IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 21, 2021, accepted November 13, 2021, date of publication November 16, 2021,

date of current version November 24, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3128701

A Hybrid Deep Learning Approach for Replay
and DDoS Attack Detection in a Smart City

ASMAA A. ELSAEIDY ', (Student Member, IEEE), ABBAS JAMALIPOUR 2, (Fellow, IEEE),

AND KUMUDU S. MUNASINGHE !, (Member, IEEE)

!Faculty of Science and Technology, University of Canberra, Bruce, ACT 2617, Australia

2School of Electrical and Information Engineering, The University of Sydney, Camperdown, NSW 2006, Australia

Corresponding author: Asmaa A. Elsaeidy (asmaa.elsaeidy @canberra.edu.au)

ABSTRACT Today’s smart city infrastructure is predominantly dependant on Internet of Things (IoT)
technologies. IoT technology essentially facilitates a platform for service automation through connections
of heterogeneous objects via the Internet backbone. However, the security issues associated with IoT
networks make smart city infrastructure vulnerable to cyber-attacks. For example, Distributed Denial of
Service (DDoS) attack violates the authorization conditions in smart city infrastructure; whereas replay
attack violates the authentication conditions in smart city infrastructure. Both attacks lead to physical
disruption to smart city infrastructure, which may even lead to financial loss and/or loss of human lives.
In this paper, a hybrid deep learning model is developed for detecting replay and DDoS attacks in a real life
smart city platform. The performance of the proposed hybrid model is evaluated using real life smart city
datasets (environmental, smart river and smart soil), where DDoS and replay attacks were simulated. The
proposed model reported high accuracy rates: 98.37% for the environmental dataset, 98.13% for the smart
river dataset, and 99.51% for the smart soil dataset. The results demonstrated an improved performance of
the proposed model over other machine learning and deep learning models from the literature.

INDEX TERMS Intrusion detection, distributed denial of service (DDoS) attacks, replay attack, smart city,

deep learning, Internet of Things (IoT).

I. INTRODUCTION
The Internet of Things (IoT) is based on the concept of
connecting any device to the Internet [1]. This sort of tech-
nology has led to the creation of smart cities, in which basic
infrastructure components, such as electricity health, traffic
and water resources are monitored and controlled through the
Internet [2], [3]. The integrity, availability and consistency
of the smart city data have the potential to affect the lives
of the citizens [4]. For example, the data collected from
sensors about the water level in a river during heavy rains
could help save lives from river flooding. The collection of
such large quantities of data requires many devices to be
connected to the Internet. However, this opens the back-
door for illegitimate users to threaten lives and damage the
infrastructure.

Smart city security is important for the authentication and
authorization conditions, which guarantee data consistency,
availability and integrity. Cyber security’s main aim is to
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secure cyber-space from cyber-attacks that could lead to
network damage or service unavailability [5], [6]. Cyber-
attacks threaten the ability of smart cities to supply consistent,
trusted and timely services to their citizens. The huge amount
of exchanged data in IoT applications increases the possibility
of cyber-attacks. This threatens citizens’ privacy, information
integrity, confidentiality and service availability. The major
problem affecting smart city security appears to be the lack
of common security standards across all the organizations
involved [7]. This allows the illegitimate user to interfere with
the collected data in the server by cutting off or changing the
service from the end user [8].

Authentication condition is represented in the consistency
and integrity of the uploaded data on the server. Replay attack
aims to change this data, which will violate the authentication
conditions [9], [10]. This results in the wrong information
being sent and leads to confusion and major damage. It hap-
pened in Texas, in 2010, when workers received false infor-
mation about where to dig a hole for gas and water pipes.
As a result, there was a 36 inch gas pipeline explosion and
fire, where many people were killed. Floods, fires, deaths and
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more can all happen as a result of malicious interference with
the data being fed into the smart city applications [11], [12].

Authorization or access control is defined as the mecha-
nism used to differentiate legitimate users from illegitimate
users [13]. There are some attacks that target authorization
conditions such as Distributed Denial of Service (DDoS)
attack [14]. DDoS is the most popular attack to threaten the
authorization of smart city applications [15]. DDoS attacks
obscure services from end users through set of distributed
agents created by attackers. DDoS attack takes many forms,
for example Smurf, HTTP flood, UDP flood, SIDDOS and
SYN flood [16]. The attacker attempts to send large packets of
data from different sources, called zombies, to offload servers
rather than to legitimate users, resulting in a termination of the
service [17].

Recently, machine learning, specifically deep learning, has
been shown to be very effective at detecting cyber-attacks in
smart cities [18], [19]. Although simulating cyber-attacks on
a real smart city dataset to use it as a benchmark is not a
trivial task, our proposed model is developed to detect intru-
sions using a real dataset with complicated distributions. The
proposed model is a hybrid deep learning model, which com-
bines a deep restricted Boltzmann machine (RBM) model
with a deep convolutional neural network (CNN) model.
The RBM part of the proposed model plays an important
part in learning high level features from the dataset to pro-
vide much better representation of the dataset. The RBM
model has the ability to overcome the small number of input
features and to model the underlying dataset distribution
without the need for the associated classes. The deep CNN
part of the proposed model is then trained in supervised
mode derived by the associated classes. CNN is not only
performing the classification task, but it is also learning the
local invariance filters that detect local features from input
signals.

The dataset used to evaluate the proposed model is gen-
erated by simulating DDoS and replay attacks over normal
generated data from a real smart city platform in the city
of Queanbeyan, Australia. This platform deployed differ-
ent monitoring nodes for soil management, river monitoring
and environmental traffic monitoring. For each available
service node normal dataset, replay and DDoS attacks are
simulated using defined models. The performance of the
proposed hybrid model is compared with other machine
and deep learning models from the literature. The reported
results showed the ability of the proposed hybrid model
to provide high accuracy rates and outperform the other
models.

The main contributions of the work introduced in this paper
can be summarized as below:

« The application of deep learning models for detecting

replay and DDoS attacks in smart city.

o The experimental evaluation is conducted on a real life

smart city dataset.

« Proposed a deep hyper model to improve attack detec-

tion accuracy.
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« Handle the low number of features introduced in the
datasets.
« Consider the time factor in the detection process.

The remainder of this paper is organized as follows:
Section II discusses the related work. Section III describes
the proposed hybrid model structure and the training proce-
dure. Section V describes the attack models used to generate
synthetic DDoS and replay attack datasets, and explains the
experimental setups and deep models used for the compar-
ative evaluation. Section VI explains the results and discus-
sion. Section VII concludes the paper and highlights future
directions.

Il. RELATED WORK

Intrusion detection systems (IDSs) have a big attraction in
securing smart cities, especially those using machine learning
techniques. There are some surveys reporting the importance
of applying machine learning approaches in building IDS
models [20]-[22]. Deep learning approaches have proved
their distinction over other traditional machine learning tech-
niques at detecting cyber-attacks with high accuracy [23].

An application of deep learning in intrusion detection is the
work of [24] and [25]. These works proposed a distributed
deep learning schema for cyber-attack detection in fog-to-
things computing. The deep learning parameters are initial-
ized on the main node and sent to the worker nodes. Each
worker node performs the training data and hyper-parameters
optimization locally and aggregates its parameters to the
master node. The performance of this schema is evalu-
ated using KDD-Cup’99 intrusion dataset. This approach is
similar to our proposed model regarding feature learning.
However, it is based on a distributed learning approach,
while ours is using a centralized learning approach with one
model instance. Another relevant work is the application of
self-taught deep learning for attack detection [26]. UNSW-
NB15 and NSL-KDD datasets are used for evaluating the pro-
posed model. The results showed that the model is working
more efficiently for the NSL-KDD dataset.

A hybrid schema that combines deep belief network and
support vector machine has been applied for intrusion detec-
tion in [27]. The deep belief network is built by training two
RBM models acting as a preprocessing phase for the support
vector machine classifier. The NSL-KDD dataset is used to
evaluate the performance of the proposed hybrid schema.
Another research is done in [28], by proposing an unsuper-
vised learning approach and a deep learning classification
model based on stacked non-symmetric autoencoders. The
proposed approach is evaluated by using the NSL-KDD and
KDD-Cup’99 datasets. Another work that utilized a deep
learning approach is applied in [17], by combining deep RBM
model with feed forward neural network for attack detection.
The deep RBM model is trained in unsupervised way to learn
high level features as the new representation of the original
dataset features. This new representation is then used by the
classifier model for attack detection. The performance of the
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FIGURE 1. The hybrid deep learning proposed methodology for replay and DDoS attacks detection.

proposed model is evaluated using a dataset generated from
a smart water distribution system.

Deep convolutional neural network model for DDoS attack
detection is proposed in [29]. The dataset used for evaluating
the performance of the proposed model is generated from 4G
LTE-A architecture. These previous works are similar to our
approach in learning high level features and use these features
to train the classifier part. However, our model considers
the time dependencies in the dataset. Another approach for
intrusion detection in IoT architecture is proposed in [30].
A deep belief network is applied for intrusion detection,
where a genetic algorithm is utilized to find an optimal net-
work structure. The proposed model performance is evaluated
using NSL-KDD dataset. In our proposed model, we used a
grid method approach to find the optimal hyper-parameters.
For the network structure, an incremental approach is used
by keep adding more layers until no further improvement is
detected in the model overall performance.

Time dependencies introduced in smart city datasets
regarding the readings of smart sensors over time are con-
sidered in [12], where an intrusion detection model is applied
for replay attack detection. The performance of the proposed
model is evaluated on replay attack datasets that were sim-
ulated based on real smart city infrastructure. Another work
that considers the time dependencies for intrusion detection is
proposed in [31]. In this work a deep Long Short Term Mem-
ory (LSTM) network is proposed for DDoS attack detection.
The deep LSTM network is trained to learn high level features
in time domain. The deep LSTM model is trained using the
backpropagation algorithm. On top of learned features, Gaus-
sian Naive Bayes model is applied for attack detection step.
The performance of the proposed model is evaluated using
artificially generated normal and attack dataset. A hybrid
schema for intrusion detection in smart metal packaging
plant is proposed in [32]. This schema consists of three
components: convolutional LSTM encoding layers, bidirec-
tional stacked LSTM decoding layers, and time-distributed
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TABLE 1. Common notations used throughout this study.

Symbol || Definition
GAP Global Average Pooling
N RBM model input layer visible units number
M Number of epochs
K Number of batches
\% Visible layer
H Hidden layer
N (i, 02) Normal distribution
1 Learning rate
o Sigmoid activation function
<>data Data samples expectations
<>recon Reconstruction error expectations
w Weights matrix
(]) Conditional probability
Ace Accuracy measure

supervised learning fully connected layer. These works are
similar to our proposed model in considering the time depen-
dencies in the dataset. However, our model adds an additional
step before training the CNN model by using the RBM model
to learn high level features. This step is beneficial in handling
small number of input features.

Ill. THE PROPOSED HYBRID DEEP LEARNING NETWORK

In this section, the proposed hybrid deep learning model for
replay and DDoS attacks detection is described. A flowchart
of the proposed detection model in the context of smart city
is shown in Fig. 2. The proposed model consists of an input
layer, deep RBM model with two hidden layers, deep CNN
with seven hidden layers, a global average pooling (GAP)
layer, and a softmax output layer, as shown in Fig. 1. In the
next subsections, each step of the proposed hybrid model is
explained in detail.

VOLUME 9, 2021
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FIGURE 2. Flow chart of the proposed replay and DDoS attack detection
deep model.

A. NETWORK ARCHITECTURE

1) INPUT LAYER

In smart cities, data is collected using smart meters and sen-
sors, which provide regular readings over time. The datasets
that will be used to evaluate the proposed model contain time
stamped data instances. Therefore, the type of input features
is multivariate time series. The input layer has N visible units
equal to the number of features. The smart sensor readings
are represented in real values, making Gaussian visible units
in the input layer of RBM model a suitable selection for
modelling the dataset. These Gaussian visible units in the
input layer are connected to the hidden units in the deep
restricted Boltzmann network.

2) DEEP RESTRICTED BOLTZMANN NETWORK

Each smart dataset (Section IV) has a small number of fea-
tures, which could affect the classifier accuracy rate [33].
Deep RBM model is used to learn high level features from
raw features in an unsupervised way. The new learned fea-
tures are used as the new representation to the original
datasets. In addition to the advantage of increasing the num-
ber of features, the learned features contain rich and valuable
patterns. As shown in Fig. 1, the deep RBM consists of two
hidden layers. The selection of two hidden layers is based
on an incremental approach. This is accomplished by keep
adding more layers until no further improvement is detected.
Each RBM model in the deep RBM part of the proposed
model consists of one visible layer and one hidden layer fully
connected to each other. The first RBM model uses Gaussian
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visible units and stochastic binary units [34]. The second
RBM model uses stochastic binary units in both visible and
hidden layers. Each RBM model in the deep RBM model is
trained in isolation using contrastive divergence (CD) algo-
rithm [35]. Finally, all learned models are stacked on top of
each other to form the deep RBM model [36].

3) DEEP CONVOLUTIONAL NEURAL NETWORK

The learned features by the deep RBM model are used as the
new representation of the datasets. Given this new represen-
tation, a deep CNN is trained to model the time series data
and to classify data instances to distinguish between normal
behaviour, replay attack and DDoS attack. Time series clas-
sification is a complex task, which could be hard to model by
typical machine learning approaches. CNN model is selected
due to its ability to model both two-dimensional (images)
data and one-dimensional (time-series) data. The deep CNN
model consists of seven hidden layers. The selection of seven
hidden layers is based on an incremental approach. This is
accomplished by keep adding more layers until no further
improvement is detected. Each hidden layer applies three
subsequent operations: convolution operation that applies
number of one-dimensional filters to the input signals to
produce one-dimensional feature maps [37]; parametric rec-
tified linear unit activation function [38]; and max pooling
operation that introduces invariance to small disturbances in
the activation result [39].

4) OUTPUT LAYER

After applying the convolution, activation and max pooling
operations, the GAP layer is applied [40]. This layer serves
two main purposes: first, it flattens the feature maps into
a final features layer that is fully connected to the classifi-
cation layer. Second, it acts as a structural regularizer that
contributes to the overall training process by reducing the
overfitting effect. The final part is the classification layer,
where the attack detection is happening. This layer is a soft-
max layer with three units. One for the normal class and the
other two for replay and DDoS attack classes. Softmax layer
is preferred for multi-class tasks. It assigns a probability for
each class, where the total probability over all classes equals
one [41].

B. NETWORK TRAINING

Algorithm 1 describes the training procedure for the proposed
hybrid model. The inputs are the dataset with its associated
classes, an initial RBM model with one hidden layer, an initial
CNN model with one hidden layer, maximum number of
epochs and number of batches to divide the dataset. Initially,
we fixed the CNN model with one hidden layer in order
to evaluate the RBM model until we determined the best
number of hidden layers to use. The initial RBM model
is trained for a maximum number of epochs and batches,
then used to create a new data representation. This new data
representation is used to train the initial CNN model with one
hidden layer to calculate the classification accuracy. If the

154867



IEEE Access

A. A. Elsaeidy et al.: Hybrid Deep Learning Approach for Replay and DDoS Attack Detection in Smart City

Algorithm 1 The Hybrid Deep Learning Proposed Method-

ology Training Procedure

Input: RBM(V1, H;), CNN(H)), training data D, training
targets 7', number of input features N, number of epochs
M , number of batches K

Output: trained RBM and CNN models

I: init RBM weights Wray < N(u, 02)
2: init RBM model visible units bias brgy < 0
3: init RBM hidden units bias cgrgyy < 0
4: init overall model accuracy Acc < 0
5: repeat
6: fori=1toM do
7: forj=1to K do
8: load batch B; from D
o: pth=1v)=o(b+vW)
10: p|h) = N(hW + ¢, 6?)
11: SW = e(< Vvh >g410 — < VI > recon)
12: W «— W4 5W
13: end for
14:  end for
15:  create new data representation D <— Wgpy D
16:  train CNN(Hp) using D and T
17:  evaluate CNN (H1) accuracy Acccny
18:  Acc < Acceny
19:  add hidden layer to RBM model RBM (V1, Hy) < H
20: until Accoyy < Acc
21: use trained RBM model RBM (Vy, Hy, ... Hy) to create

new data representation Dy,

22: repeat

23:  add hidden layer to CNN model CNN(H1) <~ H

24:  evaluate CNN accuracy Acccyn

25:  Acc < Accenny

26: until Accoyy < Ace

27: return  hybrid-model < RBM(V{,H...,Hy) +
CNN(H1, ...H)), Acc

classification accuracy is getting better, an additional hidden
layer is added to the RBM model. Given this new updated
RBM model, the training process for RBM is repeated until
no further enhancement is introduced to the classification
accuracy. The next part of the training procedure is to build
the CNN model toward enhancing the overall classification
accuracy. The CNN model is trained using the new data
representation from the latest RBM deep model. The same
incremental approach is used to add more hidden layers to the
CNN model, while the classification accuracy is enhancing.
When no further improvement in classification accuracy, the
training is stopped and the trained hybrid RBM+CNN model
and its overall accuracy are recorded.

IV. SMART CITY PLATFORM DATASET

In this section, the generation of the replay and DDoS attacks
datasets is described. The attack datasets are public [42],
which generated based on real smart city platform normal
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data for the Queanbeyan city [12]. To generate replay and
DDoS attacks based on the normal data, we mimicked the
behaviour of replay and DDoS attacks. Replay attack violates
data authentication by generating misleading data based on
the normal behaviour. DDoS attack violates authorization by
sending large streams of data to overload the end service
provider resulting in unavailability of these services.

The smart city platform that provides the normal datasets
contains three nodes, soil management, environmental mon-
itoring and river monitoring. A summary of these datasets
statistics is provided in Table 2. The smart soil manage-
ment platform is being designed and installed to provide
information to guide the management of the city’s irrigation
system. It has five features: soil temperature, soil moisture
at 30 cm depth, soil moisture at 60cm depth, battery levels
and the number of packets that have reached the gateway
successfully. The environmental monitoring node is set up to
assess the impact of traffic on the city environment. It has
five features: noise amplitude, air temperature, humidity,
air pressure, and CO; levels. The river monitoring node
continuously monitors number of water quality parameters
including electrical conductivity, water acidity (pH), water
temperature, and turbidity. It has five features: water acid-
ity, dissolved O> concentration, conductivity, turbidity, and
battery level. For each normal dataset generated from each
service node, replay and DDoS attack are generated using
Algorithms 2 and 3, respectively.

TABLE 2. Smart city platform datasets summary. Date-time stamps
format is (dd/mm/yyyy - hh:mm) with readings per minute. Training and
testing sizes are based on 80%-20% split.

‘ ‘ Environmental ‘ ‘ River ‘ ‘ Soil
Start date/time 03/09/2019 - 11:26 27/02/2020 - 00:00 09/07/2018 - 00:01
End date/time 04/03/2020 - 12:23 04/03/2020 - 12:29 01/05/2019 - 00:04
Number of features 5 5 5

Total records 266211 10961 126229
Normal records 94676 5358 49851
Replay records 83535 2592 37378
DDoS records 88000 3011 39000
Training size 180969 8769 100983

Testing size 85242 2192 25246

The replay attack model (Algorithm 2) assumes that the
attacker already knows the normal dataset since this type of
attack violates the authentication security component. The
model also assumes that the attacker has the access to all
dataset features. Given the normal dataset, the start and end
dates are identified, and the probability distributions are
estimated for each feature of the normal data. The replay
attacker goes through all timestamps from start to end to add
misleading data. For each timestamp, the attacker will add an
input instance for all features if this timestamp does not exist
in the normal dataset. This instance field is generated from
the estimated probability distribution for each feature.

The DDoS attack model (Algorithm 3) assumes the
attacker does not have access to the normal data. The attacker
tries to violate the authorization security components by
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Algorithm 2 Replay Attack Synthetic Data Generation Pro-

cedure

Input: Normal dataset D, number of features 7 start datetime
T1, end datetime T,

Output: Dataset Dyy,y; with replay attacks added

1: Estimate probability distributions for each feature

P(X1,X2,...,X,) from normal dataset D Generate date-
time list L from T to Ty,

2: forT € L do

3:  if T € D then

4: Continue

5:  else

6: Generate features vector V estimated from P

7: Add V to D with time stamp 7 and class label
“Replay”

8:  endif

9: end for

10: return Dgyy,

Algorithm 3 DDoS Attack Synthetic Data Generation Pro-
cedure
Input: Normal dataset D, number of features n, size of attack
fields k for each datetime stamp
Output: Dataset Dy, with DDoS attacks added
1: Generate random datetime list L with size m
2: for T € L do
3:  Generate random feature vector V
4
5

fori=1tok do
Add V to D with time stamp 7 and class label

“DDOS”
6: end for
7. end for

overflowing the end service with a lot of sent readings. The
attacker selects a range of random timestamps to send for each
number of consecutive sensor readings. The generated values
for feature vectors are based on random values since the
attacker does not have a knowledge of the normal dataset [43].

The soil dataset features are drawn from normal probabil-
ity distribution. The environmental dataset has three of its
features drawn from generalized extreme value distribution,
whereas the rest are drawn from normal distribution. The river
dataset has all its features drawn from generalized extreme
value and Weibull minimum extreme value probability dis-
tributions. The generated synthetic datasets are normalized
to have zero mean and unit variance. Each dataset is divided
into training and testing parts using 80%-20% split percent-
ages. Furthermore, the training part is divided into training
and validation parts with 20% for the validation part. The
validation part is used to estimate model’s hyper-parameters.
Once the best hyper-parameters are found for each model,
the model is trained using the whole training part. The trained
model is then evaluated by calculating the classification accu-
racy using the testing part. This evaluation process using the

VOLUME 9, 2021

training-testing split is applied with 30 runs using different
random seeds. The reported results for each model are the
average over these 30 runs.

V. EXPERIMENTAL EVALUATION

For a comparative evaluation, different machine and deep
learning models from the literature are selected to compare
their performance to the hybrid proposed model. All models
explained in the following subsections use softmax activa-
tion function in their output layer. For all models used for
the comparative study alongside with the proposed hybrid
model, Adam algorithm [44] is used to optimize weights of
the models using cross entropy loss function. In addition to
the selected models from the literature, the deep CNN part
of the proposed hybrid model is used without applying the
RBM part. The reason behind this is to verify our hypoth-
esis that the RBM model contributes to enhance the overall
accuracy of the hybrid model. We called the deep CNN part
of the proposed model, deep convolutional neural network
(DCNN). A summary of the models is shown in Table 3.

The multi-layer perceptron (MLP) is a feed forward neural
network with an input layer, one hidden layer, and an output
layer [45]. Rectified linear unit activation function is used
in the hidden layer units. The hidden and output layers are
proceeded by a dropout operation [46]. Deep multi-layer
perceptron (DMLP) is a fully connected feed forward model
with four layers in total, including the input layer [47]. The
three hidden layers applies rectified linear activation function.
Each hidden layer and the output layer are proceeded by a
dropout operation.

Fully connected convolutional neural network (FCCNN)
model is a typical CNN without any local pooling layers.
However, it contains a global average pooling layer at the end.
This global average pooling layer is then fully connected to
the output layer [47]. This model contains three convolutional
layers. Each layer consists of a typical convolution operation,
followed by a batch normalization operation [48] and then
a rectified linear unit activation function. The results of the
third convolution layer are passed to the average pooling
layer. Finally, this average pooling layer is connected to the
output layer.

Time convolutional neural network (TCNN) is a typi-
cal CNN model with two convolution layers [49]. Each
convolution layer contains a convolution operation, sigmoid
activation function operation, and a local average pooling
operation. The results of the second convolution layer are
flattened and then fully connected to the output classification
layer. Deep residual network (DRN) is a deep CNN model
with 11 layers where the first 9 layers are convolutional.
These layers are followed by a global average pooling layer.
This global average layer is then fully connected to the output
layer [47]. Each convolution layer is followed by a batch
normalization operation, where the results are passed to a
rectified linear unit activation function.

Time LeNet (TLN) model has two convolutional layers,
followed by a fully connected layer that finally connects
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TABLE 3. Architectural properties for the deep models used for the comparative study. Number of layers (#Layers) refers to the total number of hidden
layers plus any other types of layers, excluding the input and output layers that are common in all models. #Conv is the total number of convolution

layers.

H #Layers H #Conv H Normalize H Pooling H Final Feature Map H Activation H Regularizer

MLP 1 0 None None None ReLU Dropout
DMLP 3 0 None None None ReLU Dropout
FCCNN 4 3 Batch None GAP ReLU None
TCNN 3 2 None Average Flatten Sigmoid None
DRN 10 9 Batch None GAP ReLU None
TLN 3 2 None Max Flatten ReLU None
CNNA 4 3 Instance Max GAP ReLU Dropout
DCNN 8 7 None Max GAP PReLU None
ESNC 2 0 None None None ReLU Dropout
Proposed 10 7 None Max GAP PReLU None

to the classification output layer [50]. Each convolution
layer starts with a typical convolution operation followed
by a rectified linear unit activation function. Then it is
passed to a local max pooling layer. Convolutional neu-
ral network with attention (CNNA) is a deep model with
three attention layers [51]. Each attention layer applies five
operations: convolution operation, instance normalization,
rectified linear unit activation function, dropout operation
and local max pooling operation. The resulting activations
from the third attention layer are passed to a global aver-
age pooling layer. This average pooling layer is then fully
connected to the output layer. Instance normalization oper-
ation is applied to prevent overfitting by subtracting the
mean and dividing the feature by its feature set standard
deviation [52].

Echo state networks are a special type of recurrent neural
networks (RNNs) [53]. Typical ESN architecture contains an
input layer, a hidden layer called reservoir, and an output
layer. The main advantage of ESN is its straightforward
training method where all network weights, except for output
weights, are fixed. Echo state network classifier (ESNC) is
a typical ESN model, which usage has been extended in
classification tasks instead of just time series prediction [54].
This model is used to map the input features into a higher
dimension. Then the results of the dynamical reservoir are
passed into a fully connected layer. Finally, the results from
the fully connected layer are passed to an output classification
layer. The fully connected layer applies a rectified linear unit
as the activation function. Two drop operations are applied,
one with the fully connected layer and the other operation
with the output layer.

A. EXPERIMENTAL SETUP

All models were implemented in Python 3.7 using
Keras and Tensorflow frameworks [55]. All experiments
were conducted on Intel Xeon Silver 4116 processor
(2.10 GHz) machine, with 128 GB of RAM and Windows
10 (64 bit) operating system. Table 4 lists the specification
details.
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TABLE 4. Experimental setup specification details.

CPU Intel Xeon 4116 Processor
Number of cores 4
Number of threads 8
Processor frequency 2.10 GHz
Cache 16 MB L3 Cache
RAM 128 GB
Memory Type DDR4
Operating system Windows 10 (64-bit)
Python version 3.7

Machine learning libraries Keras 2.3.1, Tensorflow 2.2.0

VI. RESULTS

This section presents the experimental results obtained by
applying the proposed hybrid methodology and other models
for detecting DDoS and replay attacks using the synthesized
datasets. The accuracy measure is used for evaluating the
models’ performance:

R TP + TN 0
ccuracy =
Y= TP+ FN+FP+ TN

where TP, TN, FP and FN are the true positives, true nega-
tives, false positives, and false negatives, respectively.

All reported results were based on the average accuracy
over 30 experimental runs. First, we visualized the average
accuracy measure for the proposed model and all other mod-
els over the three datasets using bar chart, as shown in Fig. 3.
Secondly, the mean and standard deviation for measured
testing accuracy of all models were reported for each dataset,
as shown in Tables 5, 6, and 7. In addition to the reported
average accuracy, the accuracy was measured for each class.
Finally, we have drawn the corresponding critical difference
diagrams for each dataset, as shown in Figs. 4, 5 and 6,
and critical difference diagram for all datasets, as shown
in Fig. 7. Critical difference diagrams are based on the
Wilcoxon-Holm method to detect pairwise significance [49].
First the Friedman test was performed to reject the null
hypothesis, which states that there is no significant difference
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FIGURE 3. Average accuracy measures for the proposed model compared with state-of-the-art models over the smart city platform
datasets.

TABLE 5. Reported overall and classes testing and training accuracies for learned models compared with the proposed hybrid model for smart
environmental dataset. The mean and standard deviation are calculated for the accuracy measure (mean=std). Bold indicates the best reported model
performance for each dataset.

[ Proposea [ DCNN [ mMLP ][ DMLP [ ESNC [ FCCNN [  cNNA [ DRN ][ TCNN TLN
Normal Class (Testing) || 0.9836::0.0034 [ 0.7701:£0.0199 || 0.7087£0.0231 [[ 0.662240.0011 |[ 0.9078+0.0199 [ 0.8027:£0.0077 || 0.899120.0397 [[ 0.812940.0307 [[ 0.82150.0001 [ 0.9277:£0.0128
Normal Class (Training) || 0.997320.0112 || 0.861240.0023 || 0.7602:£0.0061 || 0.7212:£0.0021 || 0.9623+0.0021 || 0.86260.0061 || 0922300312 || 0.8528£0.0311 || 0.8555£0.0023 || 0.9592400111
Replay Class (Testing) || 0.9811:0.0019 || 0.6239+£0.0184 || 0.641100021 || 0.6001£0.0023 || 0.6174:£0.0745 || 0.5781£0.0126 || 0.5859:£0.0403 || 0.5636:£0.0194 || 0.8198£0.0021 || 0.6473+0.0348
Replay Class (Training) || 09943200021 || 0703900134 || 0.7411:£0.0121 || 0.7301£0.0011 || 07023200611 || 0.65710.0033 || 0.667820.0014 || 0.6178:0.0114 || 0.871240.0001 || 0.78442:0.0156

DDoS Class (Testing) 0.98661-0.0129 || 0.998740.0008 || 0.711240.0011 0.662240.0011 0.9991£0.0005 || 0.9986+0.0007 0.99834-0.0004 0.999140.0004 || 0.815340.0043 || 0.997540.0011
DDoS Class (Training) 0.991240.0021 || 0.999240.0018 || 0.791240.0211 0.692140.0021 0.9999+0.0013 || 0.9999+0.0013 0.9991£0.0011 0.999940.0001 0.881240.0002 || 0.998940.0023
Overall (Testing) 0.983740.0012 || 0.797640.0107 || 0.6869+0.0312 || 0.6415+0.0091 0.8415£0.0304 || 0.7931£0.0049 0.8277+0.0255 0.791940.0144 || 0.818640.0056 || 0.857540.0139
Overall (Training) 0.99424-0.0011 || 0.854740.0121 0.764140.0112 || 0.714120.0021 0.8881+0.0003 || 0.8398+0.0035 || 0.83617:£0.0033 || 0.8235+0.0034 || 0.8693%0.0011 0.9141£0.0011

TABLE 6. Reported overall and classes testing and training accuracies for learned models compared with the proposed hybrid model for smart river
dataset. The mean and standard deviation are calculated for the accuracy measure (mean=std). Bold indicates the best reported model performance for
each dataset.

[[ Proposed [[  DCNN ]| MLP [ pmp [ ESNC [ FCCNN ][ oNNA [ DRN ][ TcNN ][ TLN
Normal Class (Testing) || 0.9808=0.0134 [[ 0573800071 || 0.5872£0.0021 || 0528300013 |[ 05813200113 || 05755£0.0071 || 0.5676:£0.0083 || 0.5775£0.0076 || 0541300014 || 0.5828+0.0051
Normal Class (Training) || 0.9899::0.0012 || 0.6344:0.0011 || 06512200033 || 0.6012::0.0012 || 0.6599:0.0124 || 0.6192:0.0011 || 06167-0.0016 || 0.6311:0.0001 || 0.60110.0012 || 0.6198:0.0001

Replay Class (Testing) 0.9721£0.0306 || 0.2195+0.0106 0.475240.0081 0.4488+0.0002 || 0.2166+0.0222 || 0.224940.0118 || 0.2286+0.01811 0.222240.0154 || 0.4022+0.0013 || 0.128740.0245
Replay Class (Training) 0.9878+0.0319 || 0.2981£0.0006 || 0.581140.00231 0.5002:£0.0011 0.251140.0154 || 0.2812£0.0012 || 0.2612£0.00712 || 0.2699£0.0103 || 0.4398+0.0003 || 0.169940.0112
DDoS Class (Testing) 0.9812+0.0087 || 0.5234+0.0127 0.5922+40.0033 0.4895+0.0018 || 0.5822+0.0296 || 0.537240.0222 0.5291£0.0259 0.5518+0.0169 || 0.5313£0.0014 || 0.644140.0223
DDoS Class (Training) 0.9901+0.0012 || 0.6011+£0.0113 0.6389+0.0143 0.541240.0132 || 0.638740.0211 0.599940.0001 0.571240.0209 0.61560.0006 || 0.5602+0.0011 0.6701:£0.0201
Overall (Testing) 0.9813+0.0117 || 0.4389:0.0071 0.551540.0001 0.4897:£0.0043 || 0.4601£0.0146 || 0.445940.0094 0.4418£0.0121 0.4505£0.0072 || 0.4913£0.0064 || 0.451940.0129
Overall (Training) 0.9892:4+0.0112 || 0.7668+0.0061 0.623940.0011 0.5475+0.0021 0.516540.0112 || 0.5001=£0.0019 0.4831£0.0021 0.5055+0.0011 0.5337:+£0.0004 || 0.4866+0.0019

TABLE 7. Reported overall and classes testing and training accuracies for learned models compared with the proposed hybrid model for smart soil
dataset. The mean and standard deviation are calculated for the accuracy measure (meanzstd). Bold indicates the best reported model performance for
each dataset.

[ Proposed [ DCNN [ mep ][ pmp ][ ESNC || FcenN [ oA [ DRN [ TeNN [ TLN

Normal Class (Testing) 0.999140.0007 || 0.9952+0.0051 0.9958+0.0008 || 0.7353+0.0111 0.962540.0011 0.99584:0.0006 || 0.9602:0.0006 || 0.996240.0008 || 0.9847+0.0029 || 0.994940.0019
Normal Class (Training) || 0.9999+0.0011 || 0.9998+0.0011 0.9966+0.0011 0.75984:0.0008 || 0.9799+0.0023 || 0.997340.0001 0.981140.0011 0.998140.0017 || 0.9899:£0.0008 || 0.998440.0023
Replay Class (Testing) 0.995240.0011 0.993440.0021 0.982640.0012 || 0.682240.0102 || 0.9588+0.0004 || 0.9867+0.0015 0.883340.0116 || 0.9855+0.0032 || 0.974540.0021 0.985340.0031
Replay Class (Training) 0.99981-0.0001 0.99564-0.0023 0.989940.0045 || 0.715620.0187 || 0.973440.0013 || 0.9899+0.0035 0.90024:0.0003 || 0.9901+0.0021 0.98961-0.0098 || 0.9899-+0.0092
DDoS Class (Testing) 0.99324-0.0032 || 0.9518£0.0216 || 0.847540.0202 || 0.7016£0.0005 || 0.96224-0.0008 || 0.9221£0.0244 || 0.958740.0019 || 0.8755+0.0927 || 0.885140.0147 || 0.8586+0.0436
DDosS Class (Training) 0.99951-0.0031 0.97024:0.0102 || 0.8723+0.0212 || 0.73024:0.0019 || 0.9823:£0.0011 0.952340.0134 || 0.9677:0.0003 || 0.897640.0298 || 0.9004+0.0122 || 0.887940.0451
Overall (Testing) 0.99514-0.0011 0.980140.0075 0.942140.0066 || 0.7063£0.0702 || 0.961440.0048 || 0.9682£0.0082 || 0.934140.0022 || 0.9524+0.0316 || 0.9481%0.0047 || 0.9463£0.0155
Overall (Training) 0.999740.0023 || 0.9885:0.0011 0.9529+0.0204 || 0.735240.0007 || 0.978540.0011 0.97984-0.0025 0.949640.0032 || 0.9619+0.0231 0.95994-0.0051 0.958740.0166

between the compared pairwise models. We then proceeded the model ranking over the horizontal scale line. A thick hor-
with a post-hoc analysis based on the Wilcoxon-Holm izontal line groups a set of models that are not significantly
method. Each model was marked with a number that indicates different.

VOLUME 9, 2021 154871



IEEE Access

A. A. Elsaeidy et al.: Hybrid Deep Learning Approach for Replay and DDoS Attack Detection in Smart City

Accuracy
10 9 8 7 6 5 4 3 2 1
1 s 1 v 1 1 I I I T
DMLP“JJOOO ”’OL’ Proposed
MLP 8.9000 2.9333 TLN
DRN 7.2000 3.2333 ESNC
FCCNN 6.4667 4.7333 NNA
DCNN 5.5667 4.9667 TCNN

FIGURE 4. Critical difference diagram showing pairwise statistical differences between the proposed
methodology and the other models using the environmental dataset.
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FIGURE 5. Critical difference diagram showing pairwise statistical differences between the proposed methodology and

the other models using the river dataset.
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FIGURE 6. Critical difference diagram showing pairwise statistical differences between the proposed methodology and

the other models using the soil dataset.
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FIGURE 7. Critical difference diagram showing pairwise statistical differences between the datasets.

The proposed model reported the best accuracy and out-
performed all other models in all datasets. As we mentioned
earlier, our hypothesis of adding the RBM part to the pro-
posed model was due to its ability to model the proba-
bility distribution of the data in unsupervised way without
relying on the associated classes. This provides the advan-
tage of learning the underlying data model independently.
In addition to the ability to model the dataset into a new
representation with more rich features. To verify our hypoth-
esis, we added the CNN part of the proposed model as a
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separate model (DCNN) to compare its performance to the
proposed model and other learning models. The reported
performance of the proposed model compared to the DCNN
showed a noticeable improvement. As shown in Fig. 3,
the RBM part enhanced the accuracy of the model. This
improvement is clearly shown in the river dataset (Table 6).
The river dataset is challenging to model due to the small
number of features and instances. However, the proposed
model was able to model this dataset with relatively high
accuracy.
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The DMLP model reported the worst performance in the
environmental and soil dataset, while the DCNN model
reported its poorest performance in the river dataset. The
environmental and soil datasets have a large number of
instances compared to the river dataset. Deep learning mod-
els, specifically CNN, performed better with more data. This
may explain why the DCNN model reported the poorest
performance with the river dataset. In addition, all other
CNN-based models reported poor performances when com-
pared to the MLP and DMLP models (Fig. 5). In contrast, the
MLP and DMLP models reported poor performances in the
environmental and soil datasets, while the CNN-based mod-
els performed better (Figs. 4 and 6). Again, this could be due
to the large number of instances available in these datasets.
The ESNC model performance is in the top 5 best models
for all datasets. This shows a stable and robust performance
compared to other models. Its performance in each dataset
is fluctuating to be either in the top 5 best models or top
5 worst models. ESNC model has an advantage over all other
models in its ability to model the time factor efficiently since
its originally an RNN model.

In the environmental dataset, the proposed model shows
a significant difference to all other models (Fig. 4). Despite
reporting the poorest performance, MLP and DMLP showed
a significant difference when compared to the other models.
For all CNN-based approaches, the critical difference dia-
gram shows that there are no significant differences between
any of them. For the river dataset, the proposed model
shows a significant difference compared to all other models
(Fig. 5. The diagram shows that there is no significant differ-
ence between FCCNN, DRN and TLN models and between
DCNN and CNNA models. For the soil dataset, the proposed
model shows a significant difference compared to all other
models (Fig. 6). The critical difference diagram shows that
there is no significant difference between all CNN-based
models and MLP model. In summary, the variations in the
CNN-based models did not enhanced the performance of
attack detection.

At the level of the datasets, it is clear that the river dataset
is the most difficult to model due to its lower accuracies
(Fig. 7). As mentioned before, this is due to the small number
of instances, features and complicated probability distribu-
tions. The soil dataset reported the best accuracies compared
to other datasets. The soil dataset has a large number of
instances with input features drawn from normal probability
distributions. The critical difference diagram for the datasets
(Fig. 7) shows a significant difference between all datasets,
specifically the river dataset.

One of the recent proposed models for attack detection in
IoT literature that is similar to our proposed model is the
work that is introduced in [56]. This work proposed a deep
autoencoder model, with new regularizer term added to the
loss function, that is used to learn latent representation of
the dataset. The conducted experimental evaluation showed
that the latent representation helped the classifiers perform
much better than applying them directly to original features.
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Another similar work to our proposed model that utilizes the
deep autoencoders for attack detection is proposed in [57].
Two autoencoders models are trained, where the first model
is trained on the source datasets using supervised learning
mode; while the second model is trained on the target dataset
using the unsupervised learning mode. The latent represen-
tation from the second autoencoder model is used for attack
detection. However, in our proposed work we considered the
time dependencies in the dataset. In addition, the synthesized
attack dataset used to evaluate our proposed model is based
on real-life smart city infrastructure.

The proposed model is built to detect replay and DDoS
attacks by training the model in a variety of normal and attack
instances. Despite it is trained to detect replay and DDoS
attacks only, it has the capacity to detect more and different
types of attacks. The unsupervised part of the proposed model
has the ability to learn latent features from the dataset to
enhance the performance of the attack detection classifier.
In addition, the classifier part of the proposed model is based
on the softmax classes representation, which proves its abil-
ity to handle classification problems with large number of
classes. This provides an indication for the ability of the
proposed model to detect more and different types of cyber
attacks. In case of an abnormal behavior is introduced to
the proposed hyper model, the model will make a decision
to be either DDoS or replay attack. However, to make sure
the proposed model could distinguish more different types of
attacks, it needs to be trained on datasets that contain records
of these attacks.

VIl. CONCLUSION
The hybrid deep learning model proposed in this paper for
replay and DDoS attacks detection contributes to the field of
securing smart city infrastructure and services. The perfor-
mance of the proposed methodology in this paper was evalu-
ated by synthetically generating replay and DDoS attack data.
Attack data was generated from real-life normal behaviour
recorded in the smart city of Queanbeyan, Australia. The
performance of the proposed methodology was compared
with machine and deep learning models from the literature.
The experimental results showed that our proposed model
outperforms all other models with high detection accuracy.
The experimental results showed the importance of the RBM
part of the proposed model. It overcomes the small num-
ber of features, and the complicated probability distributions
presented in the datasets. The reported results showed a
significant enhancement to the proposed methodology by
adding the RBM part, compared to the results obtained from
the deep CNN part of the proposed methodology applied
alone. Modelling the river dataset was more complicated than
other datasets due to the small number of data instances and
the complicated probability distributions. The environmental
dataset is also a challenging dataset, due to the complicated
probability distributions. The soil dataset performed best
overall, since all its input features are drawn from normal
distributions.
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The work introduced in this paper could be extended in dif-
ferent directions. Firstly, the proposed model could be applied
to real life smart city attack dataset, instead of synthesized
simulated attacks. Secondly, the proposed model could be
integrated into real world security platforms to contribute
to real-time attack detection. Finally, the proposed model
could be compared to recent approaches of attack detection
in IoT and smart city domains by conducting an experimental
evaluation study using the datasets used in this paper.
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