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ABSTRACT Image segmentation was significantly enhanced after the emergence of deep learning (DL)
methods. In particular, deep convolutional neural networks (DCNNs) have assisted DL-based segmentation
models to achieve state-of-the-art performance in fields critical to human beings, such as medicine.
However, the existing state-of-the-art methods often use computationally expensive operations to achieve
high accuracy and lightweight networks often lack a precise medical image segmentation. Therefore, this
study proposes an accurate and efficient DCNN model (AEDCN-Net) based on an elaborate preprocessing
step and a resourceful model architecture. The AEDCN-Net exploits bottleneck, atrous, and asymmetric
convolution-based residual skip connections in the encoding path that reduce the number of trainable param-
eters and floating point operations (FLOPs) to learn feature representations with a larger receptive field.
The decoding path employs the nearest-neighbor based upsampling method instead of a computationally
resourceful transpose convolution operation that requires an extensive number of trainable parameters.
The proposed method attains a superior performance in both computational time and accuracy compared
to the existing state-of-the-art methods. The results of benchmarking using four real-life medical image
datasets specifically illustrate that theAEDCN-Net has a faster convergence compared to the computationally
expensive state-of-the-art models while using significantly fewer trainable parameters and FLOPs that result
in a considerable speed-up during inference. Moreover, the proposed method obtains a better accuracy in
several evaluation metrics compared with the existing lightweight and efficient methods.

INDEX TERMS Computational efficiency, deep convolutional neural networks, medical image
segmentation.

I. INTRODUCTION
Image segmentation is a computer vision task that special-
izes in categorizing an input image or a video frame into a
pre-defined number of classes by generating non-intersecting
and easily-interpretable sections of the input beneficial for
further processing. The image segmentation task is consider-
ably complex compared to other computer vision tasks, such
as image classification because image classification catego-
rizes an input by processing the entire image [1], whereas
image segmentation generates an output for every single
image pixel.

The associate editor coordinating the review of this manuscript and

approving it for publication was Anubha Gupta .

Image segmentation has numerous real-life applications,
including video surveillance [2], augmented reality [3], and
driverless cars [4]. The most beneficial and noteworthy image
segmentation application is in the field of medicine, where
it provides a detailed illustration of the human body for the
anatomy analysis, detects illnesses, and identifies the severity
level of a disease, to name a few [5]. Medical image segmen-
tation is directly associated with a person’s health and life;
hence, it must be very accurate to prevent a disease or cure an
illness [6], [7], [9], [10].

Based on the input specifications, the image segmentation
task can broadly be divided into two distinct groups: binary
and multiclass image segmentation. The binary image has
two available categories, namely background and foreground.
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Some of the applications of the medical image segmenta-
tion belongs to this group [9], [10]. On the other hand, the
multiclass segmentation may have more than two count-
able classes, including semantic segmentation in autonomous
driving applications [11].

Considering the notable performance of deep learning
(DL) methods’, artificial intelligence (AI) systems have
been shown to outperform humans in image classification
tasks [13], [14]. While a person can compete with an AI sys-
tem in the image classification task, it is impossible in image
segmentation due to the significantly complex nature of the
task. Because pixel-by-pixel classification is prohibitively
tedious and not feasible given the enormous quantity of data
in modern medical images. Therefore, generating precisely
segmented medical images using AI techniques is becoming
a research hotspot [16].

Due to the criticality of the DL methods for the medical
image segmentation, extensive research has so far been made
in this domain. The most popular DL model architecture
in this field is U-Net [17]. After its introduction in 2015,
researchers have proposed DL-based networks that achieve
a state-of-the-art performance [9], [16], [18]–[22]. How-
ever, some of these models [16], [18]–[20], [22] per-
form complex computations, which make them unusable
in machines with limited computation resources. In addi-
tion, these computationally expensive models require an
extremely long training time for DL-based medical image
segmentation models. Some efficient models [9], [21] cannot
attain a state-of-the-art performance and cannot generate an
accurate medical image segmentation. The aforementioned
problems should be addressed to ensure further progress
in medical image segmentation. Considering the existing
shortcomings, we propose herein an accurate and effi-
cient deep convolutional neural network (DCNN) model,
called AEDCN-Net, to alleviate the current issues by
reducing the number of trainable parameters and training/
inference time as well as improving the medical image
segmentation accuracy. The contributions of this study are
fourfold:
• The AEDCN-Net benefits from bottleneck, atrous,
and asymmetric convolution-based skip connections
in the encoding path and nearest-neighbor interpola-
tion method in the decoding path, which significantly
reduces the number of trainable model parameters.

• Due to the carefully designed architecture of AEDCN-
Net, on average, it is 40% faster than the existing
computationally expensive methods that achieve a state-
of-the-art performance in medical image segmentation.

• Although AEDCN-Net demands fewer trainable param-
eters and less training time, it has a superior performance
in terms of accuracy and generates more precise seg-
mented medical images compared with its counterparts.

• To the best of our knowledge, no proposed model
has yet outperformed the existing methods in both
computational efficiency and segmentation accuracy so
far. Therefore, the proposed model can be used as a

benchmark for further studies in the medical image seg-
mentation domain.

The rest of this paper is structured as follows: Section II
reveals detailed information on the existing methods in
medical image segmentation; Section III provides a metic-
ulous explanation of the proposed methodology; Section IV
presents the experimental details; Section V discusses results
of the experiments and qualitative comparison of the consid-
ered models; and finally, Section VI concludes this study and
presents future study directions.

II. RELATED WORK
This section summarizes the currently availablemethods used
in medical image segmentation. Based on the techniques
characteristics, they can broadly be categorized into compu-
tationally expensive and powerful, as well as lightweight and
efficient models.

A. COMPUTATIONALLY EXPENSIVE AND POWERFUL
MODELS FOR SEMANTIC SEGMENTATION
After the introduction of the convolutional neural network
(CNN) models in computer vision tasks, considerable
progress has been observed in the medical image segmen-
tation accuracy. The most notable DL-based network is a
fully CNN encoder-decoder architechture-based model for
biomedical image segmentation, called U-Net [17]. The
existing DL-based methods attaining a state-of-the-art per-
formance in medical image segmentation have a similar
model architecture to the U-Net [23]. They are precisely
enhanced U-Net variants. For example, Zhou et al. proposed
a novel encoder-decoder architecture that uses blocks of
nested, dense skip connections [20]. These pathways reduce
the semantic gap between the feature maps of the encoder
and decoder sub-networks that assisted to significantly out-
perform the existing methods. Isensee et al. developed a
robust and self-adapting framework on the basis of the origi-
nal U-Net architecture [19]. The network benefits from the
leaky rectified linear unit activation function and instance
normalization to achieve a performance better than that of
the original U-Net. Li et al. improved the U-Net architecture
with residual connections by increasing the network depth
and adding strong dropouts to extract finer features that
allow state-of-the-art performance in fundus image segmen-
tation [18]. Similarly, Jha et al. developed a ResUNet++
model architecture using a conditional random field and a
test-time augmentation that achieved a superior performance
compared with the existing DL-based networks on various
polyp segmentation datasets [22]. Although these models
exhibit a superior performance in terms of accuracy and
precision in medical segmentation, they require an enormous
number of trainable parameters; therefore, they are computa-
tionally expensive.

B. EFFICIENT AND LIGHTWEIGHT MODELS FOR MEDICAL
IMAGE SEGMENTATION
To devise efficient DL-based models, Mehta et al. intro-
duced a lightweight network that employs group point-wise
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FIGURE 1. Graphical illustration of the proposed methodology.

and depth-wise dilated separable convolutions to achieve a
state-of-the-art performance in semantic segmentation [21].
Similarly, [24] and [25] used compressing techniques, such
as vector quantization to increase the speed of semantic seg-
mentation models. Punn et al. also presented an inception
U-Net architecture [26] inspired by [27]. This network illus-
trates the model perception of target segmentation images
using activation maximization and filter map visualization
techniques and attained a superior performance in terms of
accuracy. Gadosey et al. developed a modified version of
U-Net for devices with a low computational power based
on bottleneck layers [28]. They used depth-wise separable
convolutions in the entire network. In addition, the model
benefited from a weight standardization algorithm with the
group normalization method. The modifications allowed the
model to be computationally efficient and lightweight. Sim-
ilarly, Olimov et al. presented a fast U-Net (FU-Net) model
relying on the bottleneck convolution layers in the encoding
and decoding paths of the model, which allowed medical
image segmentation on the devices with limited computa-
tional power and memory [9]. Although these models address
the problem of efficient computation, they do not provide
highly-accurate segmented images.

III. PROPOSED METHODOLOGY
This section presents AEDCN-Net in detail. Figure 1 shows
an overview of the proposed methodology. AEDCN-Net has
three distinct stages: data preprocessing, data learning, and
inference.

A. DATA PREPROCESSING
In data preprocessing, raw medical images are prepared for
training using the DCNNmodel. First, the images are resized
to match the network input size. The images are resized to be
256 × 256. Moreover, the image ranges are preserved, and
the outside boundary pixels are infilled with a constant value
of 0 [9]. After obtaining same size images, their colors are
transformed from three channels (i.e., red, green, and blue)
to a single-channel grayscale mode. This process is useful in
reducing the computational complexity of the DCNN model
with almost no impact on its accuracy. Grayscale images are
used for training; thus the number of trainable parameters
in the first convolutional layer is reduced by thrice. After
obtaining the grayscale images, we standardize the data by
making them follow the standard normal distribution. For this
purpose, we employ the following equation:

Xstd =

X −
1
M

M∑
i=1

xi√√√√ 1
M

M∑
i=1

(
xi −

1
M

M∑
i=1

xi

)2
(1)

In (1), X and Xstd are the original and standardized data,
respectively, while i and M are the particular data point and
the total number of instances, respectively.

Most medical image databases suffer from data scarcity
problems [9]. To alleviate this issue, we applied data augmen-
tation based on the characteristics of the medical image data
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FIGURE 2. DCNN model architecture of the proposed method containing atrous-asymmetric convolution (ATAS) blocks for encoding and decoding paths.

after completing the data standardization process. The data
augmentation techniques should be chosen carefully based on
the dataset image characteristics; otherwise, they can result in
a low performance of the DCNN model in the data learning
stage. The data augmentation is a part of pre-processing stage
and pre-computed before starting the data learning stage. The
data augmentation is conducted only once before training
stage and every epoch in the learning phase used the same
augmented images. We used the following data augmentation
techniques:
• Horizontally flipping the images;
• Randomly shifting the image dimensions in the range of
integer value x;

• Zooming the images in the range of random integer
value x;

• Randomly changing the angle of images by an integer
value of y.

In the proposed method, we used x values ranging from
-10% to 10%, and y values ranging from -5% to 5% because
they resulted in the best performance of AEDCN-Net in the
conducted experiments. Since we used four augmentation
techniques, the proposed model uses four times more images
per epoch in comparison to the original number of images in
the datasets. Each epoch in the training process uses slightly
different versions of original images in the dataset, which
results in better generalizability of the model.

B. DATA LEARNING
After obtaining the preprocessed medical images from the
first stage of the proposed methodology, we trained them
using a DCNN model. Figure 2 shows the AEDCN-Net
model architecture, which was similar to the original U-Net.

TABLE 1. Detailed description of the ATAS blocks: ks, a, p, and s stand for
kernel size, atrous convolution factor, padding, and stride, respectively.
Each block employs batch normalization (BN) and weight
initialization-based rectified linear unit (WIB-ReLU) activation
function [29].

However, several modifications ensured the enhancement of
the performance of the proposed model architecture. Specif-
ically, it comprised atrous-asymmetric convolution (ATAS)
blocks, max-pooling, concatenation, and upsampling opera-
tions. The ATAS blocks are responsible for learning useful
features from the preprocessed medical images. Table 1
present details of the ATAS blocks.

Table 1 shows two branches in the ATAS blocks, namely
the main and secondary branches. First, a raw medical image
was input into themain branch by passing through bottleneck,
atrous, and asymmetric convolution operations.

1) BOTTLENECK CONVOLUTION
The bottleneck convolutional layer is based on exploiting
fewer convolution filters than the input image, each of which
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measures 1 × 1. This reduces the computational complexity
due to the decrease in the input image channels. Specifically,
given a medical input image I (I ∈ RH×W×C , where H , W ,
andC are the image height, width, and channels, respectively)
and a convolutional filter F (F ∈ RT×X×Y×C , where T ,
X , Y , and C are the total number of output filters, the filter
height, filter width, and number of input filters, respectively),
the number of required trainable weights and floating point
operations (FLOPs) for a certain original and bottleneck con-
volution layer can be computed as follows:

Wconv = cl−1 × x × y× cl

Wbnck = cl−1 ×
cl

b
+
cl−1

b
× x × y× cl

FLOPsconv = H ×W × cl−1 × x × y× cl

FLOPsbnck = H ×W ×

×

(
cl−1 ×

cl

b
+
cl−1

b
× x × y× cl

)
(2)

In (2), l and b are the l th convolutional layer of the network
and the bottleneck convolution parameter, respectively. For
the proposed model, we set b to 4 because it provided the
best results in ablation studies (refer to Section V-C). The
bottleneck convolution layer significantly reduces the num-
ber of trainable parameters and FLOPS and results in nearly
two times of reduction in the aforementioned aspects.

2) ATROUS CONVOLUTION
The atrous convolution uses an atrous factor of a and is
defined as follows:

(A ∗a F)(p) =
∑

c+a b=p

A(c)f (b) (3)

In (3), A and f are the function and the convolution filter,
respectively. The atrous convolution allows the increase of
the receptive field of the convolution kernel without any
additional memory space and computational power. More-
over, it ensures that the receptive field decoding does not
negatively affect the image resolution and has no loss of
its coverage. Considering these advantages of the atrous
convolution, we exploited this technique in all convolution
operations in AEDCN-Net to obtain a computationally and
memory efficient model.

3) ASYMMETRIC CONVOLUTION
Equation (4) represents the regular convolution operation
between an image I and a convolutional filter Ft .

9conv = I ∗ Ft

=

X∑
x=1

Y∑
y=1

C∑
c=1

I (h− x,w− y, c) Ft (x, y, c) (4)

In (4), h, w, and c are in range of 1, 2, . . . ,H − 1,H ,
1, 2, . . . ,W − 1,W , and 1, . . . ,C , respectively. However,
this convolution operation is significantly expensive because
it requires T × X × Y × C l

× H × W × C l−1 FLOPs.

This study aims to develop an accurate and efficient network.
Specifically, the expensive cost of the convolution operation
can be alleviated by introducing an asymmetric convolution
operation as follows:

9th = I ∗ Fth

=

X∑
x=1

C∑
c=1

I (h− x, y, c) Fth (x, 1, c)

9tw = 9th ∗ Ftw

=

Y∑
y=1

TW∑
tw=1

9tw (x,w− y) Ftw (1, y, tw)

9̂tac = ((I ∗ Fth) ∗ Ftw) (5)

In (5), 9th and 9tw define the asymmetric convolution
filters convolving with the height and the width of an
input image, respectively, whereas 9̂tac represents the output
of the asymmetric convolution operation. With the usage of
this convolution type, the trainable parameters were reduced
to (X × C × TH + Y × TW × T ) and the FLOPs decreased
to (H×W )× (X × C × TH + Y × TW × T ). Moreover, the
asymmetric convolution conducted two convolution opera-
tions using various filters; thus, it could learnmany non-linear
functions and extract more useful features from the input
images.

4) MODEL ARCHITECTURE
Weprogressively increased the number of filters in the encod-
ing path. The first convolution layer contained 64 filters
that have a size of 3 × 1, with atrous factor, padding, and
a stride of 1. In every subsequent ATAS block, the num-
ber of convolution filters and the atrous convolution factor
increased by 2 in the encoding and decreased by the same
ratio in the decoding path. Each convolution operation was
followed by batch normalization [30] and WIB-ReLU acti-
vation function [29]. Regarding the secondary branch, the
input data passed through a regular convolution operation
with a kernel size of 1 × 1, padding, and a stride of 1,
followed by a batch normalization layer. The output of the
considered branches were then added and passed through
theWIB-ReLU activation function. Inspired by [13], we used
the skip connections in the ATAS block to alleviate the van-
ishing gradient problem. These skip connections ensured that
the information from the earlier layers is connected with the
subsequent layers, allowing a more effective training of the
DCNN model.

Moreover, the max-pooling operation decreased the spatial
dimension of the images by a factor of two, ensuring a compu-
tational complexity reduction. The upsampling operation also
recovered the image original size as the training progressed
by increasing the output of the ATAS block in the decoding
path by a factor of two. In the proposed model architecture,
we used the nearest-neighbor interpolation method to recover
the original image size, as in [9]. We chose this operation
because it does not have trainable parameters and ensures
a reduction in the number of parameters to train, which is
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consistent with our objective of developing an accurate and
efficient DCNN model. Finally, the concatenation operation
connected the output of the ATAS blocks in the encoding
path to the corresponding output of the upsampling operation
in the decoding path. The concatenation helped alleviate the
problem of feature loss resulting from the max-pooling and
upsampling operations.

In the end, the output of the ATAS blocks passed through
a 1 × 1 convolution operation with a sigmoid activation
function to generate a segmented image with an object in the
foreground and black pixels in the background.

5) LOSS FUNCTION
We used the sum of two loss functions, namely cross entropy
loss and dice loss, as a value for minimization. The loss
function is formulated as follows:

Lf =

(
1
M

M∑
i=1

−yilog(ŷi)

)

+

(
−

2
N

N∑
n=1

∑P
p=1 y

k
p ŷ
k
p∑P

p=1 y
k
p +

∑P
p=1 ŷ

k
p

)
(6)

In (6),M, N, and P are the total number of images, classes,
and pixels, respectively, and y and ŷ are the ground truth and
the predicted masks for the segmentation, respectively.

C. INFERENCE
After completing the data learning stage and obtaining a
trained DCNN model, we can now employ this model to
generate segmented medical images in an inference stage.
In this step, the raw data should pass through the same
preprocessing operations, as in the training stage, except for
data augmentation. A test set of a dataset or real-life medical
images was precisely resized, transformed into grayscale, and
standardized using (1). For standardization, X must be the
training data, i.e., the same data that was used in training
and validation stages, to ensure that data in inference stage
follow the same distribution. The images are then input into
the trained model, which consequently generates segmented
medical images.

IV. EXPERIMENTS AND RESULTS
This section describes the conducted experiments and their
results and presents a comparison of the performances of the
proposed method and the existing state-of-the-art models.

A. EXPERIMENT DATASETS
For the experiments, we employed four publicly available and
widely used medical image datasets, namely the 2018 Liver
Tumor Segmentation challenge dataset containing abdominal
computed tomography (CT) scans [31], 2018 Data Science
Bowl (DSB) challenge dataset containing a large number
of segmented nuclei images [32], Kvasir-SEG dataset con-
taining polyp images [33], and International Skin Imaging

Collaboration (ISIC) 2018: Skin Lesion Analysis Toward
Melanoma Detection challenge dataset containing dermo-
scopic images [34]. Real-life medical image datasets often
experience a problem of limited data for training and valida-
tion [35], [36]; therefore, we used various datasets that have
limited (2018 LiTS: 331) and ample (ISIC 2018: 2594) train-
ing images to test the performance of the proposed method
from different angles. Table 2 presents the details of these
datasets.

TABLE 2. Detailed description of the experimental datasets.

B. BASELINE MODELS
We selected five recent medical image segmentation DCNN
models that attain state-of-the-art performance to compare
the results of the proposed method: FU-Net [9], nnU-Net
[19], UNet++ [20], ESPNetv2 [21], and ResUNet++ [22].
We have provided a detailed summary of these models in
the Section II; hence, we do not mention their specifications
here.

C. TRAINING SETUP
We formulated the baseline and proposed methods using
Python version 3.6.9 and TensorFlow Library version 2.4.0,
respectively. We initialized the weight parameters based on
a standard normal distribution with a mean and a standard
deviation of 0 and 1, respectively, to follow the standards of
the WIB-ReLU activation function [29]. We did not use bias
parameters because they are canceled out while the batch nor-
malization method is used. We used combined cross entropy
and dice loss functions as the function for minimization (refer
to Section III-B5) and an Adam optimizer [37] with learning
rate η = 3e−3, the exponential decay rate for the first moment
β1 = 9e−1, and the exponential decay rate for the second
moment β2 = 9e−3 to update the trainable parameters. The
experiments were conducted using a 32 GB NVIDIA Tesla
V100-SXM2 GPU with CUDA 10.0 with a mini-batch size
of 4 for 2018 LiTS, 16 for 2018 DSB and Kvasir-SEG,
and 32 for the ISIC 2018 datasets. The models required
approximately 100 epochs to converge; therefore, we trained
them only for this number of epochs because further training
did not improve their performance.

D. EVALUATION METRICS
We assessed the performance of the baseline and proposed
methods using several evaluation metrics, including pixel
accuracy (PA), dice coefficient (DC), and mean intersection
over union (mIoU). The formulas of these evaluation metrics
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TABLE 3. Comparison of the baseline and proposed models in terms of accuracy and speed*.

are as follows:

PA =
1
M

M∑
i=1

∑P
p ŷp == yp∑P

p yp

DC =
2× TP

2× TP+ FP+ FN

mIoU =
TP

TP+ FP+ FN
(7)

Equation (7) shows the computation methods of the con-
sidered evaluation metrics, where ŷ and y are the predicted,
and target values, respectively; P andM are the total number
of pixels in an image and the total number of instances,
respectively; and TP, TN, FP, and FN stand for true positive,
true negative, false positive, and false negative, respectively.

V. DISCUSSION
This section discusses the results of the conducted experi-
ments in terms of computational and memory efficiency and
shares the results of ablation studies. Moreover, it exhibits
qualitative comparison of the baseline and proposed methods
and enumerates limitations of the proposed method.

A. EXPERIMENT RESULTS
Table 3 summarizes the experimental results of the con-
sidered models on the test sets of the aforementioned
datasets. From the table, the proposed model enjoyed high
speed for training and inference and significantly outper-
formed the existing computationally expensive models, such
as ResUNet++ and nnU-Net by achieving nearly 3× of

speed-up. As regards the lightweight and efficient models,
AEDCN-Net attained a performance faster than those of
ESPNetv2 and FU-Net, too. The proposedmodel was approx-
imately 38% and 15% quicker in training (data augmentation
process time is included in training time per epoch) and infer-
ence than the ESPNetv2 and FU-Net models, respectively.

In the case of the accuracy-related metrics, the proposed
model considerably outperformed the baseline networks in
the datasets with a limited number of medical images,
like 2018 LiTS and 2018 DSB primarily because the compu-
tationally expensive models with a large number of trainable
parameters experienced overfitting and could not generalize
well to the unseen test data. However, in the experiments on
datasets with 1000 and more images, such as Kvasir-SEG and
ISIC 2018, the nn-UNet and ResUNet++ models attained
better performances than the lightweight models due to a
great number of computations and parameters. AEDCN-Net
still could largely outperform the lightweight models and
achieve at least a second best result in terms of the PA, DC,
and mIoU metrics on the considered datasets.

B. COMPUTATIONAL AND MEMORY EFFICIENCY
We also compared the consideredmodels in terms of trainable
parameters, model size, and FLOPs. Table 4 presents the
evaluation results.

In Table 4, AEDCN-Net required nearly seven and 15 times
fewer trainable parameters in comparisonwith the lightweight
and computationally expensive models, respectively. More-
over, the size of the proposed model was considerably
smaller than the baseline networks. Finally, AEDCN-Net
was efficient in terms of computation by requiring the
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FIGURE 3. Comparison of the segmentation results: (a) input images; (b) ground truth masks; and the corresponding segmented masks using
(c) FU-Net, (d) nnU-Net, (e) UNet++, (f) ESPNetv2, (g) ResUNet++, and (h) AEDCN-Net. The test set of the 2018 DSB dataset had no ground truth mask;
therefore, there is no image in the second row and the second column of the figure.

TABLE 4. Comparison of the baseline and proposed models in terms of
memory and computational efficiency.

lowest number of FLOPs to produce the medical image
segmentation.

C. ABLATION STUDIES
Table 5 analyzes the effect of different components in the
proposed method on the accuracy-related evaluation metrics
and number of trainable parameters. We selected the datasets
with the fewest and the largest number of images to conduct
ablation studies to reduce the computational cost for the
experiments.

As shown in Table 5, the asymmetric convolution operation
with the kernel sizes of 3 × 1, 1 × 3 always performed
better than that with 5× 1, 1× 5 in both datasets. Moreover,
the progressive increase of the atrous factor followed by a
progressive decrease (2, 4, 8, 4, 2) resulted in the highest
scores in the evaluation metrics when compared with the
other options. In addition, the AEDCN-Net with seven blocks
worked better in the dataset with limited number of images,
while a more complex network with nine blocks performed
well in ISIC 2018 with a large number of trainable images.
Although AEDCN-Net attained the most accurate medical
image segmentation, it increased the number of trainable

TABLE 5. Effect of different components in the ATAS blocks, where ↑a is
a progressive increase, ↓a is a progressive decrease; and a* is an increase
followed by a decrease of the atrous factor.

parameters by nearly six times and resulted in a longer train-
ing and inference time; therefore, we employed AEDCN-Net
with seven blocks by default.

D. QUALITATIVE COMPARISON OF THE
CONSIDERED MODELS
After finishing the training and evaluating the model
performance on the considered datasets, we show herein the
generated segmented images using the baseline and proposed
methods. Figure 3 depicts the input medical images, ground
truth masks, and generated segmentation masks by the con-
sidered methods. The most efficient baseline model, FU-Net,
failed to generalize well on the test images. Particularly,
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the model’s inferior performance was noticeable in the seg-
mented images from the 2018 DSB dataset. In addition,
nnU-Net produced lower-quality segmentation masks in the
Kvasir-SEG and ISIC 2018 datasets. Notably, the proposed
method could produce more detailed and precise segmented
medical images than baseline methods in all considered
datasets.

E. LIMITATIONS OF THE PROPOSED METHOD
The results of the conducted experiments using four medical
image datasets and comparison of the performance with the
existing state-of-the-art models showed that the proposed
AEDCN-Net outperformed the baseline models in terms of
speed, memory, efficiency, and accuracy. However, the pro-
posed method have several limitations. First, some datasets
used in the experiments have limited number of training set,
which cannot fully demonstrate a performance difference
between the proposed method and the more powerful and
computationally expensive networks. Second, the considered
datasets in the experiments exhibit only binary (foreground
and background) output. Although, the proposed method
can easily be employed for multiple output segmentation by
slightly altering its activation function in the final output
layer, this operation can lead to increase in computational
complexity.

VI. CONCLUSION AND FUTURE WORK
This study investigated the medical image segmentation
using DL-based techniques. Based on the extensive literature
review, we found that the currently available state-of-the-art
methods in this field are computationally inefficient and
slow. Moreover, the lightweight and efficient models can-
not generate precise segmented images. Therefore, we pro-
posed the AEDCN-Net model that benefits from the carefully
designed preprocessing and the computationally efficient
DCNNmodel using skip connection-based bottleneck, atrous
and asymmetric convolution operations in the encoding path
and nearest-neighbor interpolation upsampling technique in
the decoding path. In the conducted experiments using four
open-source medical image datasets, the proposed method
showed a superior performance in terms of computational
efficiency, memory, and accuracy compared with the coun-
terpart models. Moreover, the AEDCN-Net significantly out-
performed the efficient models by achieving greater results
when assessed using several evaluation metrics.

For the future directions of AEDCN-Net enhancement,
we will work on increasing the accuracy of the proposed
model and attempt to interpret the predicted segmented med-
ical images based on the severity level of illness.
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