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ABSTRACT Premature ventricular contraction (PVC) is one of the most common arrhythmias which can
cause palpitation, cardiac arrest, and other symptoms affecting the work and rest activities of a patient.
However, patients hardly decipher their own feelings to determine the severity of the disease thus, requiring
a professional medical diagnosis. This study proposes a novel method based on image processing and
convolutional neural network (CNN) to extract electrocardiography (ECG) curves from scanned ECG images
derived from clinical ECG reports, and segment and classify heartbeats in the absence of a digital ECG
data. The ECG curve is extracted using a comprehensive algorithm that combines the OTSU algorithm
with erosion and dilation. This algorithm can efficiently and accurately separate the ECG curve from the
ECG background grid. The performance of the classification model was evaluated and optimized using
hundreds of clinical ECG data collected from Fujian Provincial Hospital. Additionally, thousands of clinical
ECG reports were scanned to digital images as the test set to confirm the accuracy of the algorithm for
practical application. Results showed that the average sensitivity, specificity, positive predictive value, and
accuracy of the proposed model on the MIT-BIH dataset were 95.47%, 97.72%, 98.75%, and 98.25%,
respectively. The classification average sensitivity, specificity, positive predictive value, and accuracy based
on clinical scanned ECG images can reach to 97.24%, 81.6%, 83.8%, and 89.33%, respectively, and the
clinical feasibility is high. Overall, the proposed method can extract ECG curves from scanned ECG images
efficiently and accurately. Furthermore, it performs well on heartbeat classification of normal (N) and
ventricular premature heartbeat.

INDEX TERMS Electrocardiogram (ECG), convolutional neural network, premature ventricular contrac-
tion, OTSU, ECG classification.

I. INTRODUCTION
Cardiovascular disease (CVD) has become one of the main
causes of death worldwide in the past decade [1]. The vast
majority of heart diseases include chronic diseases and often
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have symptoms of arrhythmia [2]. Therefore, real-time and
accurate arrhythmia recognition can provide doctors with
accurate information which can not only effectively prevent
the occurrence of heart disease [3] but also provide a targeted
treatment program for patients with heart disease. At present,
electrocardiogram (ECG) is the most commonly used clin-
ical method for diagnosing heart disease [4], [5]. However,

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 156581

https://orcid.org/0000-0002-2115-8902
https://orcid.org/0000-0002-4120-5876


L.-H. Wang et al.: Automated Classification Model With OTSU and CNN Method for PVC Detection

cardiologists have limited time to spend in analyzing millions
of heartbeats of patients [6], [7]. Therefore, an effective solu-
tion, such as an arrhythmia automatic detection system should
be developed.

Data mining is becoming popular in the healthcare field.
It can extract useful information from large datasets and
determine the relationship between data attributes which are
further utilized for disease diagnosis and classification. Many
learning machines such as artificial neural networks [8], hid-
den Markov model [9], K-nearest neighbors (KNN) algo-
rithm [10], [11], and support vector machine (SVM) have
been proposed [12]–[14]. Qaisar and Hussain [15] set up an
automated arrhythmia classification system based on random
forests by extracting wavelet decomposition and sub-band
statistical features. In another work [16], DL-CCANet and
TL-CCANet were proposed to extract abstract discriminating
features from dual-lead and three-lead ECGs, respectively.
Then, the linear SVM specializing in high-dimensional fea-
tures was used as the classifiermodel. A composite classifica-
tion and prediction model based on SVM for atrial fibrillation
detection (AF) were proposed in [17]. Mohamed et al. [18]
used an artificial neural network classifier to classify positive
and abnormal (AN) ECG with an accuracy rate that could
reach 96%.

The above experimental results proved that the use of
machine learning such as the ECG automatic classification
algorithm is feasible but a few information needs to be clari-
fied. Most research included the process of feature extraction
where the performance of the classifier depends on features
extracted.

The low training efficiency of complexmodels and the long
time cost of training make it difficult to repeatedly train a
model using large amounts of data in the early days where
there was insufficient computing power. The complex model
learns the features of the training set by rote and even regards
the noise in the training data as the feature after repeated
training with a small amount of data making it is easy to cause
overfitting of the model.

With the development of cloud computing, big data, and
other technologies as well as the significant improvement of
computing performance make it possible to repeatedly train
model using large amounts of data thus effectively prevent-
ing the occurrence of overfitting. Meanwhile, an increasing
number of scholars has incorporated deep learning [19]–[21]
into ECG classification. Oh et al. [22] proposed an auto-
mated system by using a combination of convolutional neu-
ral network (CNN) and long short-term memory (LSTM)
which demonstrated high classification performance in the
handling of variable-length data. Hsieh et al. [23] proposed
an atrial fibrillation (AF) detection method based on an
end-to-end 1D CNN architecture to raise the detection
accuracy and reduce network complexity. Lynn et al. [24]
proposed a deep recurrent neural network (RNNs) based
on gated recurrent unit (GRU) in a bidirectional man-
ner (BGRU) for human identification from ECG-based
biometrics. Zhou et al. [25] proposed a new approach

that combined CNN, LSTM and rules inference for PVC
detection.

However, the proposed ECG automatic classification
algorithm still needs improvement in accuracy and real-time
performance. Moreover, most of the studies are based on
numerical ECG data. Few researches has been conducted
for ECG image diagnosis. Several studies and research work
have been reported in literature for ECG curve extrac-
tion and digitization from clinical ECG images. Patil and
Karandikar [26] proposed an entropy-based bit plane slicing
algorithm to realize ECG extraction from electrocardiogram
paper records. Mishra et al. [27] proposed a deep learning
model to get the threshold value for dividing the clinical ECG
images into foreground and background. However, they need
to find the threshold manually to generate the training set for
the proposed model.

Therefore, the combination of ECG curve extraction with
cardiac classification through image processing in the case of
digital ECG data should be explored to improve the accuracy
and intelligence of ECG automatic diagnosis. The proposed
classification method is divided into 3 parts as follows:

1) Automatic extraction of ECG waveforms. The ECG
curve needs to be separated from the background
grid of ECG before the classification of heartbeat.
We proposed a comprehensive algorithm that combines
Gamma transform and OTSU algorithm [28] to sepa-
rate the curve.

2) Construction of automatic heartbeat segmentation and
classification model for premature ventricular contrac-
tion (PVC) and normal heartbeat (N). In this study,
a more intelligent convolutional neural network clas-
sification model was proposed. After the extraction of
the ECG curve, the heartbeat can be segmented and
classified without any further processing.

3) Evaluation and optimization of the performance of the
model was performed by applying the model to clinical
trials. Most of the experiments are based on standard
database such as MIT-BIH database [29] which lacks
clinical trials and evaluation. In this study, thousands
of paper-based ECGpictures obtained from the hospital
were used to verify and optimize the algorithm there-
fore indicating the practicability of the algorithm.

Based on the experimental results, the average accuracy
of classification for the normal and ventricular premature
heartbeat is 98.25% based on MIT-BIH. Besides, the pro-
posed method can extract ECG curve waveform and the
accuracy of classification based on clinical scanned ECG can
reach 89.33%. In comparison with the existing classification
methods, the method proposed in this study is more intel-
ligent, has clinical feasibility and has a good generalization
ability.

The remainder of this paper is organized as follows:
Section II describes the materials and methods adopted
in heartbeat classification including database, ECG curve
extraction, and CNN classifier. Evaluation experiment results
of heartbeat classification are presented in Section III and
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FIGURE 1. A block diagram of ECG classification model.

discussed in Section IV. Finally, Section V concludes this
paper.

II. METHODS TO ECG CLASSIFICATION MODEL
The block diagram of the proposed ECG classification model
is shown in Figure 1. This study presents a novel approach
for the automatic detection of ventricular premature beats
by using the OTSU algorithm and CNN model. The pro-
posed system consists of three parts, namely, the ECG curve
extraction, segmentation and feature classification with CNN
algorithm.

1) ECG signals from numerical database were trans-
formed into images by plotting each heartbeat as an
individual 128 × 128 grayscale image with a duration
of 1 second.

2) Datasets were divided into 3 sets that have independent
and unrelated set of images for the training, validation,
and test sets. Moreover, the test set was based on the
records before training to ensure that a separate test set
is used to evaluate the model performance. The training
and validation sets were used to build the CNN classi-
fier based on AlexNet [30], and the test set was used to
verify the recognition performance of the classifier to
ventricular premature beat.

3) The OTSU algorithm, erosion, dilation, and other
image-processing methods were used to extract ECG
curves from the scanned clinical ECG images. A fixed-
length sliding window was used to scan the long image
of the ECG signal with a certain sliding step after ECG
curve extraction and cut the ECG of the same length.
The classification results were obtained by using the
equally cut ECG images into the trained classification
model.

In this section, we describe in detail the dataset and meth-
ods used for ECG classification.

A. DATASET
Two types of data sets, namely, numeric and image, were
used in this paper. The numerical type of ECG data was

obtained from the MIT-BIH [29] and FZU-FPH arrhythmia
databases. The image datasets were all obtained from the
scanned clinical ECG signals provided by Fujian Provincial
Hospital.

The MIT-BIH arrhythmia database contains 48 two-
channel ECG recording subjects where each recording has an
half an hour duration of Holter recording digitized at 360 Hz.
In the current study, the 102 and 104 subjects that lacks the
lead II data were excluded. For the remaining 46 subjects,
there were 14 subjects selected for the test set, and 25 subjects
and 7 subjects for the training and validating set, respectively.
The samples in the training, validation and test sets are col-
lected from different individuals from the MIT-BIH arrhyth-
mia database. The database contains 48 two-channel ECG
recording subjects only that were collected from 47 individu-
als. Therefore, it is suitable to select 14 subjects as the test set.

These 14 subjects are not randomly selected. The sample
size of normal heartbeats are and the PVC heartbeats in each
recording subject are counted. According to the PVC num-
bers of MIT-BIH database, it can be divided into three type
which includes A-type: there are 24 recording subjects having
almost no PVC samples (<20 samples; i.e., the number of
PVC samples are less than 20); B-type: there are 7 recording
subjects having partly PVC samples (20< samples <100;
i.e., the number of PVC samples are between 20 and 100);
and C-type: there are 17 recording subjects having abundant
PVC samples (>100 samples; i.e., the number of PVC sam-
ples are bigger than 100). In this study, 14 subjects were
selected to generate the test set of the model, 4 of which
coming from the A-type, 5 from the B-type, and 5 from the
C-type.

The MIT-BIH arrhythmia database contains 74790 normal
samples and 7124 PVC samples in total (excluding 102 and
104 subjects), and the test set chosen contains 22735 normal
samples and 2187 PVC samples. The ratio of the training set
and validating set to the test set is 7:3 [31]–[34], in the aspect
of sample size. In addition, the training set and the validation
set chosen has a ratio of 3:1 specifically containing 3689 and
1248 PVC samples, respectively.
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The FZU-FPH arrhythmia database was established by
Fuzhou University and Fujian Provincial Hospital through
clinical experiment under the ethics committee number of
K2019-03-009. The database has more than 500 ECG data of
patients aged 18-65 years from all regions of Fujian Province.
The detailed information of the equipment used in the ECG
acquisition process can be found in [35], [36]. The length of
each record is approximately 10 min, and the sampling rate
is 100 Hz. The ECG data have seven leads, namely limb lead
I, II, III, aVR, aVL, aVF, and chest lead V1. All ECG data
were filtered and the QRS complex wave was detected. Each
record includes details such as sex, age, acquisition time,
ECG data, label of each heartbeat, and record conclusion.
The label and conclusion of each record were completed
by the doctors in Fujian Provincial Hospital. The symbols
used in the database were the same as those in MIT-BIH
database. Considering that the database is still expanding and
improving, it is not available at this time.

The ECG image data used in this study was obtained from
the digitally scanned version of the clinical ECG drawings
provided by Fujian Provincial Hospital without any sensitive
information. It has exactly 2,128 ECG sheets, with 1 sheet
for each patient, were used to verify the performance of
the model which includes 1,078 sinus ECG sheets and
1,050 ventricular premature beats ECG sheets. Each sheet
contains 10 seconds of ECG signal collected from lead II.

The CNN classifier was designed to classify 2 types of
heartbeats, particularly normal beat (N) and ventricular pre-
mature heartbeat (V), as shown in Figure 2.

FIGURE 2. Two types of heartbeats to be classified: (a) N (normal sinus
beat); (b) V (ventricular premature beat).

The sample size of the ventricular premature beats is much
lower than that of the sinus beats thus, reducing the perfor-
mance of the classification model. For the numerical dataset,
this study adopts 4 methods to address the problem of having
a class imbalance.

1) Translation of the starting point of a heartbeat. This
method ensures that the waveforms of the 5 waves of
PQRST are all complete. Shifting the starting point of
the ECG can not only increase the number of training
samples but also incorporate the different situations
that the ECG may record or the sliding window may
cut. Then, the robustness of the model can be enhanced
to some extent. The data of MIT-BIH were down-
sampled to 300Hz, while the data of FZU-FPH were
up-sampled to 300 Hz. With the R-wave as the center,

120 sampling points were extracted moving forward
and 179 sampling points were extracted moving back-
ward therefore resulting to a total of 300 sampling
points. Three (3) forward steps and 3 backward steps
were done for each time of moving 30 points. Finally,
the dataset was expanded to 6 times.

2) Addition of noise to the training data of ventricular
premature beats. The numerical ECG data sets from
both MIT-BIH and FZU-FPH were filtered. However,
in practice, the classification model may be faced with
ECG data with noise interference. Therefore, artificial
noise processing on the training data of PVCs can
increase the number of training samples and enhance
the robustness of the model.

3) Random deletion of partial sinus ECG. The sinus beats
of the same person are basically the samewithout much
interference and noise. Hence, partial sinus beats were
deleted.

4) Weighting the smaller number of categories. Each cate-
gory of samples contributed equally to the loss function
by setting reasonable weights.

For the image training set, this study adopted
methods 3 and 4 to solve the problem of class imbalance.

B. ECG CURVE EXTRACTION
The clinical ECG image consists of two parts, namely, the
ECG curve and the background grid. The separation of the
curve refers to the separation of the foreground curve and
the background grid in order to obtain a complete ECG
curve. ECG curve extraction involves 4 steps, namely, image
graying, Gamma calibration and OTSU algorithm, erosion
and dilation, and image thinning. The process of ECG curve
extraction from clinical scanned images is shown in Figure 3.

1) IMAGE GRAYING
Image graying refers to the conversion of color images into
an 8-bit grayscale images. The grayscale images only con-
tain brightness information, and their color information is
removed. Considering that the amount of information pro-
vided by color in medical images is very small, the image can
be directly converted to its grayscale equivalence to facilitate
image processing later.

2) GAMMA CORRECTION AND OTSU ALGORITHM
The OTSU algorithm can be understood by subdividing the
original image into its foreground and its background image
through the use of a threshold. Assuming a certain threshold
value, the portion whose gray value is greater than the thresh-
old is called the background, otherwise the portion is called
the foreground. The segmentation threshold of the foreground
and background images is denoted as T . The proportion of
pixel points belonging to the foreground in the whole image is
denoted asw0, with the average gray level value is denoted by
u0. The ratio of background pixel points to the whole image
is w1, and the average gray scale value is denoted is by u1.
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FIGURE 3. The process of ECG curve extraction from a clinical image.

The total gray scale mean value of the image is denoted as
u, and the variance between classes is denoted as g. The core
formula of the OTSU algorithm is as follows:

u = w0 ∗ u0 + w1 ∗ u1, (1)

Then, the formula for calculating the variance in mathe-
matical statistics is as follows:

g = w0 ∗ (u0 − u)
2
+ w1 ∗ (u1 − u)

2, (2)

Substituting (1) into (2), the equivalent formula below is
obtained:

g = w0 ∗ w1 ∗ (u0 − u1)
2, (3)

The traversal method was used to obtain the threshold T
that maximizes the variance g between classes.
However, the traditional OTSU algorithm has some limita-

tions. The OTSU algorithm is only applicable in two condi-
tions. First, the gray histogram of the original image exhibits
a bimodal state distribution. Second, the gray histogram
presents the unimodal state, and the threshold is selected at
the edge of the segmentation region. This study proposes a
comprehensive algorithm that combines Gamma correction
and OTSU algorithm to separate the ECG curve. The dif-
ference between foreground and background is enlarged by

Gamma correction so that the 2 peak distances of the gray
histogram are larger. Then, given a more precise threshold
which increases the success rate of the adaptive separation
between the ECG curve and the background grid is obtained.
The formula for gamma correction is as follows:

f (I ) = Iγ , (4)

where γ is gamma. After the ECG data has undergone
through this transformation, the difference between the ECG
curve where the gray value is low and the background grid is
increased. Hence, this transformation will not cause a loss of
image details.

3) EROSION AND DILATION
After the ECG curve is separated from the background
grid by the threshold determined by the gamma correction
and the OTSU algorithm, the ECG curve may have break
points. The erosion and dilation was used to connect dis-
continuity in the curves and ensure the integrity of the ECG
information.

The process of the image erosion operation and the sub-
sequent dilation operation mainly aims to eliminate some
noise in the image and connect the break points caused by
some noise to ensure the integrity of the curve. Erosion is
an operation to determine a local minimum. Some boundary
points that are considered useless are eliminated making the
boundary of the target image appear to shrink. Dilation refers
to the determination of a local maximum, and this process
can expand the highlight an area according to the size of the
custom kernel. Generally, erosion and dilation can connect
some adjacent break points.

If f (x, y) is the grayscale function of the input image and
b (x, y) is a structural element, both functions are defined on
R2 or Z2. The grayscale erosion operation of the input image
f (x, y) with structural element b can be defined as follows:

(f 	 b) (s, t)=min
{
f (s+ x, t + y)− b(x, y)|
(s+ x) , (t + y) ∈ Df ; (x, y) ∈ Db

}
,

(5)

where Df and Db are the domains of f (x, y) and b (x, y),
respectively. The grayscale dilation operation of the input
image f (x, y) with structural element b can be defined as
follows:

(f ⊕ b) (s, t)=max
{
f (s− x, t − y)+ b(x, y)|
(s−x) , (t−y) ∈ Df ; (x, y) ∈ Db

}
,

(6)

The structure element b performs erosion and dilation on
an input image, which can be defined as follows:

f ◦ b = (f 	 b)⊕ b (7)

Figure 4 shows the effect of erosion and dilation in a given
ECG data by a kernel with a size of 2×2 and a circular shape.
Moreover, it shows that the erosion and dilation can fully
separate the white part and connect the black part, thereby
connecting the intermittent ECG curves.
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FIGURE 4. The effect of erosion and dilation for ECG: (a) ECG before
erosion and dilation; (b) ECG after erosion and dilation.

4) IMAGE THINNING
Although the refinement of an ECG curve does not havemuch
influence on the shape of the ECG waveform, if the ECG
waveform needs to be converted into an ECG data later, the
curve that has not been refined will have a greater effect.
This study adopts the method of skeleton refinement based
on binary edge image [37]. The basic principle of this method
is the determination of points that can be deleted and then
deleting them until all pixels do not conform to rules of
elimination after multiple iterations. Until such time where
it no longer changes, the skeleton refinement is completed.

C. CNN CLASSIFIER
CNN algorithm is an artificial neural network, which is a very
effective structured multi-layer neural network with forward
feedback. CNN mainly aims to recognize two-dimensional
images. The network structure has strong invariance for other
forms of image deformation such as translation, tilting, and
scaling. Nowadays, the application of CNN is not only limited
to image recognition but is also applied to speech signal
processing and text recognition. Generally, CNN has three
structures, namely, the convolution, pooling, and full connec-
tion layers.

In this study, the basic structure of AlexNet is followed and
an optimized CNNmodel is used to obtain the optimal perfor-
mance for ECG arrhythmia classification. The ECG images
in this paper is a relatively simple 128×128 grayscale images.
Hence, a deep depth layer is not needed and an increase
in parameters without restriction may cause overfitting and
degrade the performance.

The overall architecture of the proposed CNN model is
presented in Figure 5. Themodel has 4 convolution layers and
3max-pooling layers. The number in the figure represents the
size of the output and the kernel. In this study, the lead II ECG
was used as input in the form of a two-dimensional image and
the dimension of the input layer is 128 × 128. Except that
the output layer activation function is a Softmax function, the
activation functions of the other layers are ReLu functions.
The cross-entropy cost function is chosen as the loss function
in the output layer.

D. CLASSIFICATION PERFORMANCE EVALUATION
The technical indicators of sensitivity (Se), specificity (Sp),
positive predictive value (Ppv), and accuracy (Acc) are

TABLE 1. Different results of the two kinds of classification.

used to evaluate the performance of the proposed models.
The Se, Sp, Ppv, and Acc of the classification are defined as
follows:

Se =
TP

TP+ FN
, (8)

Sp =
TN

FP+ TN
, (9)

Ppv =
TP

TP+ FP
, (10)

Acc =
TP+ TN

TP+ FP+ FN + TN
, (11)

where TP (i.e., true positive) and TN (i.e., true negative)
denote the number of correct classifications. In contrast,
FP (i.e., false positive) and FN (i.e., false negative) denote the
number of incorrect classifications. The detailed description
is listed in Table 1.

III. EXPERIMENTAL RESULTS
This study utilized the OpenCV software to perform a series
of image processing techniques on the ECG for the extraction
of the ECG curve to use it as the input to the subsequent classi-
fication model. This study used the MIT-BIH and FZU-FPH
databases and clinical scanned ECG data to verify the pro-
posedmethod. This sectionwill show the experimental results
of the ECG curve extraction and the heartbeat classification
experiments.

A. EXPERIMENTAL RESULTS OF ECG CURVE EXTRACTION
The scanned ECG signals obtained from the hospital were
first cut and cropped to obtain the long-strip ECG image of
the lead II as shown in Figure 6 (a), and the image after
simple grayscale conversion is shown in Figure 6 (b). Then,
Gamma correction was performed on the gray image, and
the ECG curve was extracted using the OTSU algorithm as
shown in Figure 6 (c). Finally, the continuous, smooth, and
correct ECG curve was obtained by erosion, dilation and
image thinning as shown in Figure 6 (d). Figure 6 shows that
the series of methods performed can extract the ECG curve
using OpenCV efficiently and accurately. The original image
was compared with the curve extracted image. According to
the medical diagnosis results, the main waveforms were sim-
ilar and the symptoms were the same which could meet the
requirements of the ECG curve and made a good preparation
for the classification of heart beats.
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FIGURE 5. The architecture for the proposed CNN model.

B. EXPERIMENTAL RESULTS OF HEARTBEAT
CLASSIFICATION
After the ECG curve is extracted, a fixed sliding window is
used to scan the image and then the scanned image is used as
an input into the trained classification model to automatically
classify the heartbeats. The processing and classification
results of the model on different training sets are summarized
below.

FIGURE 6. Results of ECG Curve Extraction: (a) Original ECG; (b) ECG after
image graying; (c) ECG after gamma correction; (d) Final results after
OTSU, erosion and dilation.

1) HEARTBEAT CLASSIFICATION IN MIT-BIH AND FZU-FPH
DATABASE
The ECG data may have noise interference during the acqui-
sition process. The noise interference of the ECG signal has
3 parts, namely, power frequency noise, baseline drift, and
electromyography (EMG) interference (i.e., motion artifact).
Some ECG images that were converted from the data with
significantly large noise interference could not even be identi-
fied by a professional cardiologist. Similarly, it could neither
help the model to learn nor evaluate the performance of the
model thus these data with large noise interference were
removed. After the translation, noise reduction processing
and screening were performed. The resulting training and val-
idation sets consists of 148,901 samples inclusive of 90,000
normal heartbeat and 58,901 ventricular premature beats.

FIGURE 7. The accuracy for the proposed CNN model.

Figure 7 shows the change of the accuracy for each epoch
iteration where the blue line is the accuracy of the training
set while and the orange line is the accuracy of the validation
set. In Figure 7, the accuracy of the training set continuously
increases and gradually stabilizes after the 4th epoch. As for
the accuracy of the validation set, it is at 100% before the
4th epoch. After the 4th epoch, it shows an oscillating decline
in its accuracy. From the 4th epoch, the accuracy of training
sets increases continuously while the accuracy of validation
sets declines in an oscillating trend. From the 4th epoch
the complex classification model overfitted the data of the
training set. For instance, the noise of the training set was
regarded as a feature to learn which resulted in the reduction
of the generalization ability of the model.

Therefore, by analyzing the accuracy curves of the training
set and the verification set, terminating the training of the
model prematurely at the critical epoch where the accuracy
of validation sets began to decline, 4th epoch in this case, will
effectively prevent the occurrence of overfitting.

The test set was adopted to further evaluate the perfor-
mance of the model. Table 2 shows the performance of the
model on the test set of MIT-BIH database. Records 107,
109 and 124 do not have sinus beats. Hence, their specificity
cannot be calculated. Records 212 and 220 do not have
ventricular premature beats. Hence, their sensitivity cannot
be calculated as well. As listed in Table 2, the average sensi-
tivity, specificity, positive predictive value, and accuracy are
95.47%, 97.72%, 98.75%, and 98.25%, respectively.

Moreover, the performance of the model was evaluated in
the FZU-FPH database. As shown in Table 3, the sensitivity,
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TABLE 2. Performance on test set of MIT-BIH database.

TABLE 3. Comparison of performance on test sets of MIT-BIH and
FZU-FPH databases.

specificity, positive predictive value, and accuracy of the
model are 94.97%, 99.79%, 89.29%, and 99.73%, respec-
tively. However, considering that the FZU-FPH database was
collected from the hospital, the number of sinus beats objec-
tively exceeded that of the premature ventricular beats to
a large extent resulting in a lower positive predictive value
compared with that of the MIT-BIH database.

2) HEARTBEAT CLASSIFICATION IN SCANNED CLINICAL ECG
The performance of the proposedmodel on the ECG provided
by the hospital was explored by introducing the Q class on
the classification results of premature ventricular beats and
sinus beats. A threshold was set and if the predicted value
was less than or equal to this defined threshold, the image
was classified as unable to be classified by heartbeat, namely,
Q class. Otherwise, the classification results of the model
were not modified. Table 4 shows the classification results of
the model on the test set. The sensitivity, specificity, positive
predictive value, and accuracy of the model were 97.24%,
81.6%, 83.8%, and 89.33%, respectively. Notably, the clinical
ECG drawing that is a 10 sec ECG data corresponds to only
one label. For example, if a ‘V’ is detected in a clinical
ECG drawing, the model would mark the 10 sec image as
‘V’ similar to how a doctor interprets real ECG. Hence, the

TABLE 4. Performance on test set of scanned clinical ECG.

TABLE 5. Comparison with related ECG classification works.

specificity will decrease and the sensitivity will increase.
In addition, considering that the baseline drift interference
in some clinical ECG drawings that could not be intervened
to be eliminated, ‘N’ is more likely to be classified as ‘V’
therefore reducing the specificity, positive predictive value,
and accuracy of the model. Although an accuracy of 89.33%
is higher than that of the doctors’ interpretation, various per-
formance indicators of clinical ECG drawing classification
can still be improved by adjusting the model architecture and
other methods.

IV. DISCUSSION
An automatic ECG curve extraction, heartbeat segmenta-
tion, and classification model based on CNN is proposed in
this study. The experimental results indicate that the ECG
classification model proposed in this study exhibits a good
performance in detecting ventricular premature beats. A com-
parison between the proposed ECG classification model and
other system is conducted and the results are summarized in
Table 5.

Most of the papers are usingMIT-BIH arrhythmia database
for testing, except for He et al. [40], In [40], although the data
of the test set was collected from 214 patients, the test set
contains a very small number of samples with only 291 PVC
samples. Oh et al. [38] randomly selected 10% of heartbeats
from theMIT-BIH database as the test set. Krishnan et al. [41]
uses only 436 PVC samples for testing. In spite of having
22 patients records for the study in in Chen et al. [39] and
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Malik et al. [42], there were only 7 records that have an
abundant premature ventricular contraction samples (i.e., the
number are bigger than 100). However, the test set used in
the proposed method contains 2187 samples. In this study,
a large number of samples were used for the test sets to
test the proposed model which can show the generalization
performance of the model more.

Oh et al. [38] used a U-net auto encoder for beat-wise
arrhythmia detection. The sensitivity, accuracy, and pos-
itive predictive values were slightly lower than the pro-
posed method in the detection of ventricular premature beats.
Chen et al. [39] proposed a two-staged classification struc-
ture with global and customized classifiers. They used KNN
algorithm as a global classifiers and applied a set of decision
rules to the category predicted as normal beats in the global
classifier to determine whether it constitutes an abnormal
alarm or not. For ventricular type, the average accuracy of
the model was 96.26%. He et al. [40] presented an auto-
matic algorithm for the recognition PVC beat based on long-
term 12-lead ECG. A 97.2% accuracy was achieved on the
SVM classifier. Krishnan et al. [41] presented a simulinko
model-based approach by using fuzzy logic for the accurate
detection of PVC beats in ECG signals and formulated a
severity index of the PVC. Malik et al. [42] built 5 simple,
interpretable, and computationally efficient features from
each cardiac cycle and allowed ventricular ectopy detector to
obtain high precision.

Although the proposed model achieved good performance,
it needs to be further improved in terms of the following
aspects:

1) The original images used in this study were all
obtained from the electronic version or scanned ver-
sion. Telemedicine and intelligent medical treatment
will benefit if the original image can be obtained using
a mobile phone.

2) This study only considered the data of lead II and
only classified a single heartbeat. Hence, the design of
this study can only identify two kinds of heartbeat at
present. If the data of other leads can be considered,
and three or more heartbeats can be distinguished as
one unit, more kinds of heartbeats can be analyzed to
make the classification model more intelligent. This
design can effectively assist doctors in the diagnosis of
clinical ECG and help patients learn and analyze their
own ECG independently to effectively understand their
own heart health.

3) The algorithm should be embedded to the mobile ter-
minal. Subsequently, users can obtain the classification
results of their ECG through a mobile screen and take
a photo of the ECG.

V. CONCLUSION
In this study, a classification model of premature ventricular
contraction based on deep learning and image processing
was proposed. This method can automatically identify, cut,
and classify a single heartbeat from a clinical ECG printed

drawing or record. This model aims to solve the practical
problem that both patients and medical staff are the only ones
who can obtain the printed ECG but not the decrypted digital
ECG data. Therefore, this study not only carries out ECG
filtering, QRS complex recognition, and heart classification
diagnosis on the open-source ECG database but also validates
the model in thousands of clinical scanned ECG signals. The
experimental results show that the average sensitivity, speci-
ficity, positive predictive value, and accuracy of the model on
MIT-BIH dataset are 95.47%, 97.72%, 98.75%, and 98.25%,
respectively. Moreover, the test results of the classification
model in the scanned ECG on FZU-FPH dataset show that the
average sensitivity, specificity, positive predictive value, and
accuracy are 97.24%, 81.60%, 83.80%, and 89.33%, respec-
tively. According to the experimental results, the proposed
method can achieve a good classification effect of premature
ventricular contraction in the absence of digital ECG data.
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