
Received November 5, 2021, accepted November 15, 2021, date of publication November 16, 2021,
date of current version December 21, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3128813

Parameter Estimation and Classification via
Supervised Learning in the Wireless
Physical Layer
KYLE W. MCCLINTICK 1, (Student Member, IEEE), GALAHAD M. WERNSING 1, (Student Member, IEEE),
PAULO VICTOR R. FERREIRA 2, (Member, IEEE), AND ALEXANDER M. WYGLINSKI 1, (Senior Member, IEEE)
1Worcester Polytechnic Institute, Worcester, MA 01609, USA
2Cohu, Inc., Norwood, MA 02062, USA

Corresponding author: Kyle W. McClintick (kwmcclintick@wpi.edu)

ABSTRACT Emerging wireless networks possess the potential to achieve levels of connectivity and Quality-
of-Service (QoS) that are orders of magnitude higher than today’s networks. Realizing the potential of these
networks will require flexible, low cost, and accurate Digital Signal Processing (DSP). Supervised Learn-
ing (SL) models employing unknown parameter estimation and classification techniques have experienced
widespread use in physical (PHY) layer wireless communication systems since they can achieve low costs
via inexpensive forward-pass computations, attain flexible operations due to trainable parameters, and yield
accurate results based on the universal approximator attribute. In this survey and tutorial paper, we present a
methodical explanation of how SL can be applied to unknown parameter estimation and classification across
several different PHY layer components of a wireless communications system. Additionally, via a survey
and comparison of popular methods, this paper provides insights on how to perform weight training, weight
initialization, loss function regularization, data pre-processing, input feature design, ensemble training, and
hyper-parameter validation. In our review of state-of-the-art works, we found significant use of SL algorithms
in the following PHY layer applications: Dynamic Spectrum Access (DSA), channel corrections, Automatic
Gain Control (AGC), Multiple Input Multiple Output (MIMO) control, Analog to Digital (ADC) conversion,
and Automatic Coding and Modulation (ACM). The overarching goal of this survey and tutorial paper is to
assist the reader in understanding the motivation and methodologies associated with various SL algorithms
applied to PHY layer DSP operations, as well as to provide the reader with the necessary tools and techniques
needed for addressing open challenges to be experienced by future wireless networks.

INDEX TERMS Digital signal processing, parameter estimation and classification, physical layer, machine
learning, supervised learning, wireless communications.

I. INTRODUCTION
Parameter estimation and classification in the presence of
noise is a ubiquitous problem in wireless signal processing.
Machine Learning (ML) models have a successful perfor-
mance history of predicting these unknown parameters in
real-world wireless systems with few assumptions about data.
However, only recently has the use of ML models become
practical, due to faster hardware leveraging graphics process-
ing units and cloud computing [1], a greater amount of data
from increasingly permeating wireless networks collected

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

by cheaper sensors [2], and improved algorithms that train
faster [3] while performing more accurate predictions [4].

ML-based wireless signal processing solutions tout a num-
ber of advantages. These include the ability to implement
real-world Cognitive Radio (CR) networks with dynamic
spectrum access capabilities [6], Wireless Sensor Networks
(WSN) with less re-programming and longer service life [7],
Self Organizing Networks (SON) with robust routing proto-
cols [9], and more secure Internet of Things (IoT) networks
that fully utilize resources to stay online longer [11].

To provide a useful resource for the wireless commu-
nications community, we provide a comprehensive tutorial
for the trial-and-error approach of designing SL models for
the PHY layer used in unknown parameter estimation and

164854 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-6576-6619
https://orcid.org/0000-0001-7504-7565
https://orcid.org/0000-0002-4909-7072
https://orcid.org/0000-0002-3357-0064
https://orcid.org/0000-0002-0945-2674

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

TABLE 1. A comparison of surveys and tutorials discussing SL in wireless communications.

classification. A great need exists for such a resource, as vir-
tually every system and problem requires either an alteration
to an existing SL model or the design of an entirely new
one. Furthermore, these models almost never function at an
acceptable level on their first iteration, and require iterative
development stages driven by a combination of intuition and
trial-and-error. Finally, the data used by each model is unique
to each system and problem, such that data collection must
be constantly performed as new wireless systems are created
or more widely deployed.

In this work, we first present the history, derivations, and an
assortment of definitions related to Neural Networks (NNs)
employed in the PHY layer of a typical wireless communica-
tion system. A survey of PHY layer SL works is conducted
by discussing the importance of each PHY layer process that
has experienced significant SL research, how those processes
are performed with and without the use of SL algorithms,
as well as how those SL algorithms have advanced the cur-
rent state-of-the art of those processes and their associated
remaining open challenges. From each PHY layer process,
one work is selected to serve as a subject for a collection of
tutorials in which we describe the methodology behind these
works, present the lessons learned, and provide a list of future
research tasks for the wireless community. Finally, based on
the analysis and lessons learned from this survey and tutorial,
we present a collection of guidelines for reproducible, com-
prehensively designed SL models.

Several popular software libraries are used to create and
train ML models. Most importantly, these libraries handle
back propagation using numerical methods, which otherwise
would have to be performed by analytically deriving each
gradient using linear algebra. One such library is Tensor-
Flow [19] by Google, which is capable of mobile device
deployment as well as browser deployment using JavaScript,
provides community support from commercial ML compa-
nies, and visualizes easily with TensorBoard. Another library
is MXNet [20] by Intel, which supports a wide range of
languages and is relatively fast. Keras [21] was developed by
a Google employee and is a high level library meant to be
used in conjunction with low level abstraction applications.
Theano [22] originated from the Université de Montreal and
is capable of supporting array processing libraries as well
as easy to use with high-level abstraction libraries such as

Keras. Facebook developed Pytorch [23] in order to support
dynamic graphs aswell as both high and low level abstraction,
while a DeepMind employee developed Lasagne [24] to be
used with Theano. Finally, Caffe [25] was developed by the
Berkeley Vision and Learning Center, which builds and trains
models with very little code, and provides support for vali-
dation and improving models. In our survey of state-of-the-
art works, we have found that TensorFlow [19], Keras [21],
and Pytorch [23] are the most popular libraries used in open
source code. These libraries are easy to learn and powerful
due to their large online communities, constant development,
and support from both academia and industry.

A. CONTENTS & STRUCTURE
The review and analysis of existing ML models applied to
unknown parameter estimation and classification problems
provide valuable insights on why different models perform
inconsistently for the same data sets, and vice versa. Addi-
tionally, a tutorial on ML would be a valuable resource
that would enable researchers to reproduce prior works and
develop new implementations. Depending on the ML model
used, not every section will be of interest to every reader. The
paper structure can be categorized by the following interests:

1) SL models and probabilistic concepts are presented
as a resource for researchers looking to learn more
about SL theory in Section II, which reviews the three
paradigms ofML and discusses their appropriate usage.
The Neural Network (NN) is derived and defined
in Section II-A with an emphasis on Least Squares
Regression (LSR), Most Likely Estimation (MLE),
and Stochastic Gradient Descent (SGD). Section II-B
presents an argument for SL-based unknown param-
eter estimation and classification, referencing the
non-generative universal approximator proof. Finally,
a variety of SL algorithms are derived, specifically
the Convolutional Neural Network (CNN), with an
emphasis on input-equivariance in Section II-C; the
Recurrent Neural Network (RNN), with an emphasis
on vanishing gradients in Section II-D; and the Support
Vector Machine (SVM), with an emphasis on kernels
and margins in Section II-E.

2) Section III-A surveys a history of seminal Supervised
Learning (SL)-based unknown parameter estimation

VOLUME 9, 2021 164855

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

and classification papers applied to PHY layer appli-
cations. Section III-B surveys the sequential tasks of
a receiver’s PHY layer in the wireless stack, common
processing tasks, and a brief survey of recent works.
This section is suggested for all readers, as it establishes
the context and motivation that is leveraged throughout
the rest of this tutorial.

3) Those interested in learning from recent works are
recommended to read Section IV, which reviews a
selection of popular works that use a variety of SL
models in several PHY layer applications covered
in Section III-B. Specifically, Section IV-A reviews
Dynamic Spectrum Access (DSA), Section IV-B
examines channel corrections such as equaliza-
tion, Section IV-C explores Automatic Gain Control
(AGC), Section IV-D covers Multiple Input Mul-
tiple Output (MIMO) coding and antenna control,
Section IV-E investigates Analog-to-Digital Conver-
sion (ADC) / Digital-to-Analog Conversion (DAC),
and Section IV-F examines Automatic Coding and
Modulation (ACM).

4) Researchers keen on designing or altering a model
are recommended to read Section V, which serves
as a survey and guide to the choices made when
changing or designing a new model for research pur-
poses. Included are guides on how to update the
weights (Section V-A), initialize the model weights
(Section V-B), guide the training process by regulariza-
tion (Section V-C), decide on the type of data to collect
(Section V-D), pre-process data (Section V-E), simu-
late the additional training data using data augmenta-
tion (Section V-F), and validate the hyper-parameter
choices (Section V-G). A set of instructions for, and
benefits of, ensemble learning are also included
(Section V-H).

B. RELATED WORKS
Scientific publications that provide details on the implemen-
tation of ML applied to wireless communication systems
(Table 1) are relatively difficult to find despite the widespread
use of ML. A summary of ML employed in wireless com-
munications is presented in Table 1, which includes the ML
models used, the layers of the wireless communications stack
affected, and the ML and probabilistic concepts employed.
After this review was conducted, it was noticed that while
most topics were presented by at least one work, there still
remains a need for both a PHY layer survey paper, and for a
comprehensive case study relating all keyML and probabilis-
tic concepts using visual analyses and comparisons.

II. SL OVERVIEW
One frequently used ML approach is Supervised Learning
(SL), where estimation or classification of test data is per-
formed using a model trained on input data paired with the
correct output values. SL algorithms can be used in a wide
variety of wireless communications applications, including

error control codes, network security, data compression, mod-
ulation classification, power management, bit detection, user
localization, mobility prediction, and filtration [7]. Popular
families of SL algorithms include the CNN [26], SVM [27],
KNN, the DT, and RNN [28]. A summary of the models is
presented in Table 2.

A. NN OVERVIEW
Intuitive use of SL algorithms requires an understanding of a
wide array of statistical topics including regression, concav-
ity, Bayes theorem, MLE, chain rule, and gradient descent.
NN models estimate or classify unknown parameters y by

observing training data matrices x ∈ Rn,p with n samples
and some dimensionality p. Each element x ji , j = 1, . . . , p of
each sample i = 1, . . . , n is also called a feature. The set of
all values data can take x ∈ � is called the state-space of the
data.

Given the continuous nature of many real-life state-spaces,
it is impossible to train a model with every value in �.
When the state-space is discrete and large or continuous,
a scientist may choose to parameterize a predictive model,
or utilize a set of weights w ∈ Rn,p and scalar biases b
so that a continuous trend-line ŷ can be approximated from
a finite training data set, used to choose model parameters
that optimize an objective function that minimizes trend-line
error. Suchmodels allow generalization under the assumption
that states observed are descriptive of the underlying data
distribution, and allow test data predictions to be looked up
quickly ŷ = f (x,w).

In reality, few estimation problems can be effectively
approached using a linear model. Non-linear, polynomial
regression solutions present a possible solution, where an
unknown parameter y may be estimated as:

ŷ = b+ w1
1x

1
1 + . . .+ w

p
1x

p
1 + . . .+ w

1
nx

1
n + . . .+ w

p
nx

p
n ,

(1)

however thesemodels assume that the inputs and outputs have
a specific polynomial trendline. If the polynomial model is
too low of an order, prediction error is high and the model is
said to under-fit. Similarly, a polynomial model with too high
an order is said to over-fit.

The logistic regression is an alternative algorithm to
polynomial regression that has a greater resilience against
both over- and under-fitting a model to a set of data [29].
Robustness to over- and under-fitting is achieved by ‘‘boost-
ing’’ [29], through which a set of small, serialized, and paral-
lel nonlinear regressionmodels, or neurons (Figure 1), solve a
union of small estimation problems to solve a high-dimension
estimation problem.Neurons are grouped in sequentially con-
nected sets called layers. A NN is said to be deep when it is
constructed of three or more layers [30]–[35], while a NN
with a single layer of neurons is defined as being shallow.

In logistic regression, each layer or parallel set of neurons
performs two computations, including the linear logit:

z = xTw+ b, (2)

164856 VOLUME 9, 2021

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

TABLE 2. A description, summary of the building blocks, and relative advantages and disadvantages of each of the SL models surveyed in Section II.

FIGURE 1. A neuron is comprised of a biased vector multiplication of
inputs and weights. In this mathematical model inspired by the biological
neuron, the neuron is changed from a linear regression model to a
non-linear one by the arbitrary activation function f , which in logistic
regression is given by the sigmoid function.

and the non-linear activation:

a = f (z). (3)

The sigmoid activation function, which is defined as:

f (z) =
1

1+ e−z
, (4)

is chosen as the activation function to satisfy the
non-constructive universal approximation proof [36]. Logis-
tic regression networks are terminated with a linear activation
function, defined as f (z) = z, instead of the sigmoid activa-
tion function, because the sigmoid function is bounded.When
classifying a discrete label instead of a continuous one, the
softmax [37] activation is implemented instead of the linear
activation function. The softmax activation is defined as:

f (z)i =
ezi∑K
j=1 e

zj
, (5)

which computes the class score of each of the K classes,
or the confidence that an input signal belongs to the ith class.
The softmax function must be used in place of the linear
function for categorical classification, because it transforms
model predictions from an ordinal space to a categorical
space. The quality of final-layer NN activations is determined
via a loss function [30]–[35], or any function that compares
NN predictions ŷ to true labels y, and returns smaller values
when predictions and true labels are similar.

B. WHY USE SL?
There exists numerous scenarios where a wireless transceiver
may possess one or more unknown parameters describing
the wireless channel or transmitted signal, thus affecting
the parameter classification implementation. This makes the
problem of optimizing the system parametric, meaning one
or more parameters are unknown. This use of the word
parametric differs from the data scientist’s definitions of
parametric and non-parametric, which describe the presence
or absence of weights in an estimator model. In the case
of a parametric problem, statisticians generally take one of
three approaches [38]. The first is to apply the Neyman-
Pearson (NP) rule [39] with some significance level α to
identify a uniformly most powerful or locally most powerful
decision rule. The second is to determine a Bayesian decision
rule [40] if priors and cost assignments exist. The third is
to use the generalized likelihood ratio test [41], which can
be implemented if the MLE for all unknown parameter(s)
can be identified. All of these solutions [38] require a Prob-
ability Density Function (PDF) describing the likelihood of
observations.

ML algorithms that utilize NNs provide powerful solu-
tions when data is available; however their PDF is difficult

VOLUME 9, 2021 164857

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

to model, as a single layer NN has been proven to be a
universal function approximator [36]. This non-constructive
proof asserts and proves that any bounded function f (x)
can be approximated as f̂ (x) within a finite tolerance δ,
or | ˆf (x)− f (x)| < δ.

C. CNN OVERVIEW
CNNs [30]–[35] have received significant research atten-
tion due to their success in high-dimension and large input
space applications. While logistic regression models allow
for higher order predictions than LSR and lower assumption
model designing than polynomial regression, their compu-
tational cost does not scale well with a large number of
inputs and many layers of neurons. For example, a data set of
spectrograms, where each of 100 time-steps is computed as a
512-bin Fast Fourier Transform (FFT) (i.e., x ∈ R512,100),
a single layer softmax regression model with 25 neurons
would require 1,280,000 weights and 25 bias terms. The
computation of the first layer’s linear logit z = xTw+bwould
require 2.1×1018 computations givenO(n3) for matrix mul-
tiplication and O(n) for element-wise addition (n = 1.28 ×
106). The CNN was designed to address this computational
load by constraining the softmax regression model to use the
same set (filter) of weights for each input feature. Returning
to our example, instead of employing 25 neurons, we use a set
of 25 filter weights w ∈ Rfh,fw to compute the linear logits,
where filter height fh = 5 and width fw = 5 span 5 frequency
bins and 5 time steps. The weights are convolved over the
input data; the r th row cth column of the linear logit is now
computed as:

zr,c =
fh/2∑

i=−fh/w

fw/2∑
j=−fw/2

xr+i,c+jwi,j, (6)

and the dimensions of the linear logit z ∈ Rzh,zw are:

zh = (xh − fh)+ 1,

zw = (xw − fw)+ 1. (7)

The resulting number of matrix multiplications (Figure 2)
between the filter and input is presently zh × zw = 48768,
or 7.62 × 108 computations (n = 1.56 × 104), which has a
reduced number of computations by 10 orders of magnitude.

Convolution is a linear function, so if a CNN is to have the
same non-linear capabilities as softmax regression, a similar
activation function must be used after computing the linear
convolutional logit z. In CNN, Rectified Linear Unit (ReLU)
activations [42] can compute each activation a ∈ Rzh,zw from
input element x as:

a(z(x)) = max(0, z(x)). (8)

Training a CNN to perform classification (Algorithm 1)
is done by calculating the weights most likely to predict the
correct label in the presence of noise. This is accomplished by
minimizing categorical cross entropy loss. SGD, where gra-
dients are calculated via the chain rule (as in logistic/softmax

FIGURE 2. A convolutional layer computing outputs zr ,c across two input
dimensions for some arbitrary data. Representing data with more than
one dimension in wireless communications applications is often used to
correlate mathematical transforms on data to their labels (i.e.,
real/imaginary components, absolute value, difference between features).

regression), is performed to minimize cross entropy loss. The
test-stage protocol for CNNs is described in Algorithm 2.

Algorithm 1 CNN Model Training Protocol [43]
1: procedure GIVEN TRAINING DATA X , LABELS Y ,

LEARNING RATE η, TRAINING ITERATIONS ne
2: initialize model parameters w, b
3: for ne do
4: for each x in X , y in Y do
5: for layer convolution layer l in L do
6: for filter w in layer l do
7: apply zero-padding if used
8: compute convolution zl(x,w, b)
9: apply ReLU a = max(0, z)

10: compute max pooling P = pool(a)
11: end for
12: end for
13: flatten sampled features, p = flatten(P)
14: for each dense layer do
15: compute linear logit, z(p,w, b)
16: compute activation a = max(0, z)
17: end for
18: compute softmax ŷ = argmax(a(z))
19: compute loss fCE (y, ŷ)
20: compute gradients δ

δw fCE ,
δ
δb fCE

21: update model parameters w, b
22: end for
23: end for
24: end procedure

D. RNN OVERVIEW
One fundamental constraint of many SL algorithms is that all
inputs have the same number of channels and features, while
numerous applications (i.e., time-domain signals) have inputs
that vary in their number of features.

164858 VOLUME 9, 2021

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

Algorithm 2 CNN Classification Prediction Protocol [43]
1: procedure GIVEN TRAINED MODEL PARAMETERS w, b,

TEST DATA X
2: for each x in X do
3: for layer convolution layer l in L do
4: for filter w in layer l do
5: apply zero-padding if used
6: compute convolution zl(x,w, b)
7: apply ReLU a = max(0, z)
8: compute max pooling P = pool(a)
9: end for

10: end for
11: flatten down sampled features, p = flatten(P)
12: for each dense layer do
13: compute linear logit, z(p,w, b)
14: compute activation function a = max(0, z)
15: end for
16: compute softmax ŷ = argmax(a(z))
17: end for
18: end procedure

Recurrent Neural Networks (RNNs) [30]–[35] (Figure 3)
were developed to address this constraint. In a single neuron
RNN, one neuron referred to as h (also called a hidden node)
scans over a length of inputs and the memory of the hidden
state at any time ht , t = 1, . . . ,T is a function of all previous
data ht−1, . . . , h0.
In a single neuron RNN the linear logit is computed as:

zt = [Uht−1 + Vxt]. (9)

RNNs function on the assumption of sparse data, or that
some inputs xt are not important towards the computation
of outputs ŷ while others are. Consequently, the activation
function used to make the model nonlinear should not add
or remove information from data by changing sign, mak-
ing zero-valued inputs non-zero, or making non-zero inputs
zero-valued.

Long sequences (T → ∞) cause the hidden state ht =
max(0, zt) to become numerically unstable due to the recur-
rent computation from equation (9), such that Uht−1 → ∞.
Consequently, the tanh activation is used:

ht (zt) =
e2zt − 1
e2zt + 1

, (10)

which is bounded, has the attribute tanh(0) = 0, and does not
change sign. The prediction at each step is finally calculated
as:

ŷ = hTt w. (11)

E. SVM OVERVIEW
While the RNN and CNN families of algorithms leverage the
neuron as their core computational unit, the SVM [30]–[35]
algorithm does not. Consequently, SVM algorithms have

FIGURE 3. The hidden state ht is computed using each element of the
input xt , t = 1, . . . , T . At each step a prediction ŷ is computed, which
allows a high level of prediction granularity not seen in other models.
This system can either classify each sample or use all the samples to form
a final prediction.

witnessed an increase in popularity during periods of disil-
lusionment about the computational costs of NN algorithms,
serving as an alternative approach to SL.
SVM algorithms compute decision boundaries given train-

ing data, mapping ranges of values in the input space of the
algorithm to specific discrete outputs. A decision boundary
is a saddle point that separates two exclusive sets of input
feature values where the same classification decision is made.
Formally, this can defined as ŷ = f (x,w) = C, x ∈ XC ,
where XC is the set of all input features that result in an SL
model classifying the input data x as belonging to class C .
In contrast to this, NN-based algorithms are designed to find
line fitting or regression solutions. Thus, the focus of SVM
algorithms is on using learned weights to separate data by
label rather than fitting a trendline to data.

To illustrate, a set of Binary Phase Shift Keying (BPSK)
samples can be mapped to binary using the SVM algorithm.
The aim is to classify the noisy signal x = s + ε, where
ε ∼ N (0, σ 2) to hypothesis s0 = A cos(2π ft) or s1 =
A cos(2π ft + π), corresponding to bipolar bits (in-phase
amplitude) y = −1 and y = 1, respectively. A naïve
decision rule may be that for mapping f (x) = x, values
f (x) > 0 correspond to outcomes ŷ = 1, and resulting values
f (x) < 0 correspond to outcome ŷ = −1. If some test data
were to have their error computed (Figure 4), which error
function makes the most sense for this decision rule? If least
squared loss, defined by:

Lls(f (xi), yi) = (yi − f (xi))2, (12)

is used to compute the error of predictions on test data, non-
zero error will be computed for correct predictions (i.e., for
|xi| → ∞, fls = (1 −∞)2 = ∞). If the goal is to compute
error rate, 0-1 loss:

L0−1(f (xi), yi) =

{
1 f (xi) 6= yi
0 f (xi) = yi,

(13)

would seem like the appropriate error function to use. How-
ever, SGD is not possible, as this error function is not differ-
entiable due to its discontinuity and zero-valued gradients.

This issue is resolved by hinge loss, an error function that
is both differentiable and computes error rate:

Lhinge(f (xi), yi) = max(0, 1− yif (xi)), (14)

where error increases for correct classifications as they move
towards the decision bound.

In SVM, the sum of the regularization loss and hinge loss
are weighted by the hyper-parameter C (Figure 5) to achieve

VOLUME 9, 2021 164859

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

FIGURE 4. A set of noisy signals f (xi) = xi are mapped to ŷi = 1 for
f (xi) > 0 and ŷi = −1 for f (xi) < 0. The distance from the classifications
yi = −1,1 to the hinge loss, least squared loss, and 0-1 loss is the
computed error for that test point using that error function. It is incorrect
to use least squared loss to minimize the SVM’s error rate (the incorrect
classification of BPSK data points ŷi = yi) because the technique
penalizes correct classifications |xi | → ∞ (i.e., fls = (1−∞)2 = ∞).
0-1 loss would seem ideal; however, it cannot be differentiated due to
the discontinuity and flat regions, which is required for training nonlinear
models using SGD. Hinge loss Lhinge(f (xi), yi) = max(0,1− yi f (xi)) is a
suitable error function because it is differentiable (unlike L0−1) and does
not penalize large signals like Lls.

a multi-objective loss function wherein weights are chosen
to both minimize hinge loss and make weights as small as
possible.

The weighted sum of regularization and hinge loss is
defined as:

L =
n∑
i=1

(
1

2nC
||w||22 +max(0, 1− yif (xi)), (15)

where maximum likelihood weightsw are computed by SGD.
The dual SVM training procedure is given by Algorithm 3,

and the testing procedure by Algorithm 4, where K (X ,X) is
the kernel definition, which is any similarity function relating
two samples, and, uniquely, forward passes are not computed
until the test phase due to the linear and box constrained
training scheme. Forward passes are computed as:

ŷi =
n∑

k=1

ak ◦ yk ◦ KT
k + b. (16)

For data where straight or linear decision boundaries exist,
linear kernels are used. On the other hand, if the data is
expected to have a nonlinear decision boundary, the kernel
or similarity function must be changed accordingly. Two
popular nonlinear kernels include the polynomial kernel:

K (xi, xj) = (1+ xTi xj)
d , (17)

where d is the order of the polynomial, and the Gaussian or
Radial Basis Function (RBF) kernel:

K (xi, xj) = e−||xi−xj||
2/2σ 2 , (18)

FIGURE 5. If there exists a set of weights ŵ that gives minimum hinge
loss Lhinge, then there exists an infinite range λŵ for λ ≥ 1 of weight sets
that give the same hinge loss [43]. The regularization loss
Lreg =

1
2nC ||w ||

2
2 limits the optimization problem to a single weight ŵ

which produces the minimum multi-objective loss L = Lhinge + Lreg and
has the lowest slope (maximum margin). If C is too small, Lreg →∞ and
the weights are forced to be zero-valued ŵ = 0. Therefore, C must be
chosen carefully.

where σ 2 is the variance of the modeled Gaussian random
variable. Both kernels can be implemented by substituting the
kernels into Algorithms (3-4).

III. SURVEY OF SL IN THE PHY LAYER
As discussed in Section I, NNs perform unknown parameter
estimation and classification tasks using large amounts of
data but few assumptions about the data. Inmost digital signal
processing tasks, the Radio Frequency (RF) channel is treated
as a black box due to the quantity and dynamic behavior of
stochastic processes present. Due to the universal approxi-
mator proof, SL algorithms provide unprecedented flexibility
and accuracy in a variety of digital signal processing tasks
which must estimate or classify unknown parameters given
data that has been altered by a black box set of stochastic
processes.

This section provides a brief history of how SL-based
parameter estimation and classification algorithms have
been applied to the wireless radio system’s PHY layer in
Section III-A. Next, the wireless receiver’s PHY layer will
be surveyed in Section III-B, which explores areas of active
research that apply SL-based methods and discusses their
application-specific advantages and disadvantages.

A. EVOLUTION OF SL APPLIED TO THE WIRELESS RADIO
PHY LAYER
Due to training and decision rule concerns raised during the
‘‘Artificial Intelligence (AI) winter’’ [82], ML in wireless
communications did not begin to widely appear in published
works until the late 1980s. New works at that time were
published digital signal processing papers, which often made
use of NNs as a non-linear estimator, primarily for equaliza-
tion [83]. Previously, the Volterra series [84] and nonlinear
auto-regressive moving average filters [85] had been used

164860 VOLUME 9, 2021

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

Algorithm 3 Train Dual SVM [30]
1: procedure GIVEN TRAINING DATA X ∈ Rn,p, KERNEL

K (X ,X), TRAINING LABELS Y , MARGIN WEIGHT C , AND

TRAINING ITERATIONS ne
2: initialize weights, bias term w, b
3: for ne do
4: for i = 1, . . . , n do
5: for j = 1, . . . , n do
6: compute L(ai, aj,C)
7: compute H (ai, aj,C)
8: if L = H then pass
9: else

10: compute Ei(K (X ,X),Y , a, b)
11: compute Ej(K (X ,X),Y , a, b)
12: compute η(K (X ,X))
13: compute a∗i (L,H , ai, yi,Ei,Ej, η)
14: compute a∗j (yi, yj, aj, a

∗
i)

15: update ai = a∗i , aj = a∗j
16: compute b(bi, bj, a∗i , a

∗
j)

17: end if
18: end for
19: end for
20: end for
21: end procedure

Algorithm 4 Dual SVM Predict on Test Data Given Trained
Model [30]
1: procedure GIVEN TEST DATA X , TEST KERNEL K (X ,X),

TRAINING LABELS Y , TRAINED WEIGHTS a AND BIAS b
2: for i = 1, . . . , n do
3: Compute ŷi using equation (16)
4: if ŷi < 0 then
5: ŷi = −1
6: else
7: ŷi = 1
8: end if
9: end for

10: end procedure

for non-linear estimation. This trend continued until the year
2000 when advances in computing, wireless communica-
tions, and ML allowed for the application of ML to other
layers of the protocol stack besides the PHY layer. A timeline
of the history of ML used in the PHY layer is presented in
Table 3.

B. SURVEY OF SL APPLIED TO THE WIRELESS RADIO PHY
LAYER
A significant number of wireless communications PHY layer
blocks can be assisted or replaced by SL-based parameter
classification or estimation algorithms. To provide context
and a better understanding of the topics covered in Section IV,
an illustration of the PHY layer, which highlights the contri-
butions of SL to the various blocks, is shown in Figure 6.

TABLE 3. Timeline of survey papers exploring the use of SL models in
PHY layer applications.

References for SL-based works implemented by each block
are annotated above their corresponding block. For a broader
survey of ML applied to all layers of wireless communication
systems, the reader is recommended to refer to the works in
Table 1.

1) DYNAMIC SPECTRUM ACCESS
Licensed access to the wireless spectrum is auctioned off in
blocks of frequency for specific applications such as cellular
telephony. Channel access can be optimized by multiplex-
ing several users by time, frequency, code space, physical
space, user or service priority, or a combination of these
methods, in either the down-link or up-link. It has long been
known that there exists a substantial amount of frequency
spectrum underutilized by primary users across all wire-
less networks [92]. Radios equipped with DSA capabilities
can potentially reduce the spectrum scarcity by transmitting
across licensed spectrum while respecting the rights of the
licensed users.

DSA capabilities require computations in every layer of the
wireless stack. However, the only task in the PHY layer is
spectrum sensing, or detecting/predicting available spectrum
from the perspective of theDSA radio, also called a secondary
user. Since there are significant penalties for disrupting the
activities of primary users, the spectrum sensing models must
display a repeatable and high level of applied accuracy in

VOLUME 9, 2021 164861

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

FIGURE 6. A survey of works that apply SL algorithms to various sequential stages of receiving information in the PHY layer. One representative work
from each block that is annotated with references is analyzed in Section IV. The terms fc , Gr , A, φ, and M represent chosen carrier frequency, receiver
gain, and modulation amplitudes, phases, and order.

order to see commercial use. Spectrum sensing strategies can
be categorized as energy detectors, matched filter detectors,
and cyclostationary feature detectors. Additionally, spectrum
sensing may be conducted via a fusion center utilizing a set
of detectors in what is called cooperative spectrum sensing.
In what follows, we review work on these topics, which we
summarize and compare in Table 4.
Kunz [72] performed an end-to-end spectrum sensing

simulation, where a NN was used to decide the frequency
assignment of an entire network in both a homogeneous
and real-world topography. Depending on the bandwidth
and frequency at which the spectrum sensing is being per-
formed, DSA can potentially be prohibitively expensive.
Works like Tumuluru et al. [73] predicted that spectrum
availability would reduce these costs. This prediction was
made using simulated data, assuming that Poisson distributed
primary user activity and on/off times following geometric
distributions in both stationary and time-varying scenarios.
Mahajan and Bagai [74] also derived a prediction approach
by using a NN to predict how many time slots each spec-
trum band in a set would be unoccupied for by the primary
user. Tang et al. [76] performed spectrum sensing with an
emphasis on reliably detecting lower power signals, while
Thilina et al. [75] performed spectrum prediction coopera-
tively, a process where input features to a variety of SL mod-
els are the concatenation of energy levels from the perspective
of each radio in the network.

Several random distributions exist in literature (i.e.,
Erlang [93], geometric [94], Poisson [95]) to describe the
time-domain activity of populations of radios for simulation
purposes. However, in applied settings, the above SL works
demonstrate the ability to form non-linear trend-lines to pre-
dict the behavior of individual radios. Additionally, they show
that online training allows adaptation in response to minor
changes in the Radio Frequency (RF) and physical environ-
ment. Finally, SL building-blocks such as the softmax layer

provide information about the trainedMLmodel’s confidence
in decisionsmade, which allows the use of safety nets to avoid
expensive Quality-of-Service (QoS) lapses.
One significant issue these SL-based spectrum sensing

works do not address is that non-linear models do not possess
bounds for guaranteed performance. Weights learned during
SL training can always converge to a local, rather than a
global, error minima. This means that a minimum QoS can
be difficult to promise to users. Consequently, this issue is
a significant disadvantage for commercial applications who
might consider using SL-based DSA in an already high-risk
service feature.

2) AUTOMATIC GAIN CONTROL
Gain control is an essential process in wireless communica-
tions, required for any system to function properly. Receiv-
ing radio power amplifiers are controlled through feedback
loops to maximize SNR while avoiding clipping and non-
linearities. Their counterparts, transmitting radio amplifiers,
control gain to conserve power and mitigate interference to
other radios.

Gain control approaches that maximize energy efficiency,
spectral efficiency, and/or Weighted Sum Rate (WSR) across
a network of radios are also called resource management
approaches. The most common algorithm used for this, and
as a result is most commonly benchmarked against SL-based
approaches, is the iterative Weighted MinimumMean Square
Error (WMMSE) algorithm [96]. A frequently asked research
question is whether the resource management optimization
algorithm used arrives at a Nash equilibrium [97], or a steady
state where no radio changes their gain value. In what follows,
we review work on these topics, which we summarize and
compare in Table 5.
Lee et al. [67] used channel information to train a NN in

order to maximize the WSR of a network of device-to-device

164862 VOLUME 9, 2021

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

TABLE 4. A summary of SL-based unknown parameter estimation or classification works on DSA.

user equipment by adjusting transmit gain. Additionally,
Lee et al. [68] used channel information to train a CNN to
maximize the energy and spectral efficiency of a network
by adjusting transmit gain. Zappone et al. [69] used a NN,
trained by data containing User Equipment (UE) location and
a path loss model, to maximize global energy efficiency over
a radio network by adjusting transmit gain. Sun et al. [71]
presented a NN trained to maximize the WSR by adjusting
transmit gain with an emphasis on online training and scala-
bility for larger networks. Liang et al. [70] trained aNN in two
stageswith channel informationmapped to transmit gain, first
with WMMSE generated targets, then with Unsupervised
Learning (UL) generated targets, to maximize the WSR of
a network of radios.

These works show that SL models are ideal for the multi-
player, multi-objective optimization tasks seen in resource
management works, especially in the presence of unknown
physical and RF environments. They demonstrate that, once
trained, SL models can compute forward passes relatively
faster than their iterative counter-parts, making real-time opti-
mization possible.

However, this computational gain makes the assumption
that data and target distributions do not drift during the tran-
sition from the training stage to the testing stage. Another
issue is that in resource management problems, optimal gain
control is unknown, such that data targets must be gener-
ated using traditional models such as WMMSE. The above
works show that SL weights trained this way cannot achieve
resource management decisions more efficiently than the
WMMSE algorithm that generated trained data, making the
use of SL redundant unless computational gains are achieved.

3) CHANNEL CORRECTIONS
Channel corrections refer to any filtering or feedback con-
troller that mitigates noise embedded in received signals by
the wireless channel or radio equipment. These corrections
include channel equalization, frequency correction, phase
correction and resolving phase ambiguity, and distortion
inversion.

Frequency correction of received signals is often applied in
sequential coarse and fine stages [98], requiring the compu-
tation of a FFT. Phase corrections are computed and applied
by the Phase-Locked-Loop (PLL) [99]. Equalization [100]
is an inversion technique, where the inverse of a non-flat or
multipath wireless channel is estimated and multiplied with a

received signal in the frequency domain. Finally, techniques
such as digital pre-distortion [101] invert the noise introduced
by equipment such as power amplifiers, in a similar way
to equalization. In what follows, we review work on these
topics, which we summarize and compare in Table 6.

Chen et al. [62] performed adaptive, non-linear equal-
ization of noisy binary observations with inter-symbol-
interference over tap-based channels by using a NN classifier.
Sebald and Bucklew [63] performed the same experiment
using SVMs. Kechriotis et al. [64] equalized a variety ofmod-
ulated signals using a RNN, where the input data originated
from either linear, partial response, or non-linear wireless
channel models. Hoppensteadt and Izhikevich [65] utilized
a NN-based phased-locked-loop to synchronize the phase
of a set of cyclostationary 6 × 10 pixel greyscale images.
Ibnkahla et al. [66] used NNs to model the inverse transfer
function of a traveling wave guide and solid state power
amplifiers in order to remove their non-linearities. Indriy-
atmoko et al. [61] corrected the phase of differential GPS
systems using a NN.

Much like in the case of resource management, these
works show that channel corrections are computed at a lower
cost when iterative and expensive feedback controllers are
replaced with SL models. Trained models compute forward
passes significantly faster than their traditional counterparts
can form estimates through feedback loops and repeated
domain transforms. Additionally, SL models presented in
these works outperform their traditional counterparts, as the
training targets are not generated by their traditional counter-
parts, but rather by using sequences of symbols or bits known
a priori by all radios in the network.
However, higher performing SL-based channel correction

algorithms come with new challenges. Since no information
is contained in a priori symbols or bits, data throughput
is reduced during the SL training cycles. Consequently, the
models must be trained offline to generalize to all test sce-
narios, or be trained in cycles of minimum duration and
frequency, such that a certain QoS is maintained.

4) MIMO CONTROL
Radio transceivers that perform up-link and down-link tasks
with multiple antennas in order to increase data throughput
are known as MIMO systems. Recently, massive MIMO
systems with spatial multiplexing have gained significant
attention [102] due to their potential for higher throughput,

VOLUME 9, 2021 164863

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

TABLE 5. A summary of SL-based unknown parameter estimation or classification works on AGC.

TABLE 6. A summary of SL-based unknown parameter estimation or classification works on channel corrections.

lower latency, lower power, and lower costs than traditional
MIMO wireless systems.

A MIMO transmit-receive pair with nr receiving antennas
and nt transmitting antennas has an upper bound on data rate
(bps/Hz) given by [103]:

C = E
[
log2

(
Inr +

SNR
nt

HHT
)]
, (19)

where H can be modeled as a deterministic or random chan-
nel matrix, Ix represents a square identity matrix with x
columns and rows, and Signal-to-Noise Ratio (SNR) is the
ratio of received power of the transmitted signal and the noise
power of the wireless channel. In what follows, we review
work on these topics, which we summarize and compare in
Table 7.

MIMO radio systems frequently use SL to estimate and
classify a range of unknown parameters using estimated CSI
and SNR. For example, Klautau et al. [77] trained several SL
models to select the highest data throughput antenna pairs.
These models were trained with two-dimensional maps of
vehicle positions and sizes that were translated to either the
optimal beam pair (determined via ray tracing) or the opti-
mal azimuth and elevation angles. Gao et al. [78] leveraged
SL as an optimizer to choose a digital pre-coding matrix
and analog beam-forming matrix to maximize data rate and
minimize power consumption. Alkhateeb [79] presented a
dataset framework parameterized by S and channel R for
performing beam selection similar to that performed by
Klautau et al. [77]. He et al. [80] developed an approach that
chose which antenna to transmit to, assuming H is known at
both the transmitter and eavesdropper, to maximize secrecy
probability. Samuel et al. [81] compared a deep detector to
traditional detectors in both fixed and varying channels, while
Lee et al. [104] computed antenna transmission and reflec-
tion properties using a NN based on a three-dimensional

particle simulator assuming point transmitters and sphere
receivers.

These references highlight how MIMO implementations
can benefit from SL models in multi-objective optimization
problems with unknown parameters that cannot be related
analytically to noisy observations. Additionally, they show
that SL models can classify or estimate antenna behavior bet-
ter than traditional methods by learning the RF environment
through online training. Finally, they show that trained SL
models achieve lower computational costs than traditional
alternatives.

Although SL has the potential to solve challenging prob-
lems, it does possess several implementation issues as well.
For instance, training models offline that generalize well to
online data is difficult. Alternatively, it is more expensive to
perform online training of SL models relative to traditional
unknown parameter estimation and classification techniques.
Finally, real-world labeled data can be scarce in expensive,
rare, or protected systems such as 5G massive MIMO base
stations.

5) ANALOG TO DIGITAL CONVERSION
DACs and ADCs are fundamental for all digital radio oper-
ations, and significantly influence PHY layer data repre-
sentation. ADC is performed by mapping each sample of
a discretized analog signal to a unique bit sequence; this
process is referred to as quantization. The mapping process
from continuous to discrete amplitudes also introduces some
distortion called quantization error, which is directly related
to the resolution of the quantization process. Increasing the
bandwidth and amplitude dynamics of a modern radio system
imposes greater constraints and requirements on the ADC
architecture; as a result it needs to be designed with flexi-
bility and adaptability in the presence of manufacturing vari-
ation, timing errors, jitters, and parasitic capacitance [105].

164864 VOLUME 9, 2021

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

TABLE 7. A summary of SL-based unknown parameter estimation or classification works on MIMO control.

The development of high speed processors has also affected
the need for higher resolution and higher sampling rates to
meet the increasing demands of wireless systems. In what fol-
lows, we review work on these topics, which we summarize
and compare in Table 8.

Tank and Hopfield [60] minimized a custom loss function
by training a set of conductance weights between amplifiers
in a 4-neuron ‘‘Hopfield’’ ADC using analog signals. This
work was expanded on in many ways [58], including through
the addition of Complementary Metal-Oxide-Semiconductor
(CMOS)memristors. Vidyasagar [59] attempted to regularize
the Hopfield ADC to encourage convergence to a global loss
minima, thus avoiding hysteresis. Danial et al. [57] imple-
mented a memristor DAC with a focus on online training
loops.

Research on SL-based ADCs has been incremental and
largely centered around Hopfield’s ADC design [60]. The
sampling frequency fs must be chosen carefully for these
designs to avoid aliasing, minimize voltage fluctuations, min-
imize costs, and ensure the rate is below the maximum sam-
pling rate allowed by the memristor design. The SL algorithm
cyclically reads and writes, where the final results is sam-
pled at the end of the reading period Tr . The writing cycle
mitigates transient effects and latches using a negative edge
trigger over a period Tw, upon which time the feedback circuit
is activated, executing the learning algorithm, and computing
the error between the observed output and the desired output.
The sampling frequency is defined as:

fs =
1

Tr + Tw
> 2fm, (20)

where fm is the maximum frequency component of the signal
being converted. Typically a LPF or anti-aliasing filter is used
before the ADC to filter out frequencies above fm, which can
result in the loss of information if fs is not properly chosen.
To keep costs low, it is typically chosen to assign fs = 2fm.
However, oversampling with a higher rate and then digitally
filtering the signal to limit the signal band width can make it
easier to realize anti-aliasing filters, improve bit depth, and
reduce noise. Voltage division performed during Hopfield
ADC writing cycles creates non-uniformity in the voltage
cycles proportional to fs, significantly reducing the learning
rate of the converter, and increasing the error between the

actual and desired output. A capacitor may be added to miti-
gate this non-uniformity. The capacitor’s value is bounded by
the sampling frequency of the converter as:

1
fs
≥

Cshock,max

K (VDD − 2VT)
, (21)

where VDD is the power supply,K is the transistor conduction
strength constant, and VT is the trained synaptic voltage
weight. Additionally, converters can only support a finite
range of fs, limited by:

fmax =
1

2πROFFCmem

√(
ROFF

RON · 2N+1

)2

− 1, (22)

where ROFF and RON are the memristor conductance when off
or on, and Cmem is the capacitance of the memristor.
This collection of works show that the small architecture

of NN-based ADCs allow for real-time training to satisfy
these needs. Fault tolerant SLmodels additionally calibrate to
modeled noise, where traditional ADCs attempt to quantize
noise-free signals. End-to-end NN-based ADCs do not make
use of power amplifiers, increasing energy efficiency with
simple digital circuits.

Similarly to channel correction applications, the live train-
ing of SLmodels requires the transmission of a priori targets,
thus reducing data throughput. These works show a trend of
SL-based ADCs that do not classify bits directly from analog
signals, but rather train optimal resistance values within the
analog circuits. These hybrid analog/NN-basedADCs require
circuit-specific learning techniques, such that they do not
generalize well across different hardware.

6) AUTOMATIC CODING AND MODULATION
Jointly adjusting the modulation order and type alongside the
error control code rate and type in order to maximize data
throughput is essential to meet modern QoS demands [106].
Spectrum enforcement, the generation of coverage maps, and
wireless localization require modern radios to be capable of
learning the modulation and coding behavior of unknown
signals from the ground up. This has led to many novel signal
classification works, which we discuss in what follows.

Error control codes [107] are binary mappings that add
redundancy to messages in order to make it easier to recon-
struct those messages in the presence of noise. A control code

VOLUME 9, 2021 164865

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

TABLE 8. A summary of SL-based unknown parameter estimation or classification works on ADC.

rate refers to the ratio of information bits to redundant bits in
a control code type. Error control code types are categorized
as either block or convolutional. Recent improvements to
control codes include turbo codes [108] and Low-Density
Parity-Check (LDPC) codes [109]. Other error reduction
techniques such as interleaving [110] reduce errors without
adding redundant information by shifting bits around in time
to avoid bursty noise.

The modulation and demodulation of information is per-
formed to map bits and symbols. The order of a modu-
lation scheme M refers to how many unique symbols the
mapping can take, related to the length of the binary code-
words b by the equation M = 2b. The modulation type
is defined by how symbols are different from one another,
be it by shifting phase, frequency, amplitude, or a combi-
nation of phase and amplitude. All modulation types are
carefully designed to maximize the space between symbols
while minimizing symbol amplitude, balancing error reduc-
tion with power consumption. In what follows, we review
work on these topics, which we summarize and compare in
Table 9.

Bruck and Blaum [44] trained small NNs to decode
Hamming and Reed-Muller block codes, while
Orturo et al. [45] used a NN to decode Bose-Chaudhuri-
Hocquenghem (BCH) (7,4) block codes. Wang and
Wicker [47] used a NN to perform Viterbi convolutional
decoding. Aazhang et al. [51] assisted a matched filter with
a NN in a Code Division Multiple Access (CDMA) detector
to detect and demodulate signals, aided by online training.
Kechriotis and Manolakos [52], [53] performed a similar
experiment with a Hopfield NN, which is an early version
of the RNN architecture. West and O’Shea [49], [50] used a
LSTM RNN as well as a CNN to perform modulation clas-
sification on noisy IQ data given eight modulation types and
orders ranging fromM = 4 toM = 64. Rajendran et al. [56]
performed similar research, and also employed the averaged
magnitude FFT of noisy signals to train a model to classify
one of the six possible wireless standards that have been
observed. Park et al. [55] used an SVM to perform modu-
lation classification on the continuous wavelet transform of
noisy signals mapped to four different modulation types and
orders ranging fromM = 2 tot M = 16.
These works demonstrate that trained SL models are com-

putationally cheap compared to many advanced coding tech-
niques such as looping turbo codes. Additionally, the results
from each of these publications demonstrate how control
codes can be calibrated to account for specific noise behav-
iors, in a similar way to ADC applications. Finally, large
libraries of signals can be used to train deepmodels to identify
a variety of aspects of unknown signals, whereas traditional

detectors are designed with specific signal standards or struc-
tures in mind.

As with several PHY layer applications discussed so far,
the use of SL models in control codes require the trans-
mission of a priori bits, which reduces data throughput
during training. A real-world issue overlooked by many of
these simulation-based works is that online training requires
the transmission of weight updates or error values across
the wireless channel, which results in noisy learning and
loads the network layer with an additional task to coordinate
between devices. There are also issues with signal classifica-
tion, such as the inability to generate live training data from
uncooperative transmitters. Training these models offline to
be generalized without knowing the channel effects and trans-
mission behaviors that will be experienced at the testing phase
is often not feasible.

IV. ANALYSIS OF PHY LAYER SL WORKS
In this section, we analyze a subset of works surveyed in
Section III-B by performing an in-depth examination of sev-
eral publications applying SL models to each domain of the
PHY layer. The intent of this section is to provide insight
for other researchers on how to apply SL to their PHY layer
research activities. The following analysis is organized by
PHY layer application topic, with each section describing
a chosen publication, along with its goal, solution, results,
lessons learned, and directions for future work in the broader
topic.

A. DYNAMIC SPECTRUM ACCESS
The DSA research presented by Thilina et al. [75] involved
training several SL models, whose weights were stored in a
central organizing radio that could both receive primary user
activity information from all listening secondary users, and
transmit commands to each secondary user on whether or not
it was safe to transmit without disrupting the primary users.
In this way, the SL model was used to perform cooperative
spectrum sensing across the network of listening secondary
users (Figure 7). The authors simulated a single channel
network of primary users whose transmissions were used
to compute a time-series of non-central chi-squared energy
estimates at each secondary user. The authors’ aim was to
train a variety of SL algorithms to perform a binary classi-
fication at each time step to determine channel availability,
given two secondary users for visualization purposes. Clas-
sification was performed using SVM models with both poly-
nomial and linear kernels, as well as the K -Nearest Neighbor
(KNN) [111] algorithm with both city block and Euclidean
distances. Classification accuracy is significantly dependent
on SNR, but the Euclidean KNN had the highest detection

164866 VOLUME 9, 2021

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

TABLE 9. A summary of SL-based unknown parameter estimation or classification works on ACM.

probability, also called precision or Positive Predictive Value
(PPV):

PPV =
TP

TP+ FP
, (23)

at low SNR values, as did the linear kernel SVM at medium
SNR values. Additionally, all classifiers achieved a 100%
detection probability with a high enough SNR. Many SL
research efforts provide deeper classification performance
detail through the use of confusion matrices [112], whose
rows and columns describe the number of occurrences of
predicted and true classes. In particular, the diagonal values
of confusion matrices highlight the byclass PPV of the tested
data set.

By training several SLmodels to perform cooperative spec-
trum sensing, this work highlighted several lessons regarding
trade-offs with respect to choosing the appropriate algorithm
for the problem.

For primary user transmit power values over 100 mW, the
linear kernel SVM model had a higher probability of detec-
tion than any other detection model used by the central radio
of the secondary users. The observed power from a single
primary user was log-normal distributed from the perspective
of a secondary user, and chi-squared distributed for a set of
primary users. Consequently, similar to threshold-based NP
detectors [113], the decision bounds could be separated by a
scalar threshold for one secondary user, a linear boundary for
two secondary users, and a sum of linear boundaries for three
or more secondary users. The combination of a sum of linear
bounds was also linear, such that the polynomial kernels used
in this experiment over-fitted to the training data and did a less
successful job of classifying the presence of the primary user.

The SVM linear kernel model also outperformed its
benchmark model, the Fisher linear discriminant analy-
sis classifier [114]. In a similar way to LSR and other
non-SL-based linear models, the Fisher linear discriminant
classifier assumes data homoscedasticity, or that the covari-
ance of the data does not vary by sample or by class. This
assumption does not hold, since the primary user active state
power measurements were log-normal distributed for a single
primary user and chi-squared for multiple primary users.
However, the primary user inactive power levels describe
the power distribution of the noise inherent in the channel,

modeled by a squared Gaussian distribution. Since the data
from each class were generated from different distribu-
tions, their covariance matrices cannot be equal and the
data is heteroscedastic. The SVM model does not assume
homoscedasticity.

For primary user transmit power values under 100 mW,
the weighted-vote KNN model with an unreported K value
had a ∼ 33% higher probability of detection by the fusion
center of secondary users than all other models. Typically
K is chosen by guess-and-check validation searches (see
Section V-G). The authors cited this success as a consequence
of the KNN leveraging information local to each test sample,
which suggests that a smaller K value was chosen, and that
the linear kernel SVM boundary is slightly biased in low
transmit power scenarios. Furthermore, the KNN performing
classifications using Euclidean distance outperformed the
lower order city block distance model due to the ‘‘curse of
dimensionality’’ [115], i.e., a rule of thumb that states higher
order data is classified more accurately using lower order
distance metrics, and vice versa.

The reported model training duration and classification
delays highlight the non-parametric nature of the KNN mod-
els, which do not train a set of weights, but instead compare
each training-testing data pair, scaling poorly with training
data size. The higher training time for the polynomial ker-
nel (equation 17) SVM than its linear counterpart suggests
either that the polynomial kernel trains on a larger number
of support vectors, or that the weight updates take longer
to converge due to a flatter loss gradient caused by many
decision boundaries being equally accurate.

Thilina et al. [75] shows that spectrum sensing using SL
computes decision boundaries that correctly fit the under-
lying linear distribution of primary user signal detections.
Spectrum sensing and signal detection will always be an
area of open research, requiring higher detection rates using
less data at lower SNR values. This is especially important
when detecting primary users in real-time within short time
windows, so that spectral coexistence can be realized in fre-
quency white spaces or even unlicensed frequencies.

Primary user receivers may also be passive devices, and
thus their locations, frequency bands of operation, and receiv-
ing power levels can be potentially difficult or even impossi-
ble to estimate. Detecting or inferring any information about

VOLUME 9, 2021 164867

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

FIGURE 7. SL-based collaborative spectrum sensing was performed by
Thilina et al. [75] via classifying channel availability ai at time
i = 1, . . . , ωτ and communicating that availability to the n = 1, . . . ,N
secondary users. All SL models used by the authors performed
classification by observing time slices of the estimated total energy
received from all M primary users on the channel at time i by the nth

secondary user.

primary user receivers to determine the availability of a chan-
nel is an area of open research that may benefit fromSL-based
signal detectors, localization systems, and eavesdroppers.

Another area of open research is the classification of pri-
mary users from secondary users from other cognitive net-
works. Since the penalty of interfering with the activity of
secondary users from other networks is significantly less than
that of interfering with a licensed primary user, it is valuable
to know what spectrum is occupied by what type of user.

Finally, SL-based spectrum sensing has a few additional
areas of open research, including the enforcement of a min-
imum guaranteed QoS for primary users. Relatively few
spectrum sensing works establish protocols for monitoring
SL classification accuracy and implementing safety measures
when performance is negatively impacted. Another SL spe-
cific issue is training generalizedmodels despite time-varying
spectrum and PHY distributions. Most SL-based spectrum
sensing papers implement a form of energy detection on
stationary primary and secondary users, whose classification
performance would decrease significantly in a mobile net-
work.

B. CHANNEL CORRECTIONS
SL-based equalization has been extensively studied by the
research community with numerous implementations hav-
ing been proposed. For example, Sebald and Bucklew [63]
trained a SVM model to jointly flatten and demodulate sig-
nals transmitted over a non-flat frequency channel (see Algo-
rithm 3). The authors simulated signals that are altered by
a non-linear channel with Inter-Symbol Interference (ISI),
modeled by a Finite Impulse Response (FIR) filter and
injected with AWGN. The SVM classifier was trained to clas-
sify delayed bipolar bits by observing a number of transmitted
bits greater than the sum of the equalizer delay and number

of ISI samples. The authors found that certain sequences of
bits were indistinguishable, such that model predictions of
the previous sample were needed to learn effective decision
boundaries. Even after this, some bit sequences had equal
constellation points requiring the implementation of a bank
of SVMs that were equal in number to the amount of con-
stellation points, which were trained and tested on a subset of
data. This final step was found to properly create a data space
with unique constellation points, which allowed there to be
an optimal decision boundary.

The work of Sebald and Bucklew [63] provides an excel-
lent lesson in combating multicollinearity by adding infor-
mation to model inputs. The authors took two thoughtful
steps, (Figure 8) first to ensure that input-output pairs were
unique, then to decouple input features. The issue of overlap-
ping constellation points extends to many other applications,
such as ACM. There are also more hands-off approaches
to mitigating multicollinearity, such as Principal Component
Analysis (PCA) [116], which removes input features that are
highly correlated.

A visualization of decision boundary behavior in regions
with no data is also provided by Sebald and Bucklew [63].
In particular, ‘‘ghost’’ decision regions result from under-
fitting, where decision regions wrap around to the other side
of a finite data space despite no training data being present
there. Areas with no training data can also have winding,
high variance curves that seem to be fitting to invisible data.
Finally, ‘‘spoons’’, or decision regions enclosed by another
decision region, can be encountered, where there exists a
trade off between all of these behaviors and computational
costs, achieved by decreasing C while increasing the number
of support vectors.

SL-based equalization is a frequently explored application
of SL used in the PHY layer of wireless systems. The success
of the analyzed work regarding non-linear equalization mod-
els and those similar to it, as well as the continued success of
linear equalization coefficient estimators [100], has resulted
in SL-based equalization research reaching relative maturity.
Phase and frequency-corrective algorithms have similarly
reached a level of maturity, with many SL-based channel
correction works over the past 20 years building upon the
state-of-the-art. These works aim to leverage recent advances
in feedback-based ML models [117] to take advantage of
the temporal nature of data dispersed by non-linear channels.
Other works introduce methods for computationally-efficient
online training, of models with zero offline training rather
than the more common approach of training offline and tun-
ing weights with small sets of online data [118].

C. AUTOMATIC GAIN CONTROL
Lee et al. [67] trained an AGC framework by using a logistic
regression model, simulated at a Base Station (BS), to maxi-
mize the WSR of Device-to-Device User Equipment (DUE)
capable of sharing resources with Cellular User Equipment
(CUE). This process is referred to as underlaid communi-
cations. The model inputs were simulated assuming a set of

164868 VOLUME 9, 2021

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

FIGURE 8. The SL-based equalizers designed by Sebald et al. [63]
observed channel outputs X (n) = [x(n), · · · , x(n−M + 1)]T from the
non-linear channel with length N ISI to classify the delayed channel input
û(n− D). Multicollinearity was reduced by concatenating two observed
channel output arrays, and by implementing a feedback controller on a
bank of 2Ns trained SVM models, where Ns = N +M − D− 2.

N randomly placed DUE radios that were interfering with a
single CUE attempting to connect to the BS. An N ×N chan-
nel information matrix was computed assuming a path loss
model with multi-fading, and that matrix was concatenated
via early data integration with a length N CUE information
array (Figure 9). Data targets were generated by minimizing
the WSR using the WMMSE algorithm. The authors found
that when trainedwith 50, 000 samples, their model’s training
WSR matched the WMMSE, and their model’s testing WSR
fell behind by about 1 Mbits/sec. However, after a 50 minute
training period, their model predicted transmit gains in about
0.4 ms compared to the iterative WMMSE’s 4.5 ms compu-
tation time.

While the order of magnitude improvement to the compu-
tation speed of test data is impressive, it is worth noting that
the WMMSE elapsed time of 4.5 ms would be suitable for
all but the most spatially and temporally dynamic scenarios.
If the DUE channel matrix and CUE channel array were to be
changed more frequently than once every 4.5 ms, WMMSE
would not be fast enough, whichwould result in in the shallow
NN becoming a viable alternative.
Since the deep and shallow NNs have near equal training

and testing set WSR gaps, over-training caused by model
depth would not be likely. Additionally, the gaps shrink
considerably when the number of samples NS is increased.
On the other hand, over-training is likely when training on an
insufficient number of samples. The authors’ even data split
was insufficient. The training and testing WSR gaps could
likely be reduced by using a 80:20 or 70:30 split without
needing to generate additional samples.

Regularization, especially in the form of creating filter
banks of weights or switching to a CNN model, would also
mitigate over-training issues. This would guide the model
to relate elements of the gain matrix to reduce over-fitting,
particularly by using vertical filters that relate CUE-DUE
to DUE-CUE values. Since the simulated channel matrices
were functions only of the radial distance between DUEs and

FIGURE 9. SL-based AGC optimization in underlaid communications as
designed by Lee et al. [67] was performed by estimating each DUE’s
transmit gain as a multi-parameter estimation problem. The trained
model made these regression estimates by observing the estimated
interference that would be caused between the target CUE and all DUE,
as well each DUE pair. The underlying information that was learned by
the model was the location of each device, the path loss model of the
channel, and the transmit power of the CUE.

CUEs, the assumption of input equivariance would readily
hold without the need for substantial pooling or the addition
of redundant filters. An example of data that would challenge
CNN input equivariance would be a 3D city model, where
path loss is a function of location.

This analyzed work and those surveyed in Section III-B
that focus on SL-based AGC show that model accuracy is
limited by the ability to generate learning targets. The trans-
mit gain chosen by each radio is treated as an unknown
parameter to be estimated by observing noisy samples of
the channel information, such that SL algorithms must be
taught by another estimator. Consequently, SL models can
only provide computational gains to AGC for the purpose of
improving spectral or energy efficiency. Although in many
wireless applications the online training of SLmodels yields a
flexibility gain, SL-based AGC models only provide compu-
tational gains when trained offline. Consequently, WMMSE
estimators actually provide more flexibility than SL models
in this application.

The broader field of SL-based AGC possesses several
open challenges for the research community. For instance,
low power, long-life WSNs can potentially experience fre-
quent and long network disruptions due to radio interference,
destruction of equipment, or loss of power. This requires
energy efficiency optimization processes using limited infor-
mation. While model outputs must be generated by an esti-
mator and taught to a SL model, early integration of input
data other than the channel state matrices may give SL mod-
els a redundancy that WMMSE estimators do not possess,
as WMMSE estimators operate solely on CSI. Finally, there
are few works in open literature that control the gain of
receivers with SL models, which must be balanced to maxi-
mize SNR and simultaneously minimize clipping and ampli-
fier non-linearities. Existing receiver AGCs control the gain
to achieve a user-defined target output power, but shallow SL
models may compute these values more quickly than they do
in their transmitter counterparts.

VOLUME 9, 2021 164869

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

D. MULTIPLE INPUT MULTIPLE OUTPUT CONTROL
MIMO research is being extensively conducted by the wire-
less community, and many works use SL to obtain viable
solutions to challenging problems. One such work imple-
mented by Klautau et al. [77], attempted to train a SL model
to perform beam-selection in a vehicular network. The
authors sought to address data collection challenges by using
Remcom’s Wireless InSite ray tracing simulator in conjunc-
tion with the Simulation of Urban Mobility (SUMO) [119]
PHY traffic simulator to generate data sets. The data mapped
vehicle location and dimensions to the lowest loss trans-
mitting and receiving pair of antennas between a vehicle
and Road Side Unit (RSU) in site-specific, randomly gener-
ated Vehicle-to-Infrastructure (V2I) environments. A channel
matrixH was computed for each time instance of the episodes
within the environment.

The authors trained a SVM with a linear kernel and a
decision tree, along with their ensemble add-ons (adaboost,
forest), and a deep softmax regression model to predict on
testing data (Figure 10). Additionally, both shallow and deep
logistic regression models were trained using continuous
space azimuth and elevation angles for lowest loss receiving
and transmitting antenna pairs in order to see if modeling
the problem as a regression instead of classification problem
would improve results.

While using the Adaboost [120] and random forest [121]
ensemble methods improved classification accuracy, the
deep softmax regression model performed the best on test
data, especially non-line-of-sight data, at 63.8% and 38.1%,
respectively. The regression models performed poorly, with
4.8o/49.9o Root Mean Square (RMS) error for transmitting
elevation and azimuth, and 6.2o/102.8o for receiving ele-
vation and azimuth. While no metric for direct comparison
between the classification and regression models was pre-
sented, the authors commented that the regression accuracy
was prohibitively low. The authors also noted that the deep
softmax regression model achieved 100% classification data
on training data samples.

The authors trained SL models to learn how to map
between vehicle positions and dimensions in order to achieve
the lowest loss beam pair without knowing the ray tracing
model, its location-specific parameters, the MIMO pre- and
post-coding code books, or how the channel information
matrix and code books would classify the optimal beam
pair. This showcases how universal approximators learn
direct relationships between noisy observations and unknown
classes with no analytical alternative.

This reference presents several lessons for researchers
interested in this topic. The 61-class data targets outper-
formed the elevation/azimuth angle targets because the
discretization process introduced additional information.
By providing a set of known beam pairs, the authors elimi-
natedmany sub-optimal angles as possiblemodel predictions,
whereas the regression models had to learn those angles are
sub-optimal. While this was not discussed by the authors, it is
likely that the angle targets were investigated as an alternative

because small errors in the predicted angle do not impact
MIMO performance, while picking the wrong beam pair can
result in more significant performance issues.

Ensemble training of the SVM and decision tree models
using the Adaboost [120] and random forest [121] schemes
gave large gains to the classification accuracy, which implies
that the predictions of each trained model possessed a low
covariance c between each other. The expected squared error
of an ensemble of n models is v

n +
c(n−1)
n (see Section V-H),

so this application may have been close to achieving to the
ideal 1

n error reduction. With no information as to how many
models were trained by each ensemble protocol, it is difficult
to describe the exact relationship between the model count
n and the error. Ensemble training of the deep softmax and
logistic regressionmodels were not presented, potentially due
to the fact that a nominal gain was achieved via the training
of a single instance of the model.

The deep softmax regression model outperformed the lin-
ear SVM model, especially when classifying beam pairs in
the more complicated non-line-of-sight data samples. This
is an example of under-fitting, where a linear trend line
cannot separate each combination of the 61 classes with high
accuracy. It would have been interesting to observe how the
SVM model performed when using non-linear kernels such
as the polynomial or RBF kernel, and if under-fitting could
have been avoided by decreasing the margin.

While no information was given about the DT or random
forest models used, it is known that DT models are especially
unstable SL algorithms that benefit from ensemble learning
techniques [120], [121]. Consequently, it is expected that
the classification performance of a single DT will be worse
relative to other SL classifiers, and that ensembles of DTs
will also possess this poor performance if not composed of a
sufficient number of models.

Lacking information about the deep softmax regression
model, the over-fitting problem can potentially be avoided
using model depth/width reduction (Section V-A), weight
regularization (Section V-C), simulating additional train-
ing samples (Section V-F), or hyper-parameter validation
(Section V-G).

There exists a large number of open research problems
that focus on improving the generalization of trained beam-
selection SL models, even for testing data simulated from the
same distribution as training data. This challenge extends fur-
ther to real, data-scarce MIMO systems, where experimental
test data is generated using a different, unknown distribution
instead of simulated training data.

In the broader field of SL models applied to MIMO clas-
sification and regression problems, there are also many open
PHY layer challenges. Time Division Duplexing (TDD) of
MIMO systems assumes reciprocity of the wireless channels
and radio hardware, and SL-based calibration techniquesmay
achieve more accurate reciprocity relative to traditional tech-
niques. Pilot reuse in low coherence interval or high channel
delay spread scenarios is vulnerable to pilot contamination,
whichmay bemitigated by innovative usage of SL algorithms

164870 VOLUME 9, 2021

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

FIGURE 10. SL-based MIMO control as designed by Klautau et al. [77]
was performed using beam selection. SUMO pixel maps Qs,r ∈ {−1,0,1}
indicated if a pixel was occupied by a receiving vehicle, a non-receiving
vehicle, or no vehicle. A subset of receivers r were selected by each SL
model in the ensemble to maximize independence. The model is learning
how the ground truth optimal beam pairs î are estimated via the channel
model, pre- and post-coding MIMO codes, and a simple maximization
function.

to enhance pilot allocation, improve estimates of the channel
to remove interfering pilots, or refine the design of pilot
sequences. Phase drift can also contaminate pilots, an issue
traditionally mitigated by PLL, but SL-based phase error esti-
mation and correction algorithms have the potential to exceed
PLL performance. The upper bounds on MIMO performance
assume a favorable propagation environment, meaning one
with minimal fading and BSs that possess similar channel
responses across all terminals. Large array orientation and
antenna count planning, as well as coding schemes, can be
optimized using SL models, despite unfavorable propagation
environments. The large amounts of base-band data generated
in MIMO systems require the rapid, distributed, and coherent
online training of weights. Finally, carefully designed SL
models achieve a lower cost and power consumption than
expensive hardware such as ADCs, which drives down the
costs of massive MIMO base stations.

E. ANALOG TO DIGITAL & DIGITAL TO ANALOG
CONVERSION
SL-based DAC/ADC works surveyed in Section III-B build
upon the Hopfield ADC [60]. The state-of-the-art Hopfield
ADC was designed by Danial et al. [57], which proposed
the first Hopfield DAC and a novel learning rate function.
Using a logistic regression model, the authors trained the
resistance values of a 4-bit memristor DAC to calibrate in
the presence of noise and manufacturing errors (Figure 11).
To train the model, a pulse width modulator circuit produced
SL targets by periodically producing all 16 possible analog
output voltages in a stair pattern. Model inputs were a 4-bit
array, where the weight or resistance value of amemristor was
only updated if that bit was on for that input sample. Addi-
tionally, the least significant bit was annealed due to frequent
oscillations in training, while the most significant bit was
updated by the full learning rate when active. The proposed

DAC achieved 0.12 integral non-linear Least Significant Bits
(LSB), 0.11 differential non-linear LSB, and 3.63 effective
bits.

SL algorithms frequently have their universal approxima-
tor characteristic leveraged to the extent of offering end-to-
end solutions. Instead of using a deep NN to map binary
blocks of data directly to analog wave forms, this work
gives an example of using just four weights in a shallow
model to guide an analog circuit to produce those map-
pings. Additionally, theweights were constrained by a custom
training method of the authors’ design to achieve a lower
voltage bound when each memristor was activated in order
to ensure proper functionality of the DAC. Both of these
domain-specific weight regularizations facilitated the train-
ing convergence, side-stepping the need for themodel to learn
the inverting amplifier, memristor architecture, or binary-
weighted effective resistance distribution.

The analyzed work also presents a good example of devel-
oping a custom learning function. Weight updates and learn-
ing rate annealing functions (Section V-A) are well-explored
areas of research, with novel learning rate functions typically
being domain-specific and only useful for the problem they
are targeting. By noticing that frequent changes in the Least
Significant Bits (LSB) of training bits were causing oscillat-
ing training loss, the authors were able to determine the need
for a custom learning rate function.

One of the more difficult challenges faced by the
original Hopfield ADC was the programmability and
re-programmability of resistance values, which was largely
solved by the use of memristors. Current open challenges
in designing SL-based DAC/ADC solutions and Hopfield
converters include electromagnetically-accurate memristor
programming. One such recent work identified that mem-
ristor voltage drops greater than 0.2 Volts cause the pro-
grammed resistance value to change over time without being
re-programmed [122]. Any architecture that deviates from the
Hopfield design would be significant in this research area,
if an improvement to converter speed or accuracy can be
achieved. Benchmark data sets have not been developed for
this area of research, such that authors have not drawn direct
comparisons between their improved models and the state-
of-the-art. Consequently, there is no quantitative analysis
available to determine the improvement brought by the use of
CMOSmemristors [58], custom regularization schemes [59],
and the inverse DAC problem [57].

F. AUTOMATIC CODING AND MODULATION
PHY layer SL-based applications have recently received sig-
nificant attention due to the innovative work of Deepsig and
their demodulation [49], [50], [123], error control coding
and decoding [124]–[126], channel estimation [127], and
signal classification [48], [128]–[130] implementations, sup-
plemented by published data sets. O’Shea and Hoydis [125]
explored the use of a CNN demodulator and a Variational
Auto-Encoder (VAE) transceiver with a focus on error control
coding.While a VAE did optimize the weights during training

VOLUME 9, 2021 164871

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

FIGURE 11. The Hopfield DAC designed by Danial et al. [57], which
converted four-bit code sequences into analog wave forms. The target
labels were generated by a periodic staircase signal, and each synapse
was a small circuit with a main component that was a memristor with
programmable resistance. The amplifier feedback circuit is analogous to
an analog neuron because its input is a sum of synapses.

to minimize the reconstruction error, this family of models
is still considered to be from the UL or semi-supervised
paradigm. Consequently, our analysis of this work will focus
on the proposed CNN demodulator, which was trained using
IQ sequences of base-band data to classify one of ten possible
modulation schemes used by an intercepted transmission. The
authors found that a shallow, two layer CNNwith three dense
layers and a softmax layer achieved the best results. The
trained model was evaluated using test signals across a range
of SNRs, achieving 100% classification accuracy for seven
of the classes when the SNR exceeded 10 dB, and about 50%
for the other three. Classification accuracy for all 10 classes
peaked at 88% at 10 dB SNR, and matched the guessing
accuracy at -20 dB SNR.
While both our survey in this work and the O’Shea and

Hoydis [125] acknowledged that modulation and many other
PHY layer tasks can be viewed as regression or classification
tasks to be solved using SL, this short survey presents several

insightful lessons regarding the application of SL algorithms.
To fully understand these lessons, a closer look into their data
set generation software is needed, which uses GNU Radio’s
dynamic channel model package.

The use of a non-flat frequency channel in simulating the
data was required for the authors to design the CNN in order
to enforce both the input equivariance with pooling layers
and the use of 172 filters, a high number for a relatively low-
dimensional problem.

The issue of multicollinearity was experienced in this
work, and was the potential cause of the implementation
falling short of the 100% classification accuracy for high SNR
signals possessing short 128-sample length observations.
Ambiguities arising from the shared constellation points of
two pairs of classes could have also contributed to this result.
Unfortunately, this claim was not proven nor was a solution
identified using material from Section IV-D.

The authors did report several lessons learned via their
own experiences during this work, including the notion that
SL models can be trained to perform most successfully by
training them first with high SNR signals, then with gradually
decreasing SNR signals. They also found that each PHY layer
problem has a single optimal choice of data representation,
which most strongly correlates noisy observations to the
unknown parameter. Examples given include FFTs and spec-
trograms for carrier estimation and IQ data for modulation
classification.

As higher order modulation schemes gain popularity given
their ability to push larger data rates in modern wireless com-
munication systems, online training approaches for SL-based
ACM models have become challenging due to the large
state-space of possible messages sent. Given the unpre-
dictable and time-varying nature of wireless hardware and
channels, there is a significant need for the implementation of
data augmentation algorithms to allow for the online training
of models using very few training samples.

Without the presence of cooperating transmitters exchang-
ing training data with targets known a priori, these SL-based
signal classifiers must instead be trained offline. Making
weights generalizable is an active, multi-disciplinary, multi-
domain challenge with several existing regularization and
training analysis solutions.

While Deepsig has published a set of modulation clas-
sification data sets [126], [131], there still exists a signif-
icant need for accessible data sets that can be used across
a range of various PHY layer applications. Such data sets
allow for the evaluation and comparison of novel models,
and drive innovation to solve unique problems presented by
the behavior of the data. The peer review and circulation of
such data sets take time, requiring the capture of real-world
behavior without being too specific regarding radio hardware
or wireless channels.

V. SL GUIDELINES
Implementing an SL algorithm requires the consideration
of several design factors, including the depth and width of

164872 VOLUME 9, 2021

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

the CNN and RNN, the ordering, type, and parameters of
the layers in a CNN, the SVM kernel type and parame-
ter choice, and the SGD parameters. This section covers
the basic concepts and practical considerations for an SL
implementation, with special attention drawn to the separate
but related tasks of weight initialization (Section V-B) and
updates (Section V-A).

A. WEIGHT UPDATES
The task of using SGD to compute the global loss minimum
is non-trivial. Several versions of SGD have been devel-
oped [43], [132]–[135], each placing different emphases on
how to decrease the magnitude of weight errors, perform
fewer calculations, and lessen the sensitivity to initial parame-
ter choices. In general, standard weight updates are defined as
the weight matrix w changing after each gradient calculation:

w(i+1) = w(i) − η∇w(i) , (24)

where the hyper-parameter η is the learning rate, and ∇w(i) is
the current weight gradient.

Typically, weight updates are halted after training over
a pre-determined number of epochs, or after the gradient
becomes smaller than a convergence threshold. Additional
stop conditions can be implemented, such as convergence
patience, where the gradients must be below a convergence
threshold for a sequential number of epochs before stopping.
Weight values converging to local loss minima is avoided by
computing gradients from small batch sizes or by using robust
weight update techniques (i.e., equation (25)). The state-of-
the-art theory for understanding loss curves was described
by Nakkiran et al. [136], who explain and expand on the
‘‘classic’’ bias-variance curve (Figure 12). The reference
describes how previous loss curve behavior theories expect
SL models to be initially ‘‘classically under-trained’’ as the
model is trained over epochs. During this period, the loss
curves indicate that the models under-fit (i.e., training and
validation error are relatively high) until an critical epoch is
reached. After this critical point, all future training epochs
will show loss curves that indicate the model is increasingly
over-fitting, demonstrated by a growing difference between a
small training error and relatively large validation error.

However, the authors found that, in practice, if model
complexity and duration are large enough to achieve near zero
training error, increasing the model complexity or training
duration further will eventually decrease testing loss after
reaching the ‘‘interpolation threshold’’. This phenomenon
is called model-size double descent, or epoch-wise double
descent, because a ‘‘double descent’’ shaped test error curve
is observed. Finally, the authors show that, by varying the
amount of training data available, the location of the inter-
polation threshold will shift, such that test error can increase
if training is performed for the same number of epochs.

One innovation applied to the standard SGD is the develop-
ment of ‘‘momentum’’ updates that attempt to achieve faster
convergence [137]. The termmomentum is used as a physical
analogy for the optimization problem that is SGD, where the

current weights of a model can be thought of as a ball rolling
around in amountain range. Standard SGD updates have been
found to be slow to converge for non-spherical gradients, and
unable to leave local loss minima ‘‘valleys’’ if the learning
rate is too small. Momentum updates, which were inspired
by position, velocity, and acceleration models from physics,
were developed to solve both of these issues. See Table 10 for
a survey of momentum-based SGD updates. In such a weight
update scheme, the weights w are updated proportionally to
their ‘‘velocity’’ as:

v(i) = µv(i−1) − η∇w(i) , (25a)

w(i+1) = w(i) + v(i), (25b)

where the velocity is initialized as v−1 = 0, and the momen-
tum µ is a tunable hyper-parameter. The current velocity
value is defined as v(i), and v(i−1) is the velocity of the
weights from the previous epoch of training over epochs
i = 1, . . . , ne.
At the start of training, it is common for the ‘‘ball’’ to

descend a steep and tall ‘‘mountain’’, such that its velocity
is so high that the weights ‘‘overshoot’’ the loss minima,
and ascend the gradient of another loss ‘‘mountain’’ or cir-
cle the ‘‘valley’’. The Nesterov momentum [132] is one of
many SGD momentum schemes developed to mitigate these
stability issues. It does so by computing velocity that is
proportional to the difference in the velocity of the ith and
(i− 1)th training iteration, making it much harder for weight
updates to become unstable (i.e., µv(i−1) � η∇w(i)). For the
ith SGD backward pass, the Nesterov momentum update on
w(i) is defined as:

v(i) = µv(i−1) − η∇w(i) , (26a)

w(i+1) = w(i) + (1+ µ)v(i) − µv(i−1). (26b)

Another category of SGD algorithms use higher order
statistics to enhance the depth and speed of the convergence
at the cost of computational efficiency via adaptive learning
rates. Newton’s method, which is defined as:

w(i+1) = w(i) −
∇w(i)

∇2
w(i)

, (27)

utilizes the Hessian matrix ∇2
w(i)

, derived from the 2nd order
Taylor series expression for w(i), to find the root of the gra-
dient. This second order approach is very powerful because
it solves directly for the vertex or loss minima, which allows
the weights to converge to the nearest local loss minimum in
a single update. Thus, this method requires no learning rate
η, nor a learning rate annealing function.

However, there are several shortcomings to Newton’s
method. If the nearest loss minimia is not the global loss
minima, the weights can easily converge to the wrong values
without the aid of momentum approaches. Additionally, sev-
eral ‘‘Quasi-Newton’’ SGD algorithms (see Table 11) have
been developed using the approximation ∇2

w(i)
≈ (∇w(i))

2,
since the Hessian is too computationally expensive propor-
tional to the number of weights m, i.e., O(m3) versus O(m2).

VOLUME 9, 2021 164873

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

FIGURE 12. When model complexity is small compared to the number of
training samples, the test loss follows a U-shaped, ‘‘classic’’ bias-variance
tradeoff. A model is classically under-trained when both training and
validation loss are high, which can be mitigated by training for more
epochs, gathering more data, adding more weights to the model,
or validating SGD hyper-parameters (Section V-G). Typically, during SGD a
model will under-fit until it begins to over-fit, which is when training loss
is low but validation loss is high. Over-fitting can be mitigated by training
for fewer epochs, decreasing the number of weights in a model, voting
via ensemble learning (Section V-H), or constraining the model with
regularization (Section V-C).

The approximation ∇2
w(i)
≈ (∇w(i))

2 only holds true for full
batch SGD, which unfortunately requires the entire training
data set to be held in temporary memory which is sometimes
impossible. As the batch size decreases, the approximation
is decreasingly accurate, and the use of Quasi-Newton SGD
methods may become inappropriate. Adam [135] is one such
Quasi-Newton algorithm, which updates weights as:

m(i) = β1m(i) + (1− β1)∇w(i) , (28a)

m(i) =
m(i)

1− β i1
, (28b)

v(i) = β2v(i) + (1− β2)(∇w(i))
2, (28c)

v(i) =
v(i)

1− β i2
, (28d)

w(i+1) = w(i) +
−η × m(i)
√
v(i) + h

. (28e)

Adam combines the acceleration/de-acceleration of the learn-
ing rate present in RMSprop and the second order statis-
tics of Newtons method. β1 and β2 serve as momentum
hyper-parameters similar to Nesterov’s µ. The term h is used
to avoid division by zero errors. Finally, (∇w(i))

2 is used to
solve for the nearest vertex. As long as the Hessian approx-
imation holds, Adam can be thought of as the best of both
RMSprop and Newton’s method. Consequently, Adam has
seen significant use in all ML applications.

For large data sets, deepmodels, and slow-converging SGD
algorithms, the interested reader is directed towards parallel
and distributed SGD frameworks such as ‘‘Hogwild!’’ [3],
which performs well when data is sparse, or when most ele-
ments of the data are near-zero valued. Downpour SGD [138]
performs a variety of boosting, where many copies of the
model are trained on different subsets of data. However, since

the models do not communicate with each other, divergence
is a constant concern with this framework. Delay-tolerant
Algorithms for SGD [139] have been shown to work well
by adapting SGD to past gradients and by updating delays
between devices. Elastic Averaging SGD [140] links asyn-
chronous model updates to a central ‘‘elastic force’’ variable
to allow for more exploration of the parameter space. Finally,
Tensorflow [19] splits a computation graph into sub-graphs
for distributed SGD.

While some of the algorithms discussed so far
autonomously anneal the learning rate, the learning rate η
can additionally be annealed in any SGD algorithm by an
‘‘annealing function’’ to increase weight convergence depth
and speed. Step decay [43] is one such annealing function,
which reduces the learning rate every s weight update steps
by a factor α:

η(i) =

{
η(i−1) − α, if i mod s = 0
n(i−1), otherwise,

(29)

where α ∈ [0, 1] and integer s are hyper-parameters.
An aggressive annealing function is exponential decay [43]:

η(i) = η(i−1) − α0e−ki, (30)

where the values α0 and k are hyper-parameters. This anneal-
ing function is more dependent on its hyper-parameters and
number of update steps than (29), as the learning rate can
quickly become too small to move, even in steep and convex
regions of the gradient.

Inverse decay [43] is another annealing function which
was developed as a middle-of-the-road option between (30)
and (29):

η(i) = η(i−1) − α0/(1+ ki). (31)

Finally, an annealed gradient noise [148] can be introduced
into SGD updates in order to make weight updates more
robust to poor initialization:

w(i) = w(i−1) +N
(
0,

η

(1+ i)γ

)
, (32)

where near the end of training the added noise will increase
training error if not properly annealed by decay term γ , and
near the start of training the added noise will not be of benefit
if annealed too quickly.

B. WEIGHT INITIALIZATION
If each layer of a L-layer deep NN model scales inputs by
k , the final scaling will be kL , such that for large L, we get
∇w(i) = 0, k < 1 (the gradients ‘‘vanish’’), or ∇w(i) =

∞, k > 1 (the gradients ‘‘explode’’) [149]. This means
that, weights in deep learning, or any non-convex optimiza-
tion problem, must be initialized to avoid prohibitively long
training times. However, weights cannot be initialized at the
same value. For example, a one input, four neuron NN would
compute linear logits as z = xw0 + xw1 + xw2 + xw3 + b0 +
b1 + b2 + b3. If all weights and biases are equal, then the

164874 VOLUME 9, 2021

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

FIGURE 13. Bias and weight values of a four neuron NN over 50 epochs
of SGD, initialized as w = 0 and b = 1. Consequently, all weights and
biases compute the same gradient update for each epoch δz

δx = w ,
making weight convergence to values that correspond to the global loss
minimum impossible.

gradient for each weight will be equal (i.e., δz
δx = w), such

that each neuron learns the same information (Figure 13).
In order to avoid exploding or vanishing gradients during

training, weight initialization must follow two rules concern-
ing the activations a or outputs of each layer of the NN:

E[al] = E[al−1], ∀l, (33)

Var(al) = Var(al−1), ∀l. (34)

Kumar [150] shows that any initialization scheme that fol-
lows these two rules in a NNwith linear-near-zero activations
such as tanh or sigmoid will express the equality:

Var(al) = nl−1Var(wl)Var(al−1), ∀l. (35)

This equality serves as the justification for Xavier (also
called Glorot) initialization [150], in which all weights of an
n-neuron layer are initialized according to samples from the
distribution:

wl ∼ N
(
0,

1
nl−1

)
, (36)

bl = 0, (37)

where Var(wl) = 1
nl−1

such that equation (35) satisfies
constraint (34). The results of this can be seen in Figure 14,
where each gradient is unique and each neuron learns dif-
ferent weight updates with no issues concerning vanishing
or exploding gradients. Zero-mean normal or uniformly dis-
tributed initialization schemes without the proper variance
scaling, as seen in Xavier initialization, is sufficient for
shallow models. However, they will experience vanishing or
exploding gradients with deeper models because they fail to
satisfy the constraint (34).

Many deep NN models do not use linear-near-zero activa-
tions, such as deep ReLU CNNs. The authors of Kaiming ini-
tialization [151] re-derived equation (35) with ReLU instead

FIGURE 14. Bias and weight values for a single input, four neuron NN
over 50 epochs of training, initialized via the Xavier initialization. Gradient
computations are now able to take non-zero, unequal values and achieve
convergence to values that correspond to a global loss minimum.

of tanh activations to determine that the simple modification:

wl ∼ N
(
0,

√
2

nl−1

)
, (38)

bl = 0, (39)

must be made to the initialization scheme such that the con-
straint (34) holds.

There also exists a truncated version of Kaiming initial-
ization (and any Gaussian-based initialization), where the
weight initializations are bounded by −1 < wl < 1 to
avoid sampling large weights, which becomes more common
in larger NNs as n → ∞ and L → ∞ and the normal
distribution is sampled from more times.

C. MODEL REGULARIZATION
Regularization in SL is to make an assumption and to con-
strain a model to that assumption. Examples include the
assumption of a continuous range of optimal weights and
the constraint of the tie-breaking term 1

2nC ||w||
2 in the

non-kernelized dual SVM loss function (see Section II-E),
the assumption of input equivariance and constraint of filters
in CNNs (see Section II-C), and the assumption of varying
input dimensions and constraint of hidden nodes in RNNs
(see Section II-D).
The given CNN and RNN regularization examples are

specifically called regularization by weight sharing. With
all else equal, a CNN or RNN model will have fewer
weights than a logistic or softmax regression model due
to its filters (see Section II-C) and hidden memory units
(see Section II-D). To summarize those sections, CNN filters
compute logits via small convolutional windows instead of
fully connecting every input from the previous layer. RNNs,
on the other hand,maintain a small number of hiddenmemory
states whose logits and activations are a superposition of
all previous input values to that layer. These models with
relatively fewer weights have decreased computational costs

VOLUME 9, 2021 164875

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

TABLE 10. A summary of momentum-based SGD methods and their improvements upon each other.

as they have smaller matrices to compute. They also have
reduced risks of over-fitting, because fewer weights com-
pute lower-order estimation and classifications of unknown
parameters.

The given SVM regularization example is specifically
called a regularization loss term. Loss terms can be included
in the loss function (i.e., categorical cross entropy or Mean
Squared Error (MSE) loss) of any model by summation.
Common loss terms are a function of the p-norm of the
weights ||w||p = (

∑
wp)1/p, and are implemented with the

goal of forcing the model to learn certain weight values.
Examples of loss terms include L1-norm regularization:

λ||w||, (40)

which forces weights to take on smaller values, and is
weighted against the rest of the loss function by hyper-
parameter λ. Interestingly, this behavior can equivalently be
produced by adding Laplacian-distributed random samples to
all training inputs, as outlined by Li and Liu [152]. Another
example is the L2-norm or Tikhonov regularization:

λ

2
||w||2, (41)

which also forces weights to be smaller but also forces there
to be fewer outliers as p → ∞. This behavior may alter-
natively be enforced by adding Gaussian-distributed random
samples to all training inputs, as outlined by Li and Liu [152].
By increasing the prediction error via loss terms, models
trained with L1 and L2 regularization do not learn larger
weight values unless their reduction of the prediction loss
is larger than their increase of the regularization loss. This
constraint mitigates arbitrary learning and creates models that
generalize better to testing data.

Dropout [153] is another regularization technique, imple-
mented when a model is assumed to be over-fitting because
it has too many weights. Rather than reducing the number of
weights in a model, constraining a model by using Dropout
allows a subset of weights to be randomly selected and have
their values set to zero for a single forward pass. In addition to
mitigating over-fitting, Dropout has been found to also miti-
gate neuron co-adaptation as a tie-breaking constraint [153].
Neuron co-adaptation is the ambiguity of optimal weights
caused when the linear logit of a neuron computed during
training is equal to zero. This creates ambiguity because the
inputs could either all be zero, or their weighted sum could be
equal to zero. By randomly dropping weights, the weighted

sum can be shifted to a non-zero value, which clarifies the
ambiguity.

In SGD, it has been found that the weights converge the
fastest when the distribution of weights at each layer in a NN
possess zero mean with an identity covariance matrix [154].
Consider an NN with inputs x, hidden layer h, the input
weight matrix g1 and the output weight matrix g2, and pre-
dictions ŷ = g2(g1(x)). During training, backpropagation
dictates that P(h) and P(ŷ) will be updated from the gradient
δf
δg1

. It is at this point that ‘‘internal covariate shift’’ occurs:

when P(g2) is updated according to δf
δg2

, P(h) is no longer

the same value as it was when δf
δg2

was calculated. Batch
normalization is a form of model regularization in which the
ith activation of layer l is controlled:

a∗i,l =
ai,l − µl√
σ 2
l + h

, (42)

where h ≈ 0+ to avoid divide by zero errors. By using batch
normalization in our example, the distribution P(h) would be
held constant, such that all gradients are accurate, and internal
covariate shift is reduced.

D. DATA REPRESENTATION
In wireless communications, the same analog signal
can be represented by a significant number of axes or
spaces [155], including amplitude-phase, IQ or complex
space, Gram-Schmidt basis vectors, Fourier transforms,
Laplace transforms, spectral correlation functions, cyclic
autocorrelation functions, wavelet transforms, and spec-
trograms or ‘‘waterfalls’’. If sampled, the same signal
can be represented as digital bits, code-words, symbols,
Z-transforms, or any number of categorical attributes such
as signal detected/signal not detected, signal transmitted
by user 1/user 2, and duration since last transmission has
been short/medium/long. This number of data representation
choices becomes even more daunting when common arith-
metic signal processing operations, such as auto and cross
correlation, dot and cross products, energy and power calcula-
tions, spectral coherence, and phase, amplitude, or frequency
differences, are applied in order to compare two or more of
the signal representations mentioned thus far.

Luckily, the ideal data representation to choose for SL
model inputs is usually given by existing unknown parameter
estimation and classification methods. For instance, con-
trol coding schemes classify bits, and demodulators clas-
sify sequences of IQ data. There are two reasons behind

164876 VOLUME 9, 2021

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

these choices that should serve as a guide when no non-SL
estimator or classifier is available: inputs should have low
correlation and low multicollinearity. In other words, each
input should be independent, and each input should have
unique indicators that tie it to the ground truth value of its
unknown parameter [155].

Input independence is important because models that train
on many subsequent inputs of the same class generalize
poorly. When many of the initial weight updates during SGD
are computed with respect to highly dependent inputs, the
model will consequently test successfully on that class, and
unsuccessfully on all others. This input dependence is most
commonly mitigated by shuffling the training data set and its
corresponding labels. The correlation between two continu-
ous signals f (t) and g(t) can be quantified as:

(f ∗ g)(τ) =
∫
∞

−∞

f ∗(t)g(t + τ)δt. (43)

Low multicollinearity is important because highly similar
inputs with different unknown parameters cannot be correctly
estimated or classified. Multiple data representations may be
incorporated into a SL model using early, middle, or late inte-
gration (Figure 15) in an effort to decrease multicollinearity.
Early integration involves combining the data before the SL
model, either via the concatenation of the data, or the addition
of another dimension to the data space. Middle integration
can only be performed with NN models, where each data
representation has an independent branch of neuron layers
that are concatenated partway into the NNs architecture.
Late integration involves training independent SL models for
each data representation, and interprets the set of unknown
parameter estimates or classifications as a single result via
averaging or voting functions. A popular metric used to quan-
tify multicollinearity is the variance inflation factor, which
describes how much the variance of a trained weight changes
when predictions are correlated. It is computed as:

VIFi =
1

1− R2i
, (44)

where R2i is the coefficient of determination for the ith input
feature, computed as:

R2i = 1−

∑n
j=1(x̂j − xj)

2∑n
j=1(xj − x̄j)2

, (45)

and the predictions are not the label but the ith input feature:

x̂i = b+
n∑

j=1, j6=i

wjxj. (46)

A rule of thumb is that a VIFi > 5 indicates high multi-
collinearity.

E. DATA PRE-PROCESSING
While many SL models achieve universal approximator char-
acteristics, that does not mean that data can be recklessly

thrown into training without any considerations for null val-
ues, standardization, categorical variables, one-hot encoding,
sample dependence, or multicollinearity.

Null values can appear in signal data sets for any number of
reasons, such as poor alignment of signals or varying length
samples. These null values will carry through to model pre-
dictions and gradients during training if not changed. Imputa-
tion, or the process of substituting null values, is one solution,
where the null value’s true value can be estimated via the
mean of that feature across all signals in the data set, or via
the mean of that signal across all features in that signal. If the
researcher wishes to keep the null value as an indicator that
something that caused a null value has occurred, imputation
can instead take the form of substituting a categorical value
that is outside the range of values taken by all other features
(i.e., a value of −1 in an otherwise all positive valued data
set). Finally, if all null values occur at the start or end of
signals in the data set due to signals of varying length, the
signals’ null values can be clipped or replaced by zeros in
order to make all signals in the data set the same length. This
method is typically a last resort, however, as clipping removes
information, and adding zeros adds fabricated information.

Standardization of data is to force a zero mean and
unit variance distribution on inputs. Symmetric distributions
allow for faster convergence during SGDwhen usingmomen-
tum, or schemes such as those discussed in Section V-A. Non-
symmetric gradient ‘‘landscapes’’ cause momentum updates
to ‘‘circle the drain’’, overshoot loss minima by building up
speed on steep declines, and contain ‘‘rougher’’ landscapes
with more local loss minima. Standardization is implemented
as:

xi =
xi − µ
σ 2 , (47)

where a data sample xi, i = 1, . . . ,N is zero centered by
subtracting the data set mean µ and given unit variance by
dividing by the data set variance σ 2.

During classification tasks, the unknown parameter of each
input takes the form of a discrete value from a set of possi-
bilities. Inputs can also be discrete values. Both discrete or
categorical inputs and outputs of SL models are either ordinal
or nominal. Ordinal values are related. If a pulse ampli-
tude modulated signal encodes signals as having amplitudes
A ∈ −3A,−A,A, 3A, then signals of 3A are more similar to A
signals than −A or −3A signals. Nominal categorical values
have no relationship: no two values are more or less similar to
each other than any other pair of values. While ordinal values
can be expressed using decimal values 1, 2, 3 . . ., nominal
values cannot, or a false relationship between values will be
taught to the SL model. Nominal values must instead be one
hot encoded, such that if m possible categories exist and the
value of that category is n, then the value is expressed as a
vector of m zero-valued elements with the nth element set to
a value of one.

Multicollinearity can be mitigated by pre-processing. Prin-
cipal Component Analysis (PCA) is an algorithm [116] that

VOLUME 9, 2021 164877

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

TABLE 11. A summary of Quasi-Newton SGD methods and their improvements upon each other, some of which may also incorporate
momentum-analogous terms.

removes input features from all signals of a feature-rich data
set. The goal is to remove features with highmulticollinearity,
such that the low multicollinearity features can dominantly
teach the SL model. In PCA, user-defined p low multi-
collinearity input features are identified by standardizing
input data, computing the covariance matrix of the standard-
ized input data, and computing the eigenvalue decomposition
of the standardized covariance matrix. Principle components
describe the dimension-reduced form of the data set, where
each feature is a linear combination of several other fea-
tures. The singular value decomposition factorization of the
standardized covariance matrix cov(XZC) gives the principal
components XPCA as:

xiZC = xi −

∑
xi

k × D
, xi ∈ X , xiZC ∈ XZC, (48a)

cov(XZC) =
XTZC · XZC

N
, (48b)

USV∗ = cov(XZC), (48c)

XPCA = XZC · Up,Up ∈ [N , p], (48d)

where eigenvalues are S, conjugate transpose of the uni-
tary matrix V ∗, k samples per signal, number of features
D ≥ p, number of samples N , matrix transpose XT , and the
element-wise dot product between two matrices ·

X · Y = x1 × y1 + x2 × y2 + . . .+ xn−1 × yn−1, (49)

for elements x ∈ X , y ∈ Y of length n. Data pre-processing
should always be done in the digital domain to avoid
noisy data transformations, unless the SL model is directly
connected to analog circuits, as is the case for Hopfield
DAC/ADCs.

164878 VOLUME 9, 2021

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

FIGURE 15. Different data representations can be integrated, via multiple approaches, in order to achieve an additional prediction performance gain
by reducing multicollinearity. Data from the same domain is typically concatenated and integrated early as shown in (a). Data domains with high
correlation between each other are typically integrated in the middle of a model as shown in (b), and highly dissimilar data is integrated at the end
of an implementation by some voting scheme (c). Alternatively, late integration of identical inputs can be used as a form of ensemble learning in
order to reduce the variance of model predictions introduced by the randomness of SGD (see Section V-H).

F. DATA AUGMENTATION
Small training data sets do not train SL models well because
they do not fully describe the testing data’s underlying prob-
ability distribution. If more data cannot be collected, data
augmentation can instead increase the diversity of data in a
small training set by estimating the underlying distribution
and sampling additional signals to combat data scarcity.

A commonway of estimating the underlying distribution is
to train an encodingNN thatmaps inputs to a lower dimension
z(x), and a decoding NN that maps inputs back to their orig-
inal values h(z(x)) = x. This is done by forcing the encoder
weights via regularization to achieve a Gaussian behavior,
z(x) ∼ N (0, 1). If the combined encoder-decoder weights are
well-trained to reconstruct images, and the encoder weights
are effectively regularized, random Gaussian samples can be
input to the decoder h(N (0, 1)) to output simulated train-
ing data. This process outlines how Generative Adversarial
Networks (GANs) [156] and VAEs [157] are used for data
augmentation. Less popular and more constrained distribu-
tion estimators are produced through Bayesian Metropolis-
Hastings sampling [158], Gibbs sampling [159], importance
sampling [160], and rejection sampling [161].

Training data can also be simulated by applying plausible
transforms to existing data sets. This form of data augmen-
tation is performed by introducing simulated variations to
the training data under the assumption that the test data will
also be affected by those variations. Examples of plausible
transforms include frequency, amplitude, phase shifts in the
data, wireless channel effects such as AWGN, multi-path,
scattering, diffraction, reflection, and Doppler, and hardware
non-idealities such as clock drift, power amplification char-
acteristics, and other RF front end non-linearities.

G. HYPER-PARAMETER VALIDATION
When designing a SL model, there are often several aspects
of the architecture or SGD (i.e., learning rate, number of
neurons in a layer) that provide no clear choice towards max-
imizing the testing accuracy. The process of experimenting

with different operating parameters and other implementation
values is referred to as hyper-parameter validation [43].

One of the most straightforward methods of hyper-
parameter validation is a grid search, through which a SL
model is trained with the same training data that uses each
combination of hyper-parameters h from the set H . In order
to evaluate which hyper-parameter subset is optimal, the
training data set must be partitioned into a smaller training
data set and a validation set. The hyper-parameters that result
in a trained model with the highest validation set accuracy are
used at the testing stage of SL model deployment.

The gap between the validation and the test prediction
performance is minimized when the number of samples in
both partitions are large and equal in count, and when both
sets are sampled from the same underlying distribution. Com-
mon partition ratios between training, validation, and testing
sets include 80:10:10, 60:20:20, and 50:25:25. Ratios with
smaller training sets are chosen when the data set size is large,
which affects theminimization of the variance in test data per-
formance. Smaller validation/testing ratios are chosen when
the data set size is small, in order to ensure the proper
training of the model. As the number of hyper-parameters
used in grid search increases, computational costs become
prohibitive (Algorithm 5).

If the amount of data is limited, validation accuracy can
vary significantly, and suboptimal hyper-parameters can be
selected. Cross-fold hyper parameter validation, where the
training data is split up into k equal-sized ‘‘folds’’, or par-
titions (instead of just two, as in grid search), can mitigate
this issue. For each of the k folds, one fold is chosen as the
validation set, and the other k − 1 folds are used for training.
The data split this way are grid searched. Then, a new fold
is chosen as the single validation fold, and the old validation
fold becomes part of the new k − 1 training partition. This
process repeats until each fold has served as the validation
fold, then the final hyper-parameters are chosen based on
which hyper-parameters had the highest average validation
accuracy across each of the k folds. The weights trained with

VOLUME 9, 2021 164879

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

Algorithm 5 Grid-Search Validation Method [162]
1: procedure GIVEN TRAINING DATA XTR, VALIDATION

DATA XVAL, SET OF HYPER-PARAMETERS H

2: Best weights w∗ = 0
3: Best accuracy PPV∗ = 0
4: for Set h in H do
5: Train model on Xtr,Ytr to obtain w using h
6: Test model on Xval using w to obtain Ŷval
7: Compute test accuracy PPV using Ŷval
8: if PPV > PPV∗ then
9: PPV∗ = PPV
10: w∗ = w
11: end if
12: end for
13: end procedure

these hyper-parameters are used for final test data evaluation
(Algorithm 6). The larger k is, the higher the correlation
between each learned model; the highest correlation exists
for k = N , or leave-one-out validation. The smaller k is,
the higher the variance of predictions, as the training set gets
smaller. Common compromises include k = 3, 5, 10. Cross-
fold validation makes up for the high variance that would be
experienced in grid search of small training sets by averaging
over all folds in order to obtain hyper-parameter choices that
are not biased to any one chosen fold.

Algorithm 6 Cross-Fold Validation Method [163]
1: procedure GIVEN TRAINING DATA X , SET OF HYPER-

PARAMETER SETS H , K FOLDS

2: Partition X into K folds Xk , k = 1, . . . ,K
3: Best weights w∗ = 0
4: Best accuracy PPV∗ = 0
5: for Set h in H do
6: for k = 1, . . . ,K do
7: Train model on X 6⊂ Xk to obtain w using h
8: Test model on Xk using w to obtain Ŷk
9: Compute test accuracy PPVk using Ŷk

10: end for
11: Compute average PPV = 1

K

∑
k PPVk

12: if PPV > PPV∗ then
13: PPV∗ = PPV
14: w∗ = w
15: end if
16: end for
17: end procedure

This process can be repeated using nested cross-fold vali-
dation, where multiple SL models (i.e., SVM, RNN, DT) are
tuned to complete the same unknown parameter estimation or
classification task.

H. ENSEMBLE LEARNING
A form of late integration (Section V-D) known as ensemble
learning can significantly improve the performance of trained

SL models. An ensemble of SL models is a collection of n
models independently trained on the same data set. Ensem-
bles perform classification or regression by averaging their
predictions on test data. The benefit of this can be shown by
minimizing the expected squared error of predictions, defined
as:

E
[
((
1
n

n∑
i=1

ŷi)− y)2
]
=
v
n
+ c

n− 1
n

, (50)

where the variance v = E[(ŷi − yi)2], and the covariance
c = E[(ŷi − yj)2], i 6= j. If the covariance is zero, or each
model makes different mistakes, then the gain of using an
ensemble on the squared error of predictions is 1

n . If v = c,
then the ensemble brings no gains, and the prediction MSE
remains at v.

While any SL model can be trained in an ensemble, there
exist a few ensemble training algorithms specific to a certain
family of SL algorithms or that are designed to mitigate train-
ing issues. Bootstrapping is a technique used to reduce pre-
diction covariance c by training each model in the ensemble
with a different set of examples from the training set, sampled
with replacement. The random forest [121] algorithm is an
example of bagging, which trains n DT on bootstrapped data.
Furthermore, random forest ensemble splits the attributes of
each node of each version of the DT randomly, selecting m
attributes from p each time. Attribute selection is usually done
by computing the entropy of each attribute and selecting the
highest entropy feature. Finally, ensembles that perform clas-
sification by bagging pick the class with the highest number
of votes.

Adaboost [120] is another ensemble algorithm, where
SVM or DT models are boosted rather than bagged. The
difference between the two is that the classifications of
boosted ensembles are weighted, and bagged ensembles have
equal weight voting. The weights are determined using error
computations, such that weak learners, or models with high
prediction variance v, have less influence on classifications.

VI. SUMMARY & CONCLUSION
Since the RF channel performs a black box noisy transform
on transmitted signals, low assumption SL-based unknown
parameter estimation and classification algorithms have
allowed for the development of ground-up, adaptive, fast,
cost-effective, and accurate wireless receiver systems. When
the appropriate requirements [164] are met, these algorithms
can even be applied to real-time systems. However, a com-
prehensive resource for wireless researchers has been absent
until now. In this tutorial, we:

• Over-view logistic and softmax regression in
Section II-A, the low-assumption nature of SL mod-
els in Section II-B, CNNs in Section II-C, RNNs in
Section II-D, and SVMs in Section II-E.

• Survey the foundational publications of the 35-year his-
tory of SL-based wireless PHY layer innovations in
Section III-A. Additionally, we discuss recent SL-based

164880 VOLUME 9, 2021

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

DSA, channel correction, AGC, MIMO, ADC, and
ACM works in Section III-B.

• Analyze one popular work from each PHY layer domain
from Section III-B by describing the paper’s problem,
solution, and lessons learned, as well as open research
problems for the domain as a whole, in Section IV.

• Teach how to navigate trial-and-error SL model
choice, design, and training in Section V. Specif-
ically, we cover weight updates and initializa-
tion in Sections V-A and V-B, model regularization
in Section V-C, choice of data representation and
pre-processing in Sections V-D and V-E, hyper-
parameter validation in Section V-F, and ensemble
learning by Section V-G.

This tutorial is important for the wireless communications
community, serving researchers in the following ways:

• Section I-B compares this tutorial to related works,
which overwhelmingly survey and teach ML applied to
network layers of the wireless communications stack
and above. This tutorial provides a rare resource for
lower levels of the wireless stack.

• While computational, ML, and wireless technology
advances have limited innovation in SL-based PHY
layer works to recent years, Section III-A acknowledges
a rich history reaching back to the 1980s, providing a
wide context not seen in other surveys and tutorials.

• Section III and Section IV provide a detailed view of
the progress and open areas of research of SL-based
PHY layer communications. In summary (Table 12),
Section IV-A highlights that DSA works are in
great need of QoS-monitoring spectrum sensing that
guarantees minimum performance despite the use of
non-linear unknown parameter estimators and classi-
fiers. Section IV-B discusses how channel correction
works leave few open challenges that are not incremen-
tal improvements to the state-of-the-art. Section IV-C
shows that AGC works traditionally have improved
computational efficiency, as performance improvements
are not currently possible due to label-generation lim-
itations. Section IV-D argues that MIMO works offer
many open challenges, including reciprocity calibration,
pilot reuse, phase drift correction, favorable propagation
environment calibration, beam forming, and cost reduc-
tion. Section IV-E provides an analysis of DAC/ADC
works, the most recent of which have been motivated by
details noticed by those most knowledgeable of mem-
ristors’ behavior in analog circuits, have been incre-
mental improvements to the Hopfield ADC. Finally,
Section IV-F presents ACM works which have been
closely tied to signal classification and ground-up radio
networks, both of which face the issue of small training
data sets. This has motivated the need for accurate data
augmentation in order to teach models a large input
space given few samples. All domains face a number
of common challenges, including the offline training

TABLE 12. A summary of SL-based PHY-layer applications and associated
open challenges. There potentially exists liability issues with DSA
applications regarding spectral interference issues and thus require
bounds and guarantees, while MIMO control and ACM applications have
generated significant interest and many open challenges within the
research community. Finally, research into channel correction, AGC, and
DAC/ADC applications has reached a plateau with some activities
contributing to these mature areas.

of models that generalize well to data from different
wireless channels, the generation of widely-used data
sets, the data-throughput efficient training of models
online, and the accurate training of models distributed
over multiple radios despite noisy gradient updates.

• Section V-A describes why Adam is generally the fastest
weight update method as a quasi-Newton SGD scheme,
and why vanilla SGD with momentum can sometimes
outperform Adam. We also briefly discuss a number
of recent SGD schemes not seen in other surveys and
tutorials, and why training and testing loss curves fol-
low a double descent shape. Section V-B explains why
randomweight initialization needs to be variance-scaled
to the model, and why the activation function mat-
ters when choosing that scaling. Section V-C explains
how `p-norm regularization, dropout, and batch nor-
malization all aid in the training of models that gen-
eralize well, which is especially an issue in wireless
communications due to the random nature of wire-
less channels. Section V-D describes how to choose
the best data representation for your SL model, why
input independence and multicollinearity matter, and
how to integrate data from multiple representations
into one SL model. Section V-E discusses how train-
ing data probability distributions can be estimated, and
how those estimations can simulate additional training
data in data-scarce wireless scenarios. Section V-F dis-
cusses how to tune model hyper-parameters and when to
use k-fold validation instead of grid search validation.
Finally, Section V-G discusses why ensemble learning
reduces unknown parameter estimate variance, and the
difference between bootstrapping and boosting.

A number of popular software libraries were presented in
Section I for use in creating and training ML models. These
libraries handle back propagation using numerical methods,
which otherwise would have to be performed by analytically

VOLUME 9, 2021 164881

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

deriving each gradient using linear algebra.While we encour-
age the reader to experiment with these libraries and use
what works best for them, in our survey of state-of-the-art
works, we have found that TensorFlow [19], Keras [21], and
Pytorch [23] are the most popular libraries used in open
source code. These libraries are easy to learn and powerful
due to their large online communities, constant development,
and support from both academia and industry.

This work provides a valuable resource for teaching
unknown parameter estimation and classification using SL
models at the PHY layer. However, there are many other
emerging research areas in wireless communications that are
benefiting from ML algorithms. We acknowledge both an
existing collection of works and a great need for new works
that teach ML use in wireless communication systems. The
reader is directed towards Section I-B for a collection of ML
surveys and tutorials. There exists a significant need for tuto-
rials that teach the use of semi-supervised and UL algorithms
for probability distribution estimation and self-organizing
data at every layer of the stack. Additionally, a comprehensive
survey or tutorial on Reinforcement Learning (RL)-based link
and network layer algorithms remains an open area of publi-
cation that would be of great value to the wireless community.

ACRONYMS
ACM Automatic Coding and Modulation.
ADC Analog-to-Digital Conversion.
AGC Automatic Gain Control.
AI Artificial Intelligence.
AWGN Additive White Gaussian Noise.
BCH Bose-Chaudhuri-Hocquenghem.
BPSK Binary Phase Shift Keying.
BS Base Station.
CDMA Code Division Multiple Access.
CNN Convolutional Neural Network.
CR Cognitive Radio.
CSI Channel State Information.
CUE Cellular User Equipment.
DA Data Augmentation.
DAC Digital-to-Analog Conversion.
DC Data Choice.
DPP Data Pre-Processing.
DSA Dynamic Spectrum Access.
DT Decision Tree.
DUE Device-to-Device User Equipment.
FFT Fast Fourier Transform.
FIR Finite Impulse Response.
IE Input Equivariance.
IF Intermediate Frequency.
IoT Internet of Things.
IQ In-Phase/Quadrature.
ISI Inter-Symbol Interference.
KKT Karush-Kuhn-Tucker.
KM Kernel Method.
KNN K -Nearest Neighbor.
LDPC Low-Density Parity-Check.

LNA Low Noise Amplifier.
LSB Least Significant Bits.
LSR Least Squares Regression.
LSTM Long Short-Term Memory.
MAC Medium Access Control.
MIMO Multiple Input Multiple Output.
ML Machine Learning.
MLE Most Likely Estimation.
MSE Mean Squared Error.
NP Neyman-Pearson.
NLL Negative Log Likelihood.
NN Neural Network.
PCA Principal Component Analysis.
PDF Probability Density Function.
PHY physical.
PLL Phase-Locked-Loop.
PPV Positive Predictive Value.
QoS Quality-of-Service.
R Regularization.
RBF Radial Basis Function.
ReLU Rectified Linear Unit.
RF Radio Frequency.
RL Reinforcement Learning.
RMS Root Mean Square.
RNN Recurrent Neural Network.
RSU Road Side Unit.
SGD Stochastic Gradient Descent.
SL Supervised Learning.
SNR Signal-to-Noise Ratio.
SON Self Organizing Networks.
SUMO Simulation of Urban Mobility.
SVM Support Vector Machine.
TDD Time Division Duplexing.
UE User Equipment.
UL Unsupervised Learning.
V Validation.
V2I Vehicle-to-Infrastructure.
VAE Variational Auto-Encoder.
WI Weight Initialization.
WMMSE Weighted Minimum Mean Square Error.
WSN Wireless Sensor Networks.
WSR Weighted Sum Rate.
WU Weight Updates.

REFERENCES

[1] N. Strom, ‘‘Scalable distributed DNN training using commodity GPU
cloud computing,’’ in Proc. 16th Annu. Conf. Int. Speech Commun.
Assoc., Sep. 2015, pp. 1–5.

[2] Y. Roh, G. Heo, and S. E. Whang, ‘‘A survey on data collection for
machine learning: A big data—AI integration perspective,’’ IEEE Trans.
Knowl. Data Eng., vol. 33, no. 4, pp. 1328–1347, Apr. 2021.

[3] B. Recht, C. Re, S. Wright, and F. Niu, ‘‘Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 24. Red Hook, NY, USA: Curran
Associates, 2011, pp. 693–701. [Online]. Available: https://proceedings.
neurips.cc/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.
pdf

164882 VOLUME 9, 2021

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

[4] M. Tan and Q. V. Le, ‘‘EfficientNet: Rethinking model scaling for
convolutional neural networks,’’ CoRR, vol. abs/1905.11946, pp. 1–11,
May 2019.

[5] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, ‘‘Artificial
neural networks-based machine learning for wireless networks: A tuto-
rial,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 4, pp. 3039–3071,
4th Quart., 2019.

[6] M. Bkassiny, Y. Li, and S. K. Jayaweera, ‘‘A survey on machine-learning
techniques in cognitive radios,’’ IEEE Commun. Surveys Tuts., vol. 15,
no. 3, pp. 1136–1159, 3rd Quart., 2012.

[7] M. A. Alsheikh, S. Lin, D. Niyato, and H.-P. Tan, ‘‘Machine learning in
wireless sensor networks: Algorithms, strategies, and applications,’’ IEEE
Commun. Surveys Tuts., vol. 16, no. 4, pp. 1996–2018, 4th Quart., 2014.

[8] A. L. Buczak and E. Guven, ‘‘A survey of data mining and machine
learning methods for cyber security intrusion detection,’’ IEEE Commun.
Surveys Tuts., vol. 18, no. 2, pp. 1153–1176, 2nd Quart., 2016.

[9] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, ‘‘A survey
of machine learning techniques applied to self-organizing cellular net-
works,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2392–2431, 4th
Quart., 2017.

[10] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue,
and K. Mizutani, ‘‘State-of-the-art deep learning: Evolving machine
intelligence toward tomorrow’s intelligent network traffic control sys-
tems,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2432–2455,
4th Quart., 2017.

[11] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani, ‘‘Deep
learning for IoT big data and streaming analytics: A survey,’’ IEEE
Commun. Surveys Tuts., vol. 20, no. 4, pp. 2923–2960, 4th Quart.,
2018.

[12] Q. Mao, F. Hu, and Q. Hao, ‘‘Deep learning for intelligent wireless net-
works: A comprehensive survey,’’ IEEE Commun. Surveys Tuts., vol. 20,
no. 4, pp. 2595–2621, 4th Quart., 2018.

[13] J. Wang, C. Jiang, H. Zhang, Y. Ren, K.-C. Chen, and L. Hanzo, ‘‘Thirty
years of machine learning: The road to Pareto-optimal wireless net-
works,’’ IEEE Commun. Surveys Tuts., vol. 22, no. 3, pp. 1472–1514,
3rd Quart., 2020.

[14] R. K. Dwivedi, S. Pandey, and R. Kumar, ‘‘A study on machine learning
approaches for outlier detection in wireless sensor network,’’ in Proc.
8th Int. Conf. Cloud Comput., Data Sci. Eng. (Confluence), Jan. 2018,
pp. 189–192.

[15] M. Kulin, C. Fortuna, E. De Poorter, D. Deschrijver, and I. Moerman,
‘‘Data-driven design of intelligent wireless networks: An overview and
tutorial,’’ Sensors, vol. 16, no. 6, p. 790, Jun. 2016.

[16] C. Zhang, P. Patras, and H. Haddadi, ‘‘Deep learning in mobile
and wireless networking: A survey,’’ CoRR, vol. abs/1803.04311,
2018.

[17] Y. Liu, S. Bi, Z. Shi, and L. Hanzo, ‘‘When machine learning meets big
data: A wireless communication perspective,’’ IEEE Veh. Technol. Mag.,
vol. 15, no. 1, pp. 63–72, Mar. 2020.

[18] T. J. O’Shea and J. Hoydis, ‘‘An introduction to machine learn-
ing communications systems,’’ CoRR, vol. abs/1702.00832, pp. 1–13,
Feb. 2017.

[19] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, and M. Isard, ‘‘TensorFlow: A system for
large-scale machine learning,’’ in Proc. 12th USENIX Symp. Oper. Syst.
Design Implement. (OSDI), 2016, pp. 265–283. [Online]. Available:
https://www.tensorflow.org/

[20] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,
B. Xu, C. Zhang, and Z. Zhang, ‘‘MXNet: A flexible and efficient
machine learning library for heterogeneous distributed systems,’’ CoRR,
vol. abs/1512.01274, pp. 1–6, Dec. 2015.

[21] F. Chollet. (2015). Keras. [Online]. Available: https://github.com/
fchollet/keras

[22] R. Al-Rfou et al., ‘‘Theano: A Python framework for fast computation
of mathematical expressions,’’ CoRR, vol. abs/1605.02688, pp. 1–19,
May 2016.

[23] A. Paszke et al., ‘‘PyTorch: An imperative style, high-performance deep
learning library,’’ in Proc. Adv. Neural Inf. Process. Syst. Red Hook,
NY, USA: Curran Associates, 2019, pp. 8024–8035. [Online]. Available:
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf

[24] S. Dieleman et al., ‘‘Lasagne: First release,’’ Tech. Rep., Aug. 2015, doi:
10.5281/zenodo.27878.

[25] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, ‘‘Caffe: Convolutional architecture for fast
feature embedding,’’ in Proc. 22nd ACM Int. Conf. Multimedia (MM).
New York, NY, USA: Association for Computing Machinery, Nov. 2014,
pp. 675–678, doi: 10.1145/2647868.2654889.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 25. Red Hook, NY, USA: Curran Associates, 2012,
pp. 1097–1105.

[27] M.A.Hearst, S. T. Dumais, E. Osuna, J. Platt, andB. Scholkopf, ‘‘Support
vector machines,’’ IEEE Intell. Syst. Appl., vol. ISA-13, no. 4, pp. 18–28,
Jul. 1998, doi: 10.1109/5254.708428.

[28] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’
Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi:
10.1162/neco.1997.9.8.1735.

[29] J. Friedman, T. Hastie, and R. Tibshirani, ‘‘Additive logistic regression:
A statistical view of boosting,’’ Ann. Statist., vol. 28, no. 2, pp. 337–407,
2000.

[30] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Germany: Springer-Verlag, 2006.

[31] N. J. Nilsson, Introduction to Machine Learning: An Early Draft
of a Proposed Textbook. 1996, pp. 175–188. [Online]. Available:
http://robotics.stanford.edu/people/nilsson/mlbook.html

[32] T. M. Mitchell, Machine Learning, 1st ed. New York, NY, USA:
McGraw-Hill, 1997.

[33] E. Alpaydin, Introduction to Machine Learning, 2nd ed. Cambridge, MA,
USA: MIT Press, 2010.

[34] J. D. Kelleher, B. M. Namee, and A. D’Arcy, Fundamentals of Machine
Learning for Predictive Data Analytics: Algorithms, Worked Examples,
and Case Studies. Cambridge, MA, USA: MIT Press, 2015.

[35] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016. [Online]. Available: http://www.
deeplearningbook.org

[36] M. A. Nielsen, Neural Networks and Deep Learning. Determination
Press, 2015.

[37] R. D. Luce, Individual Choice Behavior: A Theoretical Analysis.
Chelmsford, MA, USA: Courier Corporation, 2012.

[38] S. Kay, Fundamentals of Statistical Signal Processing:
Detection Theory (Prentice Hall Signal Processing Series).
Upper Saddle River, NJ, USA: Prentice-Hall, 1998. [Online]. Available:
https://books.google.com/books?id=vA9LAQAAIAAJ

[39] E. Angel and V. Zissimopoulos, ‘‘On the classification of NP-complete
problems in terms of their correlation coefficient,’’ Discrete Appl. Math.,
vol. 99, nos. 1–3, pp. 261–277, Feb. 2000.

[40] M. M. Saritas and A. Yasar, ‘‘Performance analysis of ANN and Naive
Bayes classification algorithm for data classification,’’ Int. J. Intell. Syst.
Appl. Eng., vol. 7, no. 2, pp. 88–91, Jan. 2019.

[41] J. Fan, C. Zhang, and J. Zhang, ‘‘Generalized likelihood ratio statistics
and Wilks phenomenon,’’ Ann. Statist., vol. 29, no. 1, pp. 153–193,
Feb. 2001.

[42] V. Nair and G. E. Hinton, ‘‘Rectified linear units improve restricted
Boltzmann machines,’’ in Proc. 27th Int. Conf. Mach. Learn. (ICML),
2010, pp. 807–814.

[43] F.-F. Li and J. Johnson, ‘‘CS231n: Convolutional neural networks
for visual recognition,’’ Stanford Univ., Stanford, CA, USA,
Tech. Rep., Apr. 2018. [Online]. Available: http://cs231n.github.io/

[44] J. Bruck and M. Blaum, ‘‘Neural networks, error-correcting codes, and
polynomials over the binary n-cube,’’ IEEE Trans. Inf. Theory, vol. 35,
no. 5, pp. 976–987, Sep. 1989.

[45] I. Ortuno, M. Ortuno, and J. A. Delgado, ‘‘Error correcting neural net-
works for channels with Gaussian noise,’’ in Proc. Int. Joint Conf. Neural
Netw. (IJCNN), vol. 4, Jun. 1992, pp. 295–300.

[46] V. Sagar, G. M. Jacyna, and H. Szu, ‘‘Block-parallel decoding of
convolutional codes using neural network decoders,’’ Neurocomput-
ing, vol. 6, no. 4, pp. 455–471, Aug. 1994. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0925231294900221

[47] X.-A. Wang and S. B. Wicker, ‘‘An artificial neural net Viterbi decoder,’’
IEEE Trans. Commun., vol. 44, no. 2, pp. 165–171, Feb. 1996.

[48] T. J. O’Shea, T. Roy, and T. C. Clancy, ‘‘Over the air deep learning
based radio signal classification,’’ CoRR, vol. abs/1712.04578, pp. 1–13,
Dec. 2017.

[49] N. E. West and T. J. O’Shea, ‘‘Deep architectures for modulation recog-
nition,’’ CoRR, vol. abs/1703.09197, pp. 1–7, Mar. 2017.

VOLUME 9, 2021 164883

http://dx.doi.org/10.5281/zenodo.27878
http://dx.doi.org/10.1145/2647868.2654889
http://dx.doi.org/10.1109/5254.708428
http://dx.doi.org/10.1162/neco.1997.9.8.1735

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

[50] T. J. O’Shea and J. Corgan, ‘‘Convolutional radio modulation recognition
networks,’’ CoRR, vol. abs/1602.04105, pp. 1–15, Jun. 2016.

[51] B. Aazhang, B.-P. Paris, and G. C. Orsak, ‘‘Neural networks for mul-
tiuser detection in code-division multiple-access communications,’’ IEEE
Trans. Commun., vol. 40, no. 7, pp. 1212–1222, Jul. 1992.

[52] G. I. Kechriotis and E. S. Manolakos, ‘‘Hopfield neural network imple-
mentation of the optimal CDMAmultiuser detector,’’ IEEE Trans. Neural
Netw., vol. 7, no. 1, pp. 131–141, Jan. 1996.

[53] G. Kechriotis and E. S. Manolakos, ‘‘A hybrid digital signal processing-
neural network CDMA multiuser detection scheme,’’ IEEE Trans. Cir-
cuits Syst. II, Analog Digit. Signal Process., vol. 43, no. 2, pp. 96–104,
Feb. 1996.

[54] U. Mitra and H. V. Poor, ‘‘Adaptive receiver algorithms for near-far
resistant CDMA,’’ IEEE Trans. Commun., vol. 43, no. 2, pp. 1713–1724,
Mar./Apr. 1995.

[55] C. Park, J. Choi, S. Nah, W. Jang, and D. Y. Kim, ‘‘Automatic modulation
recognition of digital signals using wavelet features and SVM,’’ in Proc.
10th Int. Conf. Adv. Commun. Technol., vol. 1, 2008, pp. 387–390.

[56] S. Rajendran, W. Meert, D. Giustiniano, V. Lenders, and S. Pollin, ‘‘Deep
learning models for wireless signal classification with distributed low-
cost spectrum sensors,’’ IEEE Trans. Cogn. Commun. Netw., vol. 4, no. 3,
pp. 433–445, Sep. 2018.

[57] L. Danial, N. Wainstein, S. Kraus, and S. Kvatinsky, ‘‘DIDACTIC: A
data-intelligent digital-to-analog converter with a trainable integrated
circuit using memristors,’’ IEEE J. Emerg. Sel. Topics Circuits Syst.,
vol. 8, no. 1, pp. 146–158, Mar. 2018.

[58] A. Tankimanova and A. James, ‘‘Neural network-based analog-to-digital
converters,’’ inMemristor and Memristive Neural Networks. Apr. 2018.

[59] M. Vidyasagar, ‘‘Improved neural networks for analog-to-digital con-
version,’’ Circuits, Syst., Signal Process., vol. 11, no. 3, pp. 387–398,
Sep. 1992, doi: 10.1007/BF01190983.

[60] D. Tank and J. Hopfield, ‘‘Simple ‘neural’ optimization networks: An
A/D converter, signal decision circuit, and a linear programming circuit,’’
IEEE Trans. Circuits Syst., vol. CAS-33, no. 5, pp. 533–541, May 1986.

[61] A. Indriyatmoko, T. Kang, Y. J. Lee, G.-I. Jee, Y. B. Cho, and J. Kim,
‘‘Artificial neural networks for predicting DGPS carrier phase and
pseudorange correction,’’ GPS Solutions, vol. 12, no. 4, pp. 237–247,
Sep. 2008.

[62] S. Chen, G. J. Gibson, C. F. N. Cowan, and P. M. Grant, ‘‘Adaptive
equalization of finite non-linear channels using multilayer perceptrons,’’
Signal Process., vol. 20, no. 2, pp. 107–119, 1990. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/016516849090122F

[63] D. J. Sebald and J. A. Bucklew, ‘‘Support vector machine techniques for
nonlinear equalization,’’ IEEE Trans. Signal Process., vol. 48, no. 11,
pp. 3217–3226, Nov. 2000.

[64] G. Kechriotis, E. Zervas, and E. S. Manolakos, ‘‘Using recurrent neu-
ral networks for adaptive communication channel equalization,’’ IEEE
Trans. Neural Netw., vol. 5, no. 2, pp. 267–278, Mar. 1994.

[65] F. C. Hoppensteadt and E. M. Izhikevich, ‘‘Pattern recognition via syn-
chronization in phase-locked loop neural networks,’’ IEEE Trans. Neural
Netw., vol. 11, no. 3, pp. 734–738, May 2000.

[66] M. Ibnkahla, N. J. Bershad, J. Sombrin, and F. Castanie, ‘‘Neural network
modeling and identification of nonlinear channels with memory: Algo-
rithms, applications, and analytic models,’’ IEEE Trans. Signal Process.,
vol. 46, no. 5, pp. 1208–1220, May 1998.

[67] W. Lee, M. Kim, and D.-H. Cho, ‘‘Deep learning based transmit power
control in underlaid device-to-device communication,’’ IEEE Syst. J.,
vol. 13, no. 3, pp. 2551–2554, Sep. 2019.

[68] W. Lee, M. Kim, and D.-H. Cho, ‘‘Deep power control: Transmit power
control scheme based on convolutional neural network,’’ IEEE Commun.
Lett., vol. 22, no. 6, pp. 1276–1279, Jun. 2018.

[69] A. Zappone, M. Debbah, and Z. Altman, ‘‘Online energy-efficient power
control in wireless networks by deep neural networks,’’ in Proc. IEEE
19th Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC),
Jun. 2018, pp. 1–5.

[70] F. Liang, C. Shen, W. Yu, and F. Wu, ‘‘Towards optimal power control via
ensembling deep neural networks,’’ IEEE Trans. Commun., vol. 68, no. 3,
pp. 1760–1776, Mar. 2020.

[71] H. Sun, X. Chen, Q. Shi,M. Hong, X. Fu, andN. D. Sidiropoulos, ‘‘Learn-
ing to optimize: Training deep neural networks for wireless resource
management,’’ 2017, arXiv:1705.09412.

[72] D. Kunz, ‘‘Channel assignment for cellular radio using neural networks,’’
IEEE Trans. Veh. Technol., vol. 40, no. 1, pp. 188–193, Feb. 1991.

[73] V. K. Tumuluru, P. Wang, and D. Niyato, ‘‘A neural network based
spectrum prediction scheme for cognitive radio,’’ in Proc. IEEE Int. Conf.
Commun., May 2010, pp. 1–5.

[74] R. Mahajan and D. Bagai, ‘‘Improved learning scheme for cognitive radio
using artificial neural networks,’’ Int. J. Electr. Comput. Eng., vol. 6, no. 1,
p. 257, Feb. 2016.

[75] K. Thilina, K. W. Choi, N. Saquib, and E. Hossain, ‘‘Machine learn-
ing techniques for cooperative spectrum sensing in cognitive radio net-
works,’’ IEEE J. Sel. Areas Commun., vol. 31, no. 11, pp. 2209–2221,
Nov. 2013.

[76] Y.-J. Tang, Q.-Y. Zhang, and W. Lin, ‘‘Artificial neural network based
spectrum sensing method for cognitive radio,’’ in Proc. 6th Int. Conf.
Comput. Intell. Softw. Eng. (WiCOM), Sep. 2010, pp. 1–4.

[77] A. Klautau, P. Batista, N. González-Prelcic, Y. Wang, and
R. W. Heath, Jr., ‘‘5G MIMO data for machine learning: Application
to beam-selection using deep learning,’’ in Proc. Inf. Theory Appl.
Workshop (ITA), Feb. 2018, pp. 1–9.

[78] X. Gao, L. Dai, Y. Sun, S. Han, and I. Chih-Lin, ‘‘Machine learning
inspired energy-efficient hybrid precoding for mmWave massive MIMO
systems,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2017, pp. 1–6.

[79] A. Alkhateeb, ‘‘DeepMIMO:A generic deep learning dataset for millime-
ter wave and massive MIMO applications,’’ CoRR, vol. abs/1902.06435,
pp. 1–8, Feb. 2019.

[80] D. He, C. Liu, T. Q. S. Quek, andH.Wang, ‘‘Transmit antenna selection in
MIMO wiretap channels: A machine learning approach,’’ IEEE Wireless
Commun. Lett., vol. 7, no. 4, pp. 634–637, Aug. 2018.

[81] N. Samuel, T. Diskin, and A. Wiesel, ‘‘Deep MIMO detection,’’ 2017,
arXiv:1706.01151.

[82] D. Crevier, AI: The Tumultuous History of the Search for Artificial
Intelligence. New York, NY, USA: Basic Books, 1993.

[83] N. Benvenuto, M. Marchesi, F. Piazza, and A. Uncini, ‘‘Non linear satel-
lite radio links equalized using blind neural networks,’’ in Proc. Int. Conf.
Acoust., Speech, Signal Process. (ICASSP), vol. 3, 1991, pp. 1521–1524.

[84] S. Benedetto, E. Biglieri, and R. Daffara, ‘‘Modeling and performance
evaluation of nonlinear satellite links—AVolterra series approach,’’ IEEE
Trans. Aerosp. Electron. Syst., vol. AES-15, no. 4, pp. 494–507, Jul. 1979.

[85] S. A. Billings, S. Chen, and M. J. Korenberg, ‘‘Identification of
MIMO non-linear systems using a forward-regression orthogonal
estimator,’’ London, U.K., Tech. Rep., 1989. [Online]. Available:
https://eprints.soton.ac.U.K./251146/

[86] W.-W. Fang, B. J. Sheu, O. T.-C. Chen, and J. Choi, ‘‘A VLSI neural
processor for image data compression using self-organization networks,’’
IEEE Trans. Neural Netw., vol. 3, no. 3, pp. 506–518, May 1992.

[87] K. Iba, ‘‘Reactive power optimization by genetic algorithm,’’ IEEE Trans.
Power Syst., vol. 9, no. 2, pp. 685–692, May 1994.

[88] J. J. Hopfield, ‘‘Neural networks and physical systems with emergent
collective computational abilities,’’ Proc. Nat. Acad. Sci. USA, vol. 79,
no. 8, pp. 2554–2558, 1982.

[89] H. L. Southall, J. A. Simmers, and T. H. O’Donnell, ‘‘Direction finding in
phased arrays with a neural network beamformer,’’ IEEE Trans. Antennas
Propag., vol. 43, no. 12, pp. 1369–1374, Dec. 1995.

[90] A. K. Nandi and E. E. Azzouz, ‘‘Algorithms for automatic modulation
recognition of communication signals,’’ IEEE Trans. Commun., vol. 46,
no. 4, pp. 431–436, Apr. 1998.

[91] R. C. Daniels, C. M. Caramanis, and R.W. Heath, Jr., ‘‘Adaptation in con-
volutionally coded MIMO-OFDM wireless systems through supervised
learning and SNR ordering,’’ IEEE Trans. Veh. Technol., vol. 59, no. 1,
pp. 114–126, Jan. 2010.

[92] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty,
‘‘NeXt generation/dynamic spectrum access/cognitive radio
wireless networks: A survey,’’ Comput. Netw., vol. 50, no. 13,
pp. 2127–2159, 2006. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1389128606001009

[93] I. Angus, ‘‘An introduction to Erlang B and Erlang C,’’ Telemanagement,
vol. 187, pp. 6–8, Jul. 2001.

[94] P. Tran-Gia, D. Staehle, and K. Leibnitz, ‘‘Source traffic modeling of
wireless applications,’’ AEU, Int. J. Electron. Commun., vol. 55, no. 1,
pp. 27–36, Jan. 2001.

[95] I. Demirkol, F. Alagoz, H. Delic, and C. Ersoy, ‘‘Wireless sensor networks
for intrusion detection: Packet traffic modeling,’’ IEEE Commun. Lett.,
vol. 10, no. 1, pp. 22–24, Jan. 2006.

[96] Z. Xie, R. T. Short, and C. K. Rushforth, ‘‘A family of suboptimum
detectors for coherent multiuser communications,’’ IEEE J. Sel. Areas
Commun., vol. 8, no. 4, pp. 683–690, May 1990.

164884 VOLUME 9, 2021

http://dx.doi.org/10.1007/BF01190983

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

[97] C. U. Saraydar, N. B. Mandayam, and D. J. Goodman, ‘‘Efficient power
control via pricing in wireless data networks,’’ IEEE Trans. Commun.,
vol. 50, no. 2, pp. 291–303, Feb. 2002.

[98] C. Candan, ‘‘Amethod for fine resolution frequency estimation from three
DFT samples,’’ IEEE Signal Process. Lett., vol. 18, no. 6, pp. 351–354,
Jun. 2011.

[99] D. R. Stephens, Phase-Locked Loops for Wireless Communications: Dig-
ital, Analog and Optical Implementations. Springer, 2007.

[100] D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson,
‘‘Frequency domain equalization for single-carrier broadband wireless
systems,’’ IEEE Commun. Mag., vol. 40, no. 4, pp. 58–66, Apr. 2002.

[101] D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, ‘‘A gen-
eralized memory polynomial model for digital predistortion of RF power
amplifiers,’’ IEEE Trans. Signal Process., vol. 54, no. 10, pp. 3852–3860,
Oct. 2006.

[102] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, ‘‘Massive
MIMO for next generation wireless systems,’’ IEEE Commun. Mag.,
vol. 52, no. 2, pp. 186–195, Feb. 2014.

[103] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, ‘‘Capacity
limits of MIMO channels,’’ IEEE J. Sel. Areas Commun., vol. 21, no. 5,
pp. 684–702, Jun. 2003.

[104] C. Lee, H. B. Yilmaz, C.-B. Chae, N. Farsad, and A. Goldsmith,
‘‘Machine learning based channel modeling for molecular MIMO com-
munications,’’ in Proc. IEEE 18th Int. Workshop Signal Process. Adv.
Wireless Commun. (SPAWC), Jul. 2017, pp. 1–5.

[105] M. J. Demler, High-Speed Analog-to-Digital Conversion. Amsterdam,
The Netherlands: Elsevier, 2012.

[106] E. Biglieri, ‘‘Coding and modulation for a horrible channel,’’ IEEE Com-
mun. Mag., vol. 41, no. 5, pp. 92–98, May 2003.

[107] S. Lin and D. J. Costello, Error Control Coding, vol. 2, no. 4.
Upper Saddle River, NJ, USA: Prentice-Hall, 2001.

[108] C. Berrou, A. Glavieux, and P. Thitimajshima, ‘‘Near Shannon limit error-
correcting coding and decoding: Turbo-codes. 1,’’ in Proc. IEEE Int.
Conf. Commun. (ICC), vol. 2, May 1993, pp. 1064–1070.

[109] R. M. Tanner, D. Sridhara, and T. Fuja, ‘‘A class of group-structured
LDPC codes,’’ in Proc. ISTA, 2001, pp. 365–370.

[110] L. Ping, L. Liu, K. Wu, and W. K. Leung, ‘‘Interleave division multiple-
access,’’ IEEE Trans. Wireless Commun., vol. 5, no. 4, pp. 938–947,
Apr. 2006.

[111] L. E. Peterson, ‘‘K -nearest neighbor,’’ Scholarpedia, vol. 4, no. 2, p. 1883,
2009.

[112] O. Koyejo, N. Natarajan, P. Ravikumar, and I. S. Dhillon, ‘‘Consistent
binary classification with generalized performance metrics,’’ in Proc.
NIPS, vol. 27. Princeton, NJ, USA: Citeseer, 2014, pp. 2744–2752.

[113] A. Patel and B. Kosko, ‘‘Optimal noise benefits in Neyman–Pearson and
inequality-constrained statistical signal detection,’’ IEEE Trans. Signal
Process., vol. 57, no. 5, pp. 1655–1669, May 2009.

[114] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. R. Mullers, ‘‘Fisher
discriminant analysis with kernels,’’ in Proc. Neural Netw. Signal Pro-
cess. IX, IEEE Signal Process. Soc. Workshop, Aug. 1999, pp. 41–48.

[115] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, ‘‘On the surprising
behavior of distance metrics in high dimensional space,’’ in Proc. Int.
Conf. Database Theory. Springer, 2001, pp. 420–434.

[116] K. Pearson, ‘‘On lines and planes of closest fit to systems of points in
space,’’ London, Edinburgh, Dublin Phil. Mag. J. Sci., vol. 2, no. 11,
pp. 559–572, 1901, doi: 10.1080/14786440109462720.

[117] I. Lyubomirsky, ‘‘Machine learning equalization techniques for high
speed PAM4 fiber optic communication systems,’’ Stanford Univ.,
Stanford, CA, USA, Final Project Rep. CS229, 2015.

[118] J. Liu, K. Mei, X. Zhang, D. Ma, and J. Wei, ‘‘Online extreme learn-
ing machine-based channel estimation and equalization for OFDM
systems,’’ IEEE Commun. Lett., vol. 23, no. 7, pp. 1276–1279,
Jul. 2019.

[119] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner, ‘‘Micro-
scopic traffic simulation using SUMO,’’ in Proc. 21st IEEE Int. Conf.
Intell. Transp. Syst., Nov. 2018, pp. 2575–2582. [Online]. Available:
https://elib.dlr.de/124092/

[120] Y. Freund and R. E. Schapire, ‘‘A decision-theoretic generalization of
on-line learning and an application to boosting,’’ J. Comput. Syst. Sci.,
vol. 55, no. 1, pp. 119–139, 1997.

[121] A. Liaw andM.Wiener, ‘‘Classification and regression by randomforest,’’
R News, vol. 2, no. 3, pp. 18–22, Dec. 2002.

[122] X. Guo, F. Merrikh-Bayat, L. Gao, B. D. Hoskins, F. Alibart,
B. Linares-Barranco, L. Theogarajan, C. Teuscher, and D. B. Strukov,
‘‘Modeling and experimental demonstration of a Hopfield network
analog-to-digital converter with hybrid CMOS/memristor circuits,’’Fron-
tiers Neurosci., vol. 9, p. 488, Dec. 2015.

[123] T. J. O’Shea, T. Erpek, and T. C. Clancy, ‘‘Deep learning based
MIMO communications,’’ CoRR, vol. abs/1707.07980, pp. 1–9,
Jul. 2017.

[124] T. J. O’Shea, K. Karra, and T. C. Clancy, ‘‘Learning to communicate:
Channel auto-encoders, domain specific regularizers, and attention,’’
CoRR, vol. abs/1608.06409, pp. 1–10, Aug. 2016.

[125] T. O’Shea and J. Hoydis, ‘‘An introduction to deep learning for the physi-
cal layer,’’ IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 4, pp. 563–575,
Dec. 2017.

[126] T. J. Oshea, T. Roy, N. West, and B. C. Hilburn, ‘‘Physical layer commu-
nications system design over-the-air using adversarial networks,’’ inProc.
26th Eur. Signal Process. Conf. (EUSIPCO), Sep. 2018, pp. 529–532.

[127] T. J. O’Shea, T. Roy, and N. West, ‘‘Approximating the void: Learning
stochastic channel models from observation with variational generative
adversarial networks,’’ CoRR, vol. abs/1805.06350, pp. 1–6, Aug. 2018.

[128] T. J. O’Shea, T. Roy, and T. C. Clancy, ‘‘Over-the-air deep learning based
radio signal classification,’’ IEEE J. Sel. Topics Signal Process., vol. 12,
no. 1, pp. 168–179, Feb. 2018.

[129] T. J. O’Shea, L. Pemula, D. Batra, and T. C. Clancy, ‘‘Radio transformer
networks: Attention models for learning to synchronize in wireless sys-
tems,’’ CoRR, vol. abs/1605.00716, pp. 1–5, May 2016.

[130] T. J. O’Shea, N. West, M. Vondal, and T. C. Clancy, ‘‘Semi-
supervised radio signal identification,’’ CoRR, vol. abs/1611.00303,
pp. 1–5, Jan. 2016.

[131] T. J. O’Shea, J. Corgan, and T. C. Clancy, ‘‘Convolutional radio modula-
tion recognition networks,’’ in Proc. Int. Conf. Eng. Appl. Neural Netw.
Springer, 2016, pp. 213–226.

[132] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, ‘‘Advances
in optimizing recurrent networks,’’ CoRR, vol. abs/1212.0901, pp. 1–5,
Dec. 2012.

[133] T. Tieleman and G. Hinton. RMSProp Gradient Optimization.
[Online]. Available: http://www.cs.toronto.edu/~tijmen/csc321/slides/
lecture_slides_lec6.pdf

[134] J. Duchi, E. Hazan, and Y. Singer, ‘‘Adaptive subgradient
methods for online learning and stochastic optimization,’’
Dept. EECS, Univ. California, Berkeley, Berkeley, CA, USA,
Tech. Rep. UCB/EECS-2010-24, Mar. 2010. [Online]. Available:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-
24.html

[135] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
CoRR, vol. abs/1412.6980, pp. 1–15, Dec. 2014.

[136] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever,
‘‘Deep double descent: Where bigger models and more data hurt,’’CoRR,
vol. abs/1912.02292, pp. 1–24, Dec. 2019.

[137] N. Qian, ‘‘On the momentum term in gradient descent learning
algorithms,’’ Neural Netw., vol. 12, no. 1, pp. 145–151, 1999.
[Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0893608098001166

[138] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le,
M. Z. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng,
‘‘Large scale distributed deep networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 25. Red Hook, NY, USA: Curran Associates,
2012, pp. 1223–1231. [Online]. Available: https://proceedings.
neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-
Paper.pdf

[139] B. McMahan and M. Streeter, ‘‘Delay-tolerant algorithms for
asynchronous distributed online learning,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 27. Red Hook, NY, USA: Curran Associates,
2014, pp. 2915–2923. [Online]. Available: https://proceedings.
neurips.cc/paper/2014/file/5cce8dede893813f879b873962fb669f-
Paper.pdf

[140] S. Zhang, A. Choromanska, and Y. LeCun, ‘‘Deep learning with elastic
averaging SGD,’’ 2014, arXiv:1412.6651.

[141] H. Robbins and S. Monro, ‘‘A stochastic approximation method,’’ Ann.
Math. Statist., vol. 22, no. 3, pp. 400–407, 1951.

[142] J. Lucas, R. S. Zemel, and R. B. Grosse, ‘‘Aggregated momentum: Sta-
bility through passive damping,’’ CoRR, vol. abs/1804.00325, pp. 1–22,
Apr. 2018.

VOLUME 9, 2021 164885

http://dx.doi.org/10.1080/14786440109462720

K. W. McClintick et al.: Parameter Estimation and Classification via Supervised Learning in Wireless Physical Layer

[143] M. D. Zeiler, ‘‘ADADELTA: An adaptive learning rate method,’’ CoRR,
vol. abs/1212.5701, 2012.

[144] T. Dozat, ‘‘Incorporating Nesterov momentum into Adam,’’ in Proc. 4th
Int. Conf. Learn. Represent., 2016, pp. 1–4.

[145] S. J. Reddi, S. Kale, and S. Kumar, ‘‘On the convergence of
Adam and beyond,’’ CoRR, vol. abs/1904.09237, pp. 1–23,
Apr. 2019.

[146] I. Loshchilov and F. Hutter, ‘‘Fixing weight decay regularization in
Adam,’’ CoRR, vol. abs/1711.05101, 2017.

[147] J. Ma and D. Yarats, ‘‘Quasi-hyperbolic momentum and Adam
for deep learning,’’ CoRR, vol. abs/1810.06801, pp. 1–38,
Oct. 2018.

[148] A. Neelakantan, L. Vilnis, Q. V. Le, I. Sutskever, L. Kaiser, K. Kurach,
and J. Martens, ‘‘Adding gradient noise improves learning for very deep
networks,’’ 2015, arXiv:1511.06807.

[149] D. Mishkin and J. Matas, ‘‘All you need is a good init,’’ 2015,
arXiv:1511.06422.

[150] S. K. Kumar, ‘‘On weight initialization in deep neural networks,’’ CoRR,
vol. abs/1704.08863, pp. 1–9, May 2017.

[151] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Delving deep into rectifiers: Sur-
passing human-level performance on ImageNet classification,’’ CoRR,
vol. abs/1502.01852, pp. 1–11, Feb. 2015.

[152] Y. Li and F. Liu, ‘‘Whiteout: Gaussian adaptive noise regularization in
deep neural networks,’’ 2016, arXiv:1612.01490.

[153] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, ‘‘Dropout: A simple way to prevent neural networks from overfit-
ting,’’ J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, 2014. [Online].
Available: http://jmlr.org/papers/v15/srivastava14a.html

[154] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep
network training by reducing internal covariate shift,’’ CoRR,
vol. abs/1502.03167, pp. 1–11, Feb. 2015.

[155] M. Kulin, T. Kazaz, I. Moerman, and E. D. Poorter, ‘‘End-to-end learning
from spectrum data: A deep learning approach for wireless signal identifi-
cation in spectrummonitoring applications,’’CoRR, vol. abs/1712.03987,
2017.

[156] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’
in Proc. Adv. Neural Inf. Process. Syst., vol. 27. Red Hook, NY,
USA: Curran Associates, 2014, pp. 2672–2680. [Online]. Available:
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

[157] D. P. Kingma and M. Welling, ‘‘An introduction to variational autoen-
coders,’’ Found. Trends Mach. Learn., vol. 12, no. 4, pp. 307–392, 2019,
doi: 10.1561/2200000056.

[158] S. Chib and E. Greenberg, ‘‘Understanding the metropolis-
hastings algorithm,’’ Amer. Stat., vol. 49, no. 4, pp. 327–335,
1995.

[159] C. K. Carter and R. Kohn, ‘‘On Gibbs sampling for state space models,’’
Biometrika, vol. 81, no. 3, pp. 541–553, 1994.

[160] R. M. Neal, ‘‘Annealed importance sampling,’’ Statist. Comput., vol. 11,
no. 2, pp. 125–139, 2001.

[161] W. R. Gilks and P. Wild, ‘‘Adaptive rejection sampling for Gibbs sam-
pling,’’ J. Roy. Stat. Soc. C, Appl. Statist., vol. 41, no. 2, pp. 337–348,
Jun. 1992.

[162] J. Bergstra and Y. Bengio, ‘‘Random search for hyper-parameter
optimization,’’ J. Mach. Learn. Res., vol. 13, pp. 281–305,
Feb. 2012.

[163] R. Kohavi, ‘‘A study of cross-validation and bootstrap for accuracy esti-
mation and model selection,’’ in Proc. 14th Int. Joint Conf. Artif. Intell.
(IJCAI), vol. 2. San Francisco, CA, USA: Morgan Kaufmann, 1995,
pp. 1137–1143.

[164] M. Stonebraker, U. Çetintemel, and S. Zdonik, ‘‘The 8 requirements
of real-time stream processing,’’ ACM SIGMOD Rec., vol. 34, no. 4,
pp. 42–47, 2005.

KYLE W. MCCLINTICK (Student Member, IEEE)
received the B.S. degree in electrical and computer
engineering from the Rose-Hulman Institute of
Technology, in 2017, and the M.S. degree in elec-
trical and computer engineering from Worcester
Polytechnic Institute, in 2019, with a thesis on SL
inwireless communications, generously funded by
The MITRE Corporation, where he is currently
pursuing the Ph.D. degree in data science and
computer science (minor) with the Department of

Electrical andComputer Engineering, generously funded by theMITLincoln
Laboratory. He was a recipient of the Best Paper Award for his GlobalSIP
2019 paper on wireless localization using UL techniques.

GALAHAD M. WERNSING (Student Member,
IEEE) received the B.S. degree in electrical and
computer engineering and the M.S. degree in
ECE, with a thesis studying Bluetooth communi-
cations through the generous support of octoScope
Inc., from Worcester Polytechnic Institute (WPI),
in 2018, where he is currently pursuing the Ph.D.
degree with the ECE Department, with minors in
both computer science and nuclear science.

PAULO VICTOR R. FERREIRA (Member, IEEE)
received the B.S. and M.S. degrees in electri-
cal engineering from the Universidade Federal
de Uberlandia, Brazil, in 2010 and 2012, respec-
tively, and the Ph.D. degree in electrical and
computer engineering fromWorcester Polytechnic
Institute (WPI), Worcester, MA, USA, in 2017.
He has worked as a Graduate Research Assistant
at the Wireless Innovation Laboratory, within the
Department of Electrical and Computer Engineer-

ing, WPI, and as a Research and Development Intern at General Electric
Global Research. He is a RF Systems Engineer at Cohu, Inc. His research
interests include satellite communications, machine learning, wireless com-
munications, cognitive radio, and industrial robotics.

ALEXANDER M. WYGLINSKI (Senior Mem-
ber, IEEE) received the B.Eng. and Ph.D. degrees
in electrical engineering from McGill University,
Montreal, Canada, in 1999 and 2005, respectively,
and the M.Sc. (Eng.) degree in electrical engineer-
ing from Queen’s University, Kingston, Canada,
in 2000. He is the Associate Dean of graduate
studies and a Professor of electrical and com-
puter engineering at Worcester Polytechnic Insti-
tute (WPI), Worcester, MA, USA, where he has

been the Director of the Wireless Innovation Laboratory, since 2007. His
current research interests include wireless communications, cognitive radio,
machine learning for wireless systems, software-defined radio prototyp-
ing, connected and autonomous vehicles, and dynamic spectrum sensing,
characterization, and access. He was the President of the IEEE Vehicular
Technology Society, from 2018 to 2019.

164886 VOLUME 9, 2021

http://dx.doi.org/10.1561/2200000056

