IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 15, 2021, accepted November 7, 2021, date of publication November 16, 2021,
date of current version November 30, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3128871

A Matheuristic Algorithm for the Multiple-Depot
Vehicle and Crew Scheduling Problem

EMILIANA MARA LOPES SIMOES“12, LUCAS DE SOUZA BATISTA 3,
AND MARCONE JAMILSON FREITAS SOUZA"“*

!nstitute of Science and Technology, Federal University of Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, Brazil
2Graduate Program in Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
3Department of Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil

4Department of Computing, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil

Corresponding author: Emiliana Mara Lopes Simdes (emiliana.simoes @ufvjm.edu.br)

This work was supported in part by the Brazilian agencies the Coordination for the Improvement of Higher Education Personnel (CAPES)
under Finance Code 001, the National Council for Scientific and Technological Development (CNPq) under Grant 303266/2019-8, and the
Minas Gerais State Foundation for Research Support (FAPEMIG) under Grant PPM/CEX/676-17; in part by the Federal University of
Vales do Jequitinhonha e Mucuri (UFVIM); in part by the Federal University of Minas Gerais (UFMG); and in part by the Federal
University of Ouro Preto (UFOP).

ABSTRACT This work addresses the multiple-depot vehicle and crew scheduling problem (MDVCSP).
In MDVCSP, we deal with two NP-hard problems in an integrated way: the multiple-depot vehicle scheduling
problem (MDVSP) and the crew scheduling problem (CSP). For solving the MDVCSP, we define the
vehicles’ operational routine and the workdays of the crews of a public bus transport system with multiple
depots. Given the difficulty of solving real-world instances of the MDVCSP using exact mathematical
methods, we propose a matheuristic algorithm for solving it. This matheuristic algorithm combines two
strategies into an iterated local search (ILS) based framework: a branch-and-bound algorithm for solving
the MDVSP and a variable neighborhood descent (VND) based algorithm for treating the associated CSPs.
We compared the proposed ILS-MDVCSP with five approaches in the literature that use the same benchmark
test instances. We also solved a real-world problem of one of Brazil’s largest cities. For this problem,
we proposed a formulation based on a time-space network to address the MDVSP subproblem. The results
obtained showed the effectiveness of ILS-MDVCSP, mainly to deal with real-world and large-scale problems.
The algorithm was able to solve the largest instances from the literature, for which there was no reported
solution. Regarding the run time, as the instances’ size increases, our approach becomes substantially less
costly than the others from the literature. For the Brazilian instances, the ILS-MDVCSP saved, on average,
the use of 12 vehicles per day and reduced by up to 15% the daily operational time of the vehicles.

INDEX TERMS Iterated local search, matheuristic, multiple-depot vehicle and crew scheduling, public
transportation, time-space network, variable neighborhood descent.

I. INTRODUCTION In tactical planning, we define the frequency with which

The planning process of the public bus transport system is
highly complex, and therefore it is normally decomposed into
several subproblems. We usually approach these subproblems
in three stages: strategic, tactical, and operational.

Strategic planning addresses problems that involve long-
term decisions. At this stage, we aim to meet users’ demands
and, at the same time, respect established budget limitations.
Moreover, we specify the bus transit routes through the city.

The associate editor coordinating the review of this manuscript and

approving it for publication was Juan Wang

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

the bus routes must be traveled and the timetable. The
timetable is composed of the daily trips to be performed
by the public transport company. Each trip has times and
locations of the start and end.

Thus, given the timetable, we address the operational
planning problems. As illustrated in Fig. 1, we have a vehicle
scheduling problem (VSP), a crew scheduling problem
(CSP), and a crew rostering problem (CRP).

The vehicle scheduling problem (VSP) consists of deter-
mining a daily operating routine for a vehicle fleet. Its
objective is to make it possible to execute all timetable trips,

155897

https://orcid.org/0000-0003-0036-7120
https://orcid.org/0000-0002-7444-3440
https://orcid.org/0000-0002-7141-357X
https://orcid.org/0000-0003-3124-9901

IEEE Access

E. M. L. Simdes et al.: Matheuristic Algorithm for Multiple-Depot Vehicle and CSP

timetable
trips

l

vehicle
scheduling

vehicle
itineraries

4

crew
scheduling

crew
duties

4

crew
rostering

l

crew
rosters

FIGURE 1. Operational planning of public urban bus transport.

reduce costs and, at the same time, respect all operational
restrictions. As a result, vehicle itineraries are obtained.

There must be a crew (possibly a driver and a collector)
responsible for each vehicle’s activity in the fleet. So, the
crew scheduling problem (CSP) deals with defining the
workdays (duties) for the crews. When resolving the CSP,
we sought to minimize labor costs; however, obligatorily in
compliance with the operational and labor rules in force.

At last, there is the crew rostering problem (CRP). This
problem consists of assigning duties to each crew to define
their monthly work routine. Thus, in the CRP, specific rules
regarding long periods are considered and therefore were not
addressed in the daily schedule.

The division into stages presented above follows [1], [2].
These works provide a comprehensive review of models and
approaches to solve the subproblems associated with each
stage.

For a long time in the literature, proposals for sequential
and independent resolution of the subproblems of the plan-
ning process of the public bus transport system predominated.
However, this type of approach leads to suboptimal solutions
for global planning. Thus, with the development of efficient
computers and optimization techniques, more and more
successful research has emerged to integrate some of these
subproblems [3]-[9].

In the scope of operational planning, some authors deal
with the integrated vehicle and crew scheduling problem
(VCSP) [10]-[15]. In the VCSP, vehicle itineraries and
the workdays of the crews are defined simultaneously.

155898

Solving VSP and CSP in an integrated way is useful,
as there is a dependency relationship between these problems.
Operating costs can even be an opposite relationship; that is,
a characteristic favorable to a solution for the VSP does not
always reflect satisfactorily in the CSP and vice versa.

In this work, we approach the VCSP with multiple depots.
In the so-called multiple-depot vehicle and crew scheduling
problem (MDVCSP), each timetable trip may be assigned to
a subset of existing depots. In addition, each depot has its
vehicles and crews. Therefore, solving more than one depot
simultaneously (rather than distributing trips between depots
and then solving each depot separately) makes the problem
more flexible and more likely to result in better solutions.

The benefits of considering multiple depots were initially
identified in solving the multiple-depot vehicle scheduling
problem (MDVSP), and there is a vast literature that
addresses this problem [16]-[20].

MDVCSP is an even more complex problem than MDVSP
and has also received the attention of researchers [3],
[21]-[26]. The works that address the MDVCSP differ
significantly in terms of the assumptions considered. Gaffi
and Nonato [21], for example, impose that a crew is assigned
to the same vehicle during the whole duty. On the other
hand, Mesquita and Paias [24] consider that a crew can
change vehicles at any time at an appropriate local. There
are still works that allow the exchange of vehicles, but only
between work shifts of the crew [3], [22], [25], [26]. Thus,
the particularities of the works often make it impossible to
compare them.

This paper approaches the MDVCSP following the same
assumptions considered in [3], [22], [23], and [26]. In addi-
tion, we also deal with a Brazilian real-world problem.

We propose a formulation for the MDVSP based on the
time-space network elaborated by Steinzen et al. [3]. In the
Brazilian problem that we address, trips are distributed
throughout the day on the timetable. Therefore, we must
guarantee a minimum daily stay in the depot for each
vehicle in our formulation. This time is for the maintenance
and cleaning of the vehicles. Steinzen et al. [3] and other
authors [3], [22], [23], [26], [27] do not consider this
situation. In the problem they address, there is a long interval
of the day, in which no trip is scheduled on the timetable.

Furthermore, it is possible to combine our formulation for
the MDVSP with a set partitioning formulation for the CSP
and thus constitute a model for the MDVCSP.

MDVCSP is an NP-hard problem [3], [22]. As shown
in [28] for the MDVSP and in [29] for the CSP, each
of these problems is NP-hard. Therefore, we approach the
MDVCSP through a matheuristic algorithm to address real-
world instances, which generally involve a high number of
variables.

Matheuristics are hybrid algorithms that combine
mathematical programming and metaheuristic techniques.
According to Raidl [30], this class of algorithms exploits
the individual advantages of these methods and bene-
fits from the synergy between them. Given its success

VOLUME 9, 2021

E. M. L. Simdes et al.: Matheuristic Algorithm for Multiple-Depot Vehicle and CSP

IEEE Access

in solving several combinatorial optimization problems,
this approach has been applied in some studies in the
literature [31], [32].

Our matheuristic algorithm, named ILS-MDVCSP, uses
the iterated local search (ILS) [33] framework for exploring
the solution space of the MDVCSP. In turn, its solution
process combines two methods: a branch-and-bound method
to solve the MDVSP in optimality and a heuristic procedure
based on the variable neighborhood descent (VND) [34] to
treat associated CSPs.

To the best of our knowledge, only Steinzen et al. [27]
addressed the same problem using a matheuristic. They
deal with the MDVCSP using a hybrid evolutionary algo-
rithm (EA) to assign trips to depots. In this context,
an individual is a trip-depot vector where each trip is
assigned to a single depot. In addition, these authors used
mathematical programming techniques to define vehicle and
crew schedules and thus evaluate an individual’s fitness. The
results showed that the hybrid EA overcame a sequential
approach to solving the MDVSP and CSP. However, the
hybrid EA achieved lower performance than the integrated
resolution algorithms proposed in [35] and [22]. As well as
Steinzen et al. [27], we compared the ILS-MDVCSP against
the approaches proposed in [22] and [23] (the improved work
of [35]). Unlike Steinzen et al. [27], our algorithm performed
better for all instances.

To validate our algorithm, we perform experiments with
benchmark test instances and compare the results against
those of other well-known approaches from the literature.
We also present and discuss the results obtained for a
real-world problem of a city in Brazil, where the bus is
the most popular form of public transport in large urban
centers. We compare the companies’ solutions (VSP and
CSP sequential planning) with the solutions obtained from
two integrated approaches: VCSP resolution and MDVCSP
resolution. The results obtained showed:

1) The effectiveness of the matheuristic algorithm
ILS-MDVCSP, mainly to deal with real-world and
large-scale problems.

2) The integrated resolution of the VSP and CSP is more
efficient than the traditional sequential resolution of
these problems. Furthermore, the integrated approach
with multiple depots is more effective than the one with
a single depot.

Finally, it is worth noting that, together with population
growth and the new challenges of urban mobility, the demand
for an efficient, safe, quality, and cost-effective locomotion
service has been increasing. Concurrently, alternatives to
move in the cities have emerged. Therefore, the urban bus
sector needs to adapt to this new competitive and demanding
scenario. In this respect, the optimized definition of vehicle
and crew schedules, as we propose in this work, is essential.
Itis directly related to the working conditions of the employed
labor and involves most of the sector’s operating costs.

The remaining of this work is as follows. In Section II
we review some related works and in Section III define the

VOLUME 9, 2021

MDVCSP. Section IV describes the literature formulations
for the MDVSP and MDVCSP, which support our formula-
tions. Section IV also presents the formulation we propose
to deal with a Brazilian real-world problem. The problem-
solving approach is detailed in Section V. Section VI presents
and discusses the results obtained. Finally, concluding
remarks are pointed out in Section VII.

Il. RELATED WORK

VSP and CSP have long been studied extensively in the
Operations Research (OR) literature. Among the precursors
are the works [36]-[41]. In the 1980s, Ball et al. [10] already
pointed out the advantages of addressing these problems in an
integrated manner and proposed a heuristic resolution method
for the VCSP.

Patrikalakis and Xerocostas [11] proposed the first math-
ematical formulation for the VCSP. However, this model
was for illustrative purposes only, being computationally
intractable [42]. Thus, the authors in [43] are considered the
pioneers in proposing an integer programming formulation
for the problem. This work gave rise to a series of
studies developed by Freling et al. on the topic, such
as [13], [42], [44]. The formulations presented in these works
are similar and consist basically of two parts:

1) A quasi-assignment formulation based on a network to

ensure the viability of the VSP;

2) A set partitioning formulation to ensure each vehicle

activity is assigned to a duty.

With the transformations in urban public transportation
resulting from population growth, social changes, and poli-
cies to encourage sustainability, recent research has addressed
more complex variants of the VCSP. Perumal et al. [7]
solved the VCSP with electric buses (E-VCSP). So, new
restrictions are imposed, such as i) limited driving range
of electric vehicles, ii) longer recharging times of vehicles,
and iii) fixed charging locations. Boyer et al. [45] and
Andrade-Michel et al. [46] addressed the VCSP by treating
each vehicle and crew individually. They considered the
compatibility between each pair of vehicle-driver (the driver
has/hasn’t the ability to drive the vehicle model), driver-
line (driver knows or not the line route), and vehicle-line
(the bus must have appropriate characteristics to meet the
line). Thus, the VCSP solution is a feasible trip-vehicle-
driver assignment for each line. Furthermore, to resolve the
VCSP, Andrade-Michel et al. [46] considered the reliability
of each driver (probability that he will not be absent from
work) and the importance of each trip (measured by the
number of passengers it serves). Amberg et al. [47] observed
that interruption (delay) can occur in urban public transport
due to heavy traffic or passenger behavior. In addition,
this initial delay of a scheduled task can cause delays in
other activities that use the same resources (vehicle and
crew). Thus, Amberg et al. [47] solved the VCSP aiming to
minimize operational costs and, at the same time, define
robust vehicle and crew schedules. The robustness in this
context concerns the ability of an integrated schedule to

155899

IEEE Access

E. M. L. Simdes et al.: Matheuristic Algorithm for Multiple-Depot Vehicle and CSP

prevent the spread of delays. These previous works and many
others solved the VCSP considering that there was only
one depot for managing vehicles and crews (see e.g., [14],
[15], [48]). This problem is so-called single-depot VCSP
(SDVCSP).

Medium-sized and large public transport companies usu-
ally have multiple depots to manage their vehicles and crews.
In this scenario, we have the definition of the multiple-depot
VCSP (MDVCSP).

Based on Freling et al. [13], Huisman et al. [22] proposed
a model and algorithm to deal with the MDVCSP. The
developed algorithm combined column generation with
Lagrangian relaxation.

Huisman et al. [22] developed another model for the
MDVCSP from the formulation proposed by Haase et al. [12]
for the VCSP. However, their algorithm generated better
results using the model based on Freling et al. [13].

Before Huisman et al. [22], only Gaffi and Nonato [21]
addressed the MDVCSP. Gaffi and Nonato [21] used a model
and algorithm similar to those presented in [22], but they
consider particular constraints that facilitate the resolution of
the problem [22].

Based on Freling et al. [13], [42], [44] and using one of
the models proposed in [22], Borndorfer et al. [23] proposed
a Lagrangian relaxation and column generation approach to
the MDVCSP. For the solution of the Lagrangian relaxations,
they used a proximal bundle method. Besides, they used the
primal and dual information generated by this bundle method
to guide a branch-and-bound algorithm to produce integer
solutions.

Mesquita and Paias [24] proposed two formulations for
the MDVCSP. The first (SP-VCSP) was similar to the one
presented in [22] but with a smaller number of constraints
and decision variables. This formulation combined two
models: the multicommodity network flow model for vehicle
scheduling and the set partitioning/covering model for crew
scheduling. The second formulation (SPC-VCSP) was an
extension of the previous one, and it replaced some set
partitioning constraints by set covering constraints. This
modification made the model more flexible and made
possible situations in which the crew was allowed to
change vehicles during their duty without increasing the
complexity of the problem. Unlike Huisman et al. [22] and
other authors [3], [23], [26], Mesquita and Paias [24] allowed
a given crew to drive vehicles from any depot and not
just the depot to which they belong. Furthermore, a crew
could change from a vehicle to another at any time at an
appropriate local. Therefore, the results in [24] cannot be
directly compared with those of other studies that addressed
the MDVCSP.

Steinzen et al. [3] presented a new formulation for the
MDVCSP, based on the so-called time-space network. Until
then, in the literature, all works used models similar to the one
proposed in [22], based on the so-called connection-based
network to address the MDVCSP. The network proposed
in [3] was much smaller considering the number of nodes

155900

and arcs, which resulted in a mathematical formulation
with a much smaller number of constraints and variables.
The proposed solution methodology was similar to that
presented in [22] and combined the generation of columns
with Lagrangian relaxation.

For the tests, Steinzen et al. [3] used the instances available
at [49] and generated larger ones using the same algorithm of
Huisman et al. [22], which are available in [50]. According
to Steinzen et al. [3], when considering other works in the
literature, their results were the best in terms of processing
time (when it was possible to compare) and quality of the
solution generated (number of vehicles and crews employed).

As we mentioned earlier, Steinzen ef al. [27] addressed
the MDVCSP using a hybrid evolutionary algorithm (EA).
In the proposed strategy, the hybrid EA was used to assign
trips to depots and, in this way, transform the MDVCSP into
several VCSPs. Both problems, MDVCSP and VCSP, are NP-
hard. However, in VCSP, the associated vehicle scheduling
problem can be solved in polynomial time, as it is the
minimum cost flow problem. Thus, the hybrid EA used
Lagrangian heuristics based on column generation to solve
the VCSP and compute the individuals’ fitness.

The solution approaches described in [27] and [3] provided
the basis for Kliewer ef al. [25] to solve the MDVCSP
with time windows for scheduled trips (MDVCSP-TW).
At MDVCSP-TW, the scheduled time for timetable trips
is not fixed. That is, at MDVCSP-TW, the trip departure
and arrival times are variables. This flexibility increases
the number of trips compatible with each other and
can reduce required vehicles and crews in the schedule.
Kliewer et al. [25] compared the approaches a) traditional
sequential planning of vehicles and crews, b) sequential
planning extended with consideration of time windows in
the vehicle scheduling phase, c¢) integrated planning, and d)
integrated planning with time windows. The results indicated
that the integrated planning approach with time windows was
better than the others.

Ciancio et al. [51] solved the MDVCSP considering sev-
eral real-world restrictions according to the European Union
legal framework. These restrictions are so specific that their
proposed problem is quite different from those found in the
literature [51]. The authors proposed an ILS-based heuristic
to address the MDVSP and a greedy heuristic combined
with local searches to build an initial solution for the CSP.
In integration, these solutions are modified by changing
the trips’ allocation on vehicles to minimize the combined
objective function. The authors used instances proposed by
themselves in the tests. The largest instance considered had
712 trips and 4 depots.

Horviath and Kis [26] proposed a mathematical formulation
for the MDVCSP based on the model of Steinzen et al. [3].
Furthermore, they presented a branch-and-price procedure
to approach the problem exactly. This approach used an
efficient pricing method, some branching strategies, and a
simple primal heuristic. According to the authors, this was
the first work to propose an exact solution to the MDVCSP

VOLUME 9, 2021

E. M. L. Simdes et al.: Matheuristic Algorithm for Multiple-Depot Vehicle and CSP

IEEE Access

defined in [22]. The proposed approach was able to efficiently
solve only small instances, with 4 depots and 80 or 100 trips.
Optimal solutions were found for 4 of the 20 instances
considered and, for the others, the GAP of the solution found
was defined concerning the lower bound obtained. The GAP
was less than 0.5% for 7 instances.

Table 1 summarizes the approaches proposed to the
MDVCSP from the literature review and present work. This
table also describes the instances considered in the works’
computational experiments.

Table 1 shows that the literature applies different opti-
mization techniques to tackle the MDVCSP (mathematical
programming, evolutionary algorithms, metaheuristics, and
matheuristics). Our work proposes a matheuristic that com-
bines branch-and-bound and variable neighborhood descent
into an iterated local search-based framework to approach the
MDVCSP. To the best of our knowledge, we are the first to
address the largest instances from the benchmark instances
widely used in the literature. Regarding the run time, as the
instances’ size increases, our approach becomes substantially
less costly than the others from the literature. Furthermore,
we propose a model based on a time-space network for
the MDVSP that allows us to deal with the specifics of a
Brazilian real-world problem. We show that the proposed
algorithm can efficiently handle literature and real-world
instances.

Ill. PROBLEM DEFINITION

In the multiple-depot vehicle and crew scheduling problem
(MDVCSP), vehicle and crew schedules are defined simul-
taneously and must be mutually compatible. That is, the
workday of some crew must cover each operational activity
of a vehicle. Besides, we consider more than one depot
for fleet and labor management. Therefore, we must also
assign each vehicle and crew on the schedule to a single
depot.

The rest of this section presents the concepts involved in
defining the MDVCSP.

Timetable trips is the set of trips to be made daily by the
public bus transit company. In this table are the features of the
trips considered relevant for the operational planning, such
as start time of the trip, start point (which corresponds to the
place of the start of the trip), end time of the trip, and end
point (which refers to the point the trip ends).

Deadhead is each travel of a vehicle, which is not a
timetable trip. According to its operational itinerary, this
journey can be necessary to place a vehicle in an appropriate
local. For example, we have the vehicle’s travel to the starting
point of a trip or return to the depot at the end of the day. Thus
we must provide the deadhead times between the various
stopping points of the vehicles. We organized this information
in a structure called deadhead matrix.

Therefore, given a timetable and a deadhead matrix, the
vehicle scheduling problem (VSP) consists of determining
the operational routine for a vehicle fleet. The aim here is to

VOLUME 9, 2021

make the execution of all trips feasible and, at the same time,
to minimize the costs involved.

Vehicles itineraries are specified when addressing the
VSP. Each itinerary corresponds to the trips assigned to a
vehicle that can be carried out successively, without violating
the operational rules and time and space limitations. It is
noteworthy that, as long as it is feasible, a vehicle can return
to the depot more than once during its operating day. Thus, the
trips comprised between an exit/return sequence to the depot
constitute the so-called vehicle block. The cost of the vehicle
schedule includes fixed costs for each vehicle’s purchase
and variable costs for deadhead and waiting time outside the
depot.

In the context of public bus transport, a depot corresponds
to an installation for the management, maintenance, and
parking of vehicles when they are not in use (operation).
A depot can have an associated maximum capacity and type
of fleet. Furthermore, a depot is located at a known distance
from each trip’s start and end point. Regarding the number of
available depots, the vehicle scheduling problem (VSP) can
be classified into single-depot vehicle scheduling problem
(SDVSP) and multiple-depot vehicle scheduling problem
(MDVSP).

Whenever a vehicle is out of the depot, there must be a
crew responsible for it. Usually, a crew is composed of a
driver and a collector. Therefore, the crew scheduling problem
(CSP) consists of creating the workdays, so-called duties,
for the crews. These duties must ensure the feasibly of the
vehicle schedule. Besides, we must carry out this distribution
of work to minimize labor costs and, at the same time, comply
with labor legislation, collective labor agreements, and the
operational rules under which the company operates.

Therefore, to address the CSP, the vehicle itineraries from
a solution for the VSP are considered. We often observe
that a vehicle’s operational routine is not adequate to be
executed entirely by a single crew (for example, because of
its long duration). However, changing the crew responsible
for a vehicle cannot be done at any time. It will only occur
at so-called relief points, that is, at appropriate locations and
time intervals.

Whereas in the VSP, the manipulated unit is the trip, in the
CSP, it is the task. A task represents the smallest amount of
work that can be assigned to a crew. It includes consecutive
trips of the same vehicle and between which there is no relief
point.

In addition to the tasks, many studies propose the formation
of the so-called piece of work [3], [12], [13], [22]. Each
piece of work includes consecutive tasks for the same vehicle,
is limited by a minimum and a maximum duration, must be
fully assigned to the same crew, and does not include time
for rest/feeding of the crew. In this case, a duty consists of
combining pieces of work.

To meet legal and operational requirements, companies
usually define the types of duties that are valid. Some
characteristics that can be considered to specify the types
of duties are minimum/maximum working time, minimum

155901

E. M. L. Simdes et al.: Matheuristic Algorithm for Multiple-Depot Vehicle and CSP

IEEE Access

"pougisse oq Aew din) & yorym 03 s30dop Jo Jequnu o5eIsAL AT, 4,

‘wapqoad sty ut jodop Aue 03 pausisse 9q ued diy A1oay |

"wapqoid sty ut s30dop JO 39SqNS UTELISD B WOLY SIALIP PUE SI[OIYSA 0) PAUTISSE dq 0) daey sdLny dwog |
"901AI9s Jey)) 1o od£) o[qeyms jsow oy} 0 Jurpuodsariod ‘umouy st ad4) peyse33ns
oy dim yoea 10j pue ‘S9[OIYAA JO s} JUAISFIIP aTe 1Y) ‘drouoyim, ‘wo[qoid siy) ur Anp S[oym dy) SULIMpP J[OIYIA S[IUIS B PIUTISSE Aq ISNW JALP Y
‘[z2] ‘v 12 uewSINy JO WYILIOS[B UONBIQUAS SAoUBISUL AY) pasn yiog °[¢] v 12 uazulals§ pue [gz] v 12 uewsIny AQ pajeIouas SaduB)SUL Ay} SIpN[OU] g
"Jodap Aue WOIJ SI[OIY3A SALIP 0} MAIO USAIT € PaMO[[e [$7] sered pue e)mbsajy ‘sioyine 19430 iU
YIOMIUWEL) PISEQ-YOIeas [EI0] PAJRIDI UB OJUT JUIISIP POOYIOQYIIAU J[qRLILA PUE PUNOG-PUB-YOURI] SAUIQUIOD)

"ooud-pue-youelq .

"SOUIIBIS [BOO] YIIM PIUIGUIOD JISHINSY APISIS € pue dNSLINSY paseq-S7 ,,

"punog-pue-youeIq ‘uonexe[dI Juruwersord jeaur] Yirm UONBUIQUIOD UT UONERIAUAT UWN[0)) ¢
"UONJEXE[aT UBISURISE T YA UOBUIQUIOD UT UONEISUSS UWIN[Od PUE WIILIOS[E ATeUONN[0AS PHQAH
"UOIEXE[aI UBISUBISE] UM UONBUIQUIOD UI UONEISUST uwn[o))

syodap ¢ ‘sdim y¢6 zexg syodap ¥ ‘sdim 008 o] v 12 uvewsmy (ANA-99-ST OUSUNOY SIOM JUsaI]

- - s1odap 1 *sdin 001 [¢cl v 12 uewsmy «dd 1oexy [92] (6107) ST pue ypAloy

- - s1odap 1 *sdin z1L SOA[ISWA »S'TTHD-STTI OnUsLnoH (161 (8102) '1v 12 otoULI)

- - s1odop ¢ ‘sdin 09 glccl 1 4o uewsmy JT1-D0 JnsLnoH (STl (2T102) 17 12 1M1y

- - s1odop 1 ‘sdin o9 glTCl v 12 uRwWISINY AT-DD OnsLMoH (€] (0102) 17 12 uazZUIAG

- - s1odap 1 ‘sdin 00t el p o vewsiny - gg-YdT-D0 d0SUNRH [$¢] (8007) Sered pue eambsapy

s1odop ¢ ‘sdin 141 orAuetiIon s1odop ¢ ‘sdin 00f [zl 1v 12 uwewsiy A1-D0 onsunoy [€2] (8007) 1v 12 1oj10pUIOg

- - s1odap 1 ‘sdin 00T [ccl w2 uewsmy YT-DD-VA ONSHNOH [L2] (L00T) 1V 12 uazuINg
grdmpodap 71 *sdin €69 spuefIayIoN s1odop ¢ ‘sdin 00z SOA[ISWA} dT1-D0 JnsLnoH [zl (S007) v 12 urwISINY
s1odap g7 ‘sdin /67 R - - d1T-DD OnsLMoH [12] (6661) O1eUON puUE jen

palean) Qoueisul 3sa3Ie] WOl satuedwio)) — paleaI) QduBISUI 1SATIR] Aq pajeIouan yoroiddy adA],

SOOUB)ISUI PIOM-[BOY

Sadue)IsUl 2INjeIdI |

yoeoidde uonnjog OUAIRJY

‘dSONAIN Y} 10j MIIAI dInjeId)| Y} jJo Arewwing °| 37dVL

VOLUME 9, 2021

155902

E. M. L. Simdes et al.: Matheuristic Algorithm for Multiple-Depot Vehicle and CSP

IEEE Access

break length, maximum time of overtime, and time allowed

for the beginning and end of a duty.

Fig. 2 shows the itinerary of a vehicle and its decompo-
sition in a duty. The vehicle makes five trips and returns to
the depot once during its itinerary. Thus, it consists of two
vehicle blocks. The vehicle’s itinerary is decomposed into
four tasks as there are only two relief points, station C and
DEPOT. From these tasks, we created three feasible pieces
of work. We also define a crew’s duty, considering that a
feasible duty is formed by, at most, two pieces of work and
that there must be a break between them. Note that while
the vehicle is parked at the depot, the crew takes a break for
rest/feeding.

From the above, the MDVCSP approaches the MDVSP and
CSP problems simultaneously.

This work proposes a matheuristic capable of satisfac-
torily addressing real-world and large-scale instances for
the MDVCSP. These instances come from the public bus
transport system in the city of Belo Horizonte, MG. It is a
Brazilian city with the fourth largest fleet of buses in the
country.

The constraints considered in solving the problem are:

C1 - Each timetable trip can be serviced by any depot;

C2 - Each trip has exactly two relief points: one at the
beginning and one at the end of the trip. That is, each
trip of the vehicle is considered a task;

C3 - Each vehicle is assigned to a single depot and must
start and end your itinerary there;

C4 - Each crew is associated with a depot and can only
drive vehicles from it. Every duty does not need to start
and end in the depot. However, when they take place
outside the depot, these activities require additional
time for the crew to prepare;

C5 - The viability of a piece of work depends only on
its duration, which is limited by a minimum and a
maximum time;

C6 - During its itinerary, the vehicle will return to the depot
whenever the idle time between two consecutive trips
is sufficient to perform a round trip to the depot;

C7 - A crew can change vehicles (changeover), but only
during a rest/feeding break (that is, between pieces of
work);

C8 - The so-called continuous attendance is respected.
That is, always there is a crew responsible for a vehicle
that is outside the depot, regardless of whether it is
stationary or moving;

C9 - Each depot is unlimited concerning the number of
associated crews;

C10 - Each depot has a limited number of assigned vehicles;

C11 - If the rest/feeding interval of the crew occurs between
work shifts, the crew must end the first shift at the start
point of the second shift;

C12 - Each vehicle must remain in the depot for a min-
imum of time at the end of its daily operating
itinerary. This time is for cleaning and maintaining the
vehicle.

VOLUME 9, 2021

IV. MODELING APPROACH

A. A LITERATURE MODELING APPROACH

FOR THE MDVCSP

This section presents the mathematical formulation proposed
by Steinzen et al. [3] for the MDVCSP. It combines a multi-
commodity network flow formulation for vehicle scheduling
with a set partitioning formulation for crew scheduling.

To model the problem, Steinzen et al. [3] consider the
same constraints presented in Section III, except constraints
C11 and C12. Regarding constraint C11, they consider that
there may be a change of point in a rest/feeding interval, but
there must be enough time for the crew to comply with the
rest time and walk between these locations. About constraint
C12, there is no limitation on a vehicle’s itinerary duration.

1) TIME-SPACE NETWORK FOR THE MDVSP

In a time-space network for the MDVSP each node represents
a location in a given instant; each arc corresponds to a
transition in time and, possibly, in space. For each vehicle
stopping point (station or depot), we define an imaginary
timeline with nodes representing the departure and arrival
events at this point. In the timeline, the nodes are increasingly
ordered by the instant they represent.

We associate a network layer with each depot of the
problem. Fig. 3 illustrates a network layer with three stations
(A, B, and C), five trips, and the respective depot. In this
example, the planning horizon is from 6:00 am to 12:00 pm.
The types of arcs present in the network are:

1) trip arc: arc associated with a trip. It connects the
departure node (station and start time of the trip) to the
arrival node (station and end time of the trip);

2) pull-out/pull-in arcs: a pull-out arc connects a node in
the depot to the starting node of a trip and represents the
deadhead from the depot to the start station of the trip. A
pull-in arc connects the arrival node of a trip to a node
in the depot and represents the deadhead from the end
station of the trip to the depot;

3) waiting arc: connects consecutive nodes on the point’s
timeline and corresponds to waiting at the point.
We eliminate waiting arcs from the network that
represents long durations in the stations. Note that in
Fig. 3, for example, there is no waiting arc in station C
connecting the trips 74 and #5. This simplification is made
possible by the constraint C6 of Section III, initially
proposed by Huisman et al. [22] to address a problem
in the literature;

4) deadhead arc: connects the arrival node of a trip to a
departure node in another station where there are trips
compatible with that trip. Therefore, this arc represents a
deadhead between compatible trips. In Fig. 3, to execute
trips #, and t3 consecutively, a vehicle needs to make a
deadhead from station A to station B. On the other hand,
to execute trip #4 just after #, the vehicle needs to make
the same previous deadhead and must remain to wait in
station B;

155903

IEEE Access

E. M. L. Simdes et al.: Matheuristic Algorithm for Multiple-Depot Vehicle and CSP

| vehicle itinerary |

I vehicle block 1 | t vehicle block 2 I
| 1 | 1
5 5 2
{ BRI 3
25 m m
() () [an]
| | | | |
! task 1 task2 ! task 3 ! J task 4 !
| | | | |
! piece of work 1 : piece of work 2 : ! piece of work 3 !
| |
! crew duty !
. Deadhead from/to depot Trip fromXto Y |:| Waiting time
|:| Deadhead between points Relief points: C and DEPOT
FIGURE 2. Example of vehicle itinerary and its crew duty.
6 am 7am 8am 9am 10 am 11 am 12 am
Time
Station A
Space
Station B 4 Arcs
— Trip
------------ » Pull-out/in
Station C i § i
; : Waiting
- - -+ Deadhead
— — » Circulation
Depot Q oo 0 0 ‘ ‘ '0 0 }

FIGURE 3. Time-space network layer for the MDVSP.

5) circulation arc: connects the last node (sink) to the first
node (source) in the depot timeline. This arc allows flow
circulation in the network. Each flow unit in the circu-
lation arc corresponds to a vehicle used in the schedule.

To the best of our knowledge, the formulations proposed
in the literature for the MDVCSP represent the associated
MDVSP in two ways: 1- connection-based network, ini-
tially proposed by Huisman ef al. [22]; or 2— time-space
network [3], as presented above.

In a connection-based network, we have an arc between
each pair of compatible trips. On the other hand, many of
these connections are considered only implicitly in the time-
space network. In Fig. 3, for example, the trips #; and 74 are
compatible since it is possible to traverse different types of
arcs from t, and arrive at 4.

155904

As shown in [16] and [3], in the time-space network the
amount of deadhead arcs is much less than in the connection-
based network. This fact has a substantial impact on the
number of variables and constraints of the model for the
MDVSP. So, we choose to use the time-space network to
formulate the vehicle scheduling in this work.

For a detailed description about building time-space
networks, see Kliewer et al. [16] and Steinzen [52].

2) MATHEMATICAL FORMULATIONS FOR THE

MDVSP AND MDVCSP

Let T = {1,2,...,m}, the set of all m timetable trips and
D {1,2,...,n}, the set of n depots. For each depot
d € D there is an acyclic time-space network layer G¢
(Nd,Ad), where N is the set of nodes and A? is the set

VOLUME 9, 2021

E. M. L. Simdes et al.: Matheuristic Algorithm for Multiple-Depot Vehicle and CSP

IEEE Access

of arcs. We denote A4 C A4 , the set of arcs that represent
activities that involve the joint participation of vehicle and
crew. So, A4 does not include the waiting arcs in the
depots, according to the continuous attendance requirement
(Section III, constraint C8). Let A%(7) : T — A< the function
that returns a set with precisely one trip arc, (i,j) € A%,
associated with the trip# € T, if t can be assigned to the depot
d € D. Otherwise, we have an empty set. The maximum
capacity ul‘f of each arc (i,j) € A4 ¥d € D, is defined as
follows: pull-out/in and trip arcs have a maximum capacity
of 1; all other arcs have a maximum capacity equal to the
number of vehicles available in the depot d € D. Each arc
@i,)) € A4 has an associated cost cf. In circulation arcs, cg.
represents the cost of purchasing a vehicle. In the other arcs,
cz. is the operating cost. Let K¢ be the set of duties associated
with the depot d € D. K 4@, j) c K% is the set of duties
associated with the depot d that covers the (i, j) € A arc. fkd
refers to the cost of the duty k € K¢ and involves fixed and
working time crew costs.

Be the following types of decision variables:

o yﬁ: indicates the flow associated with the arc (i, j) € Ad,

d € D (flow variable);
o x,f: determines whether the duty k € K d deD,is part
of the schedule (binary variable).

The model proposed by Steinzen et al. [3] for the

MDVCSP is presented below.

min >, > e+, D M

deD (i,j)eAd deD keKd

LY Y V=1 vrer)

deD (i,j)eAd(r)

2. Y-

Y =0 VdeD, VieN?

{i:G.heA} {i:G.peAd}
(3)
Z x{ =y =0 VdeD, V(i.jeA? 4)
keKd(i.j)
0<yj<uf, yieN VdeD, Vi j)eA? (5)
x €{0,1} Vd e D, Vk e K9, (6)

The objective is to minimize the cost of vehicle and crew
schedules (1). Constraints (2) ensure that each timetable trip
will be assigned to precisely one vehicle from one of the
depots that can serve it. In constraints (3), flow conservation
at the nodes is ensured for each network layer (depot).
Constraints (4) guarantee that, for each depot, there will
be the same number of vehicles and crews covering each
activity (arc) that requires the association of a vehicle and a
crew. Constraints (5) ensure that the maximum capacities of
the flow variables are respected.

In the formulation for MDVCSP (1)—(6), considering only
the portion of the objective function associated with vehicle
schedule (3_,cp D i jead yl’?]l-cl’?jl.) and the constraints (2), (3),
and (5), we get a formulation for the MDVSP. This
formulation was proposed in [16].

VOLUME 9, 2021

N tZ
Station B o]

\
\f22

\
X
f1

FIGURE 4. Flow decomposition possibilities.

—— Trip
Waiting

- - » Deadhead

f: flow units

Station C

In this formulation, an optimal solution (flow) represents
a set of optimum vehicle schedules due to the aggregation of
connections in the time-space network specification. Fig. 4
illustrates this situation in a small portion of the network and
its optimal flow. There are two different ways to sequence
trips #1, t2, 13, and t4 on the itineraries of two vehicles,
they are: #; — t3 (vehicle 1) and #, — #4 (vehicle 2) or
t1 — t4 (vehicle 1) and , — 3 (vehicle 2). Thus, we use a
flow decomposition procedure to obtain a specific vehicle
schedule. There are different strategies for defining paths
in the time-space network with the optimal flow. Each path
from the source node to the sink node in the depot timeline
represents a vehicle itinerary.

B. PROPOSED MODELING APPROACH FOR THE MDVSP
AND MDVCSP

In this section, we discuss our network structure and
mathematical formulation for the MDVSP that considers the
particularities of the Brazilian real-world problem addressed
in the present work. That is, this modeling approach meets
the assumptions and constraints stated in Section III. As we
will describe later, our MDVCSP resolution heuristic uses
this model to generate an initial vehicle schedule.

1) PROPOSED TIME-SPACE NETWORK FOR MDVSP

The formulation for the MDVSP presented in Section IV-A2
is consistent and efficient for solving instances widely used in
the literature, as the ones proposed by Huisman et al. [22] and
Steinzen et al. [3]. However, it is not adequate to represent
the Brazilian real-world problem that we have addressed in
this work.

In the instances from literature, trips always start from 6 am
and end before 1 am. Thus, in the 24 hours period, there is an
interval of more than 5 hours in which no trip is performed.
However, in the Brazilian real-world instances that we
consider, there are timetable trips distributed throughout the
day. There is even an extrapolation of the 24-hour operating
period. In this sense, some trips start at the end of a day
and end in the early hours of the next day; other trips start
in the day’s first moments. Besides, the public transport
management company requires that every vehicle remains in
the depot for a minimum time at the end of its daily itinerary.
This time is used for cleaning and overhauling the vehicle.

Fig. 5 illustrates the timeline of a depot for a Brazilian
real-world instance. Shaded nodes are associated with

155905

IEEE Access

E. M. L. Simdes et al.: Matheuristic Algorithm for Multiple-Depot Vehicle and CSP

Time (24 hour clock)

_
0:24 0:26 0:27 0:28 0:29 0:30 0:31 23:52 23:53 23:54 23:56 23:59

Depot ° o o . 0 o @ e —+0—q °

X X 7
~ -
—— ~\ e ——— /
- 7~
~ -
-
Waiting arc S~ ——

— —» Circulation arc
® Node of pull-out arc
O Node of pull-in arc

————_—

FIGURE 5. Circulation arcs of the timeline of a depot in a Brazilian real-world problem.

pull-out arcs (depot exit) and non-filled nodes with pull-
in arcs (depot arrival). This example requires that the
itinerary of any vehicle lasts a maximum of 23 hours and
30 minutes.

Suppose a single circulation arc in Fig. 5 connects the last
node in the depot’s timeline to the first one. In that case,
we could define itineraries that are longer than acceptable.
So we created more than one circulation arc. Each arc will
represent a valid operating period (shift) for the vehicles in
this depot.

By definition and without loss of generality, we can
consider that a circulation arc must always connect a node
of an arc pull-in (arrival at the depot) to a node of an arc
pull-out (exit of the depot). Thus, below we detail how the
circulation arcs are created. We go through the depot timeline
iteratively (node by node) and from right to left, as follows:
at each node of a pull-in arc reached (origin of the circulation
arc), we search for the node of a pull-out arc (destination of
the circulation arc). We chose this second node in such a way
as to define the longest feasible operating period possible.
When selecting the destination node of the circulation arc,
two situations can occur:

1) There is already a circulation arc arriving at this node.
So, we did not create a new circulation arc;

2) There is no circulation arc with a destination at this node.
So, we created a new circulation arc. If the target node of
this arc is the first node in the depot timeline, we finish
the arc definition process.

At the end of this procedure, all nodes in the depot will
be covered, i.e., they will belong to one or more operating
periods.

In our representation of the MDVSP, we must maintain
a circulation arc per network layer. Therefore, each layer
will be associated with the depot-operating period feasible
combination; and it will only represent trips that can be
carried out in the depot and period considered. In Fig. 6,
we break down the network layer of a depot with two
circulation arcs in Fig. 6a (inconsistent representation) into

155906

two network layers in Figs. 6b and 6c¢. Therefore, in general,
the timeline of a depot with w circulation arcs will give rise
to w layers of the time-space network.

In the following, we discuss the complexity of the proposed
network structure. Let m be the number of timetable trips,
p the number of different stations, and ¢ the number of
network layers (depot-operating period combinations). Thus,
the number of deadhead arcs in a network layer is O(mp)
because one deadhead arc connects a trip with all subsequent
trips at a different station. On the other hand, the number of
waiting arcs, pull-out/pull-in arcs, or trip arcs grows linearly
with the number of trips in a network layer. Finally, there
is one circulation arc in a network layer. Therefore, the
number of arcs in the time-space network is O(¢mp). Note
that this number of arcs determines the number of variables
of the proposed mathematical formulation for the MDVSP,
as shown in the next section.

2) PROPOSED MATHEMATICAL FORMULATIONS FOR THE
MDVSP AND MDVCSP

The formulation we propose for the MDVSP is presented
below (7)—(11).

Let T = {1,2,...,m} be the set of all m timetable
trips and D = {1, 2, ..., n} the set of n depots. From the
depots in D we define A = {1,2,...,¢}, the set of all
possible depot-operating period combinations. Each feasible
operating period is defined by a circulation arc. For each
depot-period § € A we have an acyclic time-space network
layer G = (N‘S, A‘S), where: N¢ is the set of nodes and A® the
set of arcs. Let A%(t) : T — A°® be the function that returns
a set with exactly one trip arc, (i,j) € A%, associated with
the trip t € T, if ¢ can be covered by the depot and operating
period given by § € A. Otherwise, we have an empty set.

Let A4 be the set of depot-period combinations in which
the depot involved is d € D. F? is the set formed by the
circulation arc associated with the depot-period § € A. cap?
refers to the capacity of the depot d € D concerning the
number of vehicles.

VOLUME 9, 2021

E. M. L. Simdes et al.: Matheuristic Algorithm for Multiple-Depot Vehicle and CSP

IEEE Access

Time

Space

Arcs

— Trip

........ » Pull-out/in
Waiting

- -+ Deadhead

— —» Circulation

-~

——
Period 2

(a) Network layer of a depot with two circulation arcs.

Station A
A
\
t, AN
A
Station B !
t;
Station C
Depot .o . o'o
‘\ ~ N o
— e S
Period 1 T —
Station A .
A
\
2\ 2
A\
Station B ! :
Station C _'
Depot s e PEN, | .
LN - // 7
_P»,TIUE 1

(b) Network layer with only the circulation arc of period 1.

FIGURE 6. Definition of one network layer for each depot-period.

Each arc (i, j) € A® has an associated cost cz In circulation
arcs, cfj represents the cost of purchasing a vehicle. In the
other arcs, c?j is the operating cost. Finally, we have the
decision variable y?j which indicates the flow associated with
the arc (i, j) € A%, 8 € A.

min Y Y e, 7

€A (ij)eAd

LY > =1 VteT

S€A (i,)eAd ()

Z y]('si -

{j:G.heAs)

®)

> =0 VseA, VieN’®
UxhﬁeAa}

9
Z Z yg- < capd Yd € D (10)
seAd (i,j)eF?
Yo eZT VoeA, Vij) €A (11)

VOLUME 9, 2021

Station A
ts
Station B
Station C
Depot ¢ e - e . }
~ - - >

Period 2

(c) Network layer with only the circulation arc of period 2.

The objective is to minimize the cost of vehicle sched-
ule (7). The constraints (8) ensure that each timetable trip
will be assigned to precisely one vehicle. This vehicle must
be linked to a depot-operating period combination that is
compatible with the trip. In (9) we have the flow conservation
constraints at the nodes of each network layer (depot-period).
The constraints (10) ensure that the capacity of each depot,
in relation to the number of vehicles, is respected. The
constraints (8)—(11) implicitly establish an upper limit for

the value of each flow variable yg.. Let uf] be the upper limit
for (i,j) € A% and § € A, we have: ui
and pull-in/out arcs. In addition, u?‘ depends on the depot
capacity associated with §. That is, the sum of the flows of
the circulation arcs of a depot cannot exceed the capacity of
the depot; and the flow in any arc in a network layer cannot
be greater than the flow of your circulation arc.

This formulation can be combined with the set partitioning
formulation for the CSP of Section IV-A2. Thus, we obtain a

formulation for the MDVCSP.

1, for trip

155907

IEEE Access

E. M. L. Simdes et al.: Matheuristic Algorithm for Multiple-Depot Vehicle and CSP

D1
Vehicle A

H Trip 5 H Trip 8 HTrip9‘

D2
Vehicle B

D1
Vehicle C

—" Trip 3

Two depots: D1 and D2

FIGURE 7. Example of a solution sV for the MDVSP.

V. SOLUTION APPROACH

Given the difficulty of solving real-world instances of the
MDVCSP using exact mathematical methods, we propose a
matheuristic algorithm for solving it. This matheuristic algo-
rithm combines two strategies into an ILS-based framework:
a branch-and-bound algorithm for solving the MDVSP and a
VND-based algorithm for treating the associated CSPs.

We generate an initial solution for the MDVCSP address-
ing its subproblems, MDVSP and CSP, sequentially. Initially,
we solve the MDVSP in optimality. Then, from its solution
with n depots (n > 2), we generate n independent CSPs,
that is, one CSP per depot. Each CSP is solved separately
by a VND-based heuristic method. Note that it does not
make sense to solve a single CSP considering all depots
simultaneously because, according to constraints C4 of
Section III, each crew can only drive vehicles from the same
depot.

Next, we describe how to represent the MDVSP, CSP, and
MDVCSP in Section V-A. In Section V-B, we present the
neighborhood structures used to explore the solution space
of these problems. In Section V-C, we define the evaluation
functions to vehicle and crew schedules. Section V-D
presents the proposed matheuristic algorithm for solving the
MDVCSP. Section V-E describes heuristic algorithms to treat
the CSP exclusively, which we use as auxiliary methods to
solve the MDVCSP in Section V-D.

A. SOLUTION REPRESENTATION

1) SOLUTION REPRESENTATION FOR THE MDVSP

A solution s” for the MDVSP consists of a list of vehicles.
In turn, for each vehicle, we associate its depot and the list
of trips that it will perform during a working day. Fig. 7
illustrates a solution s” for the MDVSP in which a fleet of
three vehicles, distributed over two depots, must perform ten
trips.

In this representation, we organize the trips made by each
vehicle according to their start times. Thus, it is possible to
evaluate the vehicle’s operational itinerary in several aspects,
such as the locomotion time out of operation (deadhead), the
waiting time at the station between two consecutive trips, the
number of returns to the depot, and the viability of the vehicle
block.

2) SOLUTION REPRESENTATION FOR THE CSP
A solution s¢ for the CSP consists of a list of duties. Each
duty associates the pieces of work to be performed by the

155908

Duty A Piece of work 1 Piece of work 3
Duty B 4'(Piece of work 2 ‘
Duty C J} Piece of work 4

FIGURE 8. Example of a solution s¢ for the CSP.

same crew during a working day. Fig. 8 illustrates a solution
s¢ for the CSP. In this example, there is a depot with three
duties and four pieces of work assigned.

We keep the pieces of work for each day on a list and
sort them in ascending order by their start times. In this way,
it is possible to determine the day’s relevant characteristics,
such as time reserved for rest/food, the occurrence of vehicle
change, and the existence of an overlap between tasks.

3) SOLUTION REPRESENTATION FOR THE MDVCSP

We represent a solution S for the MDVCSP by a pair S =
[sV, S¢], where s” represents the solution to the MDVSP and
S¢ represents the solution set of the n CSPs associated to each
solution s”. Both representations were previously described
and illustrated in Sections V-A1 and V-A2, respectively.

Let s¥ be a solution for the MDVSP, sf a solution for the
CSP associated with the i-th depot, and n the number of
depots. Then, we define S¢ as a set of n solutions, one for
each of the n CSPs obtained from s, that is:

Scz{si,sg,...,SZ}. (12)

As some depots may be inactive (i.e., without linked
vehicles) in a solution for the MDVSP, some solutions sl? into
the set S¢ may be empty (i.e., without duties).

B. NEIGHBORHOOD STRUCTURES

1) MDVSP NEIGHBORHOOD STRUCTURES

We apply the six types of moves described below to
explore the MDVSP solution space. Each move defines a
neighborhood structure. Fig. 9 illustrates all of them.

1) Trip relocate without depot adjustment (Neighborhood
structure N)Y): It consists of reallocating a trip without
allowing changing depots. Fig. 9b illustrates this move.
A trip is transferred from one vehicle to another one, and
the depots of the vehicles involved are maintained;

2) Trip relocate with depot adjustment (Neighborhood
structure N},): It consists of reallocating a trip allowing
changing depots. In Fig. 9c, a trip is transferred from
one vehicle to another one. This transfer seeks to assign
each modified vehicle to the depot that implies the
lowest operating cost considering the new itinerary
configuration;

3) Trip exchange without depot adjustment (Neighborhood
structure N}): This move consists of exchanging trips
between two vehicles, not allowing changing their
depots. Fig. 9d shows how it works. A vehicle exchanges

VOLUME 9, 2021

E. M. L. Simdes et al.: Matheuristic Algorithm for Multiple-Depot Vehicle and CSP

IEEE Access

D1

Vehicle A — Trip 1

Trip 4

Trip 7

D2
Vehicle B

Trip 2

Trip 6

Trip 10

(a) Initial MDVSP solution.

D1
D2
Vehicle B 4’(Trip 2 H Trip 4 H Trip 6 H Trip 10 ‘

(b) Move 1 - Relocates the Trip 4 of Vehicle A to Vehicle B.

D1
Vehicle A

4" Trip 2 H Trip 4 H
Trip 6 H Trip 10 ‘

(d) Move 3 - Exchange of Trip 1 of Vehicle A with Trip 2 of Vehicle B.

Trip 7 ‘

D2
Vehicle B

D2

Vehicle A —-‘ Trip 2 H Trip 4 H Trip 7 H Trip 10 ‘
D2

(f) Move 5 - Redistributes the trips of the A and B vehicles and makes depot
adjustments.

FIGURE 9. MDVSP moves.

one of its trips with a trip of another vehicle, and the
depots of the vehicles involved are maintained;

4) Trip exchange with depot adjustment (Neighborhood
structure N,,): This move consists of exchanging trips
between two vehicles allowing them to change their
depots. Fig. 9e illustrates its operation. A vehicle
exchanges one of its trips with a trip from another vehi-
cle. In this exchange, we seek to assign each modified
vehicle to the depot that implies the lowest operating
cost considering the new itinerary configuration;

5) Trip redistribution (Neighborhood structure N);,): This
move consists of redistributing the trips of two vehicles
allowing them to change their depots. Fig. 9f) shows the
application of this move. Two vehicles have all their trips
removed. These trips are then randomly redistributed to
each other. Finally, we seek to assign each vehicle to the
depot that implies the lowest operating cost considering
the new itinerary configuration;

6) Depot change (Neighborhood structure N ;) It consists
of changing the depot linked to a vehicle. Fig. 9g
shows a neighbor in which vehicle B changes from
depot D2 to D1.

We emphasize that in the relocation, exchange, and redis-
tribution moves, the vehicles involved should not necessarily
belong to the same depot. Besides, we apply only those moves
that maintain the feasibility of the solution.

VOLUME 9, 2021

D1
D1
Vehicle B —-‘ Trip 2 H Trip 4 H Trip 6 H Trip 10 ‘

(¢) Move 2 - Equal Fig. 9b and makes depot adjustments.

D2

Vehicle A —-(Trip 2 H Trip 4 H Trip 7 ‘
D1
Vehicle B Trip 6 H Trip 10 ‘

(e) Move 4 - Equal Fig. 9d and makes depot adjustments.

D1
Vehicle A

"‘ Trip 1 }—’{ Trip 4 H

Trip 7 ‘

D1
Vehicle B

(g) Move 6 - Vehicle B depot change from D2 to D1.

2) CSP NEIGHBORHOOD STRUCTURES

We use two types of moves to explore the CSP solution
space: relocate a piece of work and exchange pieces of
work. These moves are illustrated in Fig. 10 and are
described below, together with the associated neighborhood
structures.

1) Relocate piece of work (Neighborhood Structure NY):
It consists of reallocating one piece of work from one
duty to another duty. Fig. 10b illustrates this move.
A piece of work is transferred from one duty to
another;

2) Exchange pieces of work (Neighborhood Structure Ny):
This move consists of exchanging pieces of work
between two duties. Fig. 10c shows how it works. One
piece of work belonging to a duty is exchanged with a
piece of work from another duty.

In these moves, the manipulated duties belong to the same
depot since there is an independent CSP per depot. Besides,
we only carry out movements that maintain the viability of
the s¢ solution.

C. EVALUATING FUNCTION

To determine the quality of a solution S** = [s¥, §¢] for
the MDVCSP, we associate a cost with vehicle and crew
schedules.

155909

IEEE Access

E. M. L. Simdes et al.: Matheuristic Algorithm for Multiple-Depot Vehicle and CSP

Piece of work 3

Piece of work 4

Duty A —* Piece of work 1
Duty B Piece of work 2
Duty C

(a) Initial CSP solution.

Duty A Piece of work 1 Piece of work 3
Duty B 4% Piece of work 2 Piece of work 4
Duty C

(b) Move 1 - Relocates the Piece of work 4 from Duty C to Duty B.
FIGURE 10. CSP moves.

We evaluate a solution s¥ for the MDVSP based on the
following function £V (13), which should be minimized:

fY(s") = totalVehicles x vehicleCost
(13)

+ operationTime x operationalCost,

where:

(a) totalVehicles is the number of vehicles used on the
vehicle schedule;

(b) vehicleCost is the vehicle cost;

(c) operationTime is the total time, in minutes, that the
vehicles in the fleet were out of the depot (regardless of
the activities carried out during this period, which may
include: trip, deadhead, or waiting at the station);

(d) operationalCost is the cost per minute due to a vehicle
staying outside its depot.

In turn, we calculate the cost of a solution s¢ for the CSP
using the function ¢, as shown below in (14):

fE(s9) = totalCrews x crewCost

+ totalWorkingTime x workingTimeCost, (14)

where:

(a) totalCrews is the number of crews on the schedule;

(b) crewCost is the cost of each crew;

(c) totalWorkingTime is the total working time, in minutes,
of all crews on the schedule. That is, we consider the
total duration of each duty, including the mandatory rest
time;

(d) workingTimeCost is the cost of each minute of work for
one crew.

It is worth noting that §* = [s",8°] and §¢ =
{si, 55, ...,sﬁ} for n depots. In this sense, the cost of a

155910

Duty A 4" Piece of work 2 H Piece of work 3 ’
Duty B Piece of work 1
Duty C Piece of work 4

(¢) Move 2 - Exchange of Piece of work 1 of Duty A with Piece of work 2 of
Duty B.

solution S for MDVCSP is evaluated according to (15):

LS = £+ Y fs,

i=1

15)

where fV(s") and f(s{) are the functions that evaluate the
solutions s¥ and S¢ for the MDVSP and CSP, respectively.
There is no cost for infeasibility since the solution S*¢ is kept
feasible throughout the solution methods.

D. MATHEURISTIC ALGORITHM FOR THE MDVCSP

The matheuristic algorithm ILS-MDVCSP proposed for
solving the MDVCSP combines an exact method with a
heuristic method into an ILS-based framework [33]. It solves
the MDVSP optimally using a branch-and-bound algorithm.
A constructive procedure and a VND-based local search
procedure [34] generate the solutions of the associated CSPs.
Finally, the ILS-MDVCSP iteratively modifies the integrated
solution through perturbations and performs a VND-based
local search on the CSPs that have been changed.

The ILS-MDVCSP is described in Algorithm 1. Initially,
we generate a solution s” for the MDVSP (line 8). For
that, an integer linear programming (ILP) optimization solver
solves the problem from one of the formulations presented in
the Sections IV-A2 and IV-B2. The choice of the formulation
depends on the MDVSP specifically addressed, that is, the
MDVSP as defined in the literature or the Brazilian real-
world problem addressed in this work.

As each depot considered in the MDVSP generates a crew
scheduling problem, in line 9 we define the set of solutions
S¢. For a problem with n depots, S¢ contains n crew schedules.
This procedure is detailed in Algorithm 2.

In Algorithm 2, the itinerary of each vehicle of the solution
s is partitioned into pieces of work to form the set P

VOLUME 9, 2021

E. M. L. Simdes et al.: Matheuristic Algorithm for Multiple-Depot Vehicle and CSP

IEEE Access

(line 4). Subsection V-El describes the two partitioning
methods used: direct and inverse. For each vehicle in the
schedule, we randomly choose one of these procedures. Then,
we separate the pieces of work obtained by the depot (line 5).
Thus, we generate n sets of pieces of work. When no vehicles
are assigned to some available depots, some of them may
be empty. In this way, there will be n CSPs to solve at
most. At each iteration (lines from 8 to 12), a solution sf
for the CSP associated with the i-th depot is obtained and
added to the solution set S¢. For that, we consecutively
invoke the constructive procedure described in Algorithm 7
(Subsection V-E3) and the local search procedure based
on the basic variable neighborhood descent (B-VND) [34]
described in Algorithm 8 (Subsection V-E4).

We form a complete solution for the MDVCSP (S}°) in
line 10 of Algorithm 1. Then, we execute the procedures
described in lines 12 to 14 as long as the maximum processing
time (time,,,,) has not been reached.

Algorithm 3 describes the perturbation method. In this
method, a perturbation of a certain level begins with
applying random movements in the solution s” for the
MDVSP (line 4).

We applied six levels of perturbations based on the moves
defined in Subsection V-B1, namely:

1) level I: one depot change move,

2) level 2: one trip relocation move,

3) level 3: one trip exchange move,

4) level 4: one trip redistribution move,
5) level 5: two trips exchange moves,

6) level 6: two trips redistribution moves.

As the perturbation level increases, the search procedure
gradually moves away from the current solution towards other
regions that have not yet been explored in the problem’s
solution space.

When carrying out the relocate and exchange moves
of trips, we randomly chose between two possibilities: 1)
maintaining the depots of the vehicles involved (neighbor-
hood structures N and N,) and 2) inserting the modified
vehicles in the depots that generate lower cost (neighborhood
structures N, and N ;).

Any change in the MDVSP solution (s¥) causes changes to
the CSP solutions (S€). So, for vehicle and crew schedules
to be kept individually feasible and mutually compatible,
the pieces of work of the vehicles that have been modified
must be rebuilt. For this, we randomly choose one of the
partitioning methods defined in Subsection V-E1 (direct or
inverse) for each vehicle. In this process, we must remove the
pieces of work that no longer exist from the crews to which we
assign them. We also need to assign each new piece of work to
a crew of the schedule. Thus, the pieces of work removed and
created are separated by depot (lines 5 and 6, respectively).
Pieces of work are excluded from the CSP solution directly.
To do it, we have only to find the crews responsible for
these pieces (line 10). In lines 13 to 15, each new piece
of work is inserted into the schedule using the heuristic
procedure described in Algorithm 6 (Subsection V-E2).

VOLUME 9, 2021

Due to the construction process, in set C;, each vehicle’s
pieces of work are arranged sequentially. However, we can
also sort this set by the start time of the pieces of work. Then,
the parameter sortPieces_pert defines the order of the pieces
of work in the set C; (line 11).

From this perturbed solution for the MDVCSP, we apply
the LocalSearch method (line 13 from ILS-MDVCSP algo-
rithm). According to Algorithm 4, we apply a VND-based
local search (Algorithm 8, Subsection V-E4) for solving each
CSP that has been modified. In this step, the vehicle schedule
is not changed.

Finally, we evaluate the new solution obtained at line 14
of the ILS-MDVCSP algorithm. According to Algorithm 5,
we accept the new solution SY¢ (vehicle and crew schedules)
only if it has a cost less than or equal to the cost of the
current solution S;°. In this case, we restart the perturbation
level to intensify the search in this current region. Otherwise,
we increase the perturbation level by one unit to move away
from the current region or restart it if it is already at the highest
perturbation level.

Algorithm 1: ILS-MDVCSP

Data: T, the set of the timetable trips.

Data: n, the number of depots of the problem.

Data: /,,,,, the maximum level of perturbation.

Data: time,,,,, the maximum processing time.
Result: S}°, the best solution found for the MDVCSP.

L7 I N S

6 time < 0 // the current processing time
of the algorithm

71« 1// the current level of
perturbation

8 sV <« solver(T, n)

9 S¢ « initialSolutions_CSPs(s",n) // See
Algorithm 2

10 S} « [sV,8°1// The complete solution S)°
for the MDVCSP consists of the
solution §' for the MDVSP and the
set §¢ of solutions for the n CSPs

11 while time < time,,, do

12 S1¢ < perturbation(S}°,1) // See
Algorithm 3

13 §y¢ < localSearch(S{°) // See Algorithm 4

14 [8y¢, 1] <= acceptanceCriterion(S;°, S, I, lnax)
// See Algorithm 5

E. HEURISTIC METHODS FOR THE CSP

In this section, we present the heuristic procedures developed
to address the CSP. These procedures consider that the vehicle
schedule of an MDVSP depot is known. We apply them to
solve the MDVCSP described in Section V-D.

155911

IEEE Access

E. M. L. Simdes et al.: Matheuristic Algorithm for Multiple-Depot Vehicle and CSP

Algorithm 2: initialSolutions_CSPs

Algorithm 3: perturbation

1 Data: s, a solution for the MDVSP.
2 Data: n, the number of depots of the problem.
3 Result: S¢, the set of solutions for the n CSPs.

4 Let P be the set of pieces of work obtained from s"

s Let {Py, P2, ..., P,}, where P; is the set of pieces of
work associated with the i-th depot and P; C P

6 SC <~ {}
7 fori < 1tondo

8 Let s¢ be an initially empty solution for the CSP
associated with the i-th depot

9 if P; # () then

10 s¢ < P;// as described in
Subsection V-E3, Algorithm 7

11 s¢ <~ VND_CSP(s{) // as described in
Subsection V-E4, Algorithm 8

i

2 | S <« Scu{ss}

In Subsection V-E1, we show how to split the vehicle
schedule into pieces of work. Then, in Subsection V-E2,
we present the heuristic procedure for adding a new
piece of work to a partial solution for the CSP. Finally,
in Subsections V-E3 and V-E4, we detail the heuristic
procedures for generating an initial solution and local search
for the CSP.

1) HEURISTIC METHODS FOR GENERATING THE PIECES OF
WORK

To solve the CSP, we first split the vehicle itineraries
originated from an MDVSP solution into pieces of work.

To exemplify this operation, assume that:
« All start and end trip points are also relief points. That

is, each vehicle trip is a task;
o The minimum and maximum durations of a piece of

work are, respectively, 30 minutes and 5 hours.

Table 2 shows a vehicle’s itinerary split into three pieces of
work. On the left is the vehicle itinerary and, on the right, the
pieces of work formed (Piece 1, Piece 2, Piece 3).

‘We note that a crew is responsible for a vehicle throughout
its working day. This responsibility includes:

1) the trips themselves attributed to the vehicle,

2) the moves for positioning the vehicle in the appropriate
places (i.e., the so-called deadheads),

3) the waiting time at the stations to wait for the next trip
to start.

Thus, the following attributes are associated with each
piece of work:

o Expanded start time: Piece of work start time;
« Expanded start point: Location where the piece of work
starts;

155912

1 Data: §'¢ = [s”, §¢], a solution for the MDVCSP. 5" is
the solution for the MDVSP and
§¢ = {s{. 55, ..., 55} is the set of solutions for the
n CSPs (for a problem with n depots).

2 Data: [, the level of perturbation.

3 Result: S} = [s5, §5], the solution perturbed.

4 s < perturb(s*,)

5 Let {Ry, Ry, ..., R,}, where R; is the set of pieces of
work removed from the i-th depot, that is, the pieces
associated with s¥ and not associated with sg

6 Let {Cy, Ca, ..., Cy}, where C; is the set of pieces of
work created in the i-th depot, that is, the pieces
associated with sg and not associated with sV

7 Sg <~ ¥ // the new set of solutions for
the n CSPs

8 fori < 1tondo
9 Let sy € §¢
10 s < SE\R;

11 piecesOrder(C;, sortPieces_pert) // Defines
the pieces’ order in C;

12 while C; # () do

13 Let p be the first piece of work from C;
14 Ci <~ G\ {p}
15 s{ < s7U{p} // as described in

Subsection V-E2,
16 85« 85U {ss}

i

Algorithm 6

17 8¢ « [SE,SS] // perturbed solution for
the MDVCSP

« Expanded end time: Piece of work end time;

o Expanded end point: Location where the piece of work
ends;

o Duration: Duration of the piece of work.

In Table 2, Piece 1 starts at 7:53 am in depot G1, ends at
11:34 am at point B, and has a total duration of three hours
and forty-one minutes. Piece 2 starts at 11:34 am at point B,
ends at 4:14 pm also at point B, and has a total duration of
four hours and forty minutes. Therefore, we observe that the
Piece 1 ends precisely at the place and time when the Piece 2
starts. The same situation occurs between the pieces of work
Piece 2 and Piece 3. In this way, the vehicle is never without
a crew outside the depot.

We propose two heuristic procedures to define the pieces
of work associated with the vehicle itinerary. They are: direct
partitioning and reverse partitioning. The objective in both
procedures is to build pieces of work that have as many trips
as possible and do not include waiting times in the depot.

VOLUME 9, 2021

E. M. L. Simdes et al.: Matheuristic Algorithm for Multiple-Depot Vehicle and CSP

IEEE Access

TABLE 2. Example of direct partitioning of the vehicle itinerary into pieces of work.

Vehicle Itinerary

Piece of Work

Trip Start Start End End | Exp. Start Exp. Start Exp. End Exp. End Duration
Number Time Point Time Point Time Point Time Point

- 7:53 Gl 8:35 A

1 8:35 A 9:18 D

- 9:18 D 9:42 A 7:53 Gl 11:34 B 3:41 Piece 1
2 9:55 A 10:33 D

- 10:33 D 10:55 B

3 11:34 B 12:24 C

4 13:31 C 13:56 A ,

5 14:01 A 1426 C 11:34 B 16:14 B 4:40 Piece 2
6 14:30 C 15:23 B

7 16:14 B 17:07 C

8 17:31 C 17:56 A

9 18:01 A 18:26 C 16:14 B 20:04 Gl 3:50 Piece 3
10 18:30 C 19:23 B

- 19:23 B 20:04 Gl

Algorithm 4: localSearch

Algorithm 5: acceptanceCriterion

1 Data: §¥¢ = [s¥, §¢], a perturbed solution for the
MDVCSP. sV is the solution for the MDVSP and
S¢={s{,55, ..., 55} is the set of solutions for the
n CSPs (for a problem with n depots).

Result: S} = [sg, S;], the solution for the MDVCSP

after local search.

(5]

w

Sé'(—@// the new set of solutions for
the n CSPs

4 fori < 1tondo
5 Letsj € §¢
6 if s¢ has been modified then

7 s{ <~ VND_CSP(s{) // as described in
Subsection V-E4, Algorithm 8

8 ¥S5<—S§U{sf}

o

sy <" // solution for the MDVSP does
not change

10 S} « [s5,85] // the solution for the

MDVCSP after local search

In direct partitioning, the procedure starts in the depot,
before the vehicle’s first trip on the day. The procedure
systematically covers the entire vehicle itinerary, trip by trip,
and forms pieces of work. In this approach, a piece of work
always:

« starts in the depot or at the associated first trip beginning;
« ends in the depot or at the first trip beginning of the next
piece of work.

Table 2 illustrates an example of the generation of pieces
of work by direct partitioning.

VOLUME 9, 2021

1 Data: S}¢, the current solution for the MDVCSP.
2 Data: SY¢, the solution for the MDVCSP after
perturbation and local search.
3 Data: [, the current level of perturbation of the
ILS-MDVCSP.
4 Data: [,,,,, the maximum level of perturbation.
5 Result: A pair [S}°, /], where S} is the updated current
solution for the MDVCSP and [is the updated
level of perturbation.

6 if f7°(S¥9) < fY°(S;¢) then
7 Sy¢ <« 8v
[<1
9 if f°(S5¥) = f7°(S)°) then
10 Sy¢ <« 8¥
11 < 1+1
12 if f7(SYC) > f7(Sy°) then
13 L [«—1+1

14 if [> 1,4 then
15 Ll<—1

In the reverse partitioning procedure, the pieces of work’
construction start in the depot after the vehicle’s last trip.
The method systematically goes through the entire vehicle
itinerary, from back to front, building the pieces of work.
In this case, a piece of work always:

« starts in the depot or at the end of the last trip of the

previous piece of work;

o ends in the depot or at the associated last trip

ending.
See an
in Table 3.

example of this type of partitioning

155913

IEEE Access

E. M. L. Simdes et al.: Matheuristic Algorithm for Multiple-Depot Vehicle and CSP

TABLE 3. Example of inverse partitioning of the vehicle itinerary into pieces of work.

Vehicle Itinerary Piece of Work
Trip Start Start End End | Exp. Start Exp. Start Exp. End Exp. End Duration
Number Time Point Time Point Time Point Time Point ura

- 7:53 Gl 8:35 A

1 8:35 A 9:18 D .

) 9:18 D 9-42 A 7:53 Gl 10:33 D 2:40 Piece 1
2 9:55 A 10:33 D

- 10:33 D 10:55 B

3 11:34 B 12:24 C .

4 1331 C 13:56 A 10:33 D 15:23 B 4:50 Piece 2
5 14:01 A 14:26 C

6 14:30 C 15:23 B

7 16:14 B 17:07 C

8 17:31 C 17:56 A

9 18:01 A 18:26 C 15:23 B 20:04 Gl 4:41 Piece 3
10 18:30 C 19:23 B

- 19:23 B 20:04 Gl

There are many ways to partition a vehicle itinerary to build
pieces of work. However, we chose to use only these two
methods.

2) HEURISTIC METHOD FOR INSERTING A PIECE OF WORK
INTO CREW SCHEDULES
Let be the following data:
« p: piece of work to be included in the schedule;
o sg: solution partially built for the CSP and that always
keeps an empty duty in the last position on its list of
duties (see representation in Section V-A2).

We defined three basic methods for inserting p into s
maintaining the feasibility of the solution, they are:

1) Random insertion - randomlnsertion(p, sg): We ran-

domly select a crew from the schedule and, if the
viability of s;; is maintained, we insert the piece of work
p into its duty. As there is a possibility of failure, this
procedure returns true if the insertion is effective and
false, otherwise;
Sequential insertion - sequentiallnsertion(p, sg): The list
of duties for the s solution is inspected sequentially,
starting from the first position. The piece of work p is
assigned to the first crew that can perform it;

3) Greedy insertion - greedylnsertion(p, sj): We analyze
the cost of inserting the piece of work p in each of
the possible duties of s. In this way, p is allocated
to the lowest cost duty according to the evaluation
function (14).

Since we keep an empty duty in sg, we will always find

a duty to insert p in the sequential and greedy insertion
procedures. That is, if there is no other possibility, the empty
duty of s; will receive p.

Algorithm 6 shows the heuristic procedure for insert-
ing a piece of work p into the partially built crew
schedule s5. This procedure combines the three primary
methods presented above (random, sequential, and greedy
insertions).

2

~

155914

According to Algorithm 6, we initially tried, at most it,,4x
times, to randomly insert p in a duty (lines 7 to 9). If we
can’t, we randomly choose one of the two remaining types
of insertions, sequential or greedy, to insert the piece of work
p (lines 10 and 11). To define ity ax (line 4), we consider the
percentage of duties in s that we can test. This percentage
is given by percDutiesTested and consists of a parameter
whose value we need to specify. Finally, in lines 12 and 13,
we guarantee that sy will have an empty duty in the last
position in its duty list.

3) HEURISTIC METHOD FOR GENERATING AN INITIAL
SOLUTION FOR THE CSP

Algorithm 7 describes the heuristic method that generates
an initial solution for the CSP. For this procedure, we must
supply the set of pieces of work of the associated vehicle
schedule. Due to the construction process, in set P, each
vehicle’s pieces of work are arranged sequentially. However,
we can also sort this set by the start time of the pieces of
work. The parameter sortPieces_const defines the order of
the pieces of work in the set P (line 3). Then, we allo-
cate each piece of work to a crew, exactly as presented
in Algorithm 6.

4) HEURISTIC METHOD OF LOCAL SEARCH
FOR THE CSP
To improve a CSP solution, we propose a local search
method based on the basic variable neighborhood descent (B-
VND) [34] heuristic. This method is based on the principle
that a local optimal concerning a given neighborhood
structure does not necessarily correspond to a local opti-
mum concerning another neighborhood structure. Thus, the
objective is to explore the solution space through systematic
changes of neighborhood structures.

Algorithm 8 presents the pseudo-code of the developed
method, the VND-CSP. We do not apply local searches
with the best improvement strategy to the current solution,

VOLUME 9, 2021

E. M. L. Simdes et al.: Matheuristic Algorithm for Multiple-Depot Vehicle and CSP

IEEE Access

Algorithm 6: insertPiece_Solution

1 Data: p, a piece of work to insert in the solution.
2 Data: s;, a solution partially built for the CSP. It has an
empty duty at the last position in its duties list.
3 Result: 57, a partially built solution for the CSP that
includes the piece of work p. It has an empty
duty at the last position in its duties list.

4 itygy < percDutiesTested x number of duties in s
// the maximum number of attempts
to insert p randomly into %

5it < 0// the number of attempts made
to insert p randomly into sg

6 inserted < false // boolean variable that
will be true if p is inserted
randomly into s

7 while it < it and inserted = false do
8 inserted = randomlInsertion(p, sg)

9 it <—it+1

10 if inserted = false then
11 sequentiallnsertion(p, sg) or greedylnsertion(p, s),
choose randomly between one of these procedures

12 if s does not have an empty duty then
13 Insert empty duty in the last position in the s;, duty
L list

C C
14 57 <5

Algorithm 7: constructive_CSP

1 Data: P, the set of pieces of work.
2 Result: s¢, a solution for the CSP.

3 piecesOrder (P, sortPieces_const) // Defines the
pieces’ order in P

4 Start s¢ with just one empty duty

5 while P # () do

6 Let p be the first piece of work from P
P < P\{p}

8 s¢ < sU{p}// as described in
Subsection V-E2, Algorithm 6

N

given the high computational cost of evaluating the entire
neighborhood at each iteration. Thus, we employ only
random descent methods, described below:

1) RandomDescentWithRelocate_CSP: explores the neigh-
borhood N (relocation of a piece of work);

2) RandomDescentWithExchange_CSP: explores the
neighborhood N; (exchange of pieces of work).

VOLUME 9, 2021

The RandomDescentWithRelocate_ CSP method is a ran-
dom descent for the CSP that works as follows. Given a CSP
solution s¢, we apply a move to it, generating a neighbor
s{. If s{ represents an improvement for the current solution’s
value s¢, then this neighbor becomes the new current solution;
otherwise, we randomly generate a new neighbor. If after
it_rmax iterations we do not find an improved solution, then
we finish this random descent method. The value of it_ry;qy
is estimated by (16):

it _tmax = | NE(s€) | x perc_r, (16)

where:
(a) it_rpax 18 the maximum number of iterations with no
improvement in the current solution;
(b) NfS(s€) is the set of neighbors of s¢ concerning the
neighborhood structure Nf;
(c) perc_ris the percentage of the size of the neighborhood
Nf(s°) to be explored.

Note that this calculation links if_rm.x to the instance’s
size to be solved. Thus, as we explore only part of the
neighborhood, there is a reduction in its evaluation cost.

As the Algorithm 8 shows, we end the VND-CSP method
when there is no improvement in the two neighborhood
structures, NS and N . In this case, the method returns a local
optimum concerning these two neighborhoods.

In the VND-CSP, we apply the RandomDescentWithRe-
locate_CSP and RandomDescentWithExchange_CSP proce-
dures in this order. Initially, we apply a random descent
in the neighborhood Nf. If there is no improvement in
it_rmax iterations, then we apply the RandomDescentWith-
Relocate_CSP method (that is, a random descent in the
neighborhood N{). If there is an improvement in this
neighborhood, we return to the first neighborhood; otherwise,
the method seeks an improved solution in a maximum of
it_emax iterations. We estimate the value of it_em,x similarly
to (16), replacing perc_r with perc_e. The VND method ends
when there is no improvement in the current solution in both
neighborhoods.

Vi. COMPUTATIONAL EXPERIMENTS

The proposed matheuristic algorithm was developed in the
C++ language and compiled with version 9.3.0 of gcc. The
mathematical models developed for the MDVSP were solved
using the standard configuration (except for the number of
threads) of the Gurobi solver version 9.0.3. The experiments
were performed on an Intel (R) Xeon (R) E5-2640 (2.50 GHz)
microcomputer and under the 64-bit GNU Linux Ubuntu
20.04.1 LTS operating system. All experiments were run
using a single thread only.

To perform the computational experiments, we use the
instances of Huisman et al. [22], which are widely used
in the literature. We also consider real-world instances
originating from the public urban bus transport system
from one of the largest Brazilian cities (Belo Horizonte/
MG). In Sections VI-A and VI-B, we describe the
characteristics of these instances and present the results

155915

IEEE Access

E. M. L. Simdes et al.: Matheuristic Algorithm for Multiple-Depot Vehicle and CSP

Algorithm 8: VND-CSP

1 Data: s¢, a solution for the CSP.
2 Result: s¢, the solution for the CSP after local search.

3 exit < false

4 while exit # true do

5 // Random Descent in the
neighborhood structure Nf

6 for i < 1to it_ry,. do

7 Let s§ € N (s)

8 if £ (s{) < f(s°) then

9 5¢ < 8§

10 i< 1

1 else

12 t i< i+1

13 // Random Descent in the
neighborhood structure NS

14 for i < 1to it_e e do

15 Let s§ € NJ(s)

16 if f(s5) < f(s°) then

17 break

18 i<—i+1

19 if f(s5) < f(s°) then

20 exit < false

21 | sC <« 55

22 else

23 L exit < true

24 §¢ <« €

*

obtained by the proposed algorithm, respectively. The
benchmark and Brazilian real-world instances, executable
code of the implemented algorithms, and all scripts to run
the executable and solve the instances are available for
download at http://sites.google.com/view/mdvcsp-instances
(generally, it is not accessible from a Google Workspace
account).

The cost values used in the evaluation functions presented
for the MDVSP (13), CSP (14) and MDVCSP (15) are
the same ones used in [3]. Table 4 shows these costs.
According to it, there is a fixed cost of 1000 units for
each vehicle and crew, a variable cost of 1 unit for each
minute a vehicle is outside the depot, and a variable cost of
0.1 unit for each minute crew working time. So, these costs
prioritize the minimization of the number of vehicles and
crews employed. The reduction of operating costs (variable
costs) is a secondary objective.

155916

TABLE 4. Costs considered in the evaluation functions and their
respective values.

Type of cost Value
vehicleCost 1000
crewCost 1000
operationalCost 1

workingTimeCost 0.1

TABLE 5. Characteristics of the different duty types.

Early Day Late Split
Min Max Min Max Min Max Min Max
Interval 16:30 8:00 18:14 13:15 19:30
Piece length 0:30 5:00 0:30 5:00 0:30 5:00 0:30 5:00
Break length 0:45 0:45 0:45 1:30
Duty length 9:45 9:45 9:45 12:00
Working time 9:00 9:00 9:00 9:00

A. LITERATURE INSTANCES

In this section, we describe the instances of the literature
in Subsection VI-Al, the tuning process of our algorithm
in Subsection VI-A2, and compare the results of our

algorithm with those of other methods from the literature in
Subsection VI-A3.

1) INSTANCES DESCRIPTION

We use eight groups of instances that depict characteristics of
European public transport companies. They are differentiated
by the number of trips, which can be: 80, 100, 160, 200, 320,
400, 640, or 800 trips. Each group contains ten instances,
totaling 80 instances. The first six groups of instances were
made available in [49], and the last two in [50]. Huisman and
Steinzen generated all of these instances from the software
described in [53] and [22]. These instances are widely used in
the literature (see Table 1 in Section II) and have the following
characteristics:

o There are four depots;

o Depots have unlimited capacity. That is, the number of
vehicles and crews available for each depot is unlimited;

« Each timetable trip can be serviced by any depot;

o Instances with 80, 160, and 320 trips have four relief
points, and the others have five.

Additionally, according to Huisman et al. [22], whenever
a trip starts or ends in the depot, a crew preparation time of
10 and 5 minutes is required, respectively. However, a trip
can start or end at any other exchange point (outside the
depot), and, in this case, the crew preparation time will be
the travel time between the exchange point and the depot
plus 15 minutes.

Still according to Huisman et al. [22], there are five types
of duties: tripper, formed by only one piece of work lasting
between 30 minutes and 5 hours; and four more types (early,
day, late, and split), made up of two pieces of work. Table 5
details them, whose characteristics are as follows:

VOLUME 9, 2021

E. M. L. Simdes et al.: Matheuristic Algorithm for Multiple-Depot Vehicle and CSP

IEEE Access

TABLE 6. Parameters of the proposed algorithm.

Parameter Description Tested and returned values
. Percentage of crew members evaluated. It is used in Algorithm 6,
percDutiesTested described in Subsection V-E2. 0.0,0.25,0.5,0.75,1.0
Defines whether or not the set of pieces of work should be (a) Yes
sortPieces_const ordered by the pieces’ start time. It is used in Algorithm 7 (b) No
(constructive_CS P), presented in Subsection V-E3.
Defines whether the set of pieces of work should be ordered by % I\\{IZS

sort Pieces_pert
described in Subsection V-D.

the pieces’ start time. It is used in Algorithm 3 (perturbation),

(c) Set randomly

Percentage of the size of the neighborhood N£(s€) to be explored.

0.0,0.1,0.2,0.3,0.4,0.5,0.6, 0.7,

perer It is used in (16) of Subsection V-E4. 0.8,0.9,1.0
Percentage of the size of the neighborhood N¢(s¢) to be explored. . .
perc_e It is defined in Subsection V-E4. 0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7
(a) From1to3
Perturbation levels used in the ILS-MDVCSP matheuristic algo- (b) From1to4
lmaz (¢c) From1to5

rithm. Levels 1 to 6 are described in Subsection V-D.

(d) From1to 6

« Interval: Interval of the day on which a duty can take
place. The absence of a lower or upper limit indicates
that there is no restriction on the time of beginning or
end of the duty, respectively;

« Piece length: Minimum and maximum length allowed
for a piece of work. It is noteworthy that during a piece
of work, the crew will remain responsible for the same
vehicle without interruption;

o Break length: Minimum break duration between the
pieces of work of the duty;

o Duty length: Maximum duration of the duty considering
all activities: preparation to start or end the duty,
monitoring of the vehicle and mandatory breaks;

« Working time: Maximum time a crew can spend on the
vehicle. It is the sum of the duration of the duty’ pieces
of work.

2) PARAMETER SETTINGS

For tuning the developed ILS-MDVCSP algorithm’s param-
eters, we apply the irace package [54]. This software tunes
the parameters of optimization algorithms. The authors
developed it in the R language and implemented an extension
of the Iterated F-race algorithm (I / F-Race) [55].

Irace receives as input a set of values assumed by the
parameters, a set of instances for tuning those parameters, and
a set of options for running irace.

In Table 6, we present the analyzed parameters, describe
their meanings, the tested values, and highlight in bold the
values returned by irace.

Among the eight groups of instances of the literature
defined in Section VI-A1, we randomly choose an instance
from each group of instances with 80, 200, 400, and 800 trips
for the irace tuning phase.

We run irace in its default configuration, except for the
option maxExperiments, for which we assign the value 250.
This option defines the number of times that the ILS-
MDVCSP algorithm will be executed during the tuning
process.

VOLUME 9, 2021

From statistical tests, irace iteratively generates and tests
different parameter configurations for the ILS-MDVCSP
algorithm. At the end of its execution, irace returns the
elite configuration, that is, the configuration for the param-
eters that provided the best average performance of the
algorithm.

According to the values tested for each parameter in
Table 6, there are more than 10500 possible parame-
ter configurations. Therefore, the manual tuning of the
ILS-MDVCSP algorithm’s parameters would be highly
costly and possibly inefficient, which justifies the use
of irace.

For more details on the irace package, we recommend the
user’s guide [56].

3) RESULTS

All 80 instances were solved ten times by the ILS-MDVCSP
algorithm. We fixed the run time of ILS-MDVCSP at
15 minutes for small instances (with 80, 100, 160, and
200 trips) and 40 minutes for the large ones (with 320, 400,
640, and 800 trips).

Table 7 reports the best results found by the proposed
algorithm, comparing them with those of the literature
methods, namely: HK_19 [26], KAA_12 [25], SGSK_10 [3],
BLW_08 [23], and HFW_05 [22]. These papers deal with the
MDVCSP as proposed in [22].

In Table 7, cpu is the average time, in minutes, reported
for solving each group of instances. In line cpu adj.,
we adjust this value to match the machine where the
tests were performed with the machine described in [23],
which has the most simple configuration machine con-
sidered in this comparison. For this match, we use the
cpu benchmark website [57], which provides benchmark
results for CPUs for more than 600,000 systems, covering
more than 1200 different types of CPUs. This adjustment
allows for a fair comparison of the run time of the
approaches.

155917

IEEE Access

E. M. L. Simdes et al.: Matheuristic Algorithm for Multiple-Depot Vehicle and CSP

TABLE 7. Results from literature instances.

Group of instances

Approach

80 100 160 200 320 400 640 800
ILS-MDVCSP !
cpu 15.00 15.00 15.00 1500 40.00 40.00 40.00 40.00
cpu adj. 3345 3345 33.45 33.45 89.20 89.20 89.20 89.20
vehicles 9.20 11.00 14.80 1840 26.70 32.90 56.90 66.90
crews 19.70 23.10 31.70 3850 5580 67.90 119.40 142.20
v+ce 2890 34.10 46.50 5690 8250 100.80 176.30 209.10
RPD (%) 3.21 2.40 0.00 0.00 0.00 0.00 0.00 0.00
HK_192
cpu 1524 16.78 >> 180 - - - - -
cpu adj. 3277 36.08 >> 387,00 - - - - -
vehicles 9.50 11.40 - - - - - -
crews 18.50 21.90 - - - - - -
v+ce 28.00 33.30 50.50 - - - - -
RPD (%) 0.00 0.00 8.60 - - - - -
KAA_123
cpu 5.43 8.72 22.80 3040 158.85 183.63 455.60 -
cpu adj. 11.13 17.88 46.74 6232 325.64 37644 933.98 -
vehicles 9.20 11.00 14.80 1840 26.70 32.90 - -
crews 19.20 22.80 31.70 39.00 5640 69.50 - -
v+ce 28.40 33.80 46.50 57.40 83.10 102.40 178.50 -
RPD (%) 1.43 1.50 0.00 0.88 0.73 1.59 1.25 -
SGSK_104
cpu 392 615 26.32 4550 23875 338.67 953.92 -
cpu adj. 431 6.77 28.95 50.05 262.63 37253 1049.31 -
vehicles 9.20 11.00 14.80 1840 26.70 32.90 56.90 -
crews 19.10 22.70 31.80 3880 55.80 67.90 120.40 -
v+ce 2830 33.70 46.60 5720 8250 100.80 177.30 -
RPD (%) 1.07 1.20 0.22 0.53 0.00 0.00 0.57 -
BLW_08°
cpu 13.00 21.00 44.00 106.00 328.00 720.00 - -
cpu adj. 13.00 21.00 44.00 106.00 328.00 720.00 - -
vehicles 9.20 11.20 15.00 18.50 26,70 33.10 - -
crews 2040 24.50 32.70 4050 56.10 68.90 - -
v+ce 29.60 35.70 47.70 59.00 82.80 102.00 - -
RPD (%) 5.71 7.21 2.58 3.69 0.36 1.19 - -
HFW_05
cpu - - - - - - - -
cpu adj. - - - - - - - -
vehicles 9.20 11.00 14.80 18.40 - - - -
crews 20.50 25.30 34.10 41.60 - - - -
v+c 29.70 36.30 48.90 60.00 - - - -
RPD (%) 6.07 9.01 5.16 5.45 - - - -

! Intel Xeon E5-2640 2.50 GHz/4 GB using only one single thread.

2 Intel Xeon X5650 2.67 GHz/4 GB using only one single thread.

3 Dell OptiPlex 755, Intel Core 2 Duo 3.0 GHz/4 GB using only one single thread.

4 Dell OptiPlex GX620, Intel Pentium IV 3.4 GHz/2 GB using only one single thread.
5 Dell Precision 650, Intel Dual Xeon 3.0 GHz/4 GB using only one single thread.

Lines vehicles, crews, and v + ¢ of Table 7 report the
average number of vehicles, crews, and sum of vehicles and
crews for each group of instances, respectively. This table
does not report the following characteristics used to evaluate
a solution ((13) and (14)): vehicle operating time, the crew
working time, and cost. We did so because Kliewer et al. [25],
Steinzen et al. [3], Borndorfer et al. [23], and
Huisman ef al. [22] did not provide this information.

We use the Relative Percentage Deviation (RPD‘? lg) to
evaluate the average sum of vehicles and crews, v + c,
generated by each method Alg for the group of instances i.

155918

It is calculated according to (17):

Alg best
e 0+ —w+to)
RPD}"® = e (17)
i

where (v + c)?lg is the v + ¢ obtained by method Alg for
the group of instances i and (v + c)f.’"“ is the best known
v 4+ ¢ for the group of instances i. Then, the RPD‘? 8 informs
the deviation percentage of the v 4+ ¢ found by method Alg
concerning the best known v + ¢ for the group of instances i.

VOLUME 9, 2021

E. M. L. Simdes et al.: Matheuristic Algorithm for Multiple-Depot Vehicle and CSP

IEEE Access

TABLE 8. Characteristics of the Belo Horizonte instances.

. Number of Time of trips Number of Fleet Number of
#id Instances
trips (h:m) relief points size depots
1 DO1_MON 260 443:19
2 DO1_FRI 260 453:39 3 41 1
3 DO1_SAT 172 270:40
4 DO1_SUN 90 158:33
5 D02_MON 468 527:02
6 DO02_FRI 468 524:27 3 35 1
7 D02_SAT 359 388:32)
8 D02_SUN 298 315:00
9 D03_MON 206 406:32
10 DO3_FRI 203 407:43 2 29 1
11 DO03_SAT 130 255:20
12 DO03_SUN 108 218:02
13 DO1-D02_MON 728 970:21 DO1: 41
14 DO1-D0O2_FRI 728 978:06 4 DO02: 35 5
15 DO01-D02_SAT 531 659:02
16 DO1-D02_SUN 388 473:33
17 DO01-D02-D03_MON 934 1376:53 DO1: 41
18 DO01-D02-D03_FRI 931 1385:49 5 DO02: 35 3
19 DO01-D02-D03_SAT 661 914:21 DO03: 29
20 DO01-D02-D03_SUN 496 691:35

In Table 7, we present the RPD for each method and
group of instances that we are considering. Moreover, the
best results for each evaluation criterion (number of vehicles,
crews, vehicles plus crews, and RPD) are highlighted in bold.
Note that the methods in the literature did not handle some
large instances. In these cases, no information appears in
Table 7. Besides, Huisman et al. [22] did not report the run
time of their algorithm and Kliewer et al. [25] did not detail
the average number of vehicles and crews separately for the
group of instances with 640 trips.

Concerning the average sum of vehicles and crews v + ¢
of Table 7, we can see that the proposed algorithm gives
the smallest values for six of the eight analyzed groups of
instances. Furthermore, our algorithm is the only one to
find the best results on instance groups with 200, 640, and
800 trips. It only loses to HK_19, KAA_12, and SGSK_10 in
small instances, involving 80 and 100 trips.

Regarding the average number of vehicles in Table 7,
the ILS-MDVCSP algorithm was able to obtain the smallest
values for all the groups of instances. So, after the MDVSP
solving in optimality by the proposed algorithm, the improve-
ment step of the solution for MDVCSP has not compromised
the quality of the vehicle scheduling.

The HK_19 method is the only one that obtains the
exact solution to the problem. However, this approach was
able to solve only small instances, with 80 or 100 trips.
Of the 20 instances considered, they found the optimal
solutions in four instances, and, for seven instances, the
lower limit gap was less than 0.5%. As shown in Table 7,
they tested instances with 160 trips, but the procedure for
generating columns at the root node consumed alone more
than three hours on average. Thus, for large instances, the
solution process is very time-consuming and fails to generate

VOLUME 9, 2021

better quality solutions than those found in the present
work.

Regarding the adjusted run time of Table 7, as the
instance’s size increases, our approach becomes substantially
less costly than the others presented in the literature. For the
largest group of instances treated by KAA_12 and SGSK_10,
with 640 trips, the ILS-MDVCSP algorithm performed best
with less than 10% of the processing time they used.
Besides, our algorithm was the only one to treat the group
of instances with 800 trips. These observations show the
ability of the proposed algorithm to handle large instances
satisfactorily.

B. BELO HORIZONTE INSTANCES

1) INSTANCES DESCRIPTION

The real-world instances considered in this work come from
a given region of Belo Horizonte/MG, Brazil. In these
instances, there are three depots (D01, D02, and DO03),
which operate on four days of the week with differ-
ent timetables (Monday, Friday, Saturday, and Sunday).
Timetables from Tuesday to Thursday are the same as
Monday.

The companies studied firstly assign trips to depots. Then,
they generate the vehicle and crew schedules sequentially,
considering one depot at a time. In Table 8§, instances 1 to 12
were provided by some companies. The other instances
were created by us from the original ones and considered
two or three depots together. In all instances, each depot
contains a limited fleet of identical vehicles. Table 8 shows
the characteristics of these instances. For each instance,
we report the number of trips, the total time of trips (in
the format hours: minutes), the number of relief points,

155919

IEEE Access

E. M. L. Simdes et al.: Matheuristic Algorithm for Multiple-Depot Vehicle and CSP

TABLE 9. Results from the Belo Horizonte instances.

Depots DO1 and D02

Depots D01, D02 and D03

Day Feature Company ILS-SDVCSP ILS-MDVCSP Company ILS-SDVCSP ILS-MDVCSP
vehicles 75.0 70.0 67.0 104.0 96.0 92.0
crews - 139.9 131.9 - 199.5 187.8
S vV+ce - 209.9 198.9 - 295.5 279.8
< vehicle time 58,221.0 51,276.3 49,997.7 82,613.0 73,986.1 70,937.8
% crew time - 62,984.9 61,714.0 - 91,991.7 88,322.0
©] DOl:v/c 41.0/- 40.0/71.8 32.0/65.6 41.0/- 40.0/71.8 41.0/84.8
= D02:v/c 34.0/- 30.0/68.1 35.0/66.3 34.0/- 30.0/68.1 35.0/66.8
DO03:v/c - - - 29.0/- 26.0/59.6 16.0/36.2
total cost - 267,474.9 255,069.1 - 378,685.4 359,570.0
vehicles 75.0 70.0 67.0 104.0 98.0 94.0
crews - 144.4 135.9 - 202.8 189.3
v+ce - 214.4 202.9 - 300.8 283.3
Q vehicle time 58,686.0 52,923.6 51,660.0 83,149.0 75,693.1 72,626.6
a crew time - 64,717.9 63,897.0 - 94,103.0 90,639.0
E‘é DOl:v/c 40.0/- 39.0/74.4 32.0/69.7 40.0/- 39.0/74.4 41.0/84.3
D02:v/c 35.0/- 31.0/70.0 35.0/66.2 35.0/- 31.0/70.0 35.0/67.1
DO03:v/c - - - 29.0/- 28.0/58.4 18.0/37.9
total cost - 273,795.5 260,949.7 - 385,903.5 364,990.5
vehicles 50.0 43.0 40.0 66.0 57.0 51.0
crews - 89.2 81.4 - 123.3 108.2
>~ v+ce - 132.2 121.4 - 180.3 159.2
E vehicle time 39,552.0 35,421.5 34,065.3 54,872.0 49,4543 45,807.7
% crew time - 44,127.7 42,146.1 - 63,006.0 56,395.0
g DOl:v/c 23.0/- 23.0/39.1 5.1/85 23.0/- 23.0/39.1 16.0/34.7
%) D02:v/c 27.0/- 20.0/50.1 349/729 27.0/- 20.0/50.1 35.0/73.5
DO03:v/c - - - 16.0/- 14.0/34.1 0.0/0.0
total cost - 172,034.4 159,680.0 - 236,055.0 210,647.2
vehicles 32.0 26.0 25.0 50.0 39.0 38.0
crews - 63.8 58.5 - 92.8 82.6
v+ce - 89.8 83.5 - 131.8 120.6
2 vehicle time ~ 28,413.0 24,886.5 23,982.2 41,495.0 36,158.3 33,578.9
% crew time - 31,602.3 29,595.5 - 46,567.3 41,228.7
=) DOl:v/c 11.0/- 10.0/22.5 0.0/0.0 11.0/- 10.0/22.5 31/175
@ D02:v/c 21.0/- 16.0/41.3 25.0/58.5 21.0/- 16.0/41.3 349/75.1
DO03:v/c - - - 18.0/- 13.0/29.0 0.0/0.0
total cost - 117,846.8 110,441.8 - 172,615.1 158,301.8

the size of the available fleet, and the number of depots
considered.

2) RESULTS

The hybrid algorithm ILS-MDVCSP developed for the
MDVCSP was adapted to handle the SDVCSP (single-
depot vehicle and crew scheduling problem) (ILS-SDVCSP).
To this end, we use the same mathematical model developed
for the MDVSP to solve the SDVSP and consider only
the ILS-MDVCSP perturbation levels 2 to 6, described in
Section V-D. We prevented the depot exchange.

We ran the ILS-SDVCSP and ILS-MDVCSP algorithms
ten times for each instance. The results reported below refer
to the averages obtained. We set the time ¢ for each algorithm
to run at ¢t = d hours, with d being the number of depots of
the instance.

Table 9 shows the features of the solutions obtained for
the DO1 and D02 depots; and DO1, D02, and D03 depots.
For the company and the ILS-SDVCSP algorithm, the data
correspond to the union of the solutions obtained for each
depot solved separately (instances 1 to 12 in Table 8).

155920

That is, only the ILS-MDVCSP solved the instances with,
respectively, 2 and 3 depots simultaneously (instances
from 13 to 20 in Table 8).

The attributes that have not yet been described and appear
in Table 9 are: vehicle time — the total operating time of
the vehicles (in minutes), crew time — the working time
considering all crews (in minutes), and total cost — which
represents the cost of the solution calculated as specified
in Subsection V-C. We also show separately the number of
vehicles (v) and crews (c¢) used by each depot (i.e., Di: v/ ¢
for the i-th depot).

As the companies did not provide their crew schedule,
we did not report this information. Moreover, we consider
the same types of duties proposed by Huisman et al. [22]
for defining the crew scheduling in the ILS-SDVCSP and
ILS-MDVCSP algorithms.

According to Table 9, for all instances, the ILS-SDVCSP
algorithm solutions are better than those used by the
companies considering the features vehicles and vehicle time.
When we analyze the depots D01, D02, and D03 together,
the ILS-SDVCSP saved on average 9 vehicles per day and

VOLUME 9, 2021

E. M. L. Simdes et al.: Matheuristic Algorithm for Multiple-Depot Vehicle and CSP

IEEE Access

reduced on average by about 10% the daily operating time
of the vehicles (considering the four days of the week with
different timetables). This result shows that although the
companies did not provide the crew schedules, their fleet’s
higher operational time indicates the need for more labor
time (crews) concerning the solutions from the ILS-SDVCSP
(see constraint C8 of Section III).

Table 9 also shows that the ILS-MDVCSP was the
approach that obtained the best results. Its solutions are of
higher quality than those of the companies and ILS-SDVCSP
for all evaluation criteria. Regarding the companies’ solu-
tions, when we analyze the depots DO1, D02, and D03
together, the ILS-MDVCSP saved on average 12 vehicles
per day and reduced on average by about 15% the daily
operating time of the vehicles (considering the four days of
the week with different timetables). When we compared the
solutions of the ILS-SDVCSP and ILS-MDVCSP algorithms,
we observed that ILS-MDVCSP generated better vehicle
and crew schedules for all instances. Thus, we show the
relevance of considering more than one depot simultaneously,
as already pointed out by the literature, and the potential of the
matheuristic proposed in this work, particularly in the context
of real-world and large-scale problems.

We also note that, for the instances with fewer trips,
referring to Saturday and Sunday, it is possible to completely
avoid using the depots without violating the other depots’
capacities. In this way, a reduction in these depots’ operating
costs is allowed on these two days of the week.

VIl. CONCLUSION

This work addressed the MDVCSP. This problem involves
public transport companies by medium and large buses,
which have more than one depot to manage their resources,
i.e., the vehicle fleet and crews. In the MDVCSP solution,
we deal with two problems in an integrated manner: the
MDVSP and the CSP. That is, we simultaneously define
vehicle and crew schedules. The objective is to minimize the
costs involved and, at the same time, respect the operational
restrictions and work regulations. The MDVCSP is an NP-
hard optimization problem, and to solve it, we propose a
matheuristic algorithm. Our algorithm, called ILS-MDVCSP,
uses the Iterated Local Search framework to combine two
methods: a Branch-and-Bound method to solve the MDVSP
in optimality and a Variable Neighborhood Descent-based
method to treat the associated CSPs.

For the tests, we initially used a set of instances well known
in the literature. We compared our approach against the main
strategies in the literature that addressed the same problem.
Our matheuristic algorithm was able to treat instances with
800 trips, a dimension not yet addressed by the current
specialized literature. Besides, it obtained the best results for
six groups of instances out of the eight groups considered.
The run time of our algorithm was shorter for most groups of
instances, and, as the instance’s size increased, our approach
became substantially less costly as compared to the literature.

VOLUME 9, 2021

We also solved the MDVCSP of a region in the city of Belo
Horizonte, MG, Brazil. To address the particularities of this
problem, we proposed a mathematical formulation based on
a time-space network to represent the MDVSP. Regarding
the companies’ solutions, our algorithm’s solutions were
considerably better.

Furthermore, we compared the solutions obtained from
two integrated approaches: SDVCSP and MDVCSP. So,
we developed two algorithms: ILS-SDVCSP and ILS-
MDVCSP. The ILS-MDVCSP outperformed the ILS-
SDVCSP for all instances.

Therefore, the experiments showed the effectiveness of
our matheuristic algorithm to deal with real-world and large-
scale problems. We also verified that solving the MDVSP
and CSP problems in an integrated manner reduces costs
concerning these problems’ sequential resolution. Moreover,
by considering more than one depot at the same time, we can
further reduce costs.

The MDVCSP is a complex problem and little explored in
the literature. In practice, this problem’s efficient resolution
can bring high savings to the public bus transport sector.

In future work, we intend to do tests considering different
evaluation functions and cost values for the MDVCSP. In the
problems we solved, the main objective was to reduce the
number of vehicles and crews. However, depending on the
context, companies may need to prioritize other schedule’
characteristics. So, we plan to consider different real-world
scenarios. Moreover, we aim to compare the performance of
our algorithm against other methods based on mathematical
programming and metaheuristics. Our goal will be to identify
the potentials of different optimization techniques to address
MDVCSP and related problems. Finally, we note that public
bus transport companies often have to deal with delays and
interruptions in schedule due to traffic conditions, mechanical
troubles with vehicles, crews’ no show, and other unexpected
events. These delays and interruptions affect the quality of
the service provided, user satisfaction, and the companies’
operating costs. Thus, it would be interesting to propose
an approach for MDVCSP that dynamically updates the
schedule to adapt it to some identified unexpected events in
real-time.

REFERENCES

[1] G. Desaulniers and M. D. Hickman, “Public transit,” in Handbooks in
Operations Research and Management Science, vol. 14, C. Barnhart and
G. Laporte, Eds. Amsterdam, The Netherlands: Elsevier, 2007, pp. 69-127.

[2] O.J. Ibarra-Rojas, F. Delgado, R. Giesen, and J. C. Muifioz, “Planning,
operation, and control of bus transport systems: A literature review,”
Transp. Res. B, Methodol., vol. 77, pp. 3875, Jul. 2015.

[3] 1. Steinzen, V. Gintner, L. Suhl, and N. Kliewer, “A time-space
network approach for the integrated vehicle- and crew-scheduling problem
with multiple depots,” Transp. Sci., vol. 44, no. 3, pp.367-382,
Aug. 2010.

[4] M. Mesquita, M. Moz, A. Paias, and M. Pato, “A decomposition approach
for the integrated vehicle-crew-roster problem with days-off pattern,” Eur.
J. Oper. Res., vol. 229, no. 2, pp. 318-331, Sep. 2013.

[5] R. Borndorfer, C. Schulz, S. Seidl, and S. Weider, “Integration of duty
scheduling and rostering to increase driver satisfaction,” Public Transp.,
vol. 9, nos. 1-2, pp. 177-191, Jul. 2017.

155921

IEEE Access

E. M. L. Simdes et al.: Matheuristic Algorithm for Multiple-Depot Vehicle and CSP

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

S. Carosi, A. Frangioni, L. Galli, L. Girardi, and G. Vallese, “A
matheuristic for integrated timetabling and vehicle scheduling,” Transp.
Res. B, Methodol., vol. 127, pp. 99-124, Sep. 2019.

S. S. G. Perumal, T. Dollevoet, D. Huisman, R. M. Lusby, J. Larsen,
and M. Riis, “Solution approaches for integrated vehicle and crew
scheduling with electric buses,” Comput. Oper. Res., vol. 132, Aug. 2021,
Art. no. 105268.

S. Er-Rbib, G. Desaulniers, I. El Hallaoui, and A. Bani, “Integrated and
sequential solution methods for the cyclic bus driver rostering problem,”
J. Oper. Res. Soc., vol. 72, no. 4, pp. 764-779, Apr. 2021.

M. Liang, W. Wang, C. Dong, and D. Zhao, “A cooperative coevolutionary
optimization design of urban transit network and operating frequencies,”
Expert Syst. Appl., vol. 160, Dec. 2020, Art. no. 113736.

M. Ball, L. Bodin, and R. Dial, “A matching based heuristic for scheduling
mass transit crews and vehicles,” Transp. Sci., vol. 17, no. 1, pp. 4-31,
Feb. 1983.

I. Patrikalakis and D. Xerocostas, “A new decomposition scheme of the
urban public transport scheduling problem,” in Proc. 5th Int. Comput.-
Aided Transit Scheduling, Workshop, 1992, pp. 407-425.

K. Haase, G. Desaulniers, and J. Desrosiers, ‘‘Simultaneous vehicle and
crew scheduling in urban mass transit systems,” Transp. Sci., vol. 35, no. 3,
pp. 286-303, Aug. 2001.

R. Freling, D. Huisman, and A. P. M. Wagelmans, ‘““Models and algorithms
for integration of vehicle and crew scheduling,” J. Scheduling, vol. 6, no. 1,
pp. 63-85, 2003.

B. Laurent and J. K. Hao, “Simultaneous vehicle and crew scheduling
for extra urban transports,” in Proc. New Frontiers Appl. Artif. Intell.,
Int. Conf. Ind., Eng. Other Appl. Appl. Intell. Syst. (IEA/AIE), vol. 5027,
N. T. Nguyen, L. Borzemski, A. Grzech, and M. Ali, Eds. Berlin, Germany,
2008, pp. 466-475, doi: 10.1007/978-3-540-69052-8_49.

E. M. L. Simdes, G. R. Mateus, and M. J. F. Souza, “Algoritmo para
programacdo integrada de veiculos e tripulagdes no sistema de transporte
puiblico por Onibus,” in Proc. 13th Simpésio Brasileiro de Pesquisa
Operacional, 2011, pp. 1459-1471.

N. Kliewer, T. Mellouli, and L. Suhl, “A time—space network based exact
optimization model for multi-depot bus scheduling,” Eur. J. Oper. Res.,
vol. 175, no. 3, pp. 1616-1627, Dec. 2006.

A.-S. Pepin, G. Desaulniers, A. Hertz, and D. Huisman, “A comparison
of five heuristics for the multiple depot vehicle scheduling problem,”
J. Scheduling, vol. 12, no. 1, pp. 17-30, 2009.

L. Desfontaines and G. Desaulniers, ‘““Multiple depot vehicle scheduling
with controlled trip shifting,” Transp. Res. B, Methodol., vol. 113,
pp. 34-53, Jul. 2018.

S. Kulkarni, M. Krishnamoorthy, A. Ranade, A. T. Ernst, and R. Patil,
“A new formulation and a column generation-based heuristic for the
multiple depot vehicle scheduling problem,” Transp. Res. B, Methodol.,
vol. 118, pp. 457-487, Dec. 2018.

A. T. Dauer and B. D. A. Prata, “Variable fixing heuristics for solving
multiple depot vehicle scheduling problem with heterogeneous fleet and
time Windows,” Optim. Lett., vol. 15, no. 1, pp. 153-170, Feb. 2021.

A. Gaffi and M. Nonato, “An integrated approach to ex-urban crew
and vehicle scheduling,” in Computer-Aided Transit Scheduling. Berlin,
Germany: Springer, 1999, pp. 103-128.

D. Huisman, R. Freling, and A. P. M. Wagelmans, ‘“Multiple-depot
integrated vehicle and crew scheduling,” Transp. Sci., vol. 39, no. 4,
pp. 491-502, Nov. 2005.

R. Borndorfer, A. Lobel, and S. Weider, ““A bundle method for integrated
multi-depot vehicle and duty scheduling in public transit,” in Computer-
Aided Systems in Public Transport, M. Hickman, P. Mirchandani, and
S. VoB, Eds. Berlin, Germany: Springer, 2008, pp. 3-24.

M. Mesquita and A. Paias, ““Set partitioning/covering-based approaches
for the integrated vehicle and crew scheduling problem,” Comput. Oper:
Res., vol. 35, no. 5, pp. 1562-1575, 2008.

N. Kliewer, B. Amberg, and B. Amberg, ‘““Multiple depot vehicle and crew
scheduling with time Windows for scheduled trips,” Public Transp., vol. 3,
no. 3, pp. 213-244, Mar. 2012.

M. Horvith and T. Kis, “Computing strong lower and upper bounds for
the integrated multiple-depot vehicle and crew scheduling problem with
branch-and-price,” Central Eur. J. Oper. Res., vol. 27, no. 1, pp. 39-67,
Mar. 2019.

I. Steinzen, M. Becker, and L. Suhl, “A hybrid evolutionary algorithm for
the vehicle and crew scheduling problem in public transit,” in Proc. IEEE
Congr. Evol. Comput., Sep. 2007, pp. 3784-3789.

155922

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]
(39]
(40]

[41]

(42]

[43]

(44]

(45]

[46]

[47]

(48]

[49]

(50]

(51]

(52]

A. A. Bertossi, P. Carraresi, and G. Gallo, “On some matching
problems arising in vehicle scheduling models,” Networks, vol. 17, no. 3,
pp. 271-281, 1987.

M. Fischetti, S. Martello, and P. Toth, “The fixed job schedule problem
with working-time constraints,” Oper. Res., vol. 37, no. 3, pp. 395-403,
Jun. 1989.

G. R. Raidl, “Decomposition based hybrid metaheuristics,” Eur. J. Oper.
Res., vol. 244, no. 1, pp. 66-76, Jul. 2015.

V. Maniezzo, T. Stiitzle, and S. Voss, ‘“Matheuristics: Hybridizing
metaheuristics and mathematical programming,” in Annals of Information
Systems, vol. 10. Cham, Switzerland: Springer, 2010.

M. Gnigi and P. Baumann, “A matheuristic for large-scale capacitated
clustering,” Comput. Oper. Res., vol. 132, Aug. 2021, Art. no. 105304.

T. Stiitzle and R. Ruiz, “Iterated local search,” in Handbook Heuristics,
R. Marti, P. Pardalos, and M. Resende, Eds. Cham, Switzerland: Springer,
2018, pp. 579-605.

P. Hansen, N. Mladenovic¢, R. Todosijevi¢, and S. Hanafi, ‘‘Variable
neighborhood search: Basics and variants,” EURO J. Comput. Optim.,
vol. 5, no. 3, pp. 423-454, Sep. 2017.

R. Borndorfer, A. Lobel, and S. Weider, ““A bundle method for integrated
multi-depot vehicle and duty scheduling in public transit,” Konrad-Zuse
Zentrum Fuer Informationstechnik, Berlin, Germany, Tech. Rep. ZR 04-
14, 2004.

S. E. G. Elias, The Use of Digital Computers in the Economic Scheduling
for Both Man and Machine in Public Transportation, no. 49. Manhattan,
KS, USA: Kansas State Univ., 1964.

F. Kirkman, “Problems of innovation in the transport industry: A bus
scheduling program,” in Proc. PTRC Public Transp. Anal. Seminar,
Planning Transp. Res. Comput. Co. Ltd., vol. 1, 1968, pp. 1-15.

J. L. Saha, “An algorithm for bus scheduling problems,” J. Oper. Res. Soc.,
vol. 21, no. 4, pp. 463-474, Dec. 1970.

A. Wren, “Bus scheduling: An interactive computer method,” Transp.
Planning Technol., vol. 1, no. 2, pp. 115-122, Sep. 1972.

J. M. P. Booler, “A method for solving crew scheduling problems,” J. Oper:
Res. Soc., vol. 26, no. 1, pp. 55-62, Apr. 1975.

A. Wren, Computer Scheduling of Public Transportation: Urban Passen-
ger Vehicle and Crew Scheduling. Amsterdam, The Netherlands: Elsevier,
1981.

R. Freling, A. P. M. Wagelmans, and J. M. P. Paixdo, “An overview
of models and techniques of integrating vehicle and crew scheduling,”
in Computer-Aided Transit Scheduling (Lecture Notes in Economics and
Mathematical Systems), vol. 471, N. H. M. Wilson, Ed. Berlin, Germany:
Springer-Verlag, 1999, pp. 441-460.

R. Freling, C. G. E. Boender, and J. M. P. Paix ao, “An integrated approach
to vehicle and crew scheduling,” Econ. Inst., Erasmus Univ. Rotterdam,
Rotterdam, The Netherlands, Tech. Rep. 9503/A, 1995.

R. Freling, “Models and techniques for integrating vehicle and crew
scheduling,” Ph.D. dissertation, Tinbergen Inst., Erasmus Univ. Rotter-
dam, Rotterdam, The Netherlands, 1997.

V. Boyer, O. J. Ibarra-Rojas, and Y. A. Rios-Solis, “Vehicle and crew
scheduling for flexible bus transportation systems,” Transp. Res. B,
Methodol., vol. 112, pp. 216-229, Jun. 2018.

A. Andrade-Michel, Y. A. Rios-Solis, and V. Boyer, “Vehicle and reliable
driver scheduling for public bus transportation systems,” Transp. Res. B,
Methodol., vol. 145, pp. 290-301, Mar. 2021.

B. Amberg, B. Amberg, and N. Kliewer, “Robust efficiency in urban
public transportation: Minimizing delay propagation in cost-efficient bus
and driver schedules,” Transp. Sci., vol. 53, no. 1, pp. 89-112, Feb. 2019.
L. Kang, S. Chen, and Q. Meng, “Bus and driver scheduling with mealtime
‘Windows for a single public bus route,” Transp. Res. C, Emerg. Technol.,
vol. 101, pp. 145-160, Apr. 2019.

D. Huisman. (2003). Random Data Instances for Multiple-Depot Vehi-
cle Crew Scheduling. Accessed: Sep. 6, 2019. [Online]. Available:
http://people.few.eur.nl/huisman/instances.htm

1. Steinzen. (2007). Instances for Integrated Vehicle and Crew Scheduling
Problems With Multiple Depots. Accessed: Sep. 6, 2019. [Online].
Available: http://dsor.uni-paderborn.de/index.php?id=bustestset&L=0

C. Ciancio, D. Lagana, R. Musmanno, and F. Santoro, “‘An integrated
algorithm for shift scheduling problems for local public transport
companies,” Omega, vol. 75, pp. 139-153, Mar. 2018.

I. Steinzen, “Topics in integrated vehicle and crew scheduling in public
transport,” Ph.D. dissertation, Fakultt fiir Wirtschaftswissenschaften der,
Universitit Paderborn, Paderborn, Germany, 2007.

VOLUME 9, 2021

http://dx.doi.org/10.1007/978-3-540-69052-8_49

E. M. L. Simdes et al.: Matheuristic Algorithm for Multiple-Depot Vehicle and CSP

IEEE Access

[53] D.Huisman, “Integrated and dynamic vehicle and crew scheduling,” Ph.D.
dissertation, Tinbergen Inst., Erasmus Univ. Rotterdam, Rotterdam, The
Netherlands, 2004.

[54] M. Lépez-Ibafiez, J. Dubois-Lacoste, L. P. Caceres, T. Stiitzle, and
M. Birattari, “The irace package: Iterated racing for automatic algorithm
configuration,” Oper. Res. Perspect., vol. 3, pp. 43-58, Jan. 2016.

[55] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stiitzle, F-Race Iterated F-
Race: An Overview. Berlin, Germany: Springer, 2010, 311-336.

[56] M. Lépez-Ibafiez, L. P. Céceres, J. Dubois-Lacoste, T. Stiitzle, and
M. Birattari, “The irace package: User guide,” IRIDIA, Université Libre
de Bruxelles, Brussels, Belgium, Tech. Rep. TR/IRIDIA/2016-004, 2016.

[57] PassMark Software Pty Ltd. (1998). Cpu Benchmark Website. Accessed:
Jan. 18, 2021. [Online]. Available: https://www.cpubenchmark.net

EMILIANA MARA LOPES SIMOES reccived
the B.Sc. degree in computer science from the
Federal University of Ouro Preto (UFOP), Ouro
Preto, Minas Gerais, Brazil, in 2007, and the
M.Sc. degree in computer science from the
Federal University of Minas Gerais (UFMG),
Belo Horizonte, Minas Gerais, in 2009, where
she is currently pursuing the Ph.D. degree in
electrical engineering. She is also a Professor with
the Institute of Science and Technology, Federal
University of the Vales do Jequitinhonha e Mucuri (UFVIM), Diamantina,
Minas Gerais. Her main research interests include techniques of operation
research, optimization, computational intelligence, scheduling, and public
transport.

LUCAS DE SOUZA BATISTA received the B.Sc.,
M.Sc., and Ph.D. degrees in electrical engineering
from the Federal University of Minas Gerais
(UFMG), Brazil, in 2007, 2009, and 2011, respec-
tively. He is currently an Associate Professor
with the Department of Electrical Engineering,
UFMG, and a member of the Operations Research
and Complex Systems Laboratory (ORCS Lab),
UFMG. He is involved with the electrical, systems,

VOLUME 9, 2021

aerospace , and control and automation engineering courses, and the graduate
program in electrical engineering. His research interests include opti-
mization, computational intelligence, evolutionary computation, decision-
making theory, and applications to engineering design problems. He has
authored/coauthored over 50 peer-reviewed papers in journals and confer-
ences, receiving peer recognition for his work published in conferences,
winning best paper award certificates at the 14th Brazilian National Meeting
on Artificial and Computational Intelligence (ENIAC 2017), the 13th
Meeting of the Japanese Society of Evolutionary Computation (JSEC 2017),
and the 18th IEEE Congress on Evolutionary Computation (CEC 2011).

MARCONE JAMILSON FREITAS SOUZA
received the B.Sc. degree in metallurgical engi-
neering from the Federal University of Ouro Preto
(UFOP), Brazil, in 1982, and the M.Sc. and Ph.D.
degrees in systems engineering and computing
from the Federal University of Rio de Janeiro,
Brazil, in 1989 and 2000, respectively. He also
did a postdoctoral internship at the Institute
of Computing, Fluminense Federal University,
Brazil, in 2008. He is currently a Full Professor
with the Department of Computing, UFOP. He has authored/coauthored
74 full articles in journals, 18 book chapters, and 228 full papers in
conferences. His research interests include metaheuristics, scheduling,
timetabling, open-pit mining, vehicle routing, public transport, machine
learning applications, and operations research in the health area. His awards
and honors include a research productivity fellowship granted by the
Brazilian Council for Scientific and Technological Development (CNPq)
in transport and production engineering, the Winner’s Award of the
Competition on Solution Methods for the Bi-Objective Traveling Thief
Problem at the Tenth International Conference on Evolutionary Multi-
Criterion Optimization (EMO 2019), the Winner’s Prize of the International
Timetabling Competition 2011-2012 at the Ninth International Conference
on the Practice and Theory of Automated Timetabling (PATAT 2012), and
the Best Paper Award Certificates in the Area of Artificial Intelligence and
Decision Support Systems at the 16th and 21st International Conference on
Enterprise Information Systems (ICEIS 2014 and 2019).

155923

