k=1

(
1− xq

Q̃k

)wk ) 1q },
{ n∏
k=1

ywk
Q̃k

}
,
{ n∏
k=1

zwk
Q̃k

}〉
q
⊕⋃

xQ̃n+1
∈TQ̃n+1

,yQ̃n+1
∈IQ̃n+1

,zQ̃n+1
∈FQ̃n+1〈{(

1− (1− xq
Q̃n+1

)wn+1
) 1
q
}
,
{
ywn+1
Q̃n+1

}
,
{
zwn+1
Q̃n+1

}〉
q

=

⋃
xQ̃k
∈TQ̃k

,yQ̃k
∈IQ̃k

,zQ̃k
∈FQ̃k

〈{[
1−

n∏
k=1

(1−xq
Q̃k
)wk+

(
1−

(1 − xq
Q̃n+1

)wn+1
)
−
(
1 −

n∏
k=1

(1 − xq
Q̃k
)wk
)(
1 − (1 −

xq
Q̃n+1

)wn+1
)] 1

q
}
,
{ n∏
k=1

(yQ̃k )
wk (yQ̃n+1 )

wn+1
}
,

{ n∏
k=1

(zQ̃k )
wk (zQ̃n+1)

wn+1
}〉

q
, for k = 1, 2, ., n

=

⋃
xQ̃k
∈TQ̃k

,yQ̃k
∈IQ̃k

,zQ̃k
∈FQ̃k

〈{(
1−

n∏
k=1

(
1− xq

Q̃k

)wk (1−
xqQn+1

)wn+1) 1
q }
,
{ n+1∏
k=1

ywk
Q̃k

}
,
{ n+1∏
k=1

zwk
Q̃k

}〉
q
.

=

⋃
xQ̃k
∈TQ̃k

,yQ̃k
∈IQ̃k

,zQ̃k
∈FQ̃k

〈{(
1−

n+1∏
k=1

(
1−xq

Q̃k

)wk) 1
q
}
,

{ n+1∏
k=1

ywk
Q̃k

}
,
{ n+1∏
k=1

zwk
Q̃k

}〉
q
,

k = 1, 2, . . . , n + 1. That is Equation (1) holds for
k = n + 1. According to steps (1)and (2), we can get
Equation (1) holds for any k .

In the following, we present the properties of the
T-SHFWA operator along with their proofs.
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Theorem 5 (Idempotency):Suppose Q̃k = 〈TQ̃k , IQ̃k ,FQ̃k 〉q
(k = 1, 2, . . . , n) is a collection of T-SHFNs. If Q̃k =
Q̃ = 〈TQ̃, IQ̃,FQ̃〉q, k = 1, 2, . . . , n, then T −
SHFWA(Q̃1, Q̃2, . . . , Q̃n) = Q̃ = 〈TQ̃, IQ̃,FQ̃〉q.

Proof: According to Theorem 4, since Q̃k =

Q̃ = 〈TQ̃, IQ̃,FQ̃〉q, we have

T − SHFWA(Q̃1, Q̃2, . . . , Q̃n)

=

⋃
xQ̃∈TQ̃,yQ̃∈IQ̃,zQ̃∈FQ̃

〈(
1−

n∏
k=1

(
1− xq

Q̃

)wk) 1
q
,

n∏
k=1

ywk
Q̃
,

n∏
k=1

zwk
Q̃

〉
q

=

⋃
xQ̃∈TQ̃,yQ̃∈IQ̃,zQ̃∈FQ̃

〈(
1−

(
1− xq

Q̃

)∑n
k=1 wk

) 1
q
,

y
∑n

k=1 wk
Q̃

, z
∑n

k=1 wk
Q̃

〉
q

=

⋃
xQ̃∈TQ̃,yQ̃∈IQ̃,zQ̃∈FQ̃

〈(
1−

(
1− xq

Q̃

)) 1
q
, yQ̃, zQ̃

〉
q

=

⋃
xQ̃∈TQ̃,yQ̃∈IQ̃,zQ̃∈FQ̃

〈
xQ̃, yQ̃, zQ̃

〉
q

=

⋃
xQ̃∈TQ̃,yQ̃∈IQ̃,zQ̃∈FQ̃

〈
TQ̃, IQ̃,FQ̃

〉
q
= Q̃.

Theorem 6 (Boundedness):Let Q̃k = 〈TQ̃k , IQ̃k ,FQ̃k 〉q(k =

1, 2, . . . , n) be T-SHFNs. If Q̃− =
〈
{x−}, {y+}, {z+}

〉
q
and

Q̃+ =
〈
{x+}, {y−}, {z−}

〉
q
,

where,

x− = min
xQ̃k
∈TQ̃k

{xQ̃k }, y− = min
yQ̃k
∈IQ̃k

{yQ̃k },

z− = min
zQ̃k
∈FQ̃k

{zQ̃k }, x+ = max
xQ̃k
∈TQ̃k

{xQ̃k },

y+ = min
yQ̃k
∈IQ̃k

{yQ̃k }, z+ = max
zQ̃k
∈FQ̃k

{zQ̃k },

then,

Q̃− ≤ T − SHFWA(Q̃1, Q̃2, . . . , Q̃n) ≤ Q̃+.

Proof: For q ≥ 1, since x− ≤ xQ̃k ≤ x+, then (x−)q ≤
(xQ̃k )

q,

1− (x−)q ≥ 1− (xQ̃k )
q,
(
1− (x−)q

)wk
≥
(
1− (xQ̃k )

q)wk ,
n∏

k=1

(
1− (x−)q

)wk
≥

n∏
k=1

(
1− (xQ̃k )

q)wk ,
1−

n∏
k=1

(
1− (x−)q

)wk
≤ 1−

n∏
k=1

(
1− (xQ̃k )

q)wk ,
(
1−

n∏
k=1

(
1− (x−)q

)wk) 1
q
≤

(
1−

n∏
k=1

(
1− (xQ̃k )

q)wk) 1
q

= x−,

similarly, we have(
1−

n∏
k=1

(
1− xQ̃k )

q)wk) 1
q
≤

(
1−

n∏
k=1

(
1− (x+)q

)wk) 1
q
= x+.

As y− ≤ yQ̃k ≤ y
+, then

(y−)wk ≤ (yQ̃k )
wk ≤ (y+)wk ,

n∏
k=1

(y−)wk ≤
n∏

k=1

(yQ̃k )
wk ≤

n∏
k=1

(y+)wk ,

y− ≤
n∏

k=1

(yQ̃k )
wk ≤ y+.

Similarly, as z− ≤ zQ̃k ≤ z+, we have z− ≤∏n
k=1(zQ̃k )

wk ≤ z+.
Let T − SHFWA(Q̃1, Q̃2, . . . , Q̃n) = Q̃ =

〈
TQ̃, IQ̃,FQ̃

〉
q,

then

0(Q̃) =
[
1+

1
Jq

(
∑
xQ̃∈TQ̃

xQ̃)
q
−

1
K q (

∑
yQ̃∈IQ̃

yQ̃)
q

−
1
Lq

(
∑
zQ̃∈FQ̃

zQ̃)
q
]/

2 ≥
[
1+

1
(J−)q

(
∑
x−
Q̃
∈TQ̃

x−
Q̃
)
q

−
1

(k−)q
(
∑
y+
Q̃
∈IQ̃

y+
Q̃
)
q
−

1
(L−)q

(
∑
z+
Q̃
∈FQ̃

z+
Q̃
)
q
]/

2 = 0((Q̃)−)

and,

0(Q̃) =
[
1+

1
Jq

(
∑
xQ̃∈TQ̃

xQ̃)
q
−

1
K q (

∑
yQ̃∈IQ̃

yQ̃)
q

−
1
Lq

(
∑
zQ̃∈FQ̃

zQ̃)
q
]/

2 ≤
[
1+

1
(J+)q

(
∑
x+
Q̃
∈TQ̃

x+
Q̃
)
q

−
1

(k+)q
(
∑
y−
Q̃
∈IQ̃

y−
Q̃
)
q
−

1
(L+)q

(
∑
z−
Q̃
∈FQ̃

z−
Q̃
)
q
]/

2 = 0((Q̃)+),

where J−,K−, and L− are the number of values in the sets
TQ̃, IQ̃ and FQ̃, respectively, such that TQ̃, IQ̃ and FQ̃ belong
to (Q̃)−. J+,K+, and L+ are the number of values in the sets
TQ̃, IQ̃ and FQ̃, respectively, which belong to (Q̃)+.

Note that J− = K− = L− = J+ = K+ = L+ = n, where
n represents the number of the T-SHFNs.
We obtain Q̃− ≤ T − SHFWA(Q̃1, Q̃2, . . . , Q̃n) ≤ Q̃+.
Theorem 7 (Monotonicity): Suppose Q̃k (k = 1, 2, . . . , n)

and Q̃∗k (k = 1, 2, . . . , n) are two collections of T-SHFNs.
If for all k , Q̃k ≤ Q̃∗k . Then, T −SHFWA(Q̃1, Q̃2, . . . , Q̃n) ≤
T − SHFWA(Q̃∗1,
Q̃∗2, . . . , Q̃

∗
n).

Proof: The proof can be gained from Theorem 6.

B. THE T-SHFWG OPERATOR
The definition of T-SHFWGoperator can be stated as follows.
Definition 15: Consider the collection Q̃k = 〈TQ̃k , IQ̃k ,

FQ̃k 〉q(k = 1, 2, . . . , n) of T-SHFNs. Moreover,
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if w = (w1,w2, . . . ,wn) is the weight vector of

Q̃k (k = 1, 2, . . . , n), 0 6 wk 6 1 and
n∑

k=1
wk = 1. Then

the mapping for T-SHFWG operator is defined as:
T − SHFWG : T − SHFN n

−→ T − SHFN , such that
T−SHFWG(Q̃1, Q̃2, . . . , Q̃n) = Q̃1

w1
⊗Q̃2

w2
⊗. . .⊗Q̃n

wn .
The aggregation result for T-SHFNs through operation

rules is given as in the following theorem.
Theorem 8: Suppose that Q̃k = 〈TQ̃k , IQ̃k ,FQ̃k 〉q,

(k = 1, 2, . . . , n) be the collection of T-SHFNs. Let us
consider the weight vector w = (w1,w2, . . . ,wn) of Q̃k .
Then,

T − SHFWG(Q̃1, Q̃2, . . . , Q̃n)

=

⋃
xQ̃k
∈TQ̃k

,yQ̃k
∈IQ̃k

,zQ̃k
∈FQ̃k

〈 n∏
k=1

xwk
Q̃k
,
(
1−

n∏
k=1

(
1−yq

Q̃k

)wk) 1
q
,

(
1−

n∏
k=1

(
1− zq

Q̃k

)wk) 1
q
〉
q

(2)

Proof: The proof is like to that of Theorem 4.
Correspondingly, T-SHFWG operator has the coming

properties.
Theorem 9 (Idempotency): Consider the collection

Q̃k = 〈TQ̃k , IQ̃k ,FQ̃k 〉q(k = 1, 2, . . . , n) of T-SHFNs.
If Q̃k (k = 1, 2, . . . , n) are equal, i.e., Q̃k =

Q̃ = 〈TQ̃, IQ̃,FQ̃〉q, k = 1, 2, . . . , n, then T −
SHFWG(Q̃1, Q̃2, . . . , Q̃n) = Q̃ = 〈TQ̃, IQ̃,FQ̃〉q.

Proof: Proof follows from Theorem 5.
Theorem 10 (Boundedness): If Q̃k (k = 1, 2, . . . , n) are the

set of T-SHFNs. Considerw = (w1,w2, . . . ,wn) is the weight
vector of Q̃k such that Q̃k ≥ 0(k = 1, 2, . . . , n), where
wk ∈ [0, 1] with

∑n
k=1 wk = 1. Then,

Q̃− ≤ T − SHFWG(Q̃1, Q̃2, . . . , Q̃n) ≤ Q̃+., where

Q̃− =
〈
T(Q̃)− , I(Q̃)− ,F(Q̃)−

〉
=

〈
{x−}, {y+}, {z+}

〉
q
,

and,

Q̃+ =
〈
T(Q̃)+ , I(Q̃)+ ,F(Q̃)+

〉
=

〈
{x+}, {y−}, {z−}

〉
q
,

where,

x− = min
xQ̃k
∈TQ̃k

{xQ̃k }, y− = min
yQ̃k
∈IQ̃k

{yQ̃k },

z− = min
zQ̃k
∈FQ̃k

{zQ̃k }, x+ = max
xQ̃k
∈TQ̃k

{xQ̃k },

y+ = min
yQ̃k
∈IQ̃k

{yQ̃k }, z+ = max
zQ̃k
∈FQ̃k

{zQ̃k }.

Proof: Proof directly follows from Theorem 6.
Theorem 11 (Monotonicity):Consider Q̃k (k = 1, 2, . . . , n)

and Q̃∗k (k = 1, 2, . . . , n) be the collection of two families
of T-SHFNs. If for all k , Q̃k ≤ Q̃∗k . Then, T −
SHFWG(Q̃1, Q̃2, . . . , Q̃n) ≤ T − SHFWG(Q̃∗1, Q̃

∗

2, . . . , Q̃
∗
n).

Proof: Proof is straightforward as Theorem 7.

V. DECISION-MAKING METHOD BASED ON THE
T-SHFWA AND T-SHFWG OPERATORS
In this section, based on the T-SHFWA and T-SHFWG
operators, we will come up with two new approaches
for MADM with T-SHF information. Suppose M =

{M1,M2, . . . ,Mn} is a collection of n alternatives which are
assessed according to k attributes F = {F1,F2, . . . ,Fk}.
If the weight vector of the attributes isw = {w1,w2, . . . ,wk},
where

∑k
j=1 wj = 1 wj ≥ 0. Suppose that D =

[
Q̃ij
]
n×k

represents the decision matrix, where Q̃ij =
〈
Tij, Iij,Fij

〉
q is

the assessment value of alternativeMi, for attribute Fj, which
is represented by T-SHFN. Then the algorithm for solving
the MADM problem based on the T-SHFWA operator or
T-SHFWG operator is explained below.
Algorithm 1:
Step 1: Normalize the decision matrix D by converting all

cost attributes to benefit attributes. The converted values can
be calculated by the following formula

Q̃ij =

{ 〈
Tij, Iij,Fij

〉
q for benefit attributes〈

Fij, Iij,Tij
〉
q for cost attributes

(3)

Step 2: Aggregate all attributes values Q̃ij (j = 1, 2, . . . , k)
to obtain the overall value S̃i by T-SHFWA operator such
that S̃i = T − SHFWA

(
Q̃i1, Q̃i2, . . . , Q̃iK

)
or by T-SHFWG

operator where S̃i = T − SHFWG
(
Q̃i1, Q̃i2, . . . , Q̃iK

)
.

Step 3: Rank S̃i (i = 1, 2, . . . , n) based on the score
function 0(S̃i) and accuracy function λ(S̃i) by Definition 12.
Step 4: Rank the corresponding alternatives according to

their scores to get the best one.

VI. ILLUSTRATIVE EXAMPLE
To reveal the application of the suggested models, the
following example about the ranking of mobile phone
products is adapted from [32].
Example 2: Suppose that there are four mobile phones

which are recorded as follows. M1: iPhone 8, M2: iPhone
8 plus, M3: Samsung Galaxy Note 8, and M4: Huawei
Mate 10 Pro.

The proposed methods are utilized to rank these phones
according to the following features. F1: Battery life, F2:
Camera, F3: Screen, F4: Sound (Audio), F5: Battery
draining. Assume the weights of the attributes are w =
(0.3, 0.3, 0.2, 0.1, 0.1), under the T-SHF environment. The
evaluation information are described as T-SHFNs with q = 3.
Subsequently the T-SHF evaluation matrix D is attained as
shown in Table 1.

Then we can rank the alternative mobile phones using
Algorithm 1.

Step 1: Normalize D =
[
Q̃ij
]
n×k : Because the only cost

attribute in this example is battery draining F5, we convert it
to benefit attribute using Equation 3, and then we obtain D∗

as in Table 2.
Step 2: Utilizing the T-SHFWA operator, the overall

evaluation values of the alternatives is obtained as:
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TABLE 1. The T-SHF decision matrix D.

TABLE 2. The normalized decision matrix D∗.

S̃1 =
{
{0.4104, 0.4245, 0.4143, 0.3836, 0.3998, 0.388},

{0.5015, 0.5496, 0.5298, 0.5807, 0.5549, 0.6081, 0.5863,
0.6425}, {0.7463, 0.5561, 0.6846, 0.7632, 0.5686, 0.7001,
0.717, 0.5343, 0.6578, 0.7332, 0.5463, 0.6726}

}
S̃2 =

{
{0.4833, 0.4808, 0.5093, 0.5071, 0.4558, 0.453,

0.4853, 0.4892}, {0.3436, 0.3514, 0.3593, 0.3674, 0.2267,
0.2318, 0.237, 0.2424}, {0.5824, 0.5561, 0.6153, 0.5875}

}
S̃3 =

{
{0.5994, 0.6237, 0.6591, 0.6221, 0.644, 0.6764},

{0.2656, 0.244, 0.2524, 0.2319, 0.3692, 0.3392, 0.3509,
0.3224}, {0.3631, 0.3836, 0.4101, 0.4333, 0.4471, 0.4724}

}
S̃4 =

{
{0.7998, 0.7905, 0.7753, 0.7645}, {0.1446,

0.1661, 0.1781, 0.2045}, {0, 0, 0, 0.1516, 0, 0, 0, 0.1712}
}

Step 3: Calculate the score values 0(S̃i) of each alternative
by Definition 12. We obtain 0(S̃1) = 0.2991, 0(S̃2) =
0.443, 0(S̃3) = 0.5798, 0(S̃4) = 0.737.
Step 4: We get the rank of the four mobile phones as.
M4 > M3 > M2 > M1. Therefore, Huawei mobile phone

is the optimal choice.
In step 2, if we use the T-SHFWG operator to aggregate

attribute values, then:
S̃1 =

{
{0.2505, 0.3478, 0.308, 0.2393, 0.3326, 0.2946},

{0.8442, 0.6204, 0.6334, 0.641, 0.6639, 0.6705, 0.6808,
0.6869}, {0.7825, 0.7352, 0.7365, 0.7844, 0.6363, 0.739,
0.7551, 0.6691, 0.7004, 0.7573, 0.6726, 0.7034}

}
S̃2 =

{
{0.4214, 0.4047, 0.4371, 0.4197, 0.3943, 0.3786,

0.4089, 0.3926}, {0.4319, 0.4427, 0.453, 0.4627, 0.3967,
0.4097, 0.4219, 0.4332}, {0.6611, 0.5714, 0.6329, 0.5971}

}

S̃3 =
{
{0.5618, 0.5791, 0.5951, 0.5935, 0.6121, 0.6287},

{0.4527, 0.3836, 0.4362, 0.3591, 0.4641, 0.3998, 0.4486,
0.4247}, {0.4294, 0.4776, 0.4388, 0.4851, 0.4563, 0.4991}

}
S̃4 =

{
{0.788, 0.7641, 0.7571, 0.7341}, {0.2533,

0.283, 0.3215, 0.3406}, {0.1686, 0.1698, 172, 0.1731,
0.2195, 0.2202, 0.2216, 0.2222}

}
.

Then we obtain the score values of each alternative as
0(S̃1) = 0.1669, 0(S̃2) = 0.377, 0(S̃3) = 0.518,
0(S̃4) = 0.703.
Based on the above score values, the order of the alternative

mobile phones isM4 > M3 > M2 > M1.
Obviously, these two approaches have the same ranking

result.

VII. THE COMPARISON ANALYSIS WITH THE
OTHER METHODS
Apparently, T-SHFS is improved from SHFS which is
the basis of the suggested approach. Also, the models
HqROFS and PHFS are the closest in structure to T-SHFS.
Hence, to further ensure the validity of the proposed
methods and explore their advantages, we compare the
suggested operators with some SHF operators, some
HqROF operators and some PHF operators, including SHF
weighted averaging (SHFWA) operator [12], SHF weighted
geometric (SHFWG) operator [12], HqROF weighted
averaging (HqROFWA) operator [21],HqROFweighted geo-
metric (HqROFWG)operator [21], PHF weighted averaging
(PHFWA) operator [10] and PHF weighted geomet-
ric(PHFWG) operator [10].
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TABLE 3. Ranking results from different methods for example 2.

In order to conduct the comparison, we solve the same
decision making problem above using these operators. It is
worth mentioning that the HqROFSs only have two member-
ship degrees, a truth and a falsity membership degrees, while
the T-SHFS is constructed by three membership degrees,
which are truth, indeterminacy and falsity membership
degrees. Thus, the HqROFS is a special case of T-SHFS
and can be easily represented in the form of T-SHFS.
In other words, the HqROFS is a T-SHFS with indeterminacy
term equal zero, so it cannot handle the T-SHFNs. Thus,
to compare the suggested method with these in [22], we put
the degree of indeterminacy to 0 in the suggested operator. For
PHFS and SHFS they are also considered as special cases of
T-SHFS with q = 1 and q = 2, respectively. In particular,
we set q = 1 in the proposed operators when we compare the
PHF operators with the proposed operators and q = 2, while
comparing SHF operators with the proposed operators.

The comparison results are shown as Table 3. FromTable 3,
it is evident that the ranking results produced by the proposed
methods are almost the same as those produced by other
methods. However, their optimal selections are the same,
which can prove the effectiveness of our methods very well.
As mentioned above, HqROFNs do not have the membership
function which represents the neutrality, which will lead to
the lack of some information, while the proposed T-SHFNs
include truth, neutral and false membership degrees and
give decision makers a more flexible environment to avoid
information loss in the decision making process.

Wang and Li’s [10] method is based on PHFW operators,
which need simple calculations, but its area of applications
very limited. It can only deal with the problem that parameters
are represented as PHFNs, and PHFNs cannot fully represent
the actual decision information, as the summation of its
potential positive, neutral, and negative membership degrees

must be between 0 and 1, i.e, (0 ≤ x++y++Z+ ≤ 1). Thus,
it will easily cause the bias of the data.

Khan et al.’s [12] method is based on the SHF operators
which use the SHFNs. This makes the SHF operators more
flexible than PHFW operators as the structure of SHFNs is
with a constraint that the sum of the characteristic functions
may exceeded from the unit interval but their square must
belong to the unit interval, i.e, 0 ≤ (x+)2+(y+)2+(Z+)2 ≤ 1.

However, the proposed method is based on the T-SHFW
operators, which is expressed based on the T-SHFN. The T-
SHFN is more flexible than the PHFN and SHFN because
it needs the summation of potential truth, neutral and falsity
membership degrees must meet 0 ≤ (x+)q + (y+)q +
(Z+)q ≤ 1 (q ≥ 1). It can represent the attributes
more comprehensively. For the proposed T-SHFWA and
T-SHFWG operators, we can find that they are best ways
to express the neutral data by the T-SHFNs because they
make the decision making process easier and changeable
by a parameter q. By increasing q, the scope of the
evaluated information will be wider, thus avoiding the bias
of information.

VIII. CONCLUSION
This paper proposed the T-SHFSs, provided the operational
laws of the T-SHFNs and discussed their properties. The
proposed T-SHFSs inherent the advantages and superiorities
of the SHFS, q-ROHFS and q-RPFS so that it is more flexible
and powerful. Based on the operational laws of the T-SHFNs,
the T-SHFWA operator and T-SHFWG opertor are defined.
The properties of the proposed operators such as the idem-
potency, boundedness and monotonicity are investigated.
Afterwards, we proposed two new methods for MADM,
where the attributes values is in the form of T-SHFNs.
We applied the newly developed methods to rank mobile
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phone products based on online reviews. The comparative
study is also provided and the results show a great similarity
and consistency while using other ranking methods such
as SHFWA operator, SHFWG opertor, HqROFWA operator,
HqROFWG operator, GPHFWA operator and GPHFWG
operator.
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