
Received October 17, 2021, accepted November 12, 2021, date of publication November 16, 2021,
date of current version November 24, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3128515

Complete Analysis of Implementing
Isogeny-Based Cryptography Using Huff
Form of Elliptic Curves
SUHRI KIM
School of Mathematics, Statistics and Data Science, Sungshin Women’s University, Seoul 02844, South Korea

e-mail: suhrikim@sungshin.ac.kr

This work was supported by the Sungshin Women’s University Research Grant of 2021.

ABSTRACT In this paper, we present the analysis of Huff curves for implementing isogeny-based cryptog-
raphy. In this regard, we first investigate the computational cost of the building blocks when compression
functions are used for Huff curves.We present a new formula for recovering the coefficient of the curve, from
a given point on a Huff curve, which is essential for implementing SIDH.We also apply the square-root Vélu
formula on Huff curves and further optimize Huff-CSIDH by exploiting Edwards curves for computing the
coefficient of the image curve and present the Huff-Edwards hybrid model. From our implementation, the
performance of Huff-SIDH andMontgomery-SIDH is almost the same, and the performance of Huff-CSIDH
is 6% faster than Montgomery-CSIDH. The performance of Huff-Edwards CSIDH is almost the same as
Montgomery-Edwards CSIDH. The result of our work shows that Huff curves can be quite practical for
implementing isogeny-based cryptography but has some limitations.

INDEX TERMS Post-quantum cryptography, isogeny-based cryptography, Huff curves.

I. INTRODUCTION
As the development of a quantum computer that is capable of
implementing Shor’s algorithm becomes visible, researches
are being actively conducted to find quantum-resistant algo-
rithms that can substitute the currently used public-key
cryptography. These are called post-quantum cryptography
(PQC), and among PQC primitives, isogeny-based cryptog-
raphy is known to have the smallest key sizes.

Quantum-resistant cryptography based on isogenies was
first proposed by Couveignes [1] and later rediscovered by
Stolbunov [2], which are currently called the CRS scheme.
However, not only the quantum sub-exponential attack exists
for the scheme [3], but the algorithm was also inefficient
for practical use. After the introduction of the Supersingu-
lar Isogeny Diffie-Hellman (SIDH) by Jao and De Feo [4],
the isogeny-based cryptography gained back its attention.
Due to the non-commutative structure of the endomorphism
ring of supersingular curves, SIDH resists the attack pro-
posed in [3]. The security of SIDH relies on the problem
of computing an isogeny between two given elliptic curves
having the same order over a finite field, which is known to

The associate editor coordinating the review of this manuscript and

approving it for publication was Ahmed Farouk .

have quantum-exponential complexity [5]. The Supersingu-
lar Isogeny Key Encapsulation (SIKE), a key encapsulation
mechanism based on SIDH, was submitted as one of the
candidates to the NIST PQC standardization project [6], and
is currently an alternative candidate of Round 3.

Recently, CRS was revisited by De Feo et al. [7], and
independently by Castryck et al. in [8]. The advantage
of CRS is that CCA-secure encryption can be constructed
so that a non-interactive key exchange can be obtained.
In [7], they modernized the parameter selection of CRS for
better performance and presented an efficient way to com-
pute the CRS group action. CRS was further optimized by
Castryck et al. in [8]. In [8], they proposed CSIDH (Commu-
tative SIDH), which solves the parameter selection problem
in CRS by using supersingular elliptic curves defined over
Fp. Currently, the full key exchange of CSIDH at a 128-bit
classical security level requires approximately 80ms, which
is slower than SIDH. However, the vital aspect of CSIDH
is that a relatively efficient digital signature can be con-
structed based on CSIDH [9]. CSI-FiSh [9] offers a practi-
cal digital signature that requires 390ms to sign a message.
For isogeny-based cryptography, this was a significant result
at that time, which facilitated the construction of various
cryptographic primitives through elliptic curve isogenies.

154500 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-2665-7142
https://orcid.org/0000-0001-8702-7342

S. Kim: Complete Analysis of Implementing Isogeny-Based Cryptography Using Huff Form of Elliptic Curves

To summarize, SIDH and CSIDH have their own advantages,
and their common disadvantage is that the performance is
slower than other quantum-resistant algorithms.

The implementation of isogeny-based cryptography
involves isogeny operations in addition to the standard elliptic
curve arithmetic over a finite field. Regarding the isogeny
operations, the degree of an isogeny used in the algo-
rithm depends on the prime chosen for the scheme. The
SIDH-based algorithms use the prime p of the form p =
`
eA
A `

eB
B f ± 1, where `A and `B are coprime to each other.

The `A and `B corresponds to the degree of isogenies used
in the algorithm. Since the complexity of computing isoge-
nies increases as the degree increases, isogenies of degrees
3- and 4- were mostly considered for implementation. The
CSIDH-based algorithms use the prime p of the form p =
4`1`2 · · · `n − 1, where `i are odd-primes. Similarly, as `i
are degrees of isogenies used in the scheme, demands for an
efficient odd-degree isogeny formula have increased after the
proposal of CSIDH. In [10], Costello and Hisil proposed an
efficient way to compute arbitrary odd-degree isogenies on
Montgomery curves. Classical ways for computing `-isogeny
requires Õ(`) field operations. In [11], Bernstein et al. pro-
posed the square-root Vélu formula which computes the
`-isogeny in Õ(

√
`) field operations. This ground-breaking

work allows computing higher odd-degree isogenies effi-
ciently, which suits well for implementing B-SIDH [12]
and CSIDH, where the recent quantum analysis on CSIDH
shows that larger odd-degree isogenies are required to provide
sufficient security level [13]–[15]. Regarding the elliptic
curve arithmetic, it is important to select the form of elliptic
curves that can provide efficient curve operations. The major-
ity of implementations in isogeny-based cryptography use
Montgomery curves as it offers fast isogeny computation and
elliptic curve arithmetic. The state-of-the-art implementation
proposed in [16], [17] is also based on Montgomery curves.

Currently, there is ongoing research on whether other
forms of the elliptic curve can yield efficient arithmetic
or isogeny computation. The primary candidate is twisted
Edwards curves, as it is birationally equivalent to Mont-
gomery curves, and mapping a point on one curve to a
point on the other curve is cost-less when projective coor-
dinates are used. The first use of Edwards curves was by
Meyer et al. in [18], which used twisted Edwards curves for
elliptic curve arithmetic and Montgomery curves for isogeny
computation [18]. This was further optimized in [19], which
used the Edwards curves for isogeny computation and Mont-
gomery curves for the elliptic curve arithmetic. However,
as stated in [19] and [20], using only Edwards curves for
implementing SIDH-based algorithms is not as efficient as
using only Montgomery curves.

The efficiency of using Edwards curves began to stand
out when used for implementing CSIDH. Unlike SIDH-based
algorithms, CSIDH-based algorithms use higher odd-degree
isogenies. Montgomery curves offer efficient isogeny eval-
uation of arbitrary odd-degree isogenies [10]. However,
it is hard to obtain an efficient formula for recovering the

coefficient of the image curve onMontgomery curves. On the
other hand, Edwards curves can provide an efficient formula
for computing the coefficient of the image curve. Therefore,
in [21], they implemented CSIDH by using Montgomery
curves for isogeny evaluation and twisted Edwards curves for
recovering the coefficient of the image curve. In [22], they
proposed an optimized odd-degree isogeny formula by using
thew-coordinate on Edwards curves. By adapting the formula
in [22], Edwards-only CSIDH can be implemented, which is
faster than Montgomery-CSIDH [8] or Hybrid-CSIDH [21].
The work of [22] shows that a certain form of an elliptic curve
can lead to a better result for certain isogeny-based algo-
rithms. Hence, it is important to check the implementation
results on various elliptic curves.

A. OUR CONTRIBUTIONS
This work aims to provide an insight to exploit Huff curves in
isogeny-based cryptography. Isogenies on Huff curves were
first proposed in [23]. However, due to inefficient elliptic
curve arithmetic and isogeny formula, it has not been studied
until the work of [24], and in [25]. The proposed compression
functions in [24] and [25] for the points on a Huff curve
allow Montgomery-like elliptic curve arithmetic formulas.
Considering the fact that implementing SIDH entirely on
Edwards curves is not faster than Montgomery curves as
differential addition is slower in Edwards curves, it is very
appealing that the compression functions in the Huff curve
lead to an elliptic curve arithmetic formula having the same
computational cost as on Montgomery curve.

In this paper, based on the formula presented in [24]
and [25], we examine the applicability of Huff curves for
isogeny-based cryptography. The following list details the
main contributions of this work.

1) ANALYSIS OF THE COMPUTATIONAL COSTS
We examine the computational costs of the lower-level func-
tions for implementing isogeny-based cryptography on Huff
curves when a compression method in [24] and [25] are
used. Previous works do not explicitly consider the cost in
projective coordinates or exclude the cost of some functions
that are used in the implementation. In this paper, we ana-
lyze the cost of all functions that are used to implement
isogeny-based cryptography. Details of the functions and
their computational costs are presented in Section 4. Also,
we present 4-isogeny on Huff curves using the compression
method proposed in [24], by applying a similar method to
derive the 4-isogeny formula presented in [25]. The formulas
for 4-isogeny are presented in the Appendix.

2) FORMULA FOR RECOVERING THE CURVE
COEFFICIENT OF HUFF CURVES
We additionally present the formula to recover the coefficient
of the Huff curve for SIDH-based algorithms. Recovering
the coefficient of a curve from given points is essential
for implementing SIDH-based algorithms as it can reduce
the key size. In this paper, we present the formula in

VOLUME 9, 2021 154501

S. Kim: Complete Analysis of Implementing Isogeny-Based Cryptography Using Huff Form of Elliptic Curves

both compression methods. Based on our analysis, using
the compression method in [24] is faster for recovering
the coefficient, so that it is an efficient choice for imple-
menting SIDH. The details of the formula are presented
in Section 3.

3) SQUARE-ROOT VÉLU FORMULA ON HUFF CURVES
We apply the square-root Vélu formula on Huff curves to
compute higher-odd degree isogenies efficiently. To use the
square-root Vélu formula proposed in [11], biquadratic poly-
nomialsmust be redefined to express the relationship between
points P,Q,P − Q, and P + Q on a Huff curve. We derive
biquadratic polynomials for Huff curves and demonstrate that
the computational cost for evaluating the main polynomial
used in the square-root Vélu formula is the same as Mont-
gomery curves. The details of the formula are presented in
Section 4.

4) THE HUFF-EDWARDS HYBRID MODEL FOR CSIDH
We further optimize the odd-degree isogeny formula on
Huff curves by exploiting Edwards curves for recovering
the coefficient of the image curves in Huff form. The
Montgomery-Edwards hybrid model has been studied exten-
sively. We noticed that the cost of the conversion between
the x-coordinate on Montgomery curves and w-coordinate
on Huff curve is free so that Edwards curves can also be
exploited to enhance the performance of Huff isogeny. The
details are presented in Section 4.

5) IMPLEMENTATION OF ISOGENY-BASED
CRYPTOGRAPHY ON HUFF CURVES
We present the implementation result of SIDH and CSIDH
using Huff curves. We choose the compression function
in [24] for implementing SIDH. For CSIDH-based algo-
rithms, one has to examine whether supersingular Huff
curves exist for a chosen prime. We deduce that for a prime
p ≡ 7 mod 8, there exist supersingular Huff curves over Fp,
and Fp has no supersingular Huff curves when p ≡ 3 mod 8.
For SIDH, the performance of Montgomery-SIDH and

Huff-SIDH is almost the same. For CSIDH, Huff-CSIDH
is 6% faster than Montgomery-CSIDH. Also, the perfor-
mance of Huff-Edwards CSIDH is almost the same as
Montgomery-Edwards CSIDH. The details of the results are
presented in Section 5.

B. ORGANIZATION
This paper is organized as follows: In Section 2, we intro-
duce two main isogeny-based key exchange algorithms and
a form of Huff curves that will be used for the implementa-
tion. In Section 3, we demonstrate the computational cost of
lower-level functions for implementing isogeny-based cryp-
tography. In Section 4, we introduce the square-root Vélu
formula and present the main polynomials for Huff curves to
exploit the square-root Vélu formula. In Section 5, we present
the implementation result of SIDH and CSIDH on Huff
curves. We draw our conclusion in Section 6.

II. PRELIMINARY
In this section, we provide the necessary background that
will be used throughout the paper. First, we introduce two
main streams in isogeny-based cryptography – SIDH and
CSIDH. Lastly, we describe variants of Huff curves and their
arithmetic.

A. ISOGENY-BASED CRYPTOGRAPHY
We recall the SIDH and CSIDH key exchange protocol pro-
posed in [4] and [8]. For more information, please refer to [4]
and [8] for SIDH and CSIDH, respectively. The notations
used in this section will continue to be used throughout the
paper.

1) SIDH PROTOCOL
Fix two coprime numbers `A and `B. Let p be a prime of
the form p = `

eA
A `

eB
B f ± 1 for some integer cofactor f , and

eA and eB be positive integers such that `eAA ≈ `
eB
B . Then

construct a supersingular elliptic curve E over Fp2 of order
(`eAA `

eB
B f)

2. We have full `e-torsion subgroup on E over Fp2
for ` ∈ {`A, `B} and e ∈ {eA, eB}. Choose basis {PA,QA} and
{PB,QB} for the `

eA
A - and `eBB -torsion subgroups, respectively.

Suppose Alice and Bob want to exchange a secret key. Let
{PA,QA} be the basis for Alice, and {PB,QB} be the basis
for Bob. For key generation, Alice chooses random elements
mA, nA ∈ Z/`eAA Z, not both divisible by `A, and computes
the subgroup 〈RA〉 = 〈[mA]PA + [nA]QA〉. Then using Vélu’s
formula, Alice computes a curve EA = E/〈RA〉 and an
isogeny φA : E → EA of degree `eAA , where kerφA = 〈RA〉.
Alice computes and sends (EA, φA(PB), φA(QB)) to Bob. Bob
repeats the same operation as Alice so that Alice receives
(EB, φB(PA), φB(QA)).
For the key establishment, Alice computes the subgroup
〈R′A〉 = 〈[mA]φB(PA) + [nA]φB(QA)〉. By using Vélu’s for-
mula, Alice computes a curve EAB = EB/〈R′A〉. Bob repeats
the same operation as Alice and computes a curve EBA =
EA/〈R′B〉. The shared secret between Alice and Bob is the
j-invariant of EAB, i.e. j(EAB) = j(EBA).

2) CSIDH PROTOCOL
CSIDH uses commutative group action on supersingular
elliptic curves defined over a finite fieldFp. LetO be an imag-
inary quadratic order. Let E``p(O) denote the set of elliptic
curves defined over Fp with the endomorphism ring O. It is
well-known that the class group Cl(O) acts freely and transi-
tively on E``p(O). We call the group action as CM-action and
denote the action of an ideal class [a] ∈ Cl(O) on an elliptic
curve E ∈ E``p(O) by [a]E .
Let p = 4`1`2 · · · `n − 1 be a prime where `1, · · · , `n are

small distinct odd primes. Let E be a supersingular elliptic
curve over Fp such that Endp(E) = Z[π], where Endp(E) is
the endomorphism ring of E over Fp. Note that Endp(E) is a
commutative subring of the quaternion order End(E). Then
the trace of Frobenius is zero, hence E(Fp) = p + 1. Since
π2
− 1 = 0 mod `i, the ideal `iO splits as `iO = li l̄i, where

154502 VOLUME 9, 2021

S. Kim: Complete Analysis of Implementing Isogeny-Based Cryptography Using Huff Form of Elliptic Curves

li = (`i, π − 1) and l̄i = (`i, π + 1). The group action [li]E
(resp. [l̄i]E) is computed via isogeny φli (resp. φl̄i) over Fp
(resp. Fp) using Vélu’s formulas.
Suppose Alice and Bob want to exchange a secret key.

Alice chooses a vector (e1, · · · , en) ∈ Zn, where ei ∈
[−m,m], for a positive integer m. The vector represents an
isogeny associated to the group action by the ideal class
[a] = [le11 · · · l

en
n], where li = (`i, π − 1). Alice computes the

public key EA := [a]E and sends EA to Bob. Bob repeats the
similar operation with his secret ideal b and sends the public
key EB := [b]E to Alice. Upon receiving Bob’s public key,
Alice computes [a]EB and Bob computes [b]EA. Due to the
commutativity, [a]EB and [b]EA are isomorphic to each other
so that they can derive a shared secret value from the elliptic
curves.

B. HUFF CURVES AND THEIR ARITHMETIC
We describe forms of Huff curves and their arithmetic. The
implementation of isogeny-based cryptography focuses on
Montgomery curves as it offers fast computations. However,
it is important to examine whether other forms of elliptic
curves are also efficient, and in particular, a form of elliptic
curve that provides similar efficiency as Montgomery curves
can be a good candidate. Hence, we focus on Huff curves as it
offers elliptic curve arithmetic as fast as Montgomery curves
when a certain compression function is used.

1) HUFF CURVES
Huff models for elliptic curves were first introduced by
Joye et al. [26]. They proposed the group law and formula for
computing Tate pairings on Huff form of elliptic curves. Let
K be a finite field of characteristic not equal to 2. The Huff
form of an elliptic curve is given by the equation:

Ha,b : ax(y2 − 1) = by(x2 − 1)

where a2 6= b2 and a, b 6= 0. The point O = (0, 0) is the
neutral element and −(x, y) = (−x,−y). Also, every Huff
curve has three points at infinity, which are also points of
order 2. The curve Ha,b can also be simplified as

Hc : cx(y2 − 1) = y(x2 − 1)

where c = a/b, c 6= ±1. The general Huff curves which
contains the Huff form of elliptic curves is introduced in [27].
General Huff curves are given by the equation

Ga,b : x(ay2 − 1) = y(bx2 − 1)

where a 6= b and a, b 6= 0. Similar to the Huff curves,
the point O = (0, 0) is the neutral element and −(x, y) =
(−x,−y). The j-invariant of the curve Ga,b is

jGa,b =
28(a2 − ab+ b2)3

a2b2(a− b)2
,

and the j-invariant of the curve Ha,b is

jHa,b =
28(a4 − a2b2 + b4)3

a4b4(a2 − b2)2
.

2) ISOMORPHISMS
The Huff curve Ha,b is isomorphic to a Weierstrass curve of
the form

WA,B : y2 = x3 + Ax2 + Bx

where A = (a2 + b2) and B = a2b2. The Huff curve Ha,b is
isomorphic to an Edwards curve of the form

Ed : x2 + y2 = 1+ dx2y2

where d = ((a−b)/(a+b))2, and correspondingMontgomery
curve of the form

MD : y2 = x3 + Dx2 + x

where D = (a2 + b2)/ab.

3) ARITHMETIC ON HUFF CURVES
For points P = (xp, yp) and Q = (xq, yq) on a Huff curve
Ha,b, the addition of two points P+Q = (xr , yr) is defined as
below, and doubling can be performed with exactly the same
formula.

xr =
(xp + xq)(1+ ypyq)
(1+ xpxq)(1− ypyq)

yr =
(yp + yq)(1+ xpxq)
(1− xpxq)(1+ ypyq)

The above formula is same for the curve Hc. For a general
Huff curve Ga,b, the unified addition is performed as below:

xr =
(xp + xq)(aypyq + 1)

(bxpxq + 1)(aypyq − 1)

yr =
(yp + yq)(bxpxq + 1)

(bxpxq − 1)(aypyq + 1)

where P = (xp, yp) and Q = (xq, yq) are points on Ga,b, and
P+ Q = (xr , yr).

C. w-COORDINATES ON HUFF CURVES
Recently, in [24] and independently in [25], they proposed
a compression function on Huff curves, which allows faster
elliptic curve arithmetic and isogeny computation. We shall
express this compression function as w-coordinate. For the
simplicity of the explanation, we shall denote w-function for
the compression method proposed in [24], and winv-function
for the compression method proposed in [25].

1) COMPRESSION FUNCTION w ON HUFF CURVES
In [24], they proposed a compression method for Huff curves
and presented an isogeny formula. As they proposed the
formulas for elliptic curve arithmetic and isogenies for Huff
curve of the form Ha,b, we shall present the formulas in
this setting. However, for the implementation, we apply the
compression function w on Hc, for simplicity. Note that this
is equivalent to the case on Ha,b, with b = 1. For the exact
formula on Hc using w, please refer to the Appendix.
For a point P = (x, y) on a Huff curve Ha,b, define the

compression function w as w(P) = xy. Then w(P) = w(−P)

VOLUME 9, 2021 154503

S. Kim: Complete Analysis of Implementing Isogeny-Based Cryptography Using Huff Form of Elliptic Curves

and w(O) = 0. Using this function, doubling and differential
addition can be expressed as follows [24].

For P1,P2 ∈ Ha,b, let w1 = w(P1) and w2 = w(P2). Let
w0 = w(2P1),w3 = w(P1+P2), andw4 = w(P1−P2). Then,

w0 =
4w1(w2

1 + ew1 + 1)

(w2
1 − 1)2

, w3w4 =
(w1 − w2)2

(w1w2 − 1)2
,

where e = b
a +

a
b .

Using this compression function an efficient odd-degree
isogeny formula can be induced, which is as follows:
Theorem 1 (Odd-Degree Isogeny onHa,bUsingw-Function

[24]): Let P be a point on a Huff curve Ha,b of odd order
` = 2s + 1. Let 〈P〉 = {(0, 0),±(α1, β1), · · · ,±(αs, βs)},
where P = (α1, β1). Let wi = αiβi for 1 ≤ i ≤ s. and
w = w(Q), where Q = (x, y) ∈ Ha,b. Then for `-isogeny
φ from Ha,b to Ha′,b′ = Ha,b/〈P〉 the evaluation of w, w(φ),
is given by,

w(φ) = w
s∏
i=1

(w− wi)2

(wwi − 1)2
(1)

where

a′ =
a
∏s

i=1(bwi + a)∏s
i=1 wi(awi + b)

and b′ =
b
∏s

i=1(awi + b)∏s
i=1 wi(bwi + a)

Remark 1 (Coefficient Transformation): Let a = A/Dand
b = B/D. Note that when w-function is used for elliptic curve
arithmetic on Huff curves, instead of using the projective
curve coefficients A,B, and D, we use (A+ B)2 and 4AB for
efficient computation. Hence, after obtaining the coefficient
of the image curve A′ and B′, where a′ = A′/D′ and b′ =
B′/D′, (A′ + B′)2 and 4A′B′ must be computed in order to
proceed with the elliptic curve arithmetic on the image curve.
Intuitively, this requires 2S.

2) COMPRESSION FUNCTION winv ON HUFF CURVES
Huang et al. proposed an alternate compression method
for Huff curves and presented an isogeny formula on Huff
curves [25]. For the simplicity of the formula, they used the
Huff curve of the form Hc.

Let P = (x, y) be a point on a Huff curve Hc. In [25], they
defined the compression function winv as w(P) = 1/xy. Then
w(P) = w(−P) andw(O) = ∞. Using this function, doubling
and differential addition formula are defined in [25]. Now, for
P1,P2 ∈ Hc, let w1 = w(P1) and w2 = w(P2). Let w0 =

w(2P1),w3 = w(P1 + P2), and w4 = w(P1 − P2). Then,

w0 =
(w2

1 − 1)2

4w1(w1 + c)(w1 + 1/c)

w3w4 =
(w1w2 − 1)2

(w1 − w2)2
,

Using this compression function an efficient odd-degree
isogeny formula can be induced, which is as follows:
Theorem 2 (Odd-Degree Isogeny on Hc Using winv-Funct-

ion [25]): Let P be a point on a Huff curve Hc of odd order

` = 2s + 1. Let 〈P〉 = {(0, 0),±(α1, β1), · · · ,±(αs, βs)},
where P = (α1, β1). Let wi = 1/αiβi for 1 ≤ i ≤ s. and
w = w(Q), where Q = (x, y) ∈ Hc. Then for `-isogeny φ
from Hc to Hc′ = Hc/〈P〉 the evaluation of w, w(φ), is given
by,

w(φ) = w
s∏
i=1

(wwi − 1)2

(w− wi)2
(2)

where

c′ = c
s∏
i=1

(1+ cwi)2

(c+ wi)2

Remark 2 (Coefficient Transformation): When winv-funct-
ion is used for elliptic curve arithmetic on Huff curves,
instead of using the projective curve coefficients C and D for
c = C/D, we use (C−D)2 and 4CD for efficient computation.
Hence, after obtaining the coefficient of the image curve,
c′ = C ′/D′, (C ′−D′)2 and 4C ′D′ must be computed in order
to proceed with elliptic curve arithmetic on the image curve.
Intuitively, this requires 2S.
Remark 3: Note that when w-function is used for Hc, the

formula for doubling, differential addition, and odd-degree
isogenies is almost the reciprocal of the case when
winv-function is used for Hc. Let P1 = (x1, y1) and P2 =
(x2, y2) be the points on Hc, and w(P) = xy for P = (x, y) ∈
Hc. Let w1 = w(P1), w2 = w(P2), w0 = w(2P1),w3 =

w(P1 + P2), and w4 = w(P1 − P2). Then,

w0 =
4w1(w1 + c)(w1 + 1/c)

(w2
1 − 1)2

w3w4 =
(w1 − w2)2

(w1w2 − 1)2
,

which is almost the reciprocal of the case when winv-function
is used. Hence every computational cost for elliptic curve
arithmetic and isogeny is the same when Hc with w is used
and when Hc with winv is used.

3) RELATIONSHIP WITH MONTGOMERY CURVES
In this section, we shall examine the relationship between
w-coordinate on a Huff curve and x-coordinate of a corre-
spondingMontgomery curve. As denoted in Section 2, a Huff
curve Hc is isomorphic to a Montgomery curve MD for D =
(c2 + 1)/c, and Weierstrass curve WA,B for A = c2 + 1 and
B = c2, given by the following maps:

MD −→ WA,B −→ Hc

(x, y) −→ (cx,
√
c3y)

(x ′, y′) −→
(
(x ′ + c2)

y′
,
c(x ′ + 1)

y′

)
When XZ -only Montgomery arithmetic andWZ -only Huff

arithmetic is used, switching between Huff curves and Mont-
gomery curves is simple. AMontgomery point (XM : ZM) can
be transformed to the corresponding HuffWZ -coordinates as
follows, whenwinv-function is used as a compressionmethod:

(XM : ZM) −→ (Winv : Zinv) = (XM : ZM)

154504 VOLUME 9, 2021

S. Kim: Complete Analysis of Implementing Isogeny-Based Cryptography Using Huff Form of Elliptic Curves

When w-function is used as a compression method, then
the transformation is as follows:

(XM : ZM) −→ (W : Z) = (ZM : XM)

When implementing arbitrary odd-degree isogenies on
Montgomery curves as in CSIDH, Edwards curves are
exploited to compute the coefficient of the image curve
for efficiency [21]. By using the fact that the transfor-
mation between Montgomery curves and Huff curves is
just a swapping of the coordinates, and the transformation
between Montgomery curves and Edwards curves is cost-
less, Edwards curves can also be exploited to enhance the
performance of Huff isogenies. More details are introduced
in the next section.

III. SQUARE-ROOT VÉLU FORMULA FOR HUFF CURVES
A. SQUARE-ROOT VÉLU FORMULA
Recently, Bernstein et al. proposed an efficient algorithm

that computes `-isogeny in Õ(
√
`) field operations [11]. The

conventional Vélu formula computes `-isogeny in Õ(`) field
operations. The high-level view of the Vélu formula can be
considered as evaluation of polynomials over K whose roots
are values of a function from a cyclic group to K . Let G be
a cyclic group with generator P. Then for a finite subset S of
Z, define a polynomial

hS (X) =
∏
s∈S

(X − f ([s]P)) (3)

where [s]P denotes computing the group operation on P with
itself for s − 1 times. In isogeny-based setting, let E(K) be
an elliptic curve, P ∈ E(K). Then G = 〈P〉 is a kernel of an
`-isogeny φ : E → E ′, and f ([s]P) can be considered as the
x-coordinate of [s]P, for a scalar multiplication [s]P.

Let Ma be a Montgomery curve, P ∈ Ma be a point of
prime order ` 6= 2. The isogeny φ : Ma → Ma′ with kernel
〈P〉 is given by the equation below, expressed in terms of
equation (3):

φ(X) =
X` · hS (1/X)2

hS (X)2

where a′ = 2(1 + d)/(1 − d) for d = ((a + 2)/(a − 2))` ·
(hS (1)/hS (−1))8, and S = {1, 3, . . . , ` − 2}. Now, φ(X) can
be evaluated in Õ(

√
`) field operations if hS is evaluated in

Õ(
√
`) field operations.

The key for evaluating hS in Õ(
√
`) field operations is to

decompose the set S into smaller set I and J , having size
similar to

√
S, satisfying certain conditions. In [11], I and J

are chosen so that most of the elements in S is represented as
elements of (I+J)∪(I−J). For details on the conditions of the
set and algorithms, please refer to [11]. Hence, the problem
of evaluating a polynomial whose roots are [s]P for s ∈ P
is transformed to the problem of evaluating a polynomial,
whose roots are [i]P and [j]P for i ∈ I and j ∈ J , respectively.
Then, by computing the resultant of polynomials relating to
the set I and J , we can obtain the evaluation of hS . To do

this, we need to find the relations between the x-coordinate
of [i]P, [j]P, [i+ j]P, and [i− j]P for i ∈ I and j ∈ J . Below,
Lemma 1 states the existence of biquadratic polynomials of
an elliptic curve E that shows the relationship between points
P,Q,P+ Q, and P− Q for P,Q ∈ E .
Lemma 1 (Biquadratic Relations on x-Coordinates [11]):

Let q be a prime power. Let E(Fq) be an elliptic curve. There
exist biquadratic polynomials F0,F1, and F2 in Fq[X1,X2]
such that

(X − x(P+ Q))(X − x(P− Q))

= X2
+
F1(x(P), x(Q))
F0(x(P), x(Q))

X +
F2(x(P), x(Q))
F0(x(P), x(Q))

for all P,Q ∈ E such that O /∈ {P,Q,P + Q,P − Q}. The
x(P) denotes the x-coordinate of a point P.

If E is defined by affineMontgomery equation By2 = x3+
Ax2 + x, then the polynomials F0,F1, and F2 are defined as
follows [11].

F0(X1,X2) = (X1 − X2)2

F1(X1,X2) = −2((X1X2 + 1)(X1 + X2)+ 2AX1X2)

F2(X1,X2) = (X1X2 − 1)2

To use the square-root formula, we define the follow-
ing biquadratic polynomials specifically for Huff curves
of the form Hc. Similarly, the relationship between the
w-coordinates of pointsP,Q,P+Q, andP−Q onHuff curves
can be written as follows:

(W − w(P+ Q))(W − w(P− Q))

= W 2
+
G1(w(P),w(Q))
G0(w(P),w(Q))

W +
G2(w(P),w(Q))
G0(w(P),w(Q))

For the curve Hc using the w-function, then the polynomi-
als G0,G1, and G2 are defined as follows:

G0(W1,W2) = (W1W2 − 1)2

G1(W1,W2) = −2((W1W2 + 1)(W1 +W2)

+ 2C̄W1W2 + 4W1W2)

G2(W1,W2) = (W1 −W2)2

where C̄ = c + 1
c − 2. When winv-function is used for com-

pression, then the polynomials G0,G1, and G2 are defined as
follows:

G0(W1,W2) = (W1 −W2)2

G1(W1,W2) = −2((W1W2 + 1)(W1 +W2)

+ 2C̄W1W2 + 4W1W2)

G2(W1,W2) = (W1W2 − 1)2

where C̄ = c + 1
c − 2. Using this biquadratic polynomials,

the square-root formula for Huff curves directly follows [11].
The following proposition states the isogeny formula on Huff
curves Hc using w- and winv-function, expressed in terms of
equation (3).
Proposition 1 (Square-Root Formula on Huff Curves): Let

Hc be an elliptic curve over Fq in Huff form, and let P be a
point of prime order ` 6= 2 in Hc. Let w be a compression

VOLUME 9, 2021 154505

S. Kim: Complete Analysis of Implementing Isogeny-Based Cryptography Using Huff Form of Elliptic Curves

function for point on Hc. For Q ∈ Hc let w(Q) = W. Then
the evaluation of w(φ(Q)) where φ : Hc → Hc′ , a quotient
isogeny with kernel 〈P〉, is given as:

w(φ(W)) =
W `hS (W)2

hS (1/W)2

where S = {1, 3, . . . , `−2} and c′ = c`·hS (−c)2/hS (−1/c)2.
Now, let winv be a compression function for point onHc. For

Q ∈ Hc let winv(Q) = W. Then the evaluation of winv(φ(Q))
where φ : Hc → Hc′ , a quotient isogeny with kernel 〈P〉,
is given as:

winv(φ(W)) =
W `hS (1/W)2

hS (W)2

where S = {1, 3, . . . , `−2} and c′ = c`·hS (−1/c)2/hS (−c)2.

B. RECOVERING THE CURVE COEFFICIENT
When implementing SIDH-based algorithms, PA − QA and
PB − QB are also considered as a public key for faster
kernel computation using the Montgomery ladder. Hence
φA(PB − QB) and φB(PA − QA) are also computed and
exchanged to compute the shared secret key efficiently. This
can be thought of as an increase in the public key size.
But using the fact that the coefficient a of the Montgomery
curve Ma relates to the x-coordinates of P,Q, and P − Q
for P,Q ∈ Ma, sending the coefficient of the image curve
is omitted [16]. Therefore, (φA(PB), φA(QB), φA(PB − QB))
and (φB(PA), φB(QA), φB(PA − QB)) are exchanged during
the protocol, and upon the receipt of the public key, the
coefficient is recovered using the relationship, which costs
4M + 1S + 1I. The I denotes the field inversion.

For Huff curves, similar relationship can be obtained. Let
Hc be a Huff curve using w as a compression function. For
P,Q, and P − Q in Hc, let w(P) = wp,w(Q) = wq, and
w(P− Q) = wpq. Then the following holds:

w(P+ Q)+ w(P− Q) =
2((wpwq + 1)(wp + wq)

(wpwq − 1)2

+
2c̄wpwq + 4wpwq)

(wpwq − 1)2

(wp − wq)2

wpq(wpwq − 1)2
+ wpq =

2((wpwq + 1)(wp + wq)
(wpwq − 1)2

+
2c̄wpwq + 4wpwq)

(wpwq − 1)2

so that

c̄ =
(wp − wq)2 + w2

pq(wpwq − 1)2

4wpqwpwq

−
2wpq((wpwq + 1)(wp + wq)+ 4wpwq)

4wpqwpwq

=
((wp − wq)− (wpq(wpwq − 1)))2

4wpqwpwq

−
4wpq(wp + wpw2

q + 2wpwq)

4wpqwpwq
(4)

where c̄ = c+ 1
c − 2. The computational cost is 3M + 1S +

1I. Similar relationship can be obtain forwinv-function, which
is as follows.

winv(P+ Q)+ winv(P− Q) =
2((wpwq + 1)(wp + wq)

(wp − wq)2

+
2c̄wpwq + 4wpwq)

(wp − wq)2

(wpwq − 1)2

wpq(wp − wq)2
+ wpq =

2((wpwq + 1)(wp + wq)
(wp − wq)2

+
2c̄wpwq + 4wpwq)

(wp − wq)2

so that

c̄ =
(wpwq − 1)2 + w2

pq(wp − wq)
2

4wpqwpwq

−
(2wpq((wpwq + 1)(wp + wq)+ 4wpwq)

4wpqwpwq

=
((wpwq − 1)− (wpq(wp − wq)))2

4wpqwpwq

−
4wpq(wp + wpw2

q + 2wpwq)

4wpqwpwq
(5)

where c̄ = c+ 1
c −2. The computational cost is 5M+1S+1I.

C. THE HUFF-EDWARDS HYBRID MODEL AND
COMPUTATIONAL COSTS
Note that computing the coefficient of the image of Mont-
gomery curves using the square-root Velu formula exploits
the relationship between Montgomery curves and Edwards
curves [11]. This not only enhances the performance of
computation but also the formula for computing the coef-
ficient of the image curve follows the expression of the
square-root Vélu formula for evaluating an isogeny. Hence,
Montgomery curves only need to compute hS (1), hS (−1),
while Huff curves need to compute hS (−c), hS (−1/c) for
c ∈ Fp. However, as stated in Section 3, the cost of the trans-
formation between Montgomery curves and Huff curves is
free, so that a similar idea can also be applied to Huff curves.
The computation of the coefficient of the image curve in
Huff form can further be optimized using the corresponding
Edwards curves.

Let P be a point of prime order ` 6= 2 in a Huff curve
Hc. Let winv be a compression function for point on Hc, and
ĉ = 1

4

(
c+ 1

c − 2
)
, and φ : Hc → Hc′ , a quotient isogeny

with kernel 〈P〉. Then ĉ′ = 1
4

(
c′ + 1

c′ − 2
)
can be computed

as ĉ′ = d/(1− d), where

d =
(
ĉ+ 1
ĉ

)` (hS (1)
hS (−1)

)8

.

Note that when Edwards curves are exploited for recover-
ing the coefficient of the image curve in the Huff-Edwards
hybrid model, the performance gain not only comes from
computing hS (1), hS (−1) instead of hS (−c), hS (−1/c), but

154506 VOLUME 9, 2021

S. Kim: Complete Analysis of Implementing Isogeny-Based Cryptography Using Huff Form of Elliptic Curves

also from the fact that no more coefficient transformation
is required. The isogeny formula on Huff curves computes
c′ of the image curve Hc′ , expressed in terms of c of the
domain curve Hc. Therefore, coefficient transformation is
required afterwards as ĉ′ = 1

4

(
c′ + 1

c′ − 2
)

is used for
elliptic curve arithmetic, and c′ must be kept to proceed with
isogeny computations. On the other hand, when Edwards
curves are exploited to recover the coefficient of the Huff
curve, the formula directly uses ĉ and ĉ′ so that coefficient
transformation is not required nor c is kept to proceed with
isogeny computation.

Summarizing the section, we compare the computational
cost of the building blocks for implementing isogeny-based
cryptography between Montgomery curves and Huff curves.
First, in Table 1 we compare the computational costs of
biquadratic polynomials for Montgomery curves and Huff
curves. Computing `-isogeny consists of isogeny evalua-
tion and recovering the coefficient of the image curve.
In Table 1, ` eval refers to isogeny evaluation and `

coeff refers to computing the coefficient of the image
curve. The Huff-Edwards in Table 1 refers to the case when
Huff curves are used to evaluate isogeny, and Edwards curves
are used to compute the coefficients.

Table 2 denotes the computational cost of the build-
ing blocks of isogeny-based cryptography on Montgomery
curves and on Huff curves. The middle rule in Table 2 divides
the functions into two groups – the upper half is the functions
that are commonly used in SIDH and CSIDH, and the lower
half is the functions that are explicitly used in SIDH.

In Table 2, DBLADD refers to the differential addition
and doubling in projective coordinates, and DBL refers to
the doubling. `-isog eval refers to the evaluation of an
`-isogeny and `-isog coeff refers to the computation
of the coefficient of the `-isogenous image curve, where
` = 2s+ 1. CoeffTrans refers to the cost of transforming
the coefficient for efficient elliptic curve arithmetic, which
only occurs on Huff curves. The TPL refers to tripling of a
point, and 3-isogeny and 4-isogeny are the combined
computational cost of isogeny evaluation and coefficient
computation. Lastly, get_coeff refers to recovering of the
curve coefficient using points P,Q and P − Q on an elliptic
curve.

Also, Mont refers to Montgomery curve, and Mont-
Edwards Hybrid refers to the hybrid method proposed
in [21], where Montgomery curves are used for elliptic
curve arithmetic and isogeny evaluation, and Edwards curves
are used for computing the coefficient of the image curve.
Huff-Edwards Hybrid refers to the hybrid method
where Huff curves are used for elliptic curve arithmetic and
isogeny evaluation, and Edwards curves are used for comput-
ing the coefficient of the image curve. As the hybrid methods
are used for implementing CSIDH, the computational cost of
the lower half of the table is omitted. The function w(`) refers
tow(`) = (h−1)M+(t−1)S. Inw(`), h denotes the hamming
weight of ` and t is the bit length of `.

As shown in Table 2, except for the `-isogeny coeff,
the computational cost of the lower-level functions is the
same for Montgomery curves and Huff curves. Also, as the
compression functionw andwinv are reciprocals of each other,
the formula of the lower-level functions are almost recipro-
cals of each other so that w-function and winv-function induce
the same computational cost. Hence, when implementing
CSIDH on Huff curves, the compression function is free of
one’s choice. On the other hand, for SIDH, w-function is pre-
ferred as get_coeff is slightly efficient thanwinv-function.
Remark 4: On Huff curves, the CoeffTrans can be

omitted when division polynomial is used to represent the
curve coefficient in terms of the kernel points. This can
be easily done for 3- and 4- isogenies. For general higher
degree isogenies, as representing the coefficient of the curve
using kernel point is difficult, extra CoeffTrans opera-
tion is required to proceed with the elliptic curve arithmetic
further or Huff-Edwards hybrid can be used to omit the
transformations.

IV. IMPLEMENTATION
In this section, we provide the performance result of
isogeny-based cryptography. To evaluate the performance,
the algorithms are implemented in the C language. For imple-
menting SIDH, we use the field arithmetic of Round 3 version
of SIKE, submitted to NIST. For implementing CSIDH,
we use the field arithmetic implemented in [8]. All the
cycle counts were obtained on one core of an Intel
Core i7-7700 at 3.60 GHz, running Ubuntu 16.04 LTS.
For the compilation, we used GCC version 9.3.0 with
an optimization level -O3. The source code is avail-
able at https://github.com/suhrikim/HuffSIDH for SIDH and
https://github.com/suhrikim/HuffCSIDH for CSIDH.

A. IMPLEMENTATION OF SIDH
We first present the parameter settings for SIDH implemen-
tation. Then we present the implementation result with anal-
ysis. For implementing SIDH, we used the Huff curve of the
form Hc with w as compression function, as w-function is
more efficient than winv for recovering the coefficient of the
curve after the first round of the protocol.

1) PARAMETER SETTINGS
The prime used in SIDH-based algorithms is of the form p =
`
eA
A `

eB
B f ± 1. In this section, we present two implementations

on Huff curves when {`A, `B} = {2, 3} and {`A, `B} =
{3, 5}. The former is the general choice of `A and `B for
implementing SIDH-based algorithms. As an extra coeffi-
cient transformation is required for Huff curves for higher
degree isogenies, the latter is to examine the performance
change caused by this.

For {`A, `B} = {2, 3}, we used the 751-bit prime proposed
in [28], which is as follows:

p751 = 2372 · 3239 − 1

VOLUME 9, 2021 154507

S. Kim: Complete Analysis of Implementing Isogeny-Based Cryptography Using Huff Form of Elliptic Curves

TABLE 1. Computational costs of biquadratic polynomials.

TABLE 2. Computational cost of building-blocks of isogeny-based cryptography on Huff curves and Montgomery curves.

For {`A, `B} = {3, 5}, we used the 621-bit prime of the
form:

p621 = 267 · 3175 · 5119 − 1,

and 3175 ≈ 2277.368 and 5119 ≈ 2276.309.
Over finite field Fp2a = Fpa (i) for i2 = −1 and a ∈
{751, 621}, we used the supersingular Montgomery curve of
the form as the base curve:

M : y2 = x3 + 6x2 + x,

which is isomorphic to a Huff curve of the form:

Hca : cax(y
2
− 1) = y(x2 − 1).

For a = 751, then c751 = 3+
√
8 ∈ Fp2751 and for a = 621,

then c621 = 3+
√
8 ∈ Fp2621 .

For p621, the generator points for the Huff curve are the
points PA,QA and PB,QB such that PA,QA ∈ E[3175] and
both points have exact order 3175, PB,QB ∈ E[5119] and both
points have an exact order 5119. To select such a point, we first
search for the points on the following Weierstrass curve:

W : y2 = x3 + (c2621 + 1)x2 + c2621x,

which is isomorphic to the Huff curve Hc621 . When (PA,QA)
and (PB,QB) are found, we compute the Weil paring
e(PA,QA) ∈ E[3175] and e(PB,QB) ∈ E[5119] to check that
the result has order 3175 and 5119, respectively. When the
points are found, we transform the points on W to points on
Hc621 , and express in w-coordinate. The generator points on
Montgomery curves are found in a similar manner.

Also, when implementing 5-isogeny, we used the formula
from [10] for isogeny evaluation. For recovering the coef-
ficient of the image curve, we used the 2-torsion method
described in [10]. The reason is that using the 2-torsion
method, the cost for recovering the coefficient of the image

curve is 8M + 4S, while using the projectivized formula
of [10] presented in [8], the cost is 10M + 3S.

2) IMPLEMENTATION RESULTS
Table 3 presents the implementation results of SIDH on
Montgomery curves and Huff curves. Using the prime p621
and p751, the performance of SIDH is compared between
Montgomery curves and Huff curves. The implementation
using p621 uses 3- and 5-isogeny formula, which is presented
in Section 3.2. The prime p751 uses 3- and 4-isogeny, and
the corresponding formula on Hc using w-function is in
the Appendix.

As denoted in Table 3, for p751, the performance of the
Montgomery-SIDH and Huff-SIDH are almost the same.
This is obvious as the computational cost for the formulas
for implementing isogeny-based cryptography is almost the
same. For p621, although the Huff curve requires the trans-
formation of the curve coefficient on Bob’s side, the perfor-
mance of the Montgomery-SIDH and Huff-SIDH is almost
the same. We shall analyze the results in detail by dividing
them into key generation and shared key computation phases.

a: PUBLIC KEY GENERATION
During this phase, it is natural that there is no difference
when comparing the computational cost of the two curves
for Alice’s side. For Bob’s side on Huff curves, after cal-
culating the coefficient of the image curve, extra coefficient
transformation is required for efficient quintupling. Hence,
computing the coefficient on Huff curves costs 8M + 4S
for a total. For Montgomery curves, 2-torsion is used for
recovering the coefficient of the image curve. Hence, after
evaluating isogeny at a 2-torsion point for a Montgomery
curve, recovering the curve coefficient is required, and total
also costs 8M+ 4S. Therefore, the computation of 5-isogeny
on both curves is almost the same.

154508 VOLUME 9, 2021

S. Kim: Complete Analysis of Implementing Isogeny-Based Cryptography Using Huff Form of Elliptic Curves

TABLE 3. Performance results of SIDH implementation.

b: COMPUTING THE SHARED KEY
The difference in the computation between two curves occurs
when calculating the curve coefficient upon the receipt of
(φi(Pj), φi(Qj), φi(Pj −Qj)) for (i, j) ∈ {(A,B), (B,A)}. Now,
note that upon the receipt of (φi(Pj), φi(Qj), φi(Pj − Qj)) for
(i, j) ∈ {(A,B), (B,A)}, the Huff coefficient ĉ = c+1/c+2 of
Hc is recovered using equation (4), not c itself. For Alice, as ĉ
is directly used for tripling and isogeny computation, the per-
formance on Huff curves and Montgomery curves is almost
the same. However, on Bob’s side in Huff curves, recovering
ĉ is not enough – ĉ is used for quintupling, but we need the
actual c to compute the coefficient of the isogenous curve.
For Montgomery curves, Bob uses the extra 2-torsion point
on the base curve to compute the image curve’s coefficient.
To reduce the key size, when computing the shared key on
Bob’s side, we compute the 2-torsion, given the coefficient
of the Montgomery curve. Hence both curves require solving
quadratic equation over Fp2 , which requires 1 field squaring
and 1 square-root computation for both curves. Hence, the
performance ofMontgomery-SIDH and Huff-SIDH is almost
the same.

B. IMPLEMENTATION OF CSIDH
For CSIDH-based algorithms, the compression function to
use is free of one’s choice as the computational cost of the
building blocks for CSIDH is the same for w and winv. In this
paper, we used winv for implementing CSIDH. To implement
CSIDH-based algorithms, we first need to check whether a
supersingular curve exists over a given prime field. In this
section, we examine the existence of a supersingular Huff
curve over Fp for a prime p and present the base curve Hc
for the implementation. Then we present the implementation
result of CSIDH using Huff curves.

1) PRIME FIELD AND BASE CURVE
In order to implement the CSIDH, we need to search for a
supersingular Huff curveHa,b over a prime field p of the form
p = f ·

∏
`i − 1, where `is are small distinct primes. Below

is the theorem proving that a supersingular Huff curve over
Fp exists when p ≡ 7 mod 8. If p ≡ 3 mod 8, there is no
supersingular Huff curve over Fp.
Theorem 3: There exists a supersingular Huff curve of the

form Ha,b over Fp when p ≡ 7 mod 8.

Proof: In the CSIDH setting, for every supersingular
elliptic curve over Fp, there exists a corresponding supersin-
gular Montgomery curve over Fp. Hence it suffices to show
that for a given supersingular Montgomery curve, there exists
an isomorphic Huff curve over Fp. Now, Huff curve Ha,b is
isomorphic to a Montgomery curve of the form:

M : y2 = x3 +
a2 + b2

ab
x2 + x (6)

Then, M is supersingular if and only if Ha,b is supersin-
gular. Let (a2 + b2)/ab = A. If we find a supersingular
Montgomery curve y2 = x3+Ax2+ x over Fp, then by using
the equation (6), we can find the corresponding supersingular
Huff curve over Fp. Solving the equation we have,

a =
Ab±

√
(Ab)2 − 4b2

2
(7)

From the above equation, Ha,b is defined over Fp, if and
only if Ab2−4b2 is a square in Fp, i.e. A2−4 is a square in Fp.

Now, suppose p ≡ 7 mod 8 and let M be a supersingular
curve having a 2-torsion point on Fp except for (0, 0). Then
the 2-torsion subgroup of M satisfy |M [2]| = 4. In this
case, the supersingular curve M lies on the surface so that
EndFp (M) ∼= Z[(1+

√
−p)/2] [29]. Then A2 − 4 is a square

in Fp, so that the corresponding Ha,b exists over Fp. On the
other hand, if p ≡ 3 mod 8, then M lies on the floor so that
A2 − 4 is not a square in Fp, so that there is no supersingular
Huff curve Ha,b over Fp.

�
The original implementation of CSIDH uses the prime

of the form p ≡ 3 mod 8. However, from Theorem 3. we use
the 511-bit prime presented in [30], which works over Fp
where

p = 24 · 33 · 5 · 7 · 112 · 13 · · · 373− 1. (8)

In this field, we choose a supersingular Huff curve of the
form as the base curve:

Hc : cx(y2 − 1) = y(x2 − 1)

where c = 3−
√
8 ∈ Fp.

Remark 5: For a prime p such that p ≡ 3 mod 8, there
exist a supersingular general Huff curve over Fp. However,
as the computational cost of elliptic curve arithmetic and
isogeny evaluations is slower than the Huff curve, we omit
this case.

VOLUME 9, 2021 154509

S. Kim: Complete Analysis of Implementing Isogeny-Based Cryptography Using Huff Form of Elliptic Curves

2) SELECTING A RANDOM POINT OVER Fp

When implementing CSIDH, one has to select a random
point on a curve over Fp of a certain order to compute an
isogeny using Vélu’s formula. For a Montgomery curve, first,
a random element in Fp is selected, and we consider it as an
x-coordinate of a given Montgomery curve. Then, by using
the curve equation y2 = x3 + Ax2 + x, r = x3 + Ax2 + x
is computed and checked whether r is a square or non-square
in Fp. The computational cost for checking whether a ran-
dom point on a Montgomery curve is in Fp or Fp2\Fp costs
2M+1S (we omit the computational costs for computing the
Legendre symbol).

The following method checks whether the point (x, y) ∈
Hc is onFp orFp2\Fp. Sincew = 1/xy for a point (x, y) ∈ Hc,
y = 1/wx. Now, from the curve equation, the following holds:

cx(y2 − 1) = y(x2 − 1)
c
w
y− cx =

c
w
x − y(c

w
+ 1

)
y =

(
1
w
+ c

)
x

x2 = (w+ c)/w(1+ cw)

Thus x ∈ Fp if (cw + 1)(cw + w2) is square in Fp. The
computational cost for checking whether a random point is in
Fp or Fp2\Fp costs 2M+ 1S.

3) IMPLEMENTATION RESULTS
For the implementation, we used the prime field Fp, where
p is defined as in equation 8. In order to compare the per-
formance with Montgomery curves, we use the following
supersingular curve over Fp as a base curve.

M : y2 = x3 + x

The original implementation of Montgomery-CSIDH
in [8] does not use the optimization method when evaluat-
ing isogenies. Hence, we modified the implementation for
a fair comparison with the Huff-CSIDH. The difference in
the performance between the algorithms lies purely in the
computation of the coefficient of the image curve and coef-
ficient transformation for Huff curves. Table 4 presents the
performance of the group action on Montgomery curves and
Huff curves. In Table 4, Montgomery-Edwards CSIDH is a
method proposed in [21], which implements CSIDH using
Montgomery curves but uses Edwards curves for evaluating
the coefficient of the image curve. Lastly, Huff-Edwards
CSIDH is a method that implements CSIDH using Huff
curves, but uses Edwards curves for evaluating the coefficient
of the image curve.

As shown in Table 4, Huff-CSIDH is 6% faster than
Montgomery-CSIDH. This is because although an extra
coefficient transformation is required when Huff curves
are used for the implementation, recovering the Mont-
gomery curve’s coefficient is costly than on a Huff curve
for odd-degree isogenies. For the hybrid implementa-
tions, Montgomery-Edwards CSIDH is almost the same as
Huff-Edwards CSIDH.

TABLE 4. Performance results of group action in using traditional Vélu
formula.

TABLE 5. Performance results of group action in CSIDH using the
square-root Vélu formula.

Additionally, for CSIDH, it is important to optimize
the odd-degree isogeny formula as isogeny computation
contributes to the overall CSIDH performance. Hence we
present the CSIDH implementation using the square-root
Vélu formula in [11].

Table 5 presents the performance comparison of
Montgomery-CSIDH andHuff-CSIDH,when the square-root
Vélu formula is used for computing odd-degree isogenies.
In Table 5, sqrt-Mont and sqrt-Huff refers to CSIDH
implementation when the square-root Vélu formula is used
for Montgomery curves and Huff curves, respectively. As the
effect of the square-root Vélu formula becomes more con-
spicuous when isogeny of degree larger than 113 is used,
the effect is not immediate for the current parameter setting.
However, as the square-root Vélu formula exploits Edwards
curves for recovering the coefficient of Montgomery curve,
we can see that the performance of sqrt-Mont is similar
to Montgomery-Edwards CSIDH in Table 4. As this is also
the case for Huff curves, where Edwards curves are used to
recover the coefficients of the image curve, the performance
of sqrt-Huff is similar to Huff-Edwards CSIDH.

V. CONCLUSION
In this paper, we demonstrated the Huff curves’ usage for
implementing isogeny-based cryptography. First, we ana-
lyzed the computational cost of the lower-level functions
when the compression method is used for Huff curves.
Then, we proposed additional functions on Huff curves to
implement isogeny-based cryptography. We presented the
implementation results of SIDH and CSIDH on Huff curves.

For SIDH, we concluded that using w as a compression
function on Huff curves is preferred as the computational
cost of recovering the coefficient is more efficient. As the
computational cost for the lower-level function is the same
on Montgomery curves and Huff curves, the performance
of Montgomery-SIDH and Huff-SIDH is almost the same.
For CSIDH, we presented the birational polynomials on
Huff curves in order to exploit the square-root Vélu for-
mula. We further presented the Huff-Edwards hybrid model
for optimization. We implemented CSIDH using the clas-
sical Vélu formula and the square-root Vélu formula and

154510 VOLUME 9, 2021

S. Kim: Complete Analysis of Implementing Isogeny-Based Cryptography Using Huff Form of Elliptic Curves

compared them with Montgomery curves. The performance
of sqrt-Mont is almost the same as sqrt-Huff. To sum-
marize, the performance of isogeny-based cryptography on
Huff curves is as fast as on Montgomery curves.

Based on our analysis, the Huff curve can be quite prac-
tical for implementing isogeny-based cryptography but has
limitations. First, as the points of order 2 are all at infinity on
Huff curves, it is hard to construct a 2-isogeny formula using
w-coordinate so that only eA with an even number can be used
to implement SIDH with Huff curves. The second is that a
supersingular Huff curve exists on Fp, where p ≡ 7 mod 8.
This result is contrary to the case where supersingular Mont-
gomery curve exists on Fp for both p ≡ 3 mod 8 and
p ≡ 7 mod 8.

APPENDIX A
4-ISOGENIES ON HUFF CURVES
Although [24] omits the 4-isogeny formula on Huff curves
using w-function, by adapting the idea from [25], we addi-
tionally present the 4-isogeny formula on Huff curves using
w-function. In this section, we shall briefly state the formula
for implementing SIDH using 4-isogeny.
Theorem 4 (2-Isogenies for Ha,b Using w-Function): Let

φ : Ha,b → Ha′,b′ be a 2-isogeny with kernel {(0, 0), (a :
b : 0)}. Let w = xy for (x, y) ∈ Ha,b. Then the evaluation of
w under φ is given by

φ(w) =
(a2 − b2)w

(bw+ a)(aw+ b)
(9)

where

a′ =

√√√√
−

(√
1
b2
+

√
1
a2

)2

, b′ =

√√√√
−

(√
1
b2
−

√
1
a2

)2

To derive equation (9), we adapt the method used in [25].
That is, φ is first derived from the below composition:

Ha,b
ι
−→ Ga,b

ψ
−→ Gâ,b̂

ι−1

−→ Ha′,b′

where ι denotes the transformation from a Huff curve to a
general Huff curve, ψ is a 2-isogeny on general Huff curve
from [23]. Then φ = ι−1 ◦ ψ ◦ ι. Similarly, we can derive
Huff 2-isogenies for the curve of the form Hc.
Theorem 5 (2-Isogenies for Hc Using w-Function): Let φ :

Hc → Hc′ be a 2-isogeny with kernel {(0, 0), (c : 1 : 0)}. Let
w = xy for (x, y) ∈ Hc. Then the evaluation of w under φ is
given by

φ(w) =
w(c2 − 1)

(w+ c)(cw+ 1)
(10)

where c′ =| (c+ 1) | / | (1− c) |.
As shown in equation (10), 2-isogeny on Hc using

w-function is identical to setting b = 1 in equation (9). Also,
equation (10) is just reciprocal of the 2-isogeny on Hc using
winv function defined in [25]. Lastly, we state the 4-isogeny

onHuff curve usingw-function, directly derived from the idea
presented in [25].
Theorem 6 (4-Isogenies for Hc Using w-Function): Let φ :

Hc→ Hc′ be a 4-isogeny with kernel P such that w(P) = w4
and P has order 4 in Hc. Let w(Q) = w = xy for a point
Q = (x, y) ∈ Hc. Then the evaluation of w under φ is given by

φ(w) =
w(w− w4)2(ww2

4 + w− 2w4)

(2ww4 − w2
4 − 1)(ww4 − 1)2

where c′ = (1+
√
1− w4

4)/(1−
√
1− w4

4).

APPENDIX B
FORMULAS FOR IMPLEMENTING
SIDH-BASED CRYPTOGRAPHY
In this section, we present the doubling, tripling, 3-isogeny,
and 4-isogeny formula on a Huff curve of the form Hc, using
w as a compression function. For corresponding formulas on
Hc using winv function, please refer to [25].

1) DOUBLING
Let P = (x, y) be a point on a Huff curve Hc. Let c = C/D

and ĉ = Ĉ/D̂, where ĉ = 1
4

(
c+ 1

c − 2
)
. For w(P) =

(W : Z) in projective w-coordinates, the doubling of P gives
w([2]P) = (W ′ : Z ′), where W ′ and Z ′ are defined as:

W ′ = 4WZ (D̂(W + Z)2 + Ĉ · 4WZ)

Z ′ = D̂(W − Z)2(W + Z)2

The computational cost is 4M + 2S, given Ĉ and D̂.
Therefore, instead of using the projective curve coefficient
(C : D), it is efficient to use (Ĉ : D̂) = ((C −D)2 : 4CD) for
implementation.

2) TRIPLING
Let P = (x, y) be a point on a Huff curve Hc. Let c = C/D

and ĉ = Ĉ/D̂, where ĉ = 1
4

(
c+ 1

c − 2
)
. For w(P) =

(W : Z) in projective w-coordinates, the tripling of P gives
w([3]P) = (W ′ : Z ′), where W ′ and Z ′ are defined as:

W ′=W (D̂W 4
− 6D̂W 2Z2

−16ĈWZ3
− 8D̂WZ3

− 3D̂Z4)2

Z ′= Z (3D̂W 4
+16ĈW 3Z + 8D̂W 3Z + 6D̂W 2Z2

− D̂Z4)2

The tripling formula is the same to the case when winv is
used. The computational cost is 7M+5S, given Ĉ and D̂. For
tripling it efficient to keep the projective curve coefficient as
((C − D)2 : (C + D)2).

3) 3-ISOGENY
Let P = (x3, y3) be a 3-torsion point on a Huff curve Hc,
w(P) = (W3 : Z3). Let φ : Hc → Hc′ be a 3-isogeny
generated by a kernel 〈P〉, such that Hc′ = Hc/〈P〉. Let
Q = (W : Z) be another point on Hc. Then the image
w(φ(Q)) = (W ′ : Z ′) is computed as:

W ′ = W (WZ3 − ZW3)2

Z ′ = Z (WW3 − ZZ3)2

VOLUME 9, 2021 154511

S. Kim: Complete Analysis of Implementing Isogeny-Based Cryptography Using Huff Form of Elliptic Curves

and

Ĉ = (W3 − Z3)(W3 + 3Z3)3

D̂ = (W3 + Z3)(W3 − 3Z3)3

where c′ = C ′/D′ and Ĉ = (C ′ + D′)2 and D̂ = (C ′ − D′)2,
to continue with the tripling efficiently. The computational
cost for 3-isogeny evaluation is 4M + 2S and the computa-
tional cost for computing the coefficient of the image curve
is 2M+ 3S.

4) 4-ISOGENY
Let P = (x4, y4) be a 4-torsion point on a Huff curve Hc,
w(P) = (W4 : Z4). Let φ : Hc → Hc′ be a 4-isogeny
generated by a kernel 〈P〉, such that Hc′ = Hc/〈P〉. Let
Q = (W : Z) be another point on Hc. Then the image
w(φ(Q)) = (W ′ : Z ′) is computed as:

W ′ = W (2W4Z4Z −W (W 2
4 + Z

2
4))(Z4W −W4Z)2

Z ′ = Z (2W4Z4W − Z (W 2
4 + Z

2
4))(WW4 − ZZ4)2

and

Ĉ = 4Z4
4 − 4W 4

4

D̂ = 4W 4
4

where ĉ = Ĉ/D̂ = 1
4

(
c′ + 1

c′ − 2
)
, to continue with the

doubling efficiently. The computational cost for 4-isogeny
evaluation is 6M + 2S and the computational cost for com-
puting the coefficient of the image curve is 4S.

REFERENCES
[1] J.-M. Couveignes. (2006). Hard Homogeneous Spaces. [Online]. Avail-

able: https://eprint.iacr.org/2006/291
[2] A. Stolbunov, ‘‘Constructing public-key cryptographic schemes based on

class group action on a set of isogenous elliptic curves,’’ Adv. Math.
Commun., vol. 4, no. 2, pp. 215–235, 2010.

[3] A. Childs, D. Jao, and V. Soukharev, ‘‘Constructing elliptic curve isogenies
in quantum subexponential time,’’ J. Math. Cryptol., vol. 8, no. 1, pp. 1–29,
2014.

[4] D. Jao and L. D. Feo, ‘‘Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies,’’ in Post-Quantum Cryptography,
B.-Y. Yang, Ed. Berlin, Germany: Springer, 2011, pp. 19–34.

[5] S. Jaques and J. M. Schanck, ‘‘Quantum cryptanalysis in the RAMmodel:
Claw-finding attacks on SIKE,’’ in Proc. Annu. Int. Cryptol. Conf. Cham,
Switzerland: Springer, 2019, pp. 32–61.

[6] R. Azarderakhsh et al., ‘‘Supersingular isogeny key encapsulation.
Submission to the NIST post-quantum standardization project,’’
2017. [Online]. Available: https://csrc.nist.gov/CSRC/media/Projects/post-
quantum-cryptography/documents/round-3/submissions/SIKE-Round3.
zip

[7] L. D. Feo, J. Kieffer, and B. Smith, ‘‘Towards practical key exchange
from ordinary isogeny graphs,’’ in Advances in Cryptology—ASIACRYPT
2018, T. Peyrin and S. Galbraith, Eds. Cham, Switzerland: Springer, 2018,
pp. 365–394.

[8] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes, ‘‘CSIDH:
An efficient post-quantum commutative group action,’’ in Advances in
Cryptology—ASIACRYPT 2018, T. Peyrin and S. Galbraith, Eds. Cham,
Switzerland: Springer, 2018, pp. 395–427.

[9] W. Beullens, T. Kleinjung, and F. Vercauteren, ‘‘CSI-FiSh: Efficient
isogeny based signatures through class group computations,’’ in Proc. Int.
Conf. Theory Appl. Cryptol. Inf. Secur.Cham, Switzerland: Springer, 2019,
pp. 227–247.

[10] C. Costello and H. Hisil, ‘‘A simple and compact algorithm for SIDH
with arbitrary degree isogenies,’’ in Advances in Cryptology—ASIACRYPT
2017, T. Takagi and T. Peyrin, Eds. Cham, Switzerland: Springer, 2017,
pp. 303–329.

[11] J. D. Bernstein, L. De Feo, A. Leroux, and B. Smith, ‘‘Faster
computation of isogenies of large prime degree,’’ Cryptol. ePrint
Arch., Tech. Rep. 2020/341, 2020. [Online]. Available: https://eprint.
iacr.org/2020/341

[12] C. Costello, ‘‘B-SIDH: Supersingular isogeny Diffie–Hellman using
twisted torsion,’’ inProc. Int. Conf. Theory Appl. Cryptol. Inf. Secur.Cham,
Switzerland: Springer, 2020, pp. 440–463.

[13] J. Chávez-Saab, J.-J. Chi-Domínguez, S. Jaques, and
F. Rodríguez-Henríquez, ‘‘The SQALE of CSIDH: Square-root Vélu
quantum-resistant isogeny action with low exponents,’’ IACR Cryptol.
ePrint Arch., vol. 2020, p. 1520, Dec. 2020.

[14] X. Bonnetain and A. Schrottenloher, ‘‘Quantum security analysis of
CSIDH,’’ in Advances in Cryptology—EUROCRYPT 2020, vol. 12106.
2020, pp. 493–522.

[15] A. Canteaut, Y. Ishai, and C. Peikert, ‘‘He gives C-sieves on the CSIDH,’’ in
Proc. 39th Annu. Int. Conf. Theory Appl. Cryptograph. Techn., vol. 12106,
Zagreb, Croatia, May 2020, pp. 463–492.

[16] C. Costello, P. Longa, and M. Naehrig, ‘‘Efficient algorithms for super-
singular isogeny Diffie–Hellman,’’ in Advances in Cryptology—CRYPTO
2016, M. Robshaw and J. Katz, Eds. Berlin, Germany: Springer, 2016,
pp. 572–601.

[17] C. Costello, P. Longa, and M. Naehrig. SIDH Library (2016–2018).
Accessed: Aug. 26, 2021. [Online]. Available: https://github.com/
Microsoft/PQCrypto-SIDH

[18] M. Meyer, S. Reith, and F. Campos. (2017). On Hybrid SIDH Schemes
Using Edwards and Montgomery Curve Arithmetic. [Online]. Available:
https://eprint.iacr.org/2017/1213

[19] S. Kim, K. Yoon, J. Kwon, Y.-H. Park, and S. Hong, ‘‘New hybrid method
for isogeny-based cryptosystems using Edwards curves,’’ IEEE Trans. Inf.
Theory, vol. 66, no. 3, pp. 1934–1943, Mar. 2020.

[20] J. W. Bos and S. J. Friedberger, ‘‘Arithmetic considerations for isogeny-
based cryptography,’’ IEEE Trans. Comput., vol. 68, no. 7, pp. 979–990,
Jul. 2019.

[21] M. Meyer and S. Reith, ‘‘A faster way to the CSIDH,’’ in Progress in
Cryptology—INDOCRYPT 2018, D. Chakraborty and T. Iwata, Eds. Cham,
Switzerland: Springer, 2018, pp. 137–152.

[22] S. Kim, K. Yoon, Y.-H. Park, and S. Hong, ‘‘Optimized method for com-
puting odd-degree isogenies on edwards curves,’’ inProc. Int. Conf. Theory
Appl. Cryptol. Inf. Secur.Cham, Switzerland: Springer, 2019, pp. 273–292.

[23] D. Moody and D. Shumow, ‘‘Analogues of Vélu’s formulas for isogenies
on alternate models of elliptic curves,’’ Math. Comput., vol. 85, no. 300,
pp. 1929–1951, Sep. 2015.

[24] R. Dryło, T. Kijko, andM.Wroński, ‘‘Efficient Montgomery-like formulas
for general Huff’s and Huff’s elliptic curves and their applications to the
isogeny-based cryptography,’’ Cryptol. ePrint Arch., Tech. Rep. 2020/526,
2020. [Online]. Available: https://eprint.iacr.org/2020/526

[25] Y. Huang, F. Zhang, Z. Hu, and Z. Liu, ‘‘Optimized arithmetic operations
for isogeny-based cryptography on Huff curves,’’ in Proc. Australas. Conf.
Inf. Secur. Privacy. Cham, Switzerland: Springer, 2020, pp. 23–40.

[26] M. Joye,M. Tibouchi, andD.Vergnaud, ‘‘Huff’smodel for elliptic curves,’’
inProc. Int. Algorithmic Number Theory Symp.Berlin, Germany: Springer,
2010, pp. 234–250.

[27] H. Wu and R. Feng, ‘‘Elliptic curves in Huff’s model,’’ Secur. Commun.
Netw., vol. 17, no. 6, pp. 473–480, 2012.

[28] R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel, and C. Leonardi, ‘‘Key
compression for isogeny-based cryptosystems,’’ in Proc. 3rd ACM Int.
Workshop ASIA Public-Key Cryptogr., 2016, pp. 1–10.

[29] W. Castryck and T. Decru, ‘‘CSIDH on the surface,’’ in Proc. Int. Conf.
Post-QuantumCryptogr.Cham, Switzerland: Springer, 2020, pp. 111–129.

[30] D. Heo, S. Kim, K. Yoon, Y.-H. Park, and S. Hong, ‘‘Optimized CSIDH
implementation using a 2-torsion point,’’Cryptography, vol. 4, no. 3, p. 20,
Jul. 2020.

SUHRI KIM received the B.A. degree in math-
ematics and the M.A. degree in information
security from Korea University, in 2014 and
2016, respectively, and the Ph.D. degree from
the Graduate School of Information Security,
Korea University, in 2020. She currently holds
the position of an Associate Professor with the
School of Mathematics, Statistics and Data Sci-
ence, Sungshin Women’s University. Her research
interests include post-quantum cryptography and

efficient computations for isogeny-based cryptography.

154512 VOLUME 9, 2021

