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ABSTRACT Pattern matching has been widely adopted in functional programming languages, and is
gradually getting popular in OO languages, from Scala to Python. The structural pattern matching currently
in use has its foundation on algebraic data types from functional languages. To better reflect the pointer
structures of OO programs, we propose a pattern matching extension to general statically typed OO languages
based on object graphs. By this extension, we support patterns having aliasing and circular referencing, that
are typically found in pointer structures. With the requirement of only an abstract subtyping preorder on
types, our extension is not restricted to a particular hierarchical class model. We give the formal base of
the graph model, that is able to handle aliases and cycles in patterns, together with the abstract syntax to
construct the object graphs. More complex cases of conjunction and disjunction of multiple patterns are
explored with resolution. We present the type checking rules and operational semantics to reason about the
soundness by proving the type safety. We also discuss the design decisions, applicability and limitation of
our pattern matching extension.

INDEX TERMS Pattern matching, object graph, subtyping, type system, operational semantics, program-
ming language.

I. INTRODUCTION
Pattern matching is a programming language mechanism
to test a structure against a pattern at run-time. It has two
main purposes, matching and decomposition. Matching is
to determine whether the tested structure has the particu-
lar components organized in the particular way specified in
the pattern. Once the matching is successful, the individual
components of the structure can be accessed through new
variable bindings introduced in the pattern. Pattern match-
ing supersedes conditional statements in many occasions by
stronger specificity, better integrity and higher abstraction,
where conditions are organized as a whole structure that is
more intuitive and efficient, easier to comprehend, and less
complicated.

ALGEBRAIC PATTERN MATCHING
Pattern matching is already common in functional program-
ming. Patterns in the functional world follow the scheme of
algebraic data types, or variants, where data objects are gener-
ated by hierarchical constructor applications. The patterns are
therefore partial applications, structured as abstract syntax
trees of function invocations. Figure 1 shows the syntax tree
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FIGURE 1. Syntax tree of an algebraic pattern.

of a typical binary search tree pattern in a functional language,
where x, y and z provide new bindings of variables to the
nodes in the application tree. Such a pattern follows the
hierarchically structured algebraic constructors, that is simple
and easy to match with very clear semantics. That’s why
pattern matching is widely used in the very early ages of
functional languages.

When pattern matching is migrated to OO languages, sub-
typing between classes must be brought into considera-
tion. A great benefit gained is the ability to perform type
tests with variable bindings in an atomic way, that is much
safer and eliminates the need of typecasts. However, the
algebraic nature of patterns does not change very much.
An additional layer is commonly introduced to bridge the
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FIGURE 2. Object with aliased and circular relations.

difference between the algebraic view [1] and the underlying
pointer structure of an object, for example, the case class in
Scala [2]. Although the case class constructors create objects
with stored structures identical to normal objects, those stored
structures are in fact irrelevant. The Scala extractors can
completely virtualize the case class constructors and abstract
the stored structures away. Such pattern matching matches an
object against it abstract meaning expressed by the algebraic
view rather than the underlying stored structure. Therefore,
the semantics of patterns is still in the functional world, with
the benefit of higher level abstraction, and the limitation of
unable to examine the stored relations of data objects.

The decision to put OO pattern matching in a functional
way has its reasons. Besides that the semantics of algebraic
patterns is simpler and more familiar to programmers who
already know functional pattern matching, the underlying
pointer structures of objects can have aliases and cycles, that
are more complicated than trees. Figure 2 shows an object
with aliased and circular relations. Furthermore, when con-
sidering the conjunction and disjunction of multiple patterns
with subtyping, a type that is compatible with many types
must be resolved. Nevertheless, there’s a need to expose and
explore the concrete stored structures of objects when writing
internal implementations for OO methods. This is often the
case where pattern matching is used, since diverging pro-
cessing of variants externally in OO paradigm usually goes
through the subtyping polymorphism. Also, expressing the
relations between objects explicitly in the stored structures is
a key characteristic of OO programs. Therefore, by addressing
these challenges, we propose a pattern matching extension
to general OO languages that directly operates on the pointer
structures of objects commonly found in most language
implementations.

GRAPH-BASED PATTERN MATCHING
We base the theoretical foundation of our extension on the
well-established object graph model [3]. An object in this
model is a rooted and directed graph with labeled edges. The
root represents the object with outgoing edges pointing to
components. The edges are labeled with the attributes of the
source node. Local variables mark the edges from the stack to
roots of objects. Figure 3 shows an object graph on the upper-
left, where local variable o leads to the object, which has
attributes o.a, o.b, o.c, o.d and o.e. Among the attributes, o.a
and o.b alias each other and point to the same object. We omit
the stack in the shown graphs, since it’s somewhat irrelevant
to pattern matching. Those edges without a source node are
coming from the stack. In our pattern matching graph model,

FIGURE 3. Junction of multiple patterns.

both objects and patterns are represented by the object graphs,
which are collectively called pattern graphs in the context.
The major difference is that a pattern is not a complete object,
some or all of the attributes can be omitted.

Given the notion of pattern graphs, our pattern matching
is intuitive. A pattern graph matches another when the one
covers the other. To define the covering between two graphs,
we need to figure out the correspondence between the nodes
of the two graphs. Beginning with the roots, the nodes led to
by the edges with the same label correspond to each other.
Cumulatively, the label sequence from the root to a node is
the incoming path, or the trace, of a node. Although a single
path is sufficient to find a node, we must take into account
the whole set of incoming paths to a node to obtain the graph
structure. The idea to identify a node by how it can be reached
is called the trace model [4], where an isomorphism can be
built between a node and the set of its incoming paths. The
trace model is crucially concise in reasoning about equivalent
nodes in different graphs, and plays extremely well with
aliases and cycles. There are two aspects in determination of
the covering — the layout test and the type test. First, a node
w1 covers another node u1 when the incoming paths of w1
include the incoming paths of u1. To separate the case of
aliased nodes, a node can only cover one node in the other
graph. As shown in Figure 3, w1 covers u1 for {[a], [b]} ⊃
{[a]}, on the contrary, u8 covers either u6 or u7, but not
both. Second, the type τ (w1) must be a subtype of τ (u1).
In OO languages, subtyping is a preorder, i.e., reflexive and
transitive [5], [6]. We only stick with this abstraction in order
to make the pattern matching general. When all the nodes of
a pattern graph are covered by the nodes of the other, we say
this pattern is matched by the other. In terms of subtyping, the
match relation is covariant.

It’s getting more interesting when we look further into the
match against multiple patterns. One object can be tested
to match all of the patterns, the conjunction, or at least one
of the patterns, the disjunction. For example, in Figure 3,
object o matches all of p1, p2 and p3, and one of p3 and
p4. While the tests of multiple patterns are straightforward,
the bindings of variable x in the conjunction, and y in the
disjunction are more subtle. For conjunction, if there exists
a node w2 that can cover u2, u4 and u6, τ (w2) must be a
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subtype of all τ (u2), τ (u4) and τ (u6), therefore it’s possible
to assign a better type to variable x than just τ (u2). Also,
there exist invalid conjunctions which no graph can possibly
match. In Figure 3, p3 and p4 cannot be matched by one
graph. We need to detect and reject invalid conjunctions. For
disjunction, we don’t have conflicts between the multiple
patterns. However, without knowing which pattern will be
eventually matched at run-time, variable bindings are more
complicated. For example, what is the type of variable y in
the disjunction of p3 and p4, τ (u8), τ (u6) or τ (u7)? If object
o matches the disjunction, for it matches p3, which node do
we bind to y, w2 or w3?

CONTRIBUTION AND OUTLINE
With the brief discussion of the problems and ideas, below
lists the challenges we are going to address in this work.

1) We build a formal base for the pattern graphs with
subtyping. This includes the definitions, morphisms,
operations, match relations and algorithms for match-
ing. In addition, we design a language to construct the
pattern graphs, in particular with aliases and cycles, as
an extension to existing OO languages.

2) We study the compatibility of the patternmatchingwith
the current type-checking and run-time environment,
and find a way for smooth integration. We present the
type-checking rules and operational semantics, then
reason about the type safety.

3) We explore the conjunction and disjunction of multiple
patterns, and give our resolution, design decision and
algorithms to handle the relatively complex cases at
compile-time.

The rest of the article is outlined as follows. Section II
summarizes the work in object graphs and pattern matching,
from the perspective of OO programming. Section III defines
the formal base of pattern matching on object graphs, includ-
ing pattern conjunction and disjunction, with justifications
and constructive algorithms. Section IV presents the language
extension for the graph-based pattern matching in abstract
syntax, and provides the type-checking rules and operational
semantics, together with the proof of type safety. Section V
discusses the restriction and limitation of the theory, and the
potential solutions. Finally, Section VI concludes the work.

II. RELATED WORK
PATTERN MATCHING IN OO PROGRAMMING
Besides Scala, there have been many attempts to promote
patternmatching in OO programs. Because the complexity and
multi-paradigm trend of OO languages, a one-for-all solution
is difficult. These attempts each have their own focuses.
Geller et al., in a full-length technical report [7], proposed
a pattern matching framework in a purely OO style for a
dynamic typed language: Newspeak, one of the Smalltalk
family. Patterns are like normal objects that receive messages
to perform the matching operations. This proposal focuses
on providing a framework for pattern messaging and pattern

combinators, such as conjunction, disjunction, sequencing
and negation, as well as the building blocks for structural
matching, such as value literals and attribute keywords. How
to match a pattern is left abstract and subject to individual
object implementations. Widemann and Lepper [8] similarly
provided a framework in a library approach requiring gener-
ics, that focused on the interfaces and protocols to match pat-
terns against, extract components from and binding variables
to objects. Conjunction and disjunction are also supported
through the ‘‘both’’ and ‘‘either’’ combinators. Again, how
objects and components match patterns is still abstract and
therefore shallow to an object.

Solodkyy et al. [9] proposed an efficient functional-style
pattern matching for C++ as a library, making heavy use of
C++ concepts and template metaprogramming. A particu-
lar pattern is expressed as a template instantiation, and the
properties specific to that pattern are constructed at compile-
time. Plus the smart use of virtual table pointers as type
identifiers for hashing, this gives very minimal performance
overhead to the extension. Although C++ extensively sup-
ports pointers and references, but the structures are of value
semantics. This library is not specific to pointer structures.
Ryu et al. [10] provided an language extension to Fortress,
an experimental language with OO perspective. The extension
depends on the getters of an object to match its components,
and focuses on run-time type tests and multimethods. The
fashion of multimethods [11] is a strong application of pattern
matching in functional languages, and it has been extensively
studied in OO languages in the contrast to the single-dispatch
dominance [12]–[14].

Even a bold experiment was carried out in early days
by Liu and Myers [15] in their JMatch extension to Java.
It generalizes functions and operations to be able to find
the arguments back from the results, by introducing the for-
ward and backward modes, including automatic iteration to
search for elements in a collection. This is more aggressive
than the explicit extractors in Scala to decompose objects,
with some level of operation inference. Emir et al. [16]
gave a thorough review of the commonly adopted OO pattern
matching techniques, including object decomposition, visi-
tors, type tests, typecase, case classes and extractors. All these
techniques are currently available in Scala. Kohn et al. [17]
proposed a complete solution of pattern matching to the
dynamically typed Python language. It lives with the exist-
ing Python so well that it will greatly simplify the style
of future Python code. This extension has been included
in the official Python 3.10 [18], [19], and is thus far the
most powerful algebraic pattern matching implementation
in the OO world. Finally, OO pattern matching is widely
accepted, not only in Scala and Python, it will appear in
Java 16 [20] and C# 8 [21], the two most popular production
OO languages.

GRAPH-BASED FORMALISM
While most research on OO pattern matching all has focused
on type tests and object decomposition in various abstract
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ways that coexist with the OO paradigm, with purposes to
enhance type safety, expressiveness and conciseness, the
pointer structures of the data models in OO programs are
also of interest. The semantics of a program must even-
tually rely on how the data objects are represented [22].
Bornat [23] showed three example proofs of pointer pro-
grams in Hoare Logic, with treatment of pointer aliasing
by the principle of spatial separation. Although the mech-
anism remains rather low-level, it achieved a level of local
reasoning on particular data structures. Ke et al. [3] gave a
small-step operational semantics of OO programs based on
class, object and state graphs. It presents a formal graph
model for full featured OO constructs, including stacks and
method frames. Ke et al. [24] further extended the graph
model to a generic type system, to handle recursive types,
type variables and type instantiations in the notions of graph
morphisms and transformations. Zhao et al. [25] employed
the transformation of class and object graphs in the refine-
ment of OO data structures, investigating what changes of
patterns in the class structure maintained the capability of
providing functionalities or services. Zhao et al. [26] pro-
posed a graph-based Hoare Logic for reasoning about OO

programs. The Hoare proof system consists of a set of
logic rules covering most OO constructs, including object
creation, local variable declaration and recursive method
invocation. The soundness of the logic is given, that every
specification proved by the system is valid. There wasn’t a
proof of completeness, although the logic was believed to be
complete.

GRAPH PATTERN MATCHING
Besides the formulation of classes and objects, graphs
are widely used in the abstraction of other language
notions involving relations, such as query languages.
Francis et al. [27] described the Cypher 9 query language of
the Neo4j graph database. Cypher’s core data model consists
of values, property graphs and tables. The path patterns in
the query language is quite similar to the objects in OO

languages, where the nodes are entity patterns like types,
and the edges are relations between entities like attributes.
Formal semantics is given for the core query language based
on the pattern matching. Tong [28] proposed an approach for
mapping OO database models into the resource description
framework (RDF). This work gives the formal definitions of OO
databases and RDF, and maps the query language of OODB to
the SPQRQL query of RDF based on graph patterns. Li et al. [29]
defined taxonomy graphs and simulation admits the ‘‘is-a’’
relation similar to the OO subtyping, but on edge labels rather
than node types. By this ‘‘is-a’’ relation, pattern matching
on edges is relaxed such that a descendant edge matches an
ancestor edge, and the relaxation is bounded by an inheritance
distance. Although the purpose of the relaxation was to cap-
ture more sensible matches in real-life complex data graphs,
the idea can be applied to abstract relations between objects
in OO programs.

III. PATTERN GRAPHS AND MATCH RELATION
We first give the formal definitions of graphs, operations,
morphisms and relations. We begin with the basic layout
graphs consisting of only nodes and edges, and the match
relation w.r.t. to a given preorder. Then, we add type assign-
ments to the layout graphs to form the pattern graphs, and
describe how to encode program states as graphs. We further
expand the theory to match conjunction and disjunction, dis-
cuss the restriction and provide our resolution.

A. LAYOUT GRAPHS
Let N be the set of all nodes, which can be any unique
entities, usually associated with types, values and objects, and
A the set of all labels, which are usually variable names.
We define the layout graphs on these elements.
Definition 1 (Layout Graph) A layout graph G =

〈N ,E, p〉 is an edge-labeled, rooted and directed graph, where
1) nodes(G) = N ⊂ N is the set of nodes,
2) edges(G) = E : N → A → N is a partial function,

in infix notation, representing the edges, mapping the
source node and the label to the target node, and

3) root(G) = p ∈ N is the root, and all the nodes are
connected to p, ∀u ∈ N · ∃a · pEa = u.1

We formulate the edges in a layout graph as a curried
function to imply that the outgoing edges from a node must
have unique labels. We write, more intuitively, u

a
−→ v ∈ E

to denote an edge uEa = v. Also, u→∗ v ∈ E denotes there
exists a path from u to v, including single-node paths.
A layout graph represents the layout of an object, where

the root becomes the origin. Other nodes of a layout graph
are the origins of object components, and each component is
represented by the subgraph connecting to its origin.
Definition 2 (Re-rooting) Let G = 〈N ,E, p〉 be a layout
graph, and p′ ∈ N . We say G′ = 〈N ′,E ′, p′〉 is the subgraph
re-rooted at node p′, denoted as G′ = G � p′, where
1) the nodes are connected to p′,

N ′ = {v | ∃p′→∗ v ∈ E},

2) edges are restricted to the connected nodes, E ′ = E|N ′ .
Because there may be circular paths going back to the root,

re-rooting cannot guarantee a proper subgraph. Therefore,
it does not necessarily imply a proper reduction. We must
explicitly remove all the incoming edges to the root, and
examine the residue subgraph. We define the subtraction to
remove some edges from a layout graph.
Definition 3 (Subtraction) Let G = 〈N ,E, p〉 be a layout
graph, and X ⊆ E the edges to exclude. G′ = 〈N ′,E ′, p〉 is
the subtraction graph of X from G, denoted as G′ = GrX ,
where

1) the nodes are connected via I = ErX to the root,

N ′ = {v | ∃p→∗ v ∈ I },

1The overline a notation represents a series a1, . . . , an of items. However,
a variable E bound in the context, if overlined, repeats itself rather than
expands into a series, thus Ea expands to Ea1Ea2 . . .Ean.
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2) edges are restricted to the connected nodes, E ′ = I |N ′ .
Since morphisms are functions on nodes, the subtraction

gives us away to break cycles in a graph for a proper reduction
on the number of nodes through re-rooting.

B. MATCH RELATION
The structural equivalence of two layout graphs is formalized
as an isomorphism, which is a bijection preserving all the
outgoing edges of a node.
Definition 4 (Graph Isomorphism) Let G = 〈N ,E, p〉 and
G′ = 〈N ′,E ′, p′〉 be two layout graphs. G is isomorphic to
G′, denoted as G ∼=f G′, if there exists a bijective function
f : N → N ′, such that
1) root maps to root, f (p) = p′, and
2) edges are preserved, u

a
−→v∈E⇐⇒ f (u)

a
−→ f (v) ∈ E ′.

If G is isomorphic to a root-preserving subgraph G′′ of G′,
i.e., root(G′′) = root(G′), we say G′ covers G, denoted as
G′ &f G or G .f G′.

Figure 4 illustrates the covering between layout graphs.
An object not only has the layout, but also has a type.We asso-
ciate the type of an object to the root of its layout graph
through a type-assignment τ . Suppose there is a preorder ≺
defined on these types, e.g., the subclass or subset relation.
The type-assignment is there because nodes of graphs are
unique, it’s inconvenient to reason about ordering between
nodes directly. We define the match relation @ between two
layout graphs.
Definition 5 (Graph Match) Let G and G′ be two layout
graphs, and ≺ a preorder on ran(τ ). G′ matches G w.r.t. ≺
under morphism f , denoted asG′ @f |≺ G, or simplyG′ @f G
without ambiguity, if G′ &f G, such that the preorder exists
between the types of any pair of corresponding nodes, i.e.,
∀u ∈ N · τ (f (u)) ≺ τ (u).

The graph match is a cover relation restricted to the given
preorder between the types of nodes. It is trivial to verify that
the graph match @ relation is reflexive. We can also prove
that @ is transitive.
Theorem 1 The graph match @ relation is a preorder.
Proof. Suppose G′ = 〈N ′,E ′, p′〉 @f G = 〈N ,E, p〉 and
G′′ = 〈N ′′,E ′′, p′′〉 @f ′ G′. We can verify

1) f ′(f (p)) = p′′,
2) u

a
−→ v ∈ E H⇒ f ′(f (u))

a
−→ f ′(f (v)) ∈ E ′′, and

3) ∀u ∈ N · τ (f ′(f (u))) ≺ τ (u).
Hence G′′ @f ′◦f G. The @ relation is transitive.

Obviously, if a layout graphG is matched by another graph
G′, any re-rooted subgraph of Gmust also be matched by the
subgraph of G′ re-rooted at the corresponding node.
Theorem 2 IfG′ @f G = 〈N ,E, p〉, q ∈ N and X ⊆ E , then
G′ � f (q) @ (GrX ) � q.
Proof. By restricting f to the nodes of (GrX ) � q.
Corollary 1 If there are two morphisms f1 and f2 such that
G′ @ G under f1 and f2, then f1 = f2, i.e., the match morphism
is unique.
Proof. By induction on the number of nodes. We remove all
the incoming edges to the root, and apply Theorem 2.

FIGURE 4. Subgraph isomorphism and covering between layout graphs.

On the other hand, by first removing all the incoming edges
to the root, we can then re-root the residue subgraph to the
adjacent nodes of the root, to reduce the match problem to the
subgraphs. By combining the morphisms for these re-rooted
subgraphs, if they exist, and adding back the root to the
combined morphism, we are able to obtain the morphism for
the original layout graph, if it exists.
Theorem 3 Given two layout graphs G = 〈N ,E, p〉 and
G′ = 〈N ′,E ′, p′〉, Let G∗ = Gr{u a

−→ v ∈ E | v = p} be the
residue subgraph of G with all the incoming edges to the root
removed. If

1) for all the outgoing edges from the root p
a
−→ q ∈ E ,

∃q′ · p′
a
−→ q′ ∈ E ′ ∧ (p = q ∨ G′ � q′ @fq G

∗
� q),

2) and for all the incoming edges to the root u
b
−→ p ∈ E ,

∃q · fq(u)
b
−→ p′ ∈ E ′,

then G′ @f G, where f =
(
∪q fq

)
∪ {p 7→ p′}.

Proof. Obviously, by the given conditions, the addition of
{p 7→ p′} preserves the incoming and outgoing edges of the
root. By the definition of layout graphs, all the nodes are
connected to the root, therefore any node in a layout graph
must be either the root, or in one of the subgraphs re-rooted
at the nodes adjacent to the root. Hence all we need to prove
is that ∪q fq exists, i.e., if u ∈ dom(fq)∩ dom(fr ) then fq(u) =
fr (u). This is true by Theorem 2 and Corollary 1, that any
(sub)match morphism is unique.
Although finding the subgraph isomorphism is

NP-complete in general, it can be efficiently done for rooted
graphs by a simple depth-first search (DFS), led to by Theo-
rem 3. We can determine whether there is a match between
two layout graphs by trying to construct the match morphism
during the DFS. If the construction fails, we can conclude that
the match morphism does not exist.

Algorithm 1 gives the precise construction procedure.
It takes the preorder and type-assignment on the nodes and
two layout graphs as the input, and output a morphism map-
ping between the nodes of the two graphs, if the match
can be established, otherwise an exception is raised. The
procedure initializes the morphism to an empty map, and
starts traversing both layout graphs synchronously from their
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Algorithm 1 Construction of Match Morphism
Input: preorder: ≺, type-assignment: τ ,

layout graphs: G and G′.
Output: match morphism: f if G′ @f G.
Exception:Mismatch.

1 begin
2 〈N ,E, p〉 = G, 〈N ′,E ′, p′〉 = G′

3 f ← ∅
4 dfs_match(E, p,E ′, p′)
5 end
6 function dfs_match(E, p,E ′, p′) begin
7 if p ∈ dom(f ) then
8 raiseMismatch if f (p) 6= p′

9 else
10 raiseMismatch if τ (p′) ⊀ τ (p)
11 raiseMismatch if p′ ∈ ran(f )
12 f ← f ∪ {p 7→ p′}
13 forall the p

a
−→ q ∈ E do

14 raise Mismatch if p′
a
−→ q′ /∈ E ′

15 dfs_match(E, q,E ′, q′)
16 end
17 end
18 end

corresponding roots. The dfs_match function performs the
DFS. It checks the 1-1 mapping and the preorder relation
between the two roots, and accumulates the mapping to the
morphism. Then the function checks, w.r.t. the edge labels,
the correspondence of the adjacent nodes, and recurs on each
pair of them.

C. PATTERN GRAPHS
A pattern graph P = 〈G,T 〉 is a layout graph P with a map T
of type-assignment, which associates each node with a type.
A type can be an usual class, a subclass, a set of values and
particularly a singleton set of one value. The preorder ≺ on
the node types of such pattern graphs is exactly the subtype
relation between two types. In principle, a type t ′ is a subtype
of another type t if all objects or values of t ′ are elements of
t , i.e., elements(t ′) ⊆ elements(t).
Definition 6 (Subtype) A type is either a class c ∈ C or a
set of values V ⊂ V . The subtype relation ≺ is inferred by
the subtyping rules as follows,

(REFLEXIVE) (SUBCLASS) (SUBSET)
c ∈ C

c ≺ c
c, d ∈ C c ∈ supers(d)

d ≺ c
W ⊆ V ⊆ V

W ≺ V

(VALUE− TYPE)
V ⊆ V t ∈ C ∀v ∈ V · class(v) = t

V ≺ t
,

where supers(d) is the set of superclasses of d , and class(v)
is the class of v.
Theorem 4 The subtype relation ≺ in Definition 6 is a
preorder.

Proof. All we need is that the subclass relation being unidi-
rectional and transitive, and so it is.
Definition 7 (Pattern Match) Given two pattern graphs
P = 〈G,T 〉 and P′ = 〈G′,T ′〉, P′ matches P w.r.t. preorder
≺ on node types, denoted as P′ @|≺ P, if G′ @|≺ G, where
τ (u′) ≺ τ (u) , T ′(u′) ≺ T (u).
An object corresponds to a node in a pattern graph, with

the root representing the main object, and the edges leading
to component objects. In most cases, an object must terminate
at some value nodes, which are primitives in a programming
language, such as integers and booleans. It is common to use
the value itself as the node. This formulation complicates
the graph model by having concrete and multiple types of
nodes. To keep the nodes pure and abstract, we associate a
node p with its value value(p) through a run-time function.
We then store this value as a singleton set of one value when
constructing the type map of a pattern graph. The real type of
the node can be obtained from the value, since any terminus
does not start a structure, and must have a known type in the
type system.

The state 6 of a running program can be represented by
a layout graph H , together with the above mentioned value
function and the run-time type information, whereH consists
of a linked list of scope nodes as a stack, with outgoing edges
as local variables to the roots of the objects [3]. Therefore,
a pattern graph can be extracted from a state by re-rooting
H at the root p of the object. The map of type assignment is
constructed from type(p), which returns the actual type of the
object.
Definition 8 (Pattern Extraction) A pattern graph P =

〈G,T 〉 is extracted from a state6 = 〈H , value, type〉 at node
p, denoted as P = 6 � p, where G = H � p, and for all
u ∈ nodes(G),

T (u) =

{
type(u) if u /∈ dom(value),
{value(u)} if u ∈ dom(value).

D. MATCH CONJUNCTION AND DISJUNCTION
When we use pattern matching, it is natural to think about
matching one object against multiple patterns, and take the
conjunction or disjunction of the individual matches. When
taking the conjunction of multiple patterns, we want to know
if their overlapping parts are consistent. This observation can
tell us if it is possible to have some object matching all these
patterns simultaneously. On the other hand, when taking the
disjunction of multiple patterns, the overlapping parts give
us the common component of the individual matches. This
component carries the properties that we can ensure nomatter
which branch succeeds.

To check whether multiple pattern graphs are consistent,
we try to construct a union graph that matches these layouts.
The construction is divided into two parts. First, wemake sure
that an isomorphism is possible from each layout to the union.
This tells whether the patterns are structurally consistent.
Second, we make sure that there exists at least one type that
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is a subtype of all the types associated with the correspond-
ing nodes of the patterns, better there exists an infimum.
This tells whether the patterns are consistent in the type
system.

Aliasing is an inherit feature of object references, if a
node is a common target of two edges, it can be mapped
to two nodes of different layouts separately. However, there
is no way for this node to be mapped to the two nodes
of the union graph simultaneously. We need to address the
aliasing issue whenwe use the union graph to deal with match
conjunction.
Definition 9 (De-aliasing) Let G = 〈N ,E, p〉 and G′ =
〈N ′,E ′, p′〉 be two layout graphs. G is a de-aliased graph
of G′, denoted as G ⇒f G′, if there exists a total function
f : N → N ′, such that

1) root is preserved, f (p) = p′,
2) edges are preserved, u

a
−→ v ∈ E H⇒ f (u)

a
−→ f (v) ∈

E ′ and u′
a
−→ v′ ∈ E ′ H⇒ ∃u

a
−→ v ∈ E · (u′, v′) =

(f (u), f (v)).

For a layout graph G′′, if ∃G ⇒ G′ · G′′ & G, we say G′′

covers some de-aliased graph ofG′, denoted asG′′ &⇒ G′. If
∃G⇒ G′ ·G′′ . G, we say G′′ is covered by some de-aliased
graph of G′, denoted as G′′ .⇒ G′.
Definition 10 (Union) G� is a union of multiple layout
graphs G, denoted as G� ∼=f ∪G, if G .f G�, and for all
G′ such that G . G′, we have G� .⇒ G′.
The union is the minimum layout graph that covers all the

given layouts, and cannot be further de-aliased.
Theorem 5 Given multiple layout graphs G, if there exists a
layout graph G′ that covers all of them, there exists the union
of G.
Proof. Since we have G .f G′, we can construct the union
G� from f and G. The nodes of G� are mapped from dom(f ),
and combined only when necessary. If a node ui in dom(fi)
has the set of incoming paths intersecting with that of a node
uj in dom(fj), both ui and uj should bemapped to one node [4].
Otherwise, they should be mapped to different nodes. The
existence of f guarantees the set of incoming paths of a
node in one layout will not lead to more than one node
in another layout. Such construction splits the target nodes
whenever possible, ensuring that the result cannot be further
de-aliased.

As illustrated in Algorithm 2, we try to construct the
morphisms f from each graph to the union by traversing the
graphs simultaneously in DFS, while checking for conflicts.
In each iteration of the DFS, we collect the nodes pi that have
a common incoming path only in those graphs Gi, where Gi
is a subset of G. These nodes pi should be mapped to the
same node in the union. We divide pi into two sets, one set
pk are previously visited from other paths, the other set pc are
not yet visited. There are two conflicts to check for. First, the
visited nodes must all be mapped to one node u. Second, this
u must not be an existing target from those graphs Gc where
the unvisited nodes reside, which means there are two paths
leading to one node in Gk , however leading to two nodes in

Algorithm 2 Construction of Union

Input: layout graphs: G.
Output: morphisms to union: f .
Exception: No-Union.

1 begin
2 〈N ,E, p〉 = G
3 f ← ∅
4 dfs_union(E, p)
5 end
6 function dfs_union(Ei, pi) begin
7 k = {k ∈ i | pk ∈ dom(fk )}
8 c = irk
9 u = fk (pk )
10 raise No-Union if |{u}| > 1
11 if c 6= ∅ then
12 if u 6= ∅ then
13 raise No-Union if u1 ∈ ∪ran(fc)
14 p�← u1
15 else
16 p�← new node
17 end
18 fc← fc ∪ {pc 7→ p�}
19 forall the a, j = {j ∈ i | pj

a
−→ qj ∈ Ej} do

20 dfs_union(Ej, qj)
21 end
22 end
23 end

Gc. If no conflicts are detected, we assign u, or a new node
if u does not exist, as the mapping target of those unvisited
nodes pc.
Definition 11 (Intersection) G◦ is an intersection of multi-
ple layout graphsG, denoted asG◦ ∼=f ◦g ∩G, ifG &f⇒g G◦,
and for all G′ such that G &⇒ G′, we have G◦ &⇒ G′.
The intersection is the maximum layout graph that

all the given layouts cover some de-aliased version
of it.
Theorem 6 Given multiple layout graphs G, there always
exists the intersection of G.
Proof. We can construct the intersection as follows. First,
the intersection begins with collecting those incoming paths
common in all G. Then, if any two paths reach the same
node in any one of G, we combine them into one set of
incoming paths, otherwise, we keep them as two separate sets.
Finally, each set of incoming paths is mapped to a node of
the intersection. Similar to the union, such construction splits
the target nodes whenever possible, ensuring that the result
cannot be further de-aliased.

As illustrated in Algorithm 3, the construction of intersec-
tion is simpler.We again traverse the graphsG simultaneously
in DFS. In each iteration, we collect only those node p with a
common incoming path in all the given layouts. If some of the
nodes pk are previously visited, they may have been mapped
to multiple nodes u. We take one of the targets u1 to unify
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Algorithm 3 Construction of Intersection

Input: layout graphs: G.
Output: morphisms to intersection: f .

1 begin
2 〈N ,E, p〉 = G
3 f ← ∅
4 dfs_inter(E, p)
5 end
6 function dfs_inter(E, p) begin
7 k = {k | pk ∈ dom(fk )}
8 u = fk (pk )
9 if u 6= ∅ then
10 p◦← u1
11 else
12 p◦← new node
13 end
14 f ← f ∪ {p 7→ p◦}
15 if |u| 6= |p| then

16 forall the a · p
a
−→ q ∈ E do

17 dfs_inter(E, q)
18 end
19 end
20 end

the mapping target of all these nodes. If all p are unvisited,
we map all of them to a new node.

The union and intersection give us the common structures
of multiple layout graphs, however without respect to the
preorder between node types. If there is an object matching all
the given layoutsG, it must contain a subgraphG′ that can be
de-aliased to the union of G. Each node u′ of G′ corresponds
to one node u� of the union in each component match of the
conjunction. This u� must therefore be of a subtype of all the
nodes mapped to it from G. We can assume a better type of
u� and thus u′, if there exists an infimum type of all the nodes
mapped to u�.
Definition 12 (Match Conjunction) G′ matches the con-
junction of layout graphs G, w.r.t. preorder ≺, denoted as
G′ @|≺

c
G, if G′ @|≺ G.

Algorithm 4 constructs the type assignment of the union
based on the given patterns. We first obtain the union mor-
phisms from the layouts by calling Algorithm 2. Then, for
each node u� in the union, we collect all the layouts having
nodes mapped to u�. These layouts correspond to morphisms
fk and type assignments Tk . Thus, we are able to look up the
types tk associated with the nodes mapped to u�, and check
for the legitimacy of subtyping tk . If the type system does not
permit such subtyping, wemust conclude that the conjunction
of these patterns are not possible. If the subtyping is possible,
we try to find the infimum t� of tk and associate it with u�.
The type of u� is No-Type if there exists no infimum.
On the contrary, formatch disjunction, an object is tomatch

only one of the multiple patterns. This is always possible
because neither structural nor subtyping conflicts can occur

Algorithm 4 Construction of Match Conjunction

Input: pattern graphs: P.
Output: morphisms to union: f and type assignment: T�.
Exception: No-Union,No-Conj.

1 begin
2 〈G,T 〉 = P
3 Algorithm 2: G→ f
4 T�← ∅
5 N� = ∪ran(f )
6 forall the u� ∈ N� do
7 k = {k | u� ∈ ran(fk )}

8 tk = Tk (f
−1
k (u�))

9 raise No-Conj if @t · t ≺ tk
10 t� = inf(tk )
11 T�← T� ∪ {u� 7→ t�}
12 end
13 end

Algorithm 5 Construction of Match Disjunction

Input: pattern graphs: P.
Output: morphisms to intersection: f and

type assignment: T◦.
1 begin
2 〈G,T 〉 = P
3 Algorithm 3: G→ f
4 T◦← ∅
5 N◦ = ∪ran(f )
6 forall the u◦ ∈ N◦ do
7 t = ∪{T (u) | f (u) = u◦}
8 t◦ = sup(t)
9 T◦← T◦ ∪ {u◦ 7→ t◦}

10 end
11 end

for only one graph. Any object that matches one of the given
layouts G must contain a subgraph G′ which is a de-aliased
graph of the intersection ofG. Each node u′ ofG′ is mapped to
the corresponding node u◦ of the intersection possibly via any
component match of the disjunction. This u◦ must therefore
be of a supertype of all the nodes mapped to it, to cope with
all the possible component matches. Even if such a supertype
exists, it is possibly not unique. We can only associate a
type with u◦ when there is a supremum type of all the nodes
mapped to u◦.
Definition 13 (Match Disjunction) G′ matches the disjunc-
tion of layout graphs G, w.r.t. preorder ≺, denoted as G′ @|≺b
G, if there exists G′′ ∈ G such that G′ @|≺ G′′.
Algorithm 5 constructs the type assignment of the inter-

section based on the given patterns. We first obtain the inter-
section morphisms from the layouts by calling Algorithm 3.
Then, for each node u◦ in the intersection, we find the nodes
mapped to u◦ in all the patterns. Note that a morphism to the
intersection is not injective, there can be more than one nodes
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TABLE 1. Abstract syntax of pattern matching.

mapped to u◦. Next, we look up the types t associated with
these nodes. Finally, we try to find the supremum t◦ of t and
associate it with u◦. The type of u◦ is No-Type if there exists
no supremum.

IV. PATTERN LANGUAGE
With the detail of the graph model for patterns and lay-
outs fully discussed, we give a language extension for pat-
tern matching to general OO languages. We then present the
type-checking rules and operational semantics, and prove the
type safety to reason about the soundness of our model.

A. SYNTAX
The abstract syntax to define patterns and matches is given
in Table 1. The syntax is much like conventional ones found
in other OO and functional languages, with the addition of
pattern references. The pattern references play two roles, to be
referred to from inside the pattern to produce aliases and
cycles, and to be referred to from the match-selected state-
ment as object bindings — variables bound to components of
matching objects.

A pattern P can have an optional label, which is a pattern
reference r , followed by a pattern specification in one of the
three forms — a class pattern, a pattern reference or a set V
of values. A class pattern K is a class type T followed by zero
or more attribute specifications, each of which is an attribute
name a equal to an inner pattern P. For example, the pattern
p4 shown in Figure 3 can be expressed as

T1(b = T2, c = y : T3, d = y).

The more complex pattern shown in Figure 2 is written as

T (l = w : T (l = x : T , r = y : T (l = w, r = z)), r=z : T ).

A match statement evaluates an expression e and matches
the result against many cases in turn. Each case consists
of a pattern junction J , which can be a single pattern, a
pattern conjunction

c
P or a pattern disjunction

b
P, and an

associated statement S. The first successfully matched case
selects the associated statement to execute, with the new
object bindings introduced by the references declared in the
matched pattern junction.

B. PATTERN GRAPH CONSTRUCTION
To carry out the operations of pattern matching and check
for its type safety based on the graph model described in

Algorithm 6 Construction of Pattern Graph
Input: pattern: �P�.
Output: layout graph: G, type map: T and

reference map: R.
Exception: Undef -Ref ,Redef -Ref .

1 begin
2 N ,E,T ,R← ∅
3 p← parse(�P�)
4 raise Undef -Ref if ran(R) * N
5 G← 〈N ,E, p〉
6 end
7 function parse(�P�) → p begin
8 if �P⇒ r : Q� then
9 p← parse(�Q�)

10 if �r� ∈ dom(R) then
11 r ← R(�r�)
12 raise Redef -Ref if r ∈ N
13 E ← E[p/r],R← R[p/r]
14 end
15 R← R ] {�r� 7→ p}
16 else if �P⇒ T a = Q� then
17 p← new node
18 N ← N ∪ {p}
19 T ← T ∪ {p 7→ �T�}
20 q← parse(�Q�)

21 E ← E ∪ {p
�a�
−−→ q}

22 else if �P⇒ r� then
23 if �r� ∈ dom(R) then
24 p← R(�r�)
25 else
26 p← new node
27 R← R ∪ {�r� 7→ p}
28 end
29 else if �P⇒ V� then
30 p← new node
31 N ← N ∪ {p}
32 T ← T ∪ {p 7→ �V�}
33 end
34 end

Section III, we must first construct the pattern graph for each
pattern specified in the abstract syntax. The construction is
straightforward following the structure of the specification,
with three components to output — a layout graph G, a map
T from nodes to types and a map R from pattern references to
nodes. Algorithm 6 describes the procedure in detail, where,
for clarity, we enclose syntax elements in guillemets �� to
distinguish them from other variables.

In the algorithm, function parse recursively decomposes a
pattern specification �P� into a graph with root p by updating
the nodes N , the edges E , the type map T and the reference
map R. The parse function performs case analysis on the
pattern specification. First, when it is a reference definition
�r : Q�, we recursively obtain the root p of �Q�, and
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associate it with the reference �r� in R. It is possible for a
reference to be used before definition, we generate a place-
holder node r for the forward use, and replace it with the
real node at this definition stage. A placeholder is not put
into the node set N , therefore we can check if r is indeed a
placeholder, or a node that has defined the reference already.
For a placeholder r , we need to replace it with the real node
p. This replacement is performed in the edges E , for all the
target nodes equal to r , and also in the reference map R, for
all the image nodes equal to r . Note that we allow a reference
to label another reference. Second, when it is a class pattern
�T a = Q�, we create a new node p and associate it with
type �T�. We add p to the node set N and link the outgoing
edges to the roots recursively obtained from �Q�, with labels
equal to the attribute names �a�. Third, when it is a reference
occurrence �r�, we try to look up R for its corresponding
node, or create a new placeholder without placing it into the
node set N . Last, when it is a value set �V�, we simply create
a new node and associate it with �V� in the type map T .
The graph construction merely creates nodes and links

between the nodes. This process is always successful. How-
ever, with the addition of references, there are two exceptional
cases — a reference is defined more than once (Redef -Ref ),
and a reference occurs but not defined (Undef -Ref ). The for-
mer is detected at the time of parsing a label prefix, while the
latter is detected when the parsing is complete, by checking
whether all the placeholders have been resolved.

C. TYPE-CHECKING
The pattern matching extension is type-checked in two parts,
the pattern and the match. A pattern can be a class pattern,
a reference, a pattern conjunction or a pattern disjunction.
A class pattern is converted to a pattern graph and checked
by recursively reducing to each node and the outgoing edges.
A node in a pattern graph is well-typed when all its out-
going edges are labeled with the attributes of the associ-
ated class, and also the targets are all well-typed. To avoid
infinite loops in the DFS, we add the visited nodes to the
typing environment before going into recursion. A reference
is checked by resolving it to a node with the reference map.
A class pattern is well-typed only when the corresponding
pattern graph and all the references declared in the pattern are
well-typed.

The type-checking rules are given in Table 2. Each typing
rule involves a typing environment 0 and optionally some
additional structures, separated by a semicolon, as the con-
text. The result of a rule is the well-typedness and type-
assignment of the checked element, possibly with some extra
output, also separated by a semicolon, during the checking.
This output can be necessary in the subsequent procedures.

For a pattern conjunction, we individually check the com-
ponent patterns first, and try to construct the match conjunc-
tion. Then, we promote the type of each referenced node
to the infimum type associated with the union. If such infi-
mum type does not exist, we fall back to the original type
of the node. For a pattern disjunction, we try to construct

TABLE 2. Type-checking rules.

the match disjunction. Only a referenced node that occurs
commonly in all the component patterns has a type, which
must be the supremum type associated with the intersection.
If such supremum type does not exist, the referenced node
has No-Type, and subsequent uses of the reference will be ill-
typed. This includes the case where a referenced node does
not occur in all the component patterns.

A match is a test of an expression against multiple cases.
Therefore, to type-check a match, we need to check the indi-
vidual cases, and whether the expression is type-compatible
with all the cases. Each case consists of a pattern and a
statement. The checking of the pattern produces the type of
the pattern and a series of type-assigned references, as the
additional variables available to the statement. We check
the type of the pattern against the expression to match, and
check the statement under the context with those additional
variables declared.

D. OPERATIONAL SEMANTICS
The operation of a pattern match statement is to evaluate the
expression, then to match the result against the list of cases in
turn, and finally to select the statement in the matched case
to execute. In the graph model, the expression �e� to match
is evaluated to a node in the state graph, and then the pattern
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TABLE 3. State transition rules.

graph P rooted at this node is extracted from the state graph.
The pattern graph is matched in turn against all the cases until
a matched case is found, otherwise there is no statement to
execute in this match.

The operational semantics is given by the state transition
rules listed in Table 3. Before we can match the pattern graph
of the expression, we need to obtained the pattern graphs
of the patterns by taking the output of the type-checking
procedures. Beside to match by constructing the match mor-
phisms, we also need to obtain the references declared in the
patterns, as well as their corresponding nodes. This task is
done in the match function, divided into three cases, a single
pattern, a conjunction, or a disjunction. For a single pattern,
a reference r is mapped to a node of the pattern graph P1 by
the reference map R1, then we can use the match morphism
f from the pattern graph to the expression graph P to obtain
the corresponding node in the state graph. For a conjunction,
since the match of the expression graph must be done against
all the component pattern graphs, we have a series of match
morphisms from different pattern graphs to the same expres-
sion graph, their domains do not intersect with each other.
We can simply union these morphisms into one to obtain the
nodes of the references.

A disjunction is more complicated, because there requires
only one match of the component pattern graphs, and a node
in the intersection is possibly de-aliased to two or more nodes

in a component pattern. We have restricted the references
in a disjunction only to those nodes in the intersection,
by assigning No-Type to the other nodes. Therefore, we are
left with a one-to-many mapping from the intersection to the
matched pattern, and thus to the expression graph. We use the
non-deterministic choice u to bind a reference to one of the
possible corresponding nodes in the state graph. Note that,
in function match, f ′1 is the union of the morphisms from the
patterns to their intersection. Once we have the bindings of
the references to the nodes in the state graph, we can declare
the additional variables as a normal variable declaration,
var . . . end, and execute the statement of the matched case
in this scope.

E. TYPE SAFETY
The type safety of pattern matching means a well-typed
pattern match statement cannot go wrong at runtime. Since
the only new operation introduced by pattern matching is the
new bindings of pattern references to runtime objects, the
statement of the matched case is type-safe when the runtime
objects truly have the types associated with the nodes of the
matched pattern.
Theorem 7 For the same pattern junction �J�, let (r, q) be
the result of function match in Table 3, r : s the type assign-
ment obtained by (CASE) in Table 2. We have type(q) ≺ s.
Proof. We study the type t of the node q associated to a
reference r in function match by case analysis. In the case of
(MATCH-ONE), t comes from the type assignment of pattern
graph P. By the definition of @f , t ≺ s, where s is the type
of node R1(r) in pattern graph P1, such that q = f (R1(r)).
In fact, in (MATCH-SOME), P1 and R1 are obtained from
the type-checking rules. According to (PATTERN), (GRAPH)
and (NODE), s is exactly the type assigned to r in the
type-checking.

Similarly, in the case of (MATCH-CONJ), P matches all
P1. The type t of q is a subtype of all the types tk of the
corresponding nodes in each of P1. By Algorithm 4, if there
exists inf(tk ), it is assigned to r in (CONJ), for inf(tk ) is a
subtype of each tk , and t must be a subtype of the infimum
by definition. It there exists no infimum, No-Type is assigned
to the node in the union, thus the min(No-Type, tk ) in (CONJ)
assigns r with one of tk , of which t is a subtype.

In the case of (MATCH-DISJ), P matches only one graph P′

of P1. The node q bound to r is non-deterministically chosen
from nodes f (u) in P, matching those nodes u in P′ that are
finally mapped to the same node u◦ in the intersection of P1.
The type t of q is a subtype of the corresponding node in P′

mapped to u◦. By Algorithm 5 and (DISJ), r is assigned with
the supremum type of all the node in P1 mapped to u◦, or
No-Type if the supremum does not exist. Obviously, in either
case, t is a subtype of the type assigned to r .

V. DISCUSSION
We formalize pattern matching in the notions of object
graphs. Although our intention is to specify patterns accord-
ing to the underlying stored structures, the nodes, edges,
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labels and preorder are in fact abstract, thus can represent
a wider range of relations between objects. For example,
we can replace concrete attributes with getter methods. The
patterns to match will not change in this case, and the pattern
graph of the object to examine can be obtained by first calling
the getters. Even if side effects exist, the semantics of evaluat-
ing the getters can be made unambiguous, possibly imitating
lazy evaluation. Edge labels can be parameter positions of a
decomposition function, patterns with such positional labels
can be matched by the tuple result of the decomposition.

The nodes in our pattern graphs are pure identities. Value
objects have to be represented as pure nodes associated with
singleton sets. Since we treat value sets as types, matching
values is classified as matching types. Because not only an
identical type matches, a subtype also matches, this gives
the benefit to match a value against a range of values, for
a subset can be seen as a subtype. For example, pattern
T (e = [5, . . . , 9]) is matched by a tree node whose element is
between 5 and 9. This arrangement supersedes the traditional
matching of value cases.

The mechanism to specify and detect aliasing is a distinct
feature of our system. However, it also brings certain restric-
tion. Sometimes we want to ignore the aliasing by intention,
especially for immutable objects whose aliases are safe. For
example, we may write a pattern T (c = S, d = S) to
test if an object has two components both of type S. While
an object with layout p3 in Figure 3 matches the pattern,
but an object with layout p4 does not. This causes some
inconvenience. In the case to ignore aliasing, we can try
match conjunction T (c = S) f T (d = S) to split the aliased
node into two component tests. However, we cannot use
match conjunction to ignore cycles, for example, the layout
in Figure 2 does not match pattern T (l = T (r = T (l = T ))),
because there’s no way to split a node that is both a source
and a target into two tests. A better solution is to construct
an intermediate object graph to split the nodes that are to
ignore aliases and cycles beforehand, and match the interme-
diate graph against the pattern. This can be optimized into
a slightly modified match algorithm, based on Algorithm 1,
to split the nodes on the fly in construction of the match
morphism.

The subtyping in our pattern matching only needs to be a
preorder in the match of a single pattern. In match conjunc-
tion, the node of an object to match must has a subtype of
multiple types. In the classical single inheritance hierarchy,
unless these types form an inheritance chain, the match can-
not succeed. Modern OO languages all have interfaces that
support multiple inheritance, therefore, a subtype of multiple
unrelated types is possible. However, there may exist no
infimum. For a match conjunction T (a = x : I )f T (a = J ),
wemay have A and B both extending I and J , but the common
inf(I , J ) does not exist. In this case, we must fall back the
type of x to I even if we know that x must also have type J
when a match succeeds. In languages supporting intersection
types [30], inf(I , J ) = I ∩ J can be generated and assigned
to x for better typing.

On the other hand, to find the type of a variable in match
disjunction is even more complicated. Consider the following
disjunction,

p : T (a = I , b = J , c = x : X )g q : T (a = y : K , b = y).

Not like in a dynamic language such as Python, where
using undefined variables is allowed to raise run-time excep-
tions, for a statically typed language, we must guarantee
that a program passes type-checking must not have such
exceptions. First, we must reject the use of any variable like
x which is not in the common part of the disjunction. This
is done by assigning No-Type to x. Second, we must collect
all the types of a node that possibly occurs in any part of
the disjunction with the same incoming path. For y, the set
of incoming paths is {[a], [b]}, therefore, the type of y must
be a supertype of all the types reachable from {[a], [b]}. The
best choice of this supertype is the supremum, sup(I , J ,K ),
if it exists. Otherwise, we choose No-Type to reject y, in
fact, although nondeterministic, any supertype of I , J and K
will not break the type system. Even if y is properly typed,
there is still a problem when an object o matches p rather
than q. Both o.a and o.b are legible for the initialization of
y with type safety. We take nondeterministic choice here,
and any implementation can decide which one to choose
in a predictable way. With such complexity handling match
disjunction, Scala even decides to forbid variable binding in
its pattern alternatives.

The graph algorithms, type rules and semantic rules pre-
sented in this paper have been implemented in Python, with
the test cases. The source code can be downloaded from
GitHub for further exploration and verification of the theory.2

VI. CONCLUSION
We formalize pattern matching for OO languages based on
object graphs. Beyond the algebraic view of data objects
found in functional languages, and the addition of type tests
for OO subtyping, we develop a pattern matching theory tack-
ling the underlying pointer structures of objects, in particular
with the intention to examine aliases and cycles. We define
the cover relation on layout graphs and the match relation on
pattern graphs in terms of graph morphisms, and study the
key properties. The theory is further expanded to incorpo-
rate match conjunction and disjunction, with more complex
cases addressed. We design the language extension in the
form of abstract syntax to specify the patterns and match
operations. Key algorithms are given in detail to construct the
pattern graph, match relation, conjunction and disjunction.
We present the type-checking rules and operational semantics
for the pattern matching extension. We give the soundness of
the theory by proving the type safety theorem. This theory
keeps the graphs and subtyping preorder abstract, thus sets
a solid and general foundation for OO pattern matching on
pointer structures. Together with the discussion on limitations

2github.com/ChanKaHou/OGPM
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and potential solutions, this work is a reference base for future
language design and improvement.
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