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ABSTRACT Transport electrification is a key enabler to reduce fossil fuel depletion and related carbon
dioxide emissions. However, critical barriers exist in terms of battery costs and their expected life. Vehicle-
to-grid technology can bring benefits to both the electrical power grid and electric vehicle owners, while
its practical implementation faces challenges due to the concerns over accelerated battery degradation.
This paper presents a comprehensive study on reduced Lithium-ion battery degradation through state-
of-charge pre-conditioning strategies that allow an electric vehicle to participate in vehicle-to-grid operations
during periods in which the vehicle is parked. Energy capacity reduction of the electric vehicle battery are
predicted using semi-empirical ageingmodels, which have been built and validated to capture the degradation
behaviours of the battery with respect to both calendar and cycling ageing. Five charging strategies for battery
state-of-charge pre-conditioning have been developed to evaluate the ability to mitigate battery ageing before
commencing vehicle-to-grid operations. Simulation studies on battery degradation utilizing such charging
mechanisms under two different operational profiles have been undertaken. The analytical results show that
the proposed charging strategies do not accelerate battery degradation and are capable of mitigating the total
ageing process from 7.3 – 26.7% for the first 100 days of operational life and gradually vary to 8.6 – 12.3%
for one-year continual operation compared to the reference standard charging approach.

INDEX TERMS Electric vehicles, vehicle-to-grid, battery degradation, Lithium-ion battery, SoC precondi-
tioning, smart charge, semi-empirical model.

NOMENCLATURE
ABBREVIATION

BMS Battery management system.
C Charge/Discharge current rate.
CC Constant current.
CC-CV Constant current – constant voltage.
◦C Degree of Celsius.
CHA Charge.
DCH Discharge.
DoD Depth-of-discharge.
EFC Equivalent full cycle.
EoL End-of-life.

The associate editor coordinating the review of this manuscript and

approving it for publication was Vitor Monteiro .

EV Electric vehicle.
GPR Gaussian process regression.
MAE Mean absolute error.
PDE Partial differential equation.
RPT Reference performance test.
SoC State-of-charge.
SoH State-of-health.
SC V1G Battery charging following V1G method.
SC V2G Battery charging following V2G method.
SC VxG Battery charging with optimal SoC

pre-conditioning method.
STD CHA Standard charging method.
TS CHA Time-shifted charging method.
V1G Uni-directional power flow operation

(battery charging without feeding their
energy to the grid).
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V2G Vehicle-to-Grid, Bi-directional power flow
operation (battery charging with feeding
their energy to the grid).

SYMBOLS AND VARIABLES
Ah Ampere-hour.
CalV1G Calendar ageing due to V1G.
CalV2G Calendar ageing due to V2G.
Cp Battery capacity.
CycV1G Cycling ageing due to V1G.
CycV2G Cycling ageing due to V2G.
Qa Calendar capacity loss at arrival SoC.
Qgo Calendar capacity loss at global optimal SoC.
Qlo Calendar capacity loss at local optimal SoC.
QlossV1G Capacity loss of V1G scenario.
QlossV2G Capacity loss of V2G scenario.
Qcalloss Calendar capacity loss.
Qcycloss Cycling capacity loss.
Qmeasuredloss Total measured capacity loss.

Qpredictedloss Total predicted capacity loss.
Qtotalloss Total capacity loss.
SoCar Arrival SoC.
SoCgo Global optimal SoC.
SoClo Local optimal SoC.
Tc Battery charging time.
Tin Battery connected time.
Tout Battery disconnected time.
Tp Parking time.
Tr Battery resting time.
Ts Charge starting time.
1Cal Absolute change of calendar ageing.
1Cyc Absolute change of cycling ageing.
ξ calT Calendar temperature coefficient.
ξ̃ calT Calendar temperature coefficient curve.
ξ
cyc
T Cycling temperature coefficient.
ξ calSoC Calendar SoC coefficient.

ξ̃ calSoC Calendar SoC coefficient curve.
ξ
cyc
DoD Cycling DoD coefficient.
ξ
cyc
Crate Cycling C-rate coefficient.
γ cal Calendar exponential factor.
γ cyc Cycling exponential factor.

I. INTRODUCTION
The growth of electric vehicles (EVs) illustrates a small
segment of the entire global automotive industry, but their
market infiltration is significantly increasing due to their con-
siderable benefits in dealing with environmental concerns.
Vehicle-to-grid (V2G) technology, which allows the EV bat-
teries to be connected to the power grid to provide energy
and support ancillary services (e.g. frequency regulation,
peak shaving and load levelling), is becoming increasingly
important, especially where conventional forms of energy
storage are unavailable or costly [1]–[5]. In V2G scenarios,

the EV batteries are not only charged, but also can act as
mobile energy storage systems to return energy back to the
grid when the vehicle is parked and remains connected.
A major challenge obstructing the implementation of V2G
is the concerns over battery degradation, an unavoidable
characteristic of the battery that happens in both operating
and resting conditions [1]. When the battery is in a relaxing
state, the capacity loss is considered as calendar ageing which
represents the dependency of capacity fade to the resting or
storing conditions and is independent of charge-throughput.
Conversely, when the battery is electrically loaded, the capac-
ity reduces which is recognised as cycling ageing, describing
the influences of cycling conditions such as charging rates
(C-rates), charge throughput, depth-of-discharge (DoD) and
temperature of the battery. Theoretically, the battery life is
declined when the number of charge cycles increases, hence,
level and quantity of V2G operations should be calculated and
optimised as accurately as possible to avoid excessive ageing
through V2G operation [6]–[8]. Literature also shows that the
degradation owing to calendar ageing can also be predomi-
nant over that of cycling ageing, especially when the mag-
nitude of applied C-rates and DoD are low [9]–[11]. Thus,
when capturing and evaluating the overall battery degra-
dation in V2G operations, the degradation factors includ-
ing the correlation of calendar and cycling ageing must be
considered.

Number of studies focusing on the different method-
ologies to deal with battery degradation when participat-
ing in V2G can be found in the literature [12]–[15].
Amamra et al., [14] presented an optimised bidirectional
V2G operation based on a fleet of EVs connected to a dis-
tributed power system through a network of charging stations.
The system could respond to the real-time EV usage data
and identify the required changes for further optimising the
use of EVs to support both frequency and voltage regulation
with the consideration of minimising the battery degradation.
Uddin et al., [15] reviewed the associated technologies for
better managing the battery usage in grid applications. The
authors suggested an approach to extend battery life by for-
mulating and solving an optimisation problem so that V2G
could be effectively employed to control the EV resting
condition and number of charge cycles to improve battery
longevity. Yue Yu et al., [16] presented a framework of opti-
mal EV charging/discharge strategies for ancillary services
of a smart grid by proposing a multi-objective optimisation
task to minimise the system losses and battery cycling degra-
dation. Marongiu et al., [17] studied the effect of different
V2G strategies on the lifetime of two different li-ion batteries
types to show how the ageing effect of the batteries could be
reduced. However, most of the studies focus on evaluating
either calendar ageing or cycling ageing under fixed opera-
tional conditions. Only a few studies attempted to combine
both ageing mechanisms into a single ageing model to evalu-
ate the holistic battery degradation behavior [18], [19]. Nev-
ertheless, the models we’re not evaluated under real-world
operational conditions.
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TABLE 1. EV charging and battery degradation evaluation through V2G operations.

Besides, different smart charge strategies which produce
charging plans to minimise the charging cost and battery
degradation during the period in which the EV is parking have
been introduced [20]–[26]. Table 1 summarises the charging
approaches for V2G scenarios with and without considering
the battery degradation behaviour. A charge strategy without
feeding the battery energy back to the grid (often described as
smart charge V1G) regulates charging period and magnitude
of the EV chargers so that the battery can be charged at
optimal time and C-rates. Thus, it can help lower the cost
of charging. A V2G strategy utilizing bidirectional charg-
ers optimises the battery charging performance (like V1G)
but also allows it to transfer the energy back to the grid
whenever needed. Hence, a V2G approach can help minimize
the charging cost and provide additional benefits via the
energy exchange [14] and through reducing the calendar and
cycling ageing rates which are assisting to extend the battery
life [15].

In this paper, the evaluation and analysis of reduced battery
degradation is conducted through various charging control
strategies for state-of-charge (SoC) pre-conditioning of EV
batteries allowing the vehicles participating in V2G scenarios
during their parking period. Firstly, to predict the battery
capacity fade characteristics due to calendar and cycling
ageing, semi-empirical ageing models are developed. The
parameters of the models are identified and verified using
experimental data of long-term ageing tests under different
laboratory conditions for both calendar and cycling ageing.
A single lifetime ageing model is then constructed by com-
bining the calendar and cycling ageing models to facilitate
the prediction of total battery capacity loss under different
EV operational profiles. The obtained models are utilized to
evaluate the degradation behaviours of the EV battery before
engaging V2G scenarios.

As summarised in Table 1, a number of publications show
how new charging methods, such as smart charge V2G, may
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accelerate battery degradation. In the main, these publica-
tions only consider ageing as a function of increased charge
throughput. The primary contribution of this paper is a more
holistic understanding of battery degradation that includes
the combined impact of both calendar and cycling ageing
during vehicle charging.Within the context of electric vehicle
charging, the process of pre-conditioning the storage SoC
of the vehicle’s battery to mitigate degradation has not been
reported before. Additional contributions include the devel-
opment and real-world evaluation of five new battery SoC
pre-conditioning strategies to minimize battery degradation
and their integration within a diverse range of charging meth-
ods, ranging from standard charging, time-shifted charging
and V2G operations.

The remainder of this paper is organised as follows: The
development and validation of calendar, cycling and com-
bined ageing models and their parametrisation are presented
in Section II. Five charging strategies including conventional
and smart charge approaches are developed followed by
the simulation and comparative analysis are discussed in
Section III. Extensive studies suggest and conclusion are
finally reported in Section IV.

II. BATTERY DEGRADATION MODEL DEVELOPMENT
The rate of battery degradation is often governed by how the
battery is stored and utilised, which is typically characterised
by the so-called ageing stress factors including temperature,
SoC, charge throughput, DoD and C-rate [15]. Literature
shows that the causes of capacity fade can be categorized
into two groups namely calendar ageing and cycling ageing,
dependent on different ageing stress factors. Generally, calen-
dar ageing is mostly affected by the storing temperature, SoC
and time which represents how long the battery placed in the
storage or in resting state; while the cycling ageing is typically
influenced by ambient temperature, number of charge cycles
or charge throughput, C-rate and DoD [27]. There are several
approaches to estimate battery SoC, DoD, state-of-health
(SoH), state-of-temperature (SoT) for advanced battery man-
agement and life-time prediction under different operational
conditions [28], [29]. The critical advantage of these tech-
niques is that they can offer improved performance prediction
for battery state estimation and life-time prediction. How-
ever, the challenge of using such advanced tools is they can
increase the computational costs and hence, it is difficult to
execute in a long-term operation. If the aim is to run themodel
on-line as part of the battery or charger control systems,
cycling ageing is a complex process, where advanced mod-
elling approaches seem to have limited impact in improving
the performance of the target model, especially for long-
term prediction tasks while more computational resources are
required [29], [30]. Therefore, it is necessary to have a simple
but efficient approach for the battery degradation modelling
and state estimation to increase the capability of working with
complex control strategies over long-term periods of time.

Several studies have developed different tools for bat-
tery state estimation and degradation modelling such as

empiricalmodels [27], [31], semi-empiricalmodels [32]–[37],
electrochemical-based models [38]–[41], data-driven-based
andmachine learningmodels [11], [42], [43]. In suchmodels,
empirical and semi-empirical models were computationally
less demanding, and easier to implement. However, due to
having fixed equation forms, their prediction performance
is largely dependent on the quality of the measured age-
ing data from which they are parameterized. In contrast,
electrochemical-based models provided significant insights
into the battery ageing process. Due to the complexity of their
underpinning partial differential equations (PDE) employed,
this kind of model suffers from a high computational cost
and complex implementation. To address this challenge,
reduced-order electrochemical models are often considered
to simplify the model formulation [41]. Nonetheless, the
calculation time is still high compared to other models and
is not usually suitable for long-term execution or predic-
tion. Data-driven based models performed well in predict-
ing the underlying mapping of ageing and uncertainty of
the capacity loss. However, the model parameters should
be obtained using machine learning methods, e.g. Gaus-
sian process regression (GPR), which increases the design
effort [11]. Therefore, semi-empirical ageing models were
considered as the most feasible solution for implementa-
tion [11], [44]–[47]. This type of models possesses con-
siderable accuracy, good prediction ability, fast calculating
efforts, and thus are suitable for long-term prediction and
real-time applications. Wei et al., [48] presented an energy-
throughput-based approach for predicting the cycling ageing
behaviour of the battery in multiphysics-constrained fast
charging operation. The simulation results show that it can
predict the cycling ageing behaviour well under different
driving profiles. However, the prediction performance is
restricted by an assumption that the battery can withstand a
particular cumulative charge flow before reaching the end-
of-life (EoL). This drawback could lower the prediction
performance of the model when operating under real-world
driving cycles. Naumann et al., developed semi-empirical
calendar [32] and cycling ageing [33] models to identify
the ageing behaviour of a commercial lithium-ion battery.
The model parameterisation was based on the experimental
calendar and cycling ageing datasets. The simulation results
illustrated good agreement between the model prediction and
the measure of ageing data with the absolute model errors
of the calendar capacity loss below 2.2% while those for
the combined ageing was below 1%. However, the models’
parameterisation was strongly dependent on the final values
of the measured ageing data disregarding the ageing rate
difference between the calendar and cycling ageing. So, the
ultimate models did not represent the entire ageing behavior
of the battery thus limiting their application. Particularly,
the capacity loss due to calendar ageing part were excluded
from the cycling ageing parameterisation while the calendar
ageing rate was assumed unchanged during calendar and
cycling periods. This assumption is known not to be true
since the calendar and cycling ageing rates are usually varied
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during the life of the battery. Li et al., [34] established a
semi-empirical ageing mechanism based on the C-rate and
temperature to solely describe the cycling behaviour of the
battery. The predicted ageing behaviour of the model was
used to underpin an adaptive multistage constant current –
constant voltage (M-CC-CV) charging strategy for EVs in
different situations. Nevertheless, the model was not verified
while the charge throughput was not considered in this study.
Hence, the model accuracy could only guarantee within the
tested operational conditions that did not correlate to the full
operational range of the battery.

Since the purpose of developing the degradation models in
this study is to evaluate battery ageing under V2G applica-
tions, simple degradation models that satisfy the model accu-
racy and computational effort are deemed to be adequate. It is
because the underpinning degradation mechanisms requiring
high-fidelity models are not considered here. Instead, a model
with fast execution rate is necessary to simulate long-term
degradation behaviours of the battery in the scale of months
and years of operational life. Hence, the semi-empirical mod-
elling approach is selected for this study. The following sec-
tions will describe how this approach is utilised to estimate
the reduction in energy capacity due to calendar and cycling
ageing effects. In order to support the development of the
degradation models, the following assumptions are applied:

- For the calendar degradation model, the ageing stress
factors include storage temperature, SoC and time. The
SoC coefficient of the model at the storing tempera-
ture of 25◦C and 100% SoC is equivalent to 1 and
considered as the reference condition. The effect of
ambient temperature is only evaluated within the range
of 0 – 60◦C.

- For the cycling degradation model, the ageing stress
factors include temperature, C-rate for charge and dis-
charge, DoD and energy throughput. The cycling age-
ing dataset used to train the model is solely dependent
on the cycling ageing, which is independent on calen-
dar ageing. The effects of ambient temperature are not
considered outside the region of 0 – 25◦C due to the
restriction of historical ageing dataset. The effect of
DoD on the capacity loss is unchanged when evaluating
the C-rate coefficients at any specific condition due
to the limited ageing dataset, which is discussed fur-
ther in section II.C. The discharge current C-rates are
limited within 0.3 – 2C covering the entire operational
condition.

A. CELL SELECTION AND LONG-TERM AGEING TEST
MATRICES
To understand the battery ageing behaviours and support
model parameter identification and verification, long-term
ageing tests of a batch of brand-newLithium-ionNickelMan-
ganese Cobalt (NixMnyCo1−x−y) oxide cathode and LiC6
(graphite) anode cylindrical cells were conducted. The model
code of the cells under tested is INR21700 M50 manufac-
tured by LG Chem. with a nominal voltage of 3.63V and

TABLE 2. Battery ageing test matrix for calendar ageing.

rated capacity of 5.00Ah. The lower and upper cut-off volt-
ages recommended by the manufacturer are 2.5V and 4.2V
respectively. The aim of this long-term ageing tests is to
estimate the evolution of the capacity fade for different use-
cases. As documented in [18], capacity fade of the batteries
occurs during both operation when the battery is loaded by
an external current (considered as cycling ageing) and in idle
when the battery is placed in resting or relaxing condition
without any current (known as calendar ageing). The batch
of cells was divided into two groups, one group was for
calendar ageing tests and the other one was for cycling ageing
tests. In each condition, three cells were used to ensure the
consistency of the results and to reduce the negative impact
of cell-to-cell variations. Before conducting the ageing tests,
all cells were pre-conditioned allowing their materials stabil-
isation and removing the remaining electrochemical interac-
tions within the cells caused by the manufacturing process.
Then, the cells were characterised for model parameterisation
purposes following the procedures described in our previous
works [49]–[51]. Hence, at the beginning of the ageing tests,
the cell characteristics were known, and their SoH were
normalized to 100%.

1) CALENDAR AGEING TEST
Calendar ageing experiments were performed by storing the
cells at different temperatures and SoCs. The complete set of
test conditions is in Table 1. In this study, the total storage
time of the cells is 57 weeks (equivalent to about 400 days).
The calendar test matrix consists of two set of cells, one set
employed for model parameterisation (training purposes) as
shown in Table 2 (a) and the second, for model validation as
depicted in Table 2 (b).

Before and during the ageing tests, capacity measure-
ments were made at the specific time interval (equivalent
to about 14 days) to generate a set of initial cell capacities
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FIGURE 1. Remaining discharge capacity under calendar ageing at different storing temperatures.

and to quantify the calendar capacity loss of the cells. The
capacity test was carried out using our reference performance
test (RPT) protocol which is detailed in [52] and [53] and will
therefore not be repeated here. For each storage temperature
and SOC condition, three cells were employed to identify
the mean and variation of capacity loss across the cells. The
measured capacity loss of each cell was normalized against
the initial capacity, then the final capacity loss of each test
condition was calculated by averaging the normalized capac-
ity. The capacity reductions versus storage time due calendar
ageing are depicted in Figure 1. The reference capacity loss
for calendar model parameterisation was selected from that
of the test conditions (e.g., 100% SoC and at 25◦C), which
is highlighted in Table 1(a). Due to the restriction of lab-
oratory access during the year 2020, capacity measurement
tasks were unable to be performed during the time between
week 4 and week 30. Hence, the capacity loss of this time
was calculated by using a linear interpolation method based
on the two adjacent measurements. The error bars associated
to each measurement indicate the median and variance of the
capacity loss of the cells for each ageing test.

2) CYCLING AGEING TEST
Cycling ageing tests were conducted by applying external
current to charge (CHA) and discharge (DCH) the cells
repeatedly at different C-rates and temperature conditions as
depicted in Table 3. In these tests, the charging C-rates was
limited at 0.3C as recommended by the manufacturer. The
discharging current rates were varied at 0.3C, 1C and 2C,

FIGURE 2. Battery discharge capacity under cycling ageing at different
C-rates and temperatures.

respectively which cover the full range of operation at normal
and peak load. The DoD of these cycling ageing tests was
considered as of 100% of the cells were fully charged and
discharged at desired C-rates and temperature.

Figure 2 presents the remaining cell capacity due to cycling
ageing at different C-rates and temperatures. It is noteworthy
that the desired temperatures in this study are restricted at
0◦C, 10◦C and 25◦C due to the limitations of experimental
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TABLE 3. Battery ageing test matrix for cycling ageing.

capability and local laboratory access, hence the temperature
influence of the developingmodel is limited within such these
bounds. Although the temperatures in these experiments do
not cover the entire operating temperature of the battery, they
are assumed to be representative of the target temperature of
the model and valid for the current evaluation in this study.

Like the calendar ageing tests, three cells are employed for
each experiment to capture the capacity reduction ensuring
the consistency of the results. The error bars associated with
each measurement indicate the median and variance of the
capacity fade of the three cells for each test condition.

B. CALENDAR AGEING MODEL DEVELOPMENT
In this part, a semi-empirical calendar ageing model is devel-
oped to predict the effects of calendar ageing stress factors on
the ageing behavior of the battery. The calendar ageing model
is based on the Arrhenius equation which has been widely
applied in the literature [11] to capture the capacity degra-
dation during battery storage. The model parametrization is
based on a complete calendar ageing dataset and overcomes
the drawbacks of the model developed in [32] as mentioned in
the previous section. Hence the model can predict the battery
capacity reduction at any instant of storage time. In this
model, the capacity loss due to calendar ageing is dependent
on storage temperature, SoC and duration time t and can be
expressed by the following equation:

Qcalloss = ξ
cal
T .ξ calSoC .t

γcal (1)

where, ξ calT and ξ calSoC are the calendar temperature coefficient
and SoC coefficient, respectively; t is the storing duration,
γcal is the calendar exponential factor (γcal = 0.5 [11], [32]).

1) CALENDAR TEMPERATURE COEFFICIENT
The calendar temperature coefficient represents the influence
of store temperature to the capacity fade of the cell in the
calendar ageing test. The calendar temperature coefficient
can be described via the Arrhenius law as follows:

ξ calT = λR. exp
(
−
ε

R

(
1
T
−

1
TR

))
(2)

where, ε is the activation energy, R is the gas constant, T and
TR are the testing temperature and reference temperatures,
λR is a reference constant which is calculated by the following
term:

λR =
Qcal@25◦C,100%SoC,t
loss

ξRSoC .t
γcal

(3)

FIGURE 3. Calendar temperature coefficient fitted curves.

where,Qcal@25◦C,100%SoC,t
loss is themeasured calendar capacity

loss at the reference storing conditions, ξRSoC is the reference
SoC coefficient which is assumed to be equivalent to 1 for
calendar ageing test at such reference storing conditions [24].

As a result, for each ageing snapshot measurement of dif-
ferent temperatures and SoC, a set of temperature coefficients
can be calculated. A temperature coefficient curve can be then
derived based on such set using a curve fitting method. These
curves represent the influence of temperature on the calendar
ageing over the whole operational temperature range, which
is from 0 to 60◦C in this study. Here, the temperature coeffi-
cients can be effectively represented by the following second
order polynomial function:

ξ̃ calT = a1T 2
+ a2T + a3 (4)

where, ξ̃ calT is the temperature coefficient curve while a1, a2,
and a3 are the fitting coefficients of the polynomial.
A set of representative temperature coefficient curves at

100% of storing SoC is shown in Figure 3. To estimate the
temperature coefficient at different storage temperature, SoC
and storing time, a linear interpolation can be used. Mean-
while for estimating the coefficients beyond the temperature
boundary, a linear extrapolation strategy could be employed
based on the assumption that such coefficients are varied
linearly outside the tested temperature conditions.

2) CALENDAR SoC COEFFICIENT
The SoC coefficient is calculated by transposing equation (1)
into (5) as follows:

ξ calSoC =
Qcal@T ,SoC,t
loss

ξ calT .tγcal
(5)

where, ξ calSoC is the SoC coefficient, ξ calT is the temperature
coefficient of any specific SoC and temperature that can be
interpolated from equation (4).

Similarly, SoC coefficient curves, which represent the
effects of SoC at different storing time, can be derived by
linear curve fitting of the calculated SoC coefficients at each
temperature and time. In this study, by using linear curve fit-
ting approach, it has been found that the following third order
polynomial expression could represent the SoC coefficient
curves with the best fitness as follows:

ξ̃ calSoC = b1SoC3
+ b2SoC2

+ b3SoC + b4 (6)
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FIGURE 4. Calendar SOC coefficient curves at different temperatures.

where, ξ̃ calSoC is the SoC coefficient curve, b1, b2, b3, b4 are the
fitting coefficients of the polynomial.

The SoC coefficient curves, which describe the relation-
ship between SoC coefficient and storage SoC, at different
temperature and storing time are shown in Figure 4. To esti-
mate the SoC coefficients at any storing SoC and any storing
time, a linear interpolation method can be applied into two
adjacent curves accordingly. Meanwhile, to estimate the SoC
coefficients beyond the storing duration boundary given in
Figure 1, a linear extrapolation approach could be applied
whilst presuming such coefficients are changed linearly out-
side the tested period.

3) ACTIVATION ENERGY
The activation energy (ε) is calculated by taking the logarithm
of both sides of equation (1) when the storage SoC is 100%
at any temperature and time t , which is depicted as follows:

ln
(
Qcal@T ,100%SoC,t
loss

)
=−

ε

R
.
1
T
+

(
ε

RTR
−ln

(
ξ calT .tγcal

))
(7)

By using first-order curve fitting method, equation (7) can
be approximated as:

ln
(
Qcal@T ,100%SoC,t
loss

)
∼= α

1
T
+ β (8)

where, α = − ε
R and β = ε

RTR
− ln

(
ξ calT .tγcal

)
are the fitting

coefficients of the fitting function.
Finally, the activation energy can be calculated by eval-

uating the slope coefficient of the fitted curve (8) which is
illustrated in equation (9).

ε = −α.R (9)

C. CYCLING AGEING MODEL DEVELOPMENT
In this section, a semi-imperial cycling ageingmodel is devel-
oped to predict the capacity reduction due to electrical load-
ing of the battery. As mentioned, the cells were fully charged
using constant current – constant voltage process (CC-CV) at
0.3C and fully discharged with constant current (CC) at three
different current amplitudes, which are 0.3C, 1C and 2C,
respectively. Because the cycling ageing tests were conducted
repeatedly and continuously without any rest between two

155878 VOLUME 9, 2021



T. M. N. Bui et al.: Study of Reduced Battery Degradation Through SoC Pre-Conditioning

adjacent cycles and only paused for capacity measurements
every 14 days, it is assumed that the measured capacity drop
dataset is purely due to cycling and independent on calendar
ageing. This assumptionmeans that the battery capacity fades
due to calendar ageing can be neglected when evaluating
cycling ageing results. The capacity loss due to cycling age-
ing is affected by the following stress-factors:

- Cycling temperature
- C-rates of charge and discharge cycle
- DoD or Charge bandwidth
- Charge throughput
In the cycling ageing experiments, the cells were fully

charged and completely discharged using predefined constant
currents. Hence, the DoD can be considered as 100% and
unchanged during the tests. The general cycle ageing model
can be presented as follows:

Qcycloss = ξ
cyc
T .ξ

cyc
Crate.ξ

cyc
DoD.Ah

γcyc (10)

where, ξ cycT , ξ cycCrate, ξ
cyc
DoD are the temperature coefficient,

C-rates coefficient, and DoD coefficient, respectively.
γcyc is the cycling exponential factor (γcyc = 0.5 [33]).
Ah is the charge throughput or Ah throughput, which repre-
sents the amount of charge and discharge delivered by the
battery during cycling, and can be expressed as follows:

Ah = EFC .DoD.CP (11)

where, EFC is number of equivalent full charge cycles and
Cp is the battery capacity.

1) CYCLING TEMPERATURE COEFFICIENT
The operating temperature of the battery may significantly
affect the performance of the battery and it is known
that higher temperature may lead to increased degrada-
tion [24], [25]. Due to restricted historical data for modelling
and testing, the measured cycling ageing data as shown in
Figure 2 can be assumed as the target temperatures of the
model and only valid for the current evaluation in this study.
In fact, the battery temperature can always be controlled dur-
ing the operation so that it can be maintained at either stable
temperature or within small variation [45], [54]. Hence, the
influence of temperature outside this region can be ignored.
In this study, the operational temperature of the battery is
assumed to be fully controlled and the temperature variation
is small so that the temperature effects of the cycling ageing
are supposed negligible. Consequently, the cycling tempera-
ture coefficient in equation (10) is equivalent to 1 [33]:

ξ
cyc
T = 1 (12)

2) C-RATES COEFFICIENT
To parameterize the C-rates coefficient of the cycling ageing
model, it is assumed that the influence of DoD on the capacity
loss is unchanged and equivalent to 1 so that the relationship
of total cycling capacity loss and charge throughput is linear.
Consequently, the DoD coefficient will be re-estimated based

FIGURE 5. Cycling C-rates coefficients versus number of charge cycles.

on the calculated C-rates coefficient [33].

ξ
cyc
DoD = 1 (13)

By substituting (12) and (13) to (10), the influence of
C-rates can be calculated as:

ξ
cyc
Crate =

Qcycloss
Ahγcyc

(14)

The calculated C-rate coefficients versus number of charge
cycles are depicted in Figure 5. To estimate the C-rate coeffi-
cients for either any specific EFC or C-rate within the region
of 0.3C to 2C, linear interpolation was applied for the two
adjacent coefficients.

3) DoD COEFFICIENT
Since the cycling ageing tests are only conducted with 100%
of DoD, to calculate the DoD coefficient of the cycling ageing
model, all test cases as shown in Table 2 are selected for
the model training. The effect of temperature during cycling
ageing is negligible, therefore the DoD coefficient can be
calculated as follows:

ξ
cyc
DoD =

Qcycloss
ξ
cyc
Crate.Ah

γcyc
(15)

It can be seen that the estimatedDoD coefficients, as shown
in Figure 6, are varied depending on the number of EFC
and C-rate. To estimate the DoD coefficient at either EFC
or for any C-rate within the region of 0.3C to 2C, linear
interpolation was applied for the two adjacent coefficients.
Due to the lack of measured ageing datapoints at different
DoDs, the calculated DoD coefficients are only valid if the
DoD is 100%. Further tests are being undertaken out for
extending the validity of the model for different DoD values.
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FIGURE 6. DoD coefficients versus number of charge cycles.

Finally, by substituting equations (11), (12), (14), and (15)
into (10), the final energy capacity loss due to cycling ageing
at any C-rate, DoD and Ah throughput can be estimated.

D. COMBINED CALENDAR AND CYCLING AGEING MODEL
Since the parameterization is based on the experimental
calendar and cycling ageing datasets, the combination of
calendar and cycling ageing can be presented as a simple
summation of the calendar ageing model in equation (1) and
the cycling ageing model in equation (10), resulting in the
combined ageing model in equation (16) as follows:

Qtotalloss = Qcalloss + Q
cyc
loss

= ξ calT .ξ calSoC .t
γcal + ξ

cyc
T .ξ

cyc
Crate.ξ

cyc
DoD.Ah

γcyc (16)

Figure 7 shows schematically the combined degradation
model framework. It is noteworthy that the total capacity loss
can be calculated based on the combination of calendar and
cycling ageing accordingly. This combinationwas considered
in many studies in the literature as the basic approach for
estimating the total battery ageing [18], [33], [55], [56].
To support the validation of this method, further work is
being undertaken. The total capacity loss is dependent on
the calendar ageing when the battery is in resting or relaxing
state; while it is purely dependent on the cycling ageing when
the battery is being electrically loaded. At any instant of time,
either calendar or cycling ageing is considered as the main
degradation mode to the total capacity loss.

E. AGEING MODELS VALIDATION
In this study, both ageing models are parameterized and
validated from an experimental dataset that encompasses
the envelope of operation for many real-world use-cases
in terms of ambient temperatures and charge / discharge
C-rates. Given the breadth and diversity of possible
real-world driving and charging patterns it is not possible to

FIGURE 7. Combined degradation model framework.

represent all possible permeations within the training data
for the models. However, it is noteworthy that the test-
cycles employed for model validation are derived directly
from real-world vehicle usage data, in particular commuter
vehicle use within an urban environment. Validation against
this data improves our understanding of model accuracy and
the credibility of the model proposed. Additional research
will be undertaken to widen the dataset employed for model
validation by recording the behavior of different EV users
considering variations in vehicle type, driver demographics
and geographical location, to further refine the ageing models
and their application to EV charging.

1) CALENDAR AGEING MODEL VALIDATION
In this part, the developed calendar ageing model is validated
using the historical data of the calendar ageing tests. The
calendar ageing dataset for validation purposes are carried out
along with those for training purposes; however, these capac-
ity measurements are excluded from the model development
and parametrization process. As shown in Table 1(b), the
dataset for validation includes themeasured calendar capacity
loss versus storing time at three different storing tempera-
tures (i.e., 15, 35 and 55◦C) and two different storing SoCs
(i.e., 20 and 75%). Figure 8 shows the comparison between
the measured capacity loss and the predicted one using the
developed calendar ageing model. In this step, a linear inter-
polation method is utilised to estimate the calendar SoC
and temperature coefficients based on the two corresponding
adjacent coefficients so that the calendar ageing model can
predict the capacity drop for each snapshot measurement.
Furthermore, the developed calendar ageing model employ-
ing the linear extrapolating algorithm can predict the calendar
capacity loss at any storing condition beyond the tested one.

The prediction of calendar ageing performs well for the
cases of 75% storing SoC since the predicted values are
close or within the region of the error bar. As the result, the
accuracy for this storing SoC condition is above 94% over the
entire measured capacity loss while the mean absolute errors
(MAE), as calculated using equation (17), are gradually
increased from 0.084% (at 15◦C) to 0.429% (at 55◦C) owing
to the increase of total capacity loss and storing temperatures.
Conversely, due to the limited volume of training data at the
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FIGURE 8. Calendar ageing model verification.

lower SoC regions during the model parameterisation, linear
interpolation method does not give an accurate prediction for
the cases of 20% storing SoC, hence the prediction accuracy
is lower than that of the previous cases. However, the predic-
tion results in this case are acceptable for further investigation
within this study since the MAE are varied between 0.238%
(at 15◦C) and 0.491% (at 55◦C). The prediction accuracy,
which is the percentage between the MAE and the maximum
measured capacity fade as calculated in equation (18), for
these tests is above 90% over the entire capacity loss.

MAE =

n∑
i=1

∣∣∣Qmeasuredloss,i − Qpredictedloss,i

∣∣∣
n

(17)

where, MAE is the mean absolute error, n is the number
of measured data point, Qmeasuredloss,i ,Qpredictedloss,i are in turn the
measured and predicted capacity loss, respectively.

Accuracy =

(
1−

MAE

Qmeasuredloss,max

)
.100% (18)

where, Accuracy is the predicted accuracy, Qmeasuredloss,max is the
maximum measured capacity loss.

2) CYCLING AGEING MODEL VALIDATION
Due to the limited dataset of cycling ageing for training and
validating the developed model, linear extrapolation method
is employed to predict the cycling capacity loss by extending
the known series of cycling ageing dataset gathered from the
experimental cycling ageing tests. To perform the cycling
ageing model validation, a ratio of training and testing data
based on the series of the measured capacity loss of each
discharge C-rates is generated. This ratio demonstrates the

FIGURE 9. Prediction accuracy versus data input percentage.

FIGURE 10. Cycling ageing model verification (with 100/0% input ratio).

number of measured ageing data being used for training ver-
sus the number of data being used for the validation purposes.
Figure 9 shows the model prediction accuracy versus data
input percentage of three different discharge rates (i.e., 0.3C,
1C and 2C) by starting with the ratio of 40/60% and gradually
increasing this ratio data up to 100/0%.

From the figure, it can be seen that the more data being
used for training, the better the prediction accuracy. At least
55% of measured data (for the cases of 55/45%) must be
employed to obtain above 70% prediction accuracy of the
model. As the best case, where 100% of historical ageing
data is used for the training process, the prediction accu-
racy of the trained model can reach more than 95% over
the entire measured capacity loss as depicted in Figure 10.
Consequently, within the level of evaluating the devel-
oped models and charging control purposes for SoC
pre-conditioning in V2G scenarios, the prediction accuracy
of the developed models is sufficient and reliable for carrying
on these works.
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FIGURE 11. Two five-day operational profiles.

III. CHARGING STRATEGY DEVELOPMENT
In this section, five different SOC pre-conditioning charg-
ing strategies are proposed. The aim of these charging
plans is to charge and/or discharge the battery to a prede-
fined SoC level with less or minimal degradation before
allowing the EV battery to participate in V2G operations.
The developed charging strategies include standard charge
(STD CHA), time-shifted charge (TS CHA), battery charg-
ing with SoC pre-conditioning using V1G (SC V1G),
battery charging with SoC pre-conditioning using V2G
approach (SC V2G), and battery charging with optimal SoC
pre-conditioning (SC VxG). The detail of each strategy is
explained in the following sections. The representative bat-
tery pack and its parameters employed in this study are shown
in Table 4.

To evaluate the battery ageing behaviour under such
charging strategies, two operational EV driver profiles are
introduced based on the real data of EV driving trials and
the customised parking, charging and stationary behaviors.
The two operational energy driver profiles presented in Fig-
ure 11 are employed to represent the ‘‘gentle’’ or low energy
demand driver and ‘‘intensive’’ or high energy demand driv-
ing profiles. Each profile lasts five days of operation (equiv-
alent to 120 hovurs) representing a five-day journey. In these
profiles, each operating day consists of two driving cycles
(drive-to-work and drive-to-home) interspersed with two
parking cycles (park-at-work and park-at-home) representing
a complete daily operation of the EV. Themileage of each trip
of the gentle profile is varied from 20 to 40 miles while those
of the intensive profile is varied from 50 to 80 miles.

It is supposed that the EV owner will be leaving home
and going to their work daily at 7:00am; upon arriving at
the work car park, the driver connects the vehicle to the
charger to fully charge the battery. Then at the end of the
working day at 5:00pm, the owner unplugs the EV and returns
home; upon arriving home, the owner once again plugs-in
the vehicle to the charger so that the battery can be fully

TABLE 4. Representative battery information.

charged for the next day. During parking at home and at the
office’s car park, the EV battery is allowed to participate
V2G scenarios to exchange energy with the grid by using
bi-directional V2G chargers. Figure 12 illustrates ten indi-
vidual driving speed profiles obtained under each gentle and
intensive driver styles and their corresponding SoC variation
gathered from the real-world driver behavior for both gentle
and intensive profiles. The vehicle battery is fully charged
(100% SoC) at the beginning of each trip. The SoC at the end
of each driving trip represents the SoC at the time of parking
(arrival SoC). Hence, each sub-profile illustrates one driving
trip of the complete five days operational profile, while the
corresponding SoC is the actual battery drained of that trip.

It is noteworthy that each trip comprises of four individual
operational modes which are driving, parking, charging, and
resting. To facilitate the integration and evaluation of the bat-
tery ageing model in such operational profiles, it is assumed
that the EV is correspondingly in the driving mode whenever
it is driven (i.e., from home to work or vice versa). Upon
arrival at the car park, the EV transitions to the park mode.
Two short periods of time are added to the beginning and the
end of parking mode simulating the driver plugging-in and
unplugging the EV to/from the chargers. Then, the EV will
take part in charging mode to fully charge the battery and
the resting mode follows accordingly. It is noteworthy that
the most important parameter of each daily trip is the arrival
SoC, which indicates the starting SoC of the EV when it is
connected to the charger. Hence, the impact of such driving
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FIGURE 12. Individual driving trips and their SoC variation.
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behaviours is not critical in this study, it just manifests itself
as a change in SoC at the point of charging. The overview of
five different SoC preconditioning schemes are described as
follows:

- Standard charge strategy (STD CHA): is a conventional
charging method. The EV battery is fully charged as
soon as it is connected to the charger, leaving the EV
in the rest state at 100%SoC until the next departure.

- Time-shifted charge strategy (TS CHA): is a smart
charge method with a delayed charge time. The EV
battery is rested at the point of parking and the instanta-
neous SoC is called the arrival SoC (or starting SoC).
Based on the next departure schedule defined by the
user, the battery charger is activated at an appropriate
time so that the battery is fully charged just before the
next departure time.

- Battery pre-conditioning using V1G (SC V1G): is a
smart charge method without feeding energy back to the
grid. By finding the lowest battery calendar ageing rate
from starting the SoC to 100%, the charger drives the
battery to the corresponding SoC level (hence named
as local optimal SoC) before resting the battery. Based
on the next departure schedule defined by the user, the
battery charger is then activated at an appropriate time
so that the battery is fully charged just before the next
departure.

- Battery pre-conditioning using V2G (SC V2G): is a
smart charge method with bidirectional energy flow
back to the grid. The EV battery is only resting at the
optimal SoC with the smallest calendar ageing rate over
the whole SoC range (from 0% to 100%SoC, so called
global optimal SoC). Here, the charger drives the battery
to its optimal SoC by regulating the bi-directional energy
flow between the battery and the grid. Based on the
next departure schedule defined by the user, the battery
charger is then activated at an appropriate time so that the
battery is fully charged just before the next departure.

- Combined smart charge V1G and V2G (SC VxG): is
the combination of SC V1G and SC V2G methods to
trade-off between the absolute difference of calendar
ageing (due to resting at optimal SoC) and the absolute
difference of cycling ageing due to the addition of charge
throughput (via bi-directional charging around the opti-
mal SoC). Hence, at the beginning of each parking
period, SC VxG strategy’s controller selects the optimal
charge/discharge for the battery to achieve the desired
resting SOC condition that will minimise battery ageing.

Without loss of generality, it is assumed that the ambi-
ent temperature during both driving and parking periods is
stable at 25◦C. The whole simulation evaluation was car-
ried out using a host computer workstation with an Intel
Core i7-10850H 2.7GHz CPU, 32GB RAM within
Matlab 2021a simulation environment. The sample time of
the simulation and validation is fixed at 1 second. Detailed
analysis of the complete five-day operational profiles with
respect to the gentle and intensive energy drivers using the

FIGURE 13. Intensive SoC operational profile with STD CHA strategy.

different charging strategies will be discussed in the following
sections.

The main differences between the five charging schemes
are summarised in Table 5.

A. STANDARD CHARGE STRATEGY
Conventional EV charging usually follows a nonlinear charg-
ing profile such as CC-CV [34]. However, to simplify the
charging process in this paper, it is assumed that the battery is
charged following constant current (CC) chargemethod to get
the target SoC value. Therefore, in the STDCHA strategy, the
EV battery will be fully charged with 0.3C rate representing
the standard charging rate of the battery as soon as the battery
is connected to the vehicle charger. Figure 13 illustrates the
detail of the intensive driving profile with STDCHA strategy.
As shown in the zoom-in subplot, the initial SoC at the
beginning of each trip is always 100%, which means the bat-
tery is fully charged before each vehicle departure. Through
driving, the battery is depleted to an end SoC representing the
arrival SoC of the battery upon arrival of each trip. A delta
SoC, which illustrates the amount of discharge the battery
depleted through driving, can be calculated by evaluating the
difference between the initial SoC and the end SoC. The
EV is then plugged-in to the charger so that it can be fully
charged for the next drive. As mentioned, the charge process
will start immediately when the battery is connected to the
charger. Consequently, upon being fully charged, the battery
will be left in the resting mode until next departure. Similarly,
the battery discharging, charging and resting period will be
repeated accordingly for every following trip until the end
of the operational profile. Ultimately, the intensive driving
profile with STD CHA strategy is generated comprising ten
individual trips which last for five days operation. In this
figure, depending on the length of the driving profile, the time
for driving, charging and resting period are different for each
trip.
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TABLE 5. Key characteristics of five charging strategies.

Figure 14 (a) presents the complete charging current and
SoC profiles versus time of the gentle energy driver and
their capacity loss prediction due to calendar and cycling
ageing of the developed degradation models. Similarly, the
current, SoC profiles and the ageing prediction of the inten-
sive energy driver is shown in Figure 14 (b). To estimate
the ageing behaviour of the battery over time, the capacity
loss due to calendar ageing is only updated when the bat-
tery is in resting state. The same principle is applied for
the cycling capacity loss, it is thus only updated when the
battery is in driving or chargingmodes. Hence, during the first
five days operational, the predicted capacity losses regarding
to calendar and cycling ageing are gradually updated with
respect to their stress-factors and the status of the battery.
There is a large difference between the capacity loss of the
battery on such two energy driver profiles. Table 6 shows
the ageing results with respect to the gentle and intensive
driving profiles with the STD CHA strategy for the first five
days. The capacity losses due to calendar and cycling ageing
are approximately at 0.0185% and 0.001% for the gentle
profile and 0.0101% and 0.0105% for the intensive one,
respectively. The cycling ageing in the gentle drive profile
is much smaller than the calendar ageing because within
this profile, the battery was being used very little and has
spent more time in the resting state, especially when resting
at high SoC level (100%). On the other hand, there is not
much discrepancy between the calendar and cycling aging
in the intensive driving profile. It is because the battery in
this case has been used a lot for driving, which increase the
charge throughput, and hence, increasing the cycling ageing
while reducing the resting period. It also presents that the
calendar aging is significant for gentle use, particularly rest-
ing at higher SoC level could have negative impact to the
battery as it increases the calendar ageing. The total capacity
fade predictions are 0.0195% and 0.0206% for these profiles.
The results show that the employed charging strategy and
the developed ageing models are effective in controlling the
charging process and predicting the battery degradation over
time. The battery aging results of the STD CHA strategy will
then be used as the baseline reference for the comparative
study with other charging strategies in this section.

TABLE 6. Battery ageing results with STD CHA strategy for the first
five-day operation.

B. TIME-SHIFTED CHARGE STRATEGY
Time-shifted charge (TS CHA) is developed to delay the
charging process to the later time so that the capacity fade due
to calendar ageing can be reduced. Different from STD CHA,
where the battery is fully charged as soon as it is connected
to the charger, The TS CHA method shifts the charging start
time to an appropriate time while the battery is left in resting
state at the SoC upon arriving (arrival SoC). In this strategy,
the electrical tariff is supposedly unchanged during the test,
a control algorithm will calculate suitable charging start time
ensuring the battery will be fully charged just before the
next departure. A prediction capability is therefore assumed
between the driver, vehicle and charger in which the charging
process starts to ensure that vehicle battery is fully charged
just before the vehicle is needed.

Figure 15 presents the details of the intensive driving pro-
file with TS CHA. In the zoom-in subplot, the initial SoC
of each trip is always at 100%, which means the battery is
fully charged at the beginning of the trip. Then, the battery is
gradually discharged as it is in driving mode. Upon arrival
at the car park and connection to the charger, the battery
keeps holding at the arrival SoC. The charger controller cal-
culates the amount of charge needed to fully charge the bat-
tery and estimates the necessary charging time based on the
current SoC. Depending on the pre-set leaving time, the
controller determines the appropriate start time to charge
the battery. As a result, the five days operational profile of
intensive energy driver with TS CHA is generated as shown
in the top subplot.

Figure 16 (a) shows the operational current and SoC pro-
files over time of the gentle driving profile and their predicted
calendar and cycling capacity losses while (b) depicts those
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FIGURE 14. Prediction of battery ageing using STD CHA.

of the intensive energy driver profiles using the TS CHA
strategy. Comparing to the baseline STD CHA, the total
resting duration and number of charge cycles of TS CHA are
unchanged. However, for this battery characteristic, TS CHA
strategy provides better calendar ageing rate because it allows
the battery resting at a lower SoC, which causes slower
calendar capacity fade than that of resting at fully charged.
This result is consistent with the historical ageing dataset in
Figure 2 and the studies reported in the literature [11], [57].
Similar to the results of the gentle profile of the baseline
strategy, the cycling ageing is much smaller than the calendar
ageing because within this profile, the battery was being used
very little and has spent more time in the resting state. How-
ever, due to having resting at lower SoC levels in the intensive
driving profile, the calendar ageing in this case is significant

FIGURE 15. Intensive SoC operational profile with TS CHA strategy.

TABLE 7. Battery ageing results with TS CHA strategy for the first five-day
operation.

reduced (0.0101% to 0.0039%, equivalent to 68%mitigation)
comparing to the baseline. Table 7 summarises the battery
ageing results of the two energy driver profiles with TS CHA
approach for the first five days operation. The total capacity
loss under the gentle driving profile is 0.0201% while that
of the system under intensive driving profile is 0.0144%.
Although the total capacity loss reducing of the gentle driving
profile does not show any benefit, those of the intensive driv-
ing profile are significantly mitigated up to approximately
30% within the first five days operation as comparing to the
baseline STD CHA strategy.

C. SC V1G STRATEGY
Battery SoC pre-conditioning using V1G (SC V1G) is devel-
oped based on the charging principles of the TSCHA strategy,
considering the availability of a local optimal SoC (from
arrival SoC to 100%) having a smaller value of calendar
ageing than resting the battery as in TS CHA. SC V1G allows
the charger to control both charging start time and SoC so
that the battery calendar degradation rate can be maintained
at a lower value than or equal to that of the arrival SoC. The
control logic of this strategy can calculate the battery calendar
ageing rates of the battery at different SoC levels (from the
arrival SoC to 100%SoC) using the historical calendar ageing
data. Based on this calculation, a local optimal SoC which
offers the smallest calendar ageing rate can be identified. The
charger will drive the battery SoC to that optimal level before
taking rest for the rest of the parking duration.
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FIGURE 16. Prediction of battery ageing using TS CHA.

FIGURE 17. Timing constraints of the EV when parking.

The timing constraints of the EV battery when parking is
shown in Figure 17. In this diagram, assuming the EV battery
is connected to the charger at time Tin and will leave at time
Tout , which indicate the arrival and departure time, respec-
tively. The control algorithm calculates the full-charge time
(denoted by Tc), which is the time required to fully charge
the battery, based on the current SoC, the power capability
of the charger or the remaining energy of the battery upon
arrival. Then, the controller determines the charge start time

FIGURE 18. Smart battery pre-conditioning using SC V1G strategy.

(denoted by Ts), which is the time to begin to charge the
battery, according to Tc. The term Tp = Tr +Tc indicates the
total parking time, which includes charging and resting time.
Hence, if the full-charge time (Tc) is larger than or equal to
total parking time (Tp), then the charger will perform a full
charge promptly without the resting period. The following
steps describe the control procedure of the SC V1G.

- Step 1: The controller estimates the increment of the
calendar capacity loss if the battery is resting at the
arrival SoC (SoCar ) for a time of Tr , denoted by Qa.

- Step 2: The controller estimates the increment of the
calendar capacity loss if it is resting at any SoC level
(from the arrival SoC to 100% SoC) for the time of Tr ,
denoted by QlossV1G.

- Step 3: From all possible QlossV1G, the algorithm identi-
fies a local optimal SoC (SoClo), which is the SoC level
(from the arrival SoC to 100%) with smallest calendar
ageing denoted by Qlo.

- Step 4: By comparing Qa and Qlo, the control algorithm
can determine whether to hold the battery at SoCar
until Ts or charging the battery to the SoClo then holding
until Ts.

As soon as it is connected to the charger, the battery will
be either held at the current SoC if the ageing rate of the
arrival SoC is smaller than that of the local optimal SoC or
charged to the local optimal SoC level, hence the battery
maintains its charge capacity at lower calendar degradation
rate during resting. The departure time must be pre-defined
before participating this charging method.
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TABLE 8. Order of calendar ageing rate with respect to SoC (low to high) for the first 28 days of storing.

FIGURE 19. Calendar ageing rate with respect to SoC and storing duration
of the first 28 days.

FIGURE 20. Intensive SoC operational profile with SC V1G.

The local optimal SoC can be extracted based on the histor-
ical data of the calendar ageing test. Figure 19 illustrates the
interpolated SoCs at which the calendar aging rate changes
for the first 28 days of storage. The order of SoCs from low
to high is depicted in Table 8. Within the first 28 days, the
SoCs having the least and the most calendar ageing rate are
30% and 85%, respectively.

Figure 20 shows the complete battery operational SoC
profile of the intensive driving use case with SC V1G.
The battery arrival SoC of any trips smaller than 30% (trip
number 6, 7 and 8) will be charged up to 30% SoC, then
remain unchanged at this charge during the rest period. It is
because the local optimal SoC is 30% at this instant while any
SoC levels lower or higher than 30% causes higher calendar
ageing. Hence, based on the Figure 19, in the remaining trips
(trip 1, 2, 3, 4, 5, 9 and 10), the battery is turned into resting
mode right away at the arrival SoC.

The top subplots of Figure 21 (a) and (b) present the charg-
ing current and SoC profiles versus time of the gentle and

TABLE 9. Battery ageing results with SC V1G strategy for the first five-day
operation.

intensive driving profiles while the bottom subplots show the
predicted calendar and cycling capacity fade when using the
SC V1G strategy accordingly for such two driving profiles.
Table 9 depicts the summary of battery ageing results for
the first five days operation. Comparing to the baseline STD
CHA, the total calendar duration and number of charge cycles
of the SC V1G are also unchanged. However, by allowing the
battery to rest at a local optimal SoC, the calendar capacity
losses are negligibly reduced in the gentle profile but signif-
icantly mitigated in the intensive profile (from 0.0101% to
0.0039%, equivalent to 61% reducing). The cycling ageing of
both profiles is almost unchanged in this case due to having
the same charge throughput with the baseline. Obviously, the
SC V1G shows advantages when applying to the intensive
driving profile, which has lower arrival SoC levels in most of
the trips, whilst it is inexplicit in the gentle profile because
resting at the arrival SoC in this case causes faster calendar
ageing than having rested at fully charged. However, it is
noteworthy that the calendar capacity loss could be signif-
icantly decreased if employed for more intensive driving
profiles, particularly when the arrival SoCs are smaller than
the local optimal SoC or at a different moment during the
lifetime of the battery at which the local optimal SoC are
always higher than most of the arrival SoC. Comparing to the
baseline, there is no change in the total ageing for the gentle
driving profile, but the total ageing improvement is notable
for the intensive driving one as it reduces 30% of capacity
loss.

D. SC V2G STRATEGY
Battery SoC pre-conditioning using V2G strategy (SC V2G)
is developed based on the improvement seen in SC V1G
strategy in term of charging and discharging capability. In this
strategy EV batteries are allowed to discharge their energy to
the grid whenever the arrival SoC is higher than the instant
global optimal SoC disregarding the increment of charge
throughput. A bidirectional V2G chargers with capability to
charge and discharge the battery to the grid is required for
this strategy. The timing constraints of the EV when parking
is the same as those of the SC V1G. However, when doing
SC V2G, the following steps are applied:
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FIGURE 21. Prediction of battery ageing using SC V1G.

- Step 1: The controller estimates the increment of the
calendar capacity loss (Qa) when resting at the arrival
SoC (SoCar ) for the duration of Tr .

- Step 2: The controller estimates the calendar capacity
loss when resting at any SoC level (from 0% to 100%
SoC) for the time of Tr , denoted by QlossV2G.

- Step 3: From such QlossV2G, the algorithm can identify
the global optimal SoC (SoCgo), which is the SoC level
with the least calendar ageing, denoted by Qgo.

- Step 4: By comparing Qa versus Qgo and SoCar ver-
sus SoCgo, the control algorithm determines whether
to either hold the battery at SoCar until Ts or
charge/discharging the battery to the SoCgo and then
hold until Ts.

A diagram of this strategy is shown in Figure 22. SoC at
30% is also considered as the global optimal SoC (SoCgo)
as seen in Table 8 because it has the least calendar ageing.
Figure 23 presents the complete SoC operational profile of
the intensive driving profile with SC V2G strategy for the
first five days operation. The batteries of the trip number 1∼5,
9 and 10 are discharged to 30%, which is the SoCgo, while the
batteries of trip number 6∼8 are charged up to SoCgo before
resting for the duration of the park period. Comparing to pre-
vious charging strategies, the total resting duration of the SC
V2G is consequently reduced due to having shorter resting
time. Thus, the calendar capacity loss is significantly reduced.
However, this strategy increases the total charge throughput,
represented by the number of charge cycles. Theoretically,
this behaviour is therefore causing some increment of cycling
ageing. Especially, for the gentle driver profile, where the
arrival SoCs are far from the global optimal SoC for this
battery type.

Similar to the previous case-studies, Figure 24 (a) and (b)
depicts the charging current and SoC profiles over time in the
top subplots while the bottom subplots show the predicted

FIGURE 22. Smart battery pre-conditioning using V2G strategy.

calendar and cycling capacity fade variation using SC V2G
strategy for the two energy driver profiles. Table 10 shows
the battery ageing results of the first five-day of operation.
Comparing to the baseline, the SC V2G calendar capac-
ity loss is significantly reduced in both driving profiles
(i.e., from 0.0185% to 0.0023% (equivalent to 88%) for
the gentle driving profile; and from 0.0039% to 0.0025%
(equivalent to 34%) for the intensive driving profile. This
is because the resting time of the battery with SC V2G is
significantly reduced due to increasing the charge throughput
to reach to the global optimal point. The cycling ageing is also
significantly increased in both profiles, which are equivalent
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FIGURE 23. Intensive SoC operational profile with SC V2G strategy.

TABLE 10. Battery ageing results with SC V2G strategy for the first
five-day operation.

to 91.5% and 25% increase for the gentle and intensive
profiles, respectively. However, the total capacity loss under
the gentle driving profile is reduced up to 28.7% while that
of the intensive profile increases to 13.3% for the first five
days operation when comparing to the SC V1G strategy.
Notwithstanding, SCV2G strategy canmitigate a total ageing
of 28.7% and 19.9% in the gentle and intensive profiles,
respectively when comparing to the baseline STD CHA strat-
egy. The results indicate that the SCV2G strategy can provide
some benefits in both driving profiles as comparing to those
of the baseline STD CHA approach.

E. SC VxG STRATEGY
It is noteworthy that the SC V1G strategy can reduce the
calendar ageing by allowing the battery to be charged to
the local optimal SoC, then leave the battery resting if the
arrival SoC is smaller than the optimal SoC at a certain time.
This charging strategy maintains the same resting duration
and charge throughput compared to the conventional STD
CHAand TSCHA approaches. Although there is no improve-
ment in cycling ageing, the calendar ageing is still signifi-
cantly reduced whenever the arrival SoC is smaller than the
local optimal. Otherwise, the calendar ageing is somewhat
diminished, especially when the arrival SoC is still high
(i.e., for the gentle driving profile). Hence, this approach
is not always the right choice since the arrival SoC of the
real-world daily driving profile is usually unknown and varied
depending on driver requirements.

SC V2G strategy overcomes the SC V1G drawback by
allowing the battery to exchange their energy with the
grid whenever the arrival SoC is different from the global

FIGURE 24. Prediction of battery ageing using SC V2G.

optimal SoC. Therefore, the battery can always rest at the
global optimal SoC at any cases. This means that the calendar
ageing can be remarkably improved by both reducing the
resting time and turning the batteries to a global optimal SoC.
However, although SC V2G can show benefits in both gentle
and intensive driving profiles, this charging strategy causes
the increment of charge throughput in general due to having
extra charge and discharge cycles to bring the battery to an
optimal SoC. Consequently, this potentially accelerates the
battery cycling ageing in long-term operation, especially
when the battery degrades.

To overcome the drawback of SC V1G and SC V2G, the
SC VxG is developed as the combination of SC V1G and SC
V2G methods to trade-off between the absolute difference
of calendar ageing due to resting at optimal SoC and the
absolute difference of cycling ageing due to having an addi-
tion of charge throughput (via bi-directional charging around
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FIGURE 25. Combined smart charge pre-conditioning using SC VxG.

the optimal SoC). The combined model allows such two
charging strategies to be switched back and forth, resulting
in a reduction of the total ageing. Upon the parking of each
trip and the battery is plugged-in, the controller determines
whether it should go with either SC V1G or SC V2G. The
arrival SoC and the current degradation status (or SoH) of
the battery allows the controller to approximately estimate
the total ageing of the battery in advance. Hence, the battery
can only be participated in SC V2G if the absolute amount
of cycling capacity loss is smaller than the those of calendar
capacity loss at an instant of time, otherwise, the battery will
be taken part in SC V1G.

A diagram of SC VxG approach is shown in Figure 25.
CalV1G and CycV1G are the amount of calendar and cycling
ageing when doing SC V1G. Similarly, CalV2G and CycV2G
are the amount of calendar and cycling ageing when doing
SC V2G.1Cal = abs (CalV1G −− CalV2G) is the absolute
change of the calendar ageing between SCV1G and SCV2G.
Likewise,1Cyc= abs (CycV1G−−CycV2G) is the absolute
difference of the cycling ageing between the two methods.
By considering the trade-off between1Cal and1Cyc, the SC
VxG controller selects appropriate charging control method
for each parking period.

Likewise, the top subplots in Figure 26 (a) and (b) depict
the charging current and SoC variation profiles over time
while the bottom subplots depict the predicted calendar and
cycling capacity losses when using SC VxG strategy for
the two mentioned driver profiles. Table 11 summarises the

FIGURE 26. Prediction of battery ageing using SC VxG.

TABLE 11. Battery ageing results with SC VxG strategy for the first
five-day operation.

battery ageing using SC VxG for the first five days operation.
The SC VxG with the capability to balance the performance
of SC V1G and SC V2G, it helps to improve the battery life
significantly in most of the cases. Comparing to the baseline
strategy, the calendar ageing is impressively diminished from
0.0185% to 0.003%, which is equivalent to 84% in the gentle
profile, and from 0.0101% to 0.0039%, which is equivalent
to 61% in the intensive profile. Although the cycling aging
is increased due to having more charge throughput to reach
the optimal SoC point, this reduction resulting the overall
battery ageing is significantly reduced up to 34.4% and 30.1%
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TABLE 12. Predicted capacity loss of different charging strategies.

for the gentle and intensive driving profiles, respectively.
Therefore, by taking advantages of both SC V1G and SC
V2G strategies, the proposed SC VxG strategy can minimise
the total degradation at any instant during the whole life of
the battery. It is suitable for long-term prediction, especially
when the battery is aged.

F. DISCUSSIONS
From the above results and analysis, all charging approaches
can reduce the total battery ageing as comparing to the base
line STD CHA method for the intensive driving profile. The
total battery ageing can be mitigated by reducing either cal-
endar ageing or charge throughput. Particularly, both the TS
CHA and SC V1G strategies show crucial benefits as they
significantly demonstrate the improvement in battery degra-
dation (up to 30%). The SC V2G adds more capability to
the SC V1G, but it also increases the charge throughput,
hence the total ageing is increased in some cases. The com-
bined SC VxG gains the advantages of both the SC V1G and
SC V2G so that it can designate suitable charging strategy at
any period. It allows the charger to interchange between the
two strategies according to the current degradation status of
the battery. Hence, the total ageing mitigation is ensured to
be between those of the SC V1G and SC V2G.

A dynamic pre-conditioning strategy is required to adapt
to different battery conditions and driving styles of drivers.
For instance, the performance of charging strategies is

considerably varied for the gentle driving profile. The TS
CHA and SC V1G are not suitable for this kind of driving
style because they have very minor improvement on battery
degradation or even increase it in some cases compared to the
baseline STD CHA. In contrast, the SC V2G shows benefits
in this case since the reducing of calendar ageing is more out-
standing than the increment of cycling ageing. However, it is
not feasible for a degraded battery as the cycling aging rate
is high. The combined SC VxG strategy once again demon-
strates the helpfulness by dynamically switching between SC
V1G and SC V2G to reach the optimal operational condition,
subsequently minimising the total battery degradation.

It is noteworthy that for calendar aging, the capacity
loss prediction is dependent on battery SoH. The storing
time is one major dependency of the calendar aging model,
which is accumulated from all separate resting periods during
the whole life. Likewise, for the cycling ageing, the total
charge throughput is one critical element which affects the
estimation of cycling capacity fade. The developed degra-
dation models establish the ability to evaluate degradation
performance of the battery using various charging strategies
under various driving styles. These models are fully appli-
cable to be employed to evaluate the complete degradation
behaviours of the battery in long time usage.

To better understand the ageing behaviours of the battery
with respect to the five charging strategies for long-term
operational conditions, each charging approach is applied
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FIGURE 27. Comparison of reduced battery degradation through different charging strategies.

continuously for 365 days via extended simulation.
Table 12 summarizes the predicted capacity losses of the
comparative charging strategies for 365 days of operation.
Here, the ‘‘Mitigated’’ columns present the reduced percent-
age of the total degradation of each approach as comparing to
the baseline STD CHA, in which positive values indicate the
positive impacts of changing strategies on the improvement
of battery ageing (mitigated battery capacity fade) and vice
versa.

From this table, the performance of the TS CHA and
SC V1G in mitigating the total battery degradation is var-
ied between the gentle and intensive driving profiles. This
behaviour demonstrates the impacts of the arrival SoC and
local optimal SoC on the value degradation experienced by
the battery. For a 365-day operation, the mitigation of battery
degradation employing these strategies are significant with
respect to the intensive profile (bothmitigating up to 14.9% of
battery ageing). However, this improvement is insignificant
with the gentle profile (−5.9% and 0.4% for the cases using
TS CHA and SC V1G compared to the baseline, respec-
tively). The SC V2G and SC VxG strategies always demon-
strate their effectiveness in reducing the battery degradation.
The SC V2G can improve the battery ageing up to 10.6% in
the intensive profile since it always allows the battery to be at
rest at the global optimal SoC.

Although SC V2G functions well when the battery
is relatively new, its performance deteriorates when the
battery degrades under the gentle profile (negatively impact-
ing the degradation by −16% after 365 days operation).
This is because the global optimal SoC changes over time
and it requires more charge throughput as the consequence

of bi-directional charging. It is notable that the degradation
improvement utilising the SC V2G will be more significant
if the updated global optimal SoC is higher than the arrival
SoC. This behaviour once again highlights the impact of the
arrival SoC to the performance of each charging strategy.
A similar trend can be seenwith the SCVxG.However, due to
its unique capability of dynamically switching back and forth
between SC V1G and SC V2G to select an optimal strategy,
SC VxG always shows the benefits in mitigating the battery
degradation for both driving profiles. Figure 27 highlights the
comparison of different charging strategies to their baseline
STD CHA strategy. From the results, it can be seen that all
the pre-conditioning strategies improved battery life when
operating with gentle driver profile, having higher starting
SoC. However, there was the possibility of the SC V2G to
further degrade the battery faster due to increased charge
throughput (increased 16% of capacity loss after one year of
operational life). The TS CHA increased degradation due to
particularity within this cell formulation (added 5.6% of age-
ing). The SC VxG strategy continued to improve battery life
because it balances both ageing of the SC V1G and SC V2G
(reduced 8.6% of battery degradation after one year operating
comparing to the baseline STDCHA). For the intensive driver
profile, all pre-conditioning strategies improved battery life
significantly (10.6 – 14.9%). The TS CHA provided the most
gain (14.9%) for this cell type with least complexity. SC V1G
and SC V2G strategies demonstrated the advantages in
reducing the ageing rate of the battery while the SC VxG
strategy demonstrated its capability in balancing the perfor-
mance of SC V1G and SC V2G to achieve the best accom-
plishment. However, after long-term usage or as the battery
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degrades, the increased charge throughput to condition the
battery started to accelerate degradation.

It is noteworthy that beside the mitigation in term of total
capacity loss, the SC V2G and SC VxG can export some
amount of energy from the battery to support the electrical
grid or energy storage. Hence, some revenue can be earned
if there is an appropriate usage of such energy. Therefore,
a future optimisation strategy is necessary to select suitable
charging approaches at an instant of time and/or actual battery
SoH so that it can optimise the battery degradation during the
whole life of the battery.

IV. CONCLUSION AND FUTURE WORKS
A. CONCLUSION
In this paper, semi-empirical degradation models were devel-
oped and validated for calendar and cycling ageing based
on historical ageing datasets to predict the degradation of an
EV battery. A combined ageing model was developed by
combining the validated calendar and cycling ageing models
to predict the total ageing behaviour of the battery under five
different SoC pre-conditioning strategies for V2G applica-
tions. Two driving profiles representing the gentle and inten-
sive energy drivers were introduced to evaluate the perfor-
mance of such charging approaches. Each charging strategy
illustrated the relative advantage and disadvantages in min-
imizing the battery degradation due to calendar and cycling
ageing during the parking period of the EV. Simulation of
the battery ageing under five charging strategies were per-
formed. The results were compared and analysed to facilitate
forecasting of the impact of the battery degradation on pre-
V2G operation scenarios. The proposed charging strategies
could mitigate the total ageing of the employed battery from
8.6 – 12.3% for one-year continual operation compared to the
reference standard charging approach.

The TS CHA and SC V1G strategies perform consis-
tently well in reducing the battery ageing under the intensive
driving profile while they create negative impact on the
battery degradation under the gentle driving profile. The
SCV2G and SCVxG strategies mitigate the battery ageing in
most cases, especially when the battery is new. However, their
capability will be reduced along with the battery SoH reduc-
tion, at which the decrement of calendar capacity loss does
not supersede the increment of cycling ageing. The charging
performance of these approaches is also significantly affected
by the variations of local and global optimal SoCs.

B. FUTURE WORKS
Five primary elements of further works remain are:

- First, complete validation of the degradation models
with extended ageing data is required to fully verify the
applicability of the developed models under different
operating conditions. Particularly, for the cycling ageing
model with increased operational temperatures and the
combined model with mixed calendar and cycling or
with real-life drive cycles.

- Second, to better support the evaluation of the degra-
dation models, a comparison can be made between the
model presented here and different methods of ageing
model construction, such as fully empirical models or
physics-based models. This will require the formulation
of appropriate datasets to allow model parameterization
in each case. The potential value would be the ability
to easily evaluate predictions of battery life without the
need to undertake extensive ageing experiments. In addi-
tion, the ability to corelate battery ageing with those
forms of model that provide a greater insight into the
mechanisms of ageing, may also highlight the nature of
the underpinning causes of degradation.

- Third, the developed models can be employed to eval-
uate the battery degradation with actual V2G sce-
narios (such as frequency regulation, peak shaving
and load levelling). These tasks can be conducted
when the battery is in resting mode, after the SoC
pre-conditioning process. Hence, true V2G scenarios
on top of SoC pre-conditioning require an advanced
optimal algorithm including the definition of a cost func-
tion, in which the value of the optimisation problem
is based on electrical price and battery degradation,
to control the charge and discharge rates so that either
maximising the revenue or minimising the total battery
degradation.

- Fourth, additional research on the influence of ambient
temperature on the ageing behaviour should be consid-
ered. This requires the construction of a more diverse
dataset in which a wider range of ambient temperatures
are investigated for both calendar and cyclic ageing.
From this data, the ageing models can be retrained and
validated, thereby improving their ability to accurately
represent battery operation and ageing in the real-world.

- Finally, the degradation of the battery is expected to
vary in line with changes in form factor and chem-
istry. Further research is therefore required to under-
stand the transferability of the methodology. The authors
acknowledge that the model will most likely require
recalibration for use with other technologies, that
will in turn require additional training datasets to be
produced. However, the authors assert that the underpin-
ning techniques for parameterization and model struc-
ture will be transferable and scalable as the model is
transitioned from cell-level studies through to system
and vehicle-level research.
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