
IEEE RELIABILITY SOCIETY SECTION

Received October 7, 2021, accepted November 7, 2021, date of publication November 16, 2021,
date of current version November 29, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3128669

Machine Learning Based Bearing Fault Diagnosis
Using the Case Western Reserve University Data:
A Review
XIAO ZHANG 1, BOYANG ZHAO 2, (Graduate Student Member, IEEE),
AND YUN LIN 3, (Member, IEEE)
1Department of Computer Science and Technology, Shandong Technology and Business University, Yantai 264010, China
2School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
3College of Information and Communication Engineering, Harbin Engineering University, Harbin 150000, China

Corresponding author: Boyang Zhao (zby21@buaa.edu.cn)

ABSTRACT The most important parts of rotating machinery are the rolling bearings. Finding bearing
faults in time can avoid affecting the operation of the entire equipment. The data-driven fault diagnosis
technology of bearings has recently become a research hotspot, and the starting point of research is often
the acquisition of vibration signals. There are many public data sets for rolling bearings. Among them, the
most widely used public dataset is Case Western Reserve University bearing center (CWRU). This paper
will start from the CWRU data set, compare and analyze some basic methods of machine learning based
rolling bearing fault diagnosis, and summarize the characteristics of CWRU. First, we give a comprehensive
introduction to CWRU and summarize the results achieved. After that, the basic methods and principles of
machine learning based rolling bearing fault diagnosis were summarized. Finally, we conduct experiments
and analyze experimental results. This paper will have certain guiding significance for the future use of
CWRU for machine learning based rolling bearing fault diagnosis.

INDEX TERMS Fault diagnosis, machine learning, feature selection, classifier, CWRU.

I. INTRODUCTION
Themost important parts of rotatingmachinery are the rolling
bearings, and with the development and demand of industry,
the workload of most rotating machinery is huge. Under
high load, strong impact, high workload and complex envi-
ronment, rolling bearings often produce faults in inner race,
outer race and ball. If the fault cannot be found in time, the
equipment will often shut down, resulting in huge economic
losses and even safety accidents. Fault diagnosis and pre-
diction is the core of Prognostics and health management
(PHM). The main purpose of PHM in rotating machinery
is to reduce use and support costs, improve the safety and
integrity of rotating machinery, so as to achieve condition-
based maintenance with less maintenance investment [1].
Fault diagnosis methods can be divided into three types,
including model-based methods, statistical reliability-based
methods, and data-driven methods [2]. The premise of fault
diagnosis based on model is to know the mathematical model
of the target system. This kind of diagnosis method can

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhaojun Steven Li .

penetrate into the essential performance of the target system
and realize the implementation of fault prediction. But for
complex dynamic systems, it is difficult to establish a math-
ematical model with high reliability, and the related work
of fault diagnosis is greatly restricted. Information needed
by fault diagnosis techniques based on statistical reliability
can be found in various probability density functions (PDFs).
The bathtub curve is a good example. The purpose of fault
diagnosis can be achieved by processing the data collected by
the sensor and combining methods such as feature engineer-
ing, deep learning or machine learning [3]. Rolling bearing
fault diagnosis based on data-driven is the focus of current
research, the core issue is to obtain the data. The state of the
rolling bearing and the vibration signal are complementary.
When the rolling bearing fails, it is often accompanied by
an impulse signal [58]. Sensors are installed at different
positions of the rolling bearing to collect vibration signals.
The state of the bearing can be judged by directly observing
these signals.

Machine learning is to extract knowledge from data, use
a given sample for learning, and automatically determine
and recognize the subsequent input samples, and give the
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FIGURE 1. The flowchart of machine learning.

predicted results of the input samples. Machine learning can
finally achieve similar outputs based on similar inputs.

It can be seen from Figure 1 that the basic process of
machine learning can usually be divided into 3 parts, includ-
ing feature extraction, feature selection, and classification.
In the first step, multi-domain features are extracted from
different domains by processing the vibration signal. In the
second step, the dimensionality of the feature set is reduced
according to different criteria. Extract the best feature subset
with the best discriminability and the least quantity, so as
to avoid the disaster of dimensionality, improve the classi-
fication accuracy, and reduce the classification time. And the
last step is the classifier stage, which classifies the sample by
inputting a subset of features into the classifier [4], [5].

This paper will start from the CWRU data set, compare
and analyze some basic methods of machine learning based
rolling bearing fault diagnosis, and summarize the character-
istics of the CWRU data set. the introduction is in Section I.
Section II investigates the rolling bearing dataset and dis-
cusses the characteristics of the CWRU data set. Section III

presents a review of feature extraction. Section IV summa-
rizes feature selection. Section V summarizes the fault diag-
nosis classifier. Section VI is a brief review of deep learning,
and discusses the existing contributions of CNN and RNN
models in the field of faults. Section VII is an experiment,
which compares and analyzes the algorithms mentioned in
the previous parts from multiple dimensions, and discusses
the results. Section VIII is the conclusion.

II. REVIEW OF DATASET
The characteristics of the mainstream rolling bearing public
datasets are shown in Table 1. The datasets used to predict the
remaining useful life of rolling bearings include FEMTO-ST
bearing degradation data set [6], [7], IMS center bearing
degradation dataset [8]–[10], and XJTU-SY bearing accel-
eration degradation dataset [11]. The datasets used for fault
diagnosis include CWRU [12], [13], the MFPT dataset of the
American Society for Mechanical Failure Prevention Tech-
nology [14], and the Paderborn bearing dataset of Paderborn
University [15]. In addition, some papers also use full life
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TABLE 1. The rolling bear datasets.

FIGURE 2. The bench of CWRU.

cycle data sets for fault diagnosis. A multi-label data set is
formed by sampling data at different stages of the life cycle.
Currently, the most widely used dataset is the CWRU. The
faults of this dataset are man-made, with obvious features and
relatively easy diagnosis. It can be used as a basic data set for
algorithm testing.

The test bench of the CWRU dataset is shown in Figure 2.
The test bench is composed of a 2-horsepower electric motor,
a torque sensor, and a power dynamometer. Accelerometers
are respectively installed on the housings of the drive end and
the fan end to collect the vibration signals.

The test bench mainly records normal baseline data, drive
end fault data and fan end fault data. The sampling frequency
of drive end fault data is 12000 sps and 48000 sps, and the
sampling frequency of the normal baseline data and fan-end
fault data are both 12000 sps. Therefore, this public data
set contains four categories of data. Each type of data is

mainly composed of inner race faults, ball faults and outer
race faults with different load under different fault diam-
eters. The faults of this dataset are mainly the damage of
electric spark. It is a kind of artificially damage. The dam-
age diameter includes 0.007inches, 0.014inches, 0.021inches
and 0.028inches. Among them, the fault diameter of 0.007,
0.014, and 0.021 use SKF bearings, and the fault diameter
of 0.028 uses NTN bearings. And it only records the inner
race fault and ball fault of the drive end when the sampling
frequency is 12000 sps and the fault diameter is 0.028 inches.
The bearing loads are 0, 1 HP, 2 HP, and 3 HP respectively,
corresponding to the different speeds. Outer race faults are
divided into 6 o’clock, 3 o’clock and 12 o’clock according to
the location of the fault point.

Each type of fault data is saved in a mat file, and each file
contains the vibration data of the drive end and the fan end,
as well as the speed. DE means drive end data, FE means fan
end data, and RPM means speed.

Smith and Randall [13] proposed a CWRU-based bench-
mark based on three established rolling bearing fault diag-
nosis methods, through which new bearing fault diagnosis
algorithms can be tested. Yongbo et al. [16] benchmarked the
CWRU dataset by using various entropy and classifiers, and
provided an evaluation method for subsequent new classifica-
tionmethods. Dhiraj et al. [17] discussed deep learning based
bearing fault diagnosis and summarized the latest research
results of deep learning based on the CWRU dataset.

In addition, for bearing fault diagnosis, the main purpose
of data preprocessing is to solve the problem of data imbal-
ance and small sample problems. The ratio of fault data to
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TABLE 2. Time features.

health data is unbalanced, the data of different fault types
are unbalanced, and the data sample size of each type is
small. Jianan et al. [18] proposed an oversampling method
named SCOTE. SCOTE transforms the multi-class data bal-
ance problem into multiple two-class data imbalance prob-
lems, and combines with multi-class LS-SVM to form a
new model to solve the problem of rolling bearing fault data
imbalance. Xu et al. [19] combined the probabilistic mixture
model (PMM) and Markov Monte Carlo (MCMC) to achieve
the expansion of the data set, and used the semi-supervised
ladder network (SSLN) to solve the problem of fewer labeled
samples.

III. REVIEW OF FEATURE EXTRACTION
Features are essential for machine learning [57]. The current
mainstream approach is to extractmulti-domain features from
the vibration signal of the bearings to form a multi-domain
feature set. Form as many features as possible from multiple
dimensions such as frequency domain, time domain, and
entropy domain.

The variable in the time domain is t, and t is usually used
to observe the changes in the vibration signal in the time
domain. Commonly used time domain features are mean, root
mean square (RMS), kurtosis, peak-to-peak, variance (Var),
standard deviation (Std), shape factor, peaking factor, pulse
factor, and margin factor. The specific calculation formula is
shown in Table 2. [20], [21].

The variable in the frequency domain is frequency f.
Through the change of the domain, observe the change of
the amplitude of the vibration signal in the frequency domain
with the frequency. Compared with features in time domain,
the advantage of features frequency domain is intuitive. Com-
monly used frequency domain features are root mean square
frequency (RMSF), center frequency (CF), mean square fre-
quency (MSF), frequency variance (VF), and root frequency

TABLE 3. Frequency features.

variance (RVF). The specific calculation formula is shown in
Table 3. [22], [23].

Entropy is used to characterize the uncertainty of the
system or information. The power spectrum describes the
distribution of the power of the vibration signal in the fre-
quency domain. The singular spectrum entropy is calculated
by performing singular value decomposition on the vibration
signal, and the local features of the vibration signal can be
obtained. The singular spectrum entropy is a fault feature in
the time domain. Wavelet energy entropy is a fault feature in
the time-frequency domain. Bispectral entropy is the distor-
tion decomposition of the vibration signal in the frequency
domain to describe the fault.

In addition, Dongfang et al. [24] solved the problem of
insufficient accuracy of multi-scale entropy by improving
the scale factor of multi-scale entropy. The features formed
by this method can provide more precise feature vectors
for classifiers. Thereby improving the accuracy of diagnosis.
Keheng et al. [25] calculated the hierarchical entropy of the
vibration signal and used the hierarchical entropy as a feature
vector to input it into a classifier that combines particle
swarm optimization (PSO) and SVM. It is more superior
than the method that uses multi-scale entropy as the feature
vector. Nayana and Geethanjali [26] extracted 12 statistical
features in time domain and 6 time-dependent spectral fea-
tures (TDSFs). The feature selection algorithm combining
wheel-based differential evolution (WBDE) and PSO is used
to process the initial feature set, and the final feature subset
contains most of the features of TDSFs. Zahra et al. [27]
proposed a fault diagnosis method for identifying the degree
of failure for rolling element faults. First, EMD is used to
preprocess the vibration signal, and KLD is used to further
process the IMF to form a feature vector. Three classifiers
DAG-SVM, KNN, and decision tree (DT) are used for com-
parison and verification. Rui et al. [28] used ensemble empir-
ical mode decomposition (EEMD) to preprocess the vibration
signal and calculate the hierarchical entropy of the sample.
The improved CS-SVM is used as the classifier of the model.
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FIGURE 3. Classification of feature selection.

IV. REVIEW OF FEATURE SELECTION
Features can be divided into related features, redundant
features, and irrelevant features according to classification
requirements. The purpose of feature selection is to remove
redundant features and irrelevant features as much as possi-
ble, and retain related features, thereby reducing the feature
vector dimension and avoiding the occurrence of dimensional
disasters and overfitting. The main process of feature selec-
tion consists of four steps, namely generating feature subsets,
evaluating feature subsets, stopping conditions and verifica-
tion results. According to the search strategy, feature selection
can be divided into three classes, namely, global optimal
search, sequence search and random search. According to
the evaluation criteria, the feature selection can be divided
into distancemeasurement, consistencymeasurement, depen-
dence measurement, information measurement and classifi-
cation accuracy rate or classification error rate measurement.
According to the combination of feature selection and learner,
it can be divided into four classes, namely Filter, Wrap-
per, Embedded and Ensemble. Some papers also combine
support vector machines with feature selection algorithms,
which mainly include three categories, namely, SVM-based
Wrapper, SVM-based Embedded, and SVM-based hybrid.
The details are shown in Figure 3.

In the field of bearing fault diagnosis, many papers on
feature selection and feature extraction have been pub-
lished, and the CWRU dataset has been used for research.
Xianghong et al. [29] proposed a feature selection model
GL-mRMR-SVM, which uses the maximum correlation and
minimum redundancy as the criterion for feature selection,
and uses the global features in the frequency domain and time

FIGURE 4. SVM.

domain and the local features extracted by RNN as the orig-
inal feature set, the final classifier is SVM. Xiang et al. [30]
proposed a new envelope processing method named ICIE by
improving CIE, and combining ICIE with the local mean
decomposition (LMD), and proposed the ICIELMD model,
which provides a new idea for the feature extraction of rolling
bearings. Yue et al. [31] combined PCA and BP neural net-
work to propose a new fault diagnosis model. PCA is used
to reduce the dimensionality of the multi-source feature set
composed of time domain, frequency domain and entropy
features, and the feature subset is input into the BP neural
network for fault diagnosis.

V. REVIEW OF CLASSIFIER
Classifiers are the application of some machine learning
algorithms in classification. Some classic supervised classi-
fiers include K-nearest neighbor (KNN), naive Bayes classi-
fier, support vector machine (SVM), grey relational degree
(GRD), and decision tree. Some classic unsupervised clas-
sifiers include clustering methods including k-means cluster-
ing, DBSCAN, and agglomerative clustering. The parameters
of the classifier will be improved according to different prob-
lems to improve the generalization ability of the classifier.

A. SUPPORT VECTOR MACHINE (SVM)
SVM is a linear classifier that solves binary Classification
problems. It realizes data classification by finding the max-
imum interval hyperplane. SVM is to find a hyperplane like
ωT x + b = 0. As shown in Figure 4.

The optimization purpose of SVM is to make the distance
between the support vector and the hyperplane as large as
possible under the premise of correct classification, that is,
to find the maximum interval plane, the optimization problem
of SVM is transformed into formula 1.

max
1
‖ω‖

s.t. yi(ωT xi + b) ≥ 1 (1)

Many papers use the CWRU dataset to study the appli-
cation of SVM in the fault diagnosis of rolling bearing.
Jianan et al. [18] proposed an oversampling method named
SCOTE and used SVM as a verification classifier. SCOTE
transforms the multi-class data balance problem into multiple
two-class data imbalance problems, and combineswithmulti-
class LS-SVM to form a new model to solve the problem
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FIGURE 5. KNN.

of rolling bearing fault data imbalance. Yang et al. [32]
used wavelet packet transform (WPT) to preprocess the data,
obtain the energy distribution of the signal, and extract the
feature to form a feature vector, and use the improved particle
swarm algorithm (IPSO) proposed in the paper to optimize
the parameters of the SVM. Wentao et al. [33] proposed a
new distance-based feature selection method, by introducing
a group identification matrix to obtain the coefficient of each
feature. The verification classifier is SVM.

B. K-NEAREST NEIGHBOR (KNN)
KNN is a supervised classification algorithm for multi-class
classification, and it is necessary to grasp the labels of exist-
ing samples in advance. For an unknown sample, we need
to calculate the distance between the unknown sample and
all existing samples, and select k samples with the closest
distance, and then judge the class of the unknown sample
based on the number of various types of samples in the k
samples. The basic principle is shown in Figure 5.

The first key point of the basic principle of the KNN is to
quantify the features of the training set. Since the distance
between the existing sample and the unknown sample is
calculated, it is necessary to make sure that the features con-
tained in each sample are quantified as numbers. The second
key point of the KNN algorithm is data normalization. The
value range of the sample feature data has a direct impact on
the calculation of the distance, so it is necessary to normalize
each feature data to a specific value range. The third key point
of the KNN algorithm is to determine the distance function.
The existing distance functions include Euclidean distance,
cosine distance, Hamming distance and Manhattan distance.
Among them, the most widely used is Euclidean distance,
which is shown in formula 2.

d(r,R) =

√√√√ n∑
i=1

(ri − Ri)2 (2)

Many papers use the CWRU dataset to study the applica-
tion of KNN in bearing fault diagnosis. Xin et al. [34] used
singular values as the input of the model, and combined graph

theory with SVD, and proposed a new method of graph mod-
eling. Validation with KNN classifier proves the effectiveness
of this method in early fault diagnosis. Qingfeng et al. [35]
proposed a weighted KNN fault diagnosis method named
WKNN, and used the ReliefF feature selection algorithm
to process the feature subset formed by the multi-domain
feature set as the input of WKNN, which solved the poor
generalization ability of the classifier under variable working
conditions.

Ensemble learning is to combine multiple basic classifiers
to complete a classification task, thereby improving the over-
all generalization ability. Among them, Boosting is a serial
ensemble learning method. Through training weak classifiers
in turn, a strong classifier is finally formed by weighting each
weak classifier. Bagging reduces the variance of classifica-
tion by averaging the results of multiple classifiers [36], [37].

VI. REVIEW OF DEEP LEARNING
Deep learning is a research direction of machine learning.
At the same time, with the expansion of deep learning, more
and more papers use deep learning to solve some problems
in the bearing fault diagnosis. Commonly used networks
are Auto-encoders [38]–[42], Convolutional neural networks
(CNN), generative adversarial networks [33]–[45], recurrent
neural networks (RNN), deep transfer learning [46]–[48].

Convolutional neural networks (CNN) are roughly the
same as other neural networks. They use superimposed layers
to construct the network, except that the CNN has more
convolutional layers and pooling layers. As shown in Fig-
ure 6, it is a simple CNN model. The input of the con-
volutional layer is the input feature map, and the output
of the convolutional layer is the output feature map. The
convolution layer mainly performs convolution operations,
which is a bit similar to filter calculation in image pro-
cessing. The convolution layer can ensure that the shape
and size of the input data remain unchanged. The pooling
layer is to compress the data in the high and long direc-
tions. With the promotion of CNN, more and more papers
have improved the accuracy of rolling bearing fault diagno-
sis by improving CNN. Fuzhou et al. [49] proposed a CNN
based sigmoid multitask fault diagnosis model. Unlike other
bearing fault diagnosis using CNN network, this model can
identify the type and the extent of the fault. In the verifica-
tion of the CWRU data set, the average accuracy rate can
reach 96%. Yangyang et al. [50] proposed a fault diagnosis
model by combining singular value decomposition and one-
dimensional convolutional neural network (SVD-1DCNN),
which has a good effect on fault diagnosis and classification.
Afrasiabi et al. [51] proposed a new fault diagnosis model for
rolling bearings by accelerating and compressing CNN, and
compared it with SVM, ANN, and LVQ to verify the supe-
riority of the proposed model. Mengyu et al. [52] combined
sequential tracking and 1DCNN, and proposed a new fault
diagnosis model named OT-1DCNN. It solves the problem
that the bearing speed changes with time under working
conditions, and improves the accuracy of fault diagnosis in
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FIGURE 6. CNN.

different speed. Yang et al. [53] proposed a new hybridmodel
based on deep learning. First, continuous wavelet changes are
used to convert vibration signals into time-frequency images,
and then CNN is used to extract image features which are
input to the gcForest classifier. Yinghua et al. [54] proposed
a ID-DCNN model, and used this network to automatically
extract features. Finally, the softmax and T-SNE algorithms
are used to verify the feasibility of the proposed method.

The purpose of recurrent neural networks (RNN) is to
link past data with current data to achieve ‘‘memory persis-
tence’’. Unlike convolutional neural networks, RNN has a
ring structure, which allows data to be maintained. In terms
of parameter settings, RNN is also different from other neural
network. The parameters of each layer of a neural network
are different, and the parameters used by each layer of the
RNN are the same at each moment. A special architecture
of RNN is the long and short-term memory network model
(LSTM). Many papers also apply RNN to the bearing fault
diagnosis. Alex and Martin [55] combined CNN and RNN,
and proposed a model named RNN-WDCNN, which solved
the problem of domain adaptation and high-frequency noise
under actual working conditions. Amin et al. [56] combined
end-to-end CNN and LSTM, and proposed a new type of
recurrent neural network named CRNN. Using the data of
CWRU as the input of the model, the fault type of the bearing
can be identified with the highest accuracy in a short time.

VII. EXPERIMENTS DATA AND DISCUSSION
This experiment will conduct experiments from 3 parts of the
CWRU data set, including 12k Drive End Data, 48k Drive
End Data and Fan End Data. The machine learning classifier
and deep learning network will be used to analyze the CWRU
data set, and the results will be compared and analyzed.

A. DATA DESCRIPTION
This experiment will compose three data sets from the three
aspects of 12k Drive End Data, 48k Drive End Data and

Fan End Data to carry out the experiment. Each dataset is
composed of the health data under 0 load and the data of inner
race fault, ball fault, and outer race fault (6 o’clock) with fault
diameters of 0.007, 0.014, and 0.021 respectively. Each type
of sample set contains 10 types of data.

B. EXPERIMENT 1: THE INFLUENCE OF FEATURE
SELECTION
This experiment chooses ReliefF feature selection algorithm
which is based on Euclidean distance. It is a kind of feature
weighting algorithm.

The dataset is processed to form a sample set contain-
ing 500 samples. Each type of sample consists of 50 sam-
ples, including 40 training samples and 10 test samples,
and each sample contains 2048 sampling points. A multi-
domain feature set containing 27 features is extracted from
the four dimensions of the time domain, frequency domain,
and entropy energy of the rolling bearing vibration signal,
as shown in Table 4. The marginal spectrum energy feature
is the marginal spectrum energy entropy of the top six IMFs
obtained by decomposing the vibration signal through EMD.

The three feature sets of CWRU are respectively used as
the input of the ReliefF algorithm, and the weight scores of
each feature of the three feature sets are shown in Figure 7,
Figure 8, and Figure 9. The criterion is the feature weight
score. It can be found that the sensitivity of each CWRU
data set to the feature is not the same. The weight score of
the frequency domain feature of the 12k Drive data set is
relatively high, and the weight score of the energy feature is
relatively low. The top 11 features include T2, T5, T7, T8,
T9, T10, F1, F2, F3, F4, H2. The weight score of the time
domain features of the 48k Drive data set is relatively high.
The top 11 features include T3, T4, T5, T7, T10, F3, F4,
F5, H1, H2, E6. The energy features of the 12k Fan data set
have a relatively high weight score, and the frequency domain
feature has a relatively low weight score. The top 11 features
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TABLE 4. Feature set.

FIGURE 7. The weight score of 12k drive.

FIGURE 8. The weight score of 48K drive.

include T1, T5, T6, H3, H4, H5, H6, E1, E2, E3, E4. It can
be found from the figures that there are some features with a
weight score of 0, indicating that these features are irrelevant

FIGURE 9. The weight score of 12k fan.

FIGURE 10. The accuracy of feature subsets and feature sets.

features. The feature selection is used to remove irrelevant
features and reduce the dimensionality of the feature set,
thereby avoiding dimensional disasters.

C. EXPERIMENT 2: PERFORMANCE OF FAULT DIAGNOSIS
WITH DIFFERENT MACHINE LEARNING CLASSIFIERS
The classifiers selected in this experiment are SVM, KNN,
Grey relational degree (GRD), Adaboost, Bagging and
GDBT classifiers. What’s more, GRD can compare the
dynamic changes of rolling bearings. The degree of close-
ness between the test sample and various types of faults can
be judged by the geometric similarity between the different
state data rows of the rolling bearing. The basic classifiers
of Boosting are set to SVM and DT respectively to form
Adaboost and GDBT classifiers. And set the basic classifier
of Bagging to SVM. The top 11 features in the weight score
of each feature set are respectively formed into a fault feature
subset, and the feature set and the processed feature subset are
respectively used as the input of the classifiers. The classifi-
cation accuracy of each classifier is shown in the figure 10.

As shown in Figure 10, the fault diagnosis classifier based
on machine learning performs well on the three data sets of
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TABLE 5. The running time of CNN and LSTM.

CWRU as a whole. Among them, the SVM classifier has
the best fault diagnosis effect, which may be because the
fault diagnosis problem of rolling bearings is a small sample
problem, and SVM is a classifier suitable for solving the small
sample classification problem. The overall fault classification
effect of Adaboost and Bagging, which use SVM as the basic
classifier, is also very good. It also shows that SVM has
a very good effect in solving the problem of small sample
classification.

In Figure 10, the blue, yellow, and green histograms indi-
cate that the ReliefF process is included in the fault diagnosis.
It can be found that the ReliefF has the effect of improving
the classification accuracy of the classifier. It shows that the
ReliefF removes the irrelevant features of the feature set.

D. EXPERIMENT 3: PERFORMANCE OF FAULT DIAGNOSIS
WITH DEEP LEARNING
In addition, this article will compare the performance of
simple deep learning models and machine learning classifiers
on the CWRU dataset. This paper will use two basic models
of LSTM and CNN.

The window size of the convolutional layer is 64 × 1 and
the step size is 16×1. The convolutional layer is followed by a
pooling layer with a window size of 2×1 and a scale factor of
2. There are several convolutional layers and pooling layers,
the size of the convolution kernel is 3×1, and the step size is
1× 1. The window size of the pooling layer is 2× 1, and the
scaling factor is 2. The number of convolutional layers and
pooling layers is determined by the subsequent optimization
process. There are several fully connected layers, the number
of neurons is 32, and the specific number of layers is also
determined by subsequent optimization. Finally, there is a
fully connected output layer, and the activation function is
the softmax.

The output dimension of LSTM model is set to 32, the
function used for the loop time step is sigmoid. And the
activation function is the Tanh.

The accuracy of the three data sets under the CNN and
LSTM are shown in Figure 11, and the running time is shown
in Table 5.

The overall fault diagnosis accuracy of the CNN and
LSTMmodels performwell. The accuracy of the CNNmodel
in the two datasets are close to 100%, which are higher than
the accuracy of the LSTM model. Compared with machine
learning classifiers, the accuracy is not much different. The
advantage of the deep learning model in fault diagnosis is
that it does not require manual feature extraction and feature

FIGURE 11. The accuracy of CNN and LSTM.

selection. But the disadvantage of the deep learning model is
that the running time of the model is too long, especially the
LSTM model.

VIII. CONCLUSION
This paper firstly investigated the current mainstream rolling
bearing public datasets. Subsequently, the contributionsmade
by the CWRU dataset in the field of machine learning are
summarized. Finally, experiments were carried out on three
datasets of CWRU and the results were discussed.. Get the
following conclusions:

• The mainstream rolling bearing fault diagnosis data set
mainly has two fault methods, one is the artificially
damaged and the other is the accelerated lifetime test.
Among them, the CWRUdataset is the most widely used
in fault diagnosis. The advantage of the CWRU dataset
is that the data is simple and can be used for initial
verification of the fault diagnosis model.

• Machine learning based bearing fault diagnosis can be
divided into three steps. The first step is to extract fea-
tures, the second step is feature selection, and the third
step is classifier recognition. The feature extraction part
mainly extracts the sensitive features of the vibration
signal in different domains to form a feature set with
strong discrimination. According to different discrimi-
nation criteria or the combination with the learner, the
feature selection algorithm can be divided into different
categories. The most widely used machine learning clas-
sifiers are SVM and KNN. Many papers have proposed
different improved classifiers based on SVM or KNN.

• CWRU contains four types of data: 12k Drive End Fault
Data, 48k Drive End Fault Data, Fan End Fault Data,
and benchmark data. Different data sets have different
sensitivity to the features of different domains.

• Based on the CWRU dataset, the SVM has the best
classification effect. In addition, the ensemble learning
based on the SVM classifier also has a good classifica-
tion effect. SVM is a classifier suitable for small sample
problems.
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• In the bearing fault diagnosis, a simple deep learning
model does not require manual feature extraction and
feature selection, but it requires longer running time and
higher requirements for hardware equipment.

It is worth noting that the sample data of the CWRU data
set is evenly distributed, and the fault types are all single
faults. In actual working conditions, the data is often unevenly
distributed and most of the fault types are compound faults.
Therefore, the CWRU data set is only suitable for preliminary
verification of the fault diagnosis algorithm. For further veri-
fication of the algorithm, a full life cycle data set is required.
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