IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 16, 2021, accepted November 3, 2021, date of publication November 16, 2021,

date of current version November 29, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3128397

Fully Adaptive Stochastic Handling of Soft-Errors

in Real-Time Systems

HYUNG-CHAN AN “', (Member, IEEE), AND HOESEOK YANG 2, (Member, IEEE)

lDepartment of Computer Science, Yonsei University, Seoul 03722, South Korea

2Department of Electrical and Computer Engineering, Ajou University, Suwon 16499, South Korea

Corresponding author: Hyung-Chan An (hyung-chan.an@yonsei.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.
NRF-2019R1C1C1008934 and No. NRF-2019R1F1A1064209). This research was supported by the Yonsei Signature Research Cluster

Program of 2021 (2021-22-0001).

ABSTRACT In the design of real-time systems, it is becoming increasingly important to take soft-error
tolerance into account. While hardening techniques such as error detection and error correction enable
us to build systems that can better tolerate soft-errors, they are inevitably accompanied with execution
time overhead. In order to mitigate the impact of the increased execution time, Chen et al. proposed to
identify the (m, k)-constraints of real-time tasks, which demand that at least m jobs out of k consecutive
task invocations must be fault-free, and to design hardening policies based on this constraint. In this paper,
we propose a new method to design hardening policies that are adaptive and stochastic. At the heart of our
method is a new linear program (LP) formulation that finds an adaptive stochastic policy optimizing the
CPU utilization. At the design time, we first identify the task set information of a given system, verify the
system schedulability, and solve LPs to find an optimal policy. This policy is represented as a look-up table
that specifies the stochastic hardening decisions as a function of the past execution history of the system.
At the run time, hardening decisions are made simply by looking up this table. The proposed method finds
hardening policies that adaptively reacts to the execution history of the system, allowing improvement in the
CPU utilization. The method also deviates from the previous approaches’ viewpoint that reliability must be
assessed in an all-or-nothing manner, by devising the notion of stochastic hardening policies. We evaluated
the effectiveness of the proposed method using various task sets. In a set of 2,050 benchmarks, the system’s
CPU utilization was improved by 2.80%-7.16% on average under different configurations. The improvement
was by as high as 18.45% in the best benchmark.

INDEX TERMS Optimization, real-time systems, processor scheduling, software reliability, fault tolerance.

I. INTRODUCTION
Real-Time systems often operate under non-functional

requirements. Such typical requirements include limited
power budget [1], [2], worst-case temperature constraints [3],
[4], and fault-tolerance to soft-errors [5], [6]. Since most of
the techniques addressing these requirements, if not all, tend
to increase the execution times of tasks, they often result in
increased overall resource utilization, sometimes even affect-
ing the schedulability of the entire system. For this reason,
a large volume of literature already proposes to co-optimize
resource utilization/schedulability and non-functional design
requirements, exploring the trade-off thereof.

The associate editor coordinating the review of this manuscript and

approving it for publication was Laxmisha Rai

Amongst these non-functional requirements, it is becom-
ing increasingly important to take soft-error tolerance into
account in the design of real-time systems [7]-[10]. Soft-
errors, also known as transient faults, refer to errors that do
not permanently affect the system, but result in a temporary
unintended behavior in software. Detection and correction of
soft-errors are usually achieved through replicating the task
execution on redundant hardware resource and/or executing
the task a multiple number of times on a single process-
ing element [8]-[10]. The enhanced fault-tolerance by these
hardening techniques comes at the cost of enlarged execution
times, and as such, indiscriminate application of hardening
techniques will likely result in wasteful use of resource.

In order to mitigate the inefficiency caused by the naive
hardening approaches, Chen et al. [7] proposed policies

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

155058

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 9, 2021

https://orcid.org/0000-0002-3690-4621
https://orcid.org/0000-0002-7929-7470
https://orcid.org/0000-0003-1494-1138

H.-C. An, H. Yang: Fully Adaptive Stochastic Handling of Soft-Errors in Real-Time Systems

IEEE Access

that make hardening decisions while guaranteeing a relieved
fault-tolerance constraint called the (m, k)-firm guarantee by
Ramanathan [11]. This constraint demands that at least m
jobs among k consecutive task invocations are fault-free: i.e.,
faults in up to k — m jobs are tolerated. Chen et al. first
present the static hardening policy, which can be encoded
by a (0, 1)-vector called an (m, k)-pattern. In this pattern, 1’s
indicate the job instances executed with error correction and
0’s indicate the instances executed without error correction.
A static hardening policy simply follows what is indicated
by this pattern repeatedly. Naturally, the pattern must be of
length k and contain m number of 1’s. They then present
the dynamic hardening policy, which “lazily” follows an
(m, k)-pattern—when the policy sees a 0, it repeatedly exe-
cutes jobs with error defection only, and moves on to the
next position of the pattern only after a fault is detected.
Chen et al. [7] show that this lazy policy also satisfies the
(m, k)-constraint and is schedulable if the static counterpart
is schedulable.

Chen et al.’s policies, especially the dynamic policy, suc-
cessfully reduce the system’s overall resource utilization
compared to a fully (or indiscriminately) hardened system.
However, it is noteworthy that their dynamic hardening poli-
cies are much firmly tied to the static counterparts and have
almost identical behaviors as the static counterparts. In fact,
the only deviation from the static counterpart allowed to the
dynamic policy is that it can postpone its movement to the
next position within the (m, k)-pattern. However, this level of
similarity is not necessary. Once we establish the schedulabil-
ity of the system using the static counterpart, we can explore
many other hardening policies whose behaviors significantly
deviate from that of the static one. This will allow a hardening
policy to more flexibly adapt to the history of previous job
instances, such as what the hardening decisions were and
whether or not faults occurred.

Another aspect of Chen er al.’s policies [7] that leaves
room for improvement is its ‘“‘all-or-nothing” assessment
of reliability. In their model, the system is deemed reliable
if the imposed (m, k)-constraint is always satisfied by the
chosen policy. In other words, a system is evaluated to be
either completely reliable or just unreliable, whilst reliability
is often quantified by probabilities in more realistic mod-
els [10]. It was this simplified reliability model that forced
the optimization of resource usage in their work to be more
conservative than necessary.

In this paper, we propose a new method to design hard-
ening policies that are both adaptive and stochastic. Our
method will yield a policy that monitors the history of k& — 1
previous job instances and makes the hardening decision
on the k-th instance in an ‘“‘adaptive” manner. In order to
fully optimize the resource usage while meeting a proba-
bilistic reliability target, the hardening decision will be also
stochastic.

We will automatize the design of an optimal adaptive
stochastic policy by formulating it as a linear program
(LP). Due to the combined complexity of adaptiveness and

VOLUME 9, 2021

"I Task set information I

1
1
1
timing . (m,k)-constraints & | |
information har(dSe:énﬂg%des reliability target 1
(Sec. lI-A) : (Sec. 11-B2) i
1
T ex (m,k) pred
schedulability test |«
(Sec. V-A2)
l l A A 4
LP-based optimization mode scheduler/
(Sec. V-Al) decision | processor
I (u, d, c)
*----i Design-time optimization I’ fault history
(u, dy, de, C)

‘/f
adaptive stochastic random

hardening decision number
(Sec. V-B) generator

look-up table
(rtin Fig. 3)

pmm———————————
4

Run-time hardening
mode decision

T
\,

FIGURE 1. Overview of the proposed approach.

stochasticity, it is nearly impossible to manually design adap-
tive stochastic policies. We write the constraints of the LP
so that a feasible solution to the LP can encode an adaptive
stochastic policy that meets the given quantitative reliability
target. In fact, a solution can be directly interpreted as a
“look-up table” that specifies the hardening decision proba-
bility distribution as a function of the previous history. While
we could optimize any linear objective function with this LP,
in this paper, we choose to focus on minimizing the CPU
utilization.

Fig. 1 provides an overview of our approach. At the design
time, we begin with identifying the task set information such
as the periods (7T'), execution times (ex), (m, k)-constraints,
and reliability targets (p"?) of the tasks in a given system.
Section II describes our system model in further details.
We then verify the system schedulability under static policies
and solve LPs to find an optimal adaptive stochastic policy.
Section V-A1 presents this LP, and Section V-A2 shows how
the schedulability of the policy found by this LP is guaran-
teed. At the run time, hardening decisions are made in an
adaptive and stochastic manner by looking up a table. This
look-up table is defined by the variables of the LP (Fig. 3).
The run-time hardening mode decision takes as input the pre-
vious fault history and random numbers so that the decisions
can be adaptive and stochastic. Section V-B presents the full
details of this run-time algorithm. (See Algorithm 1.)

Before we present these technical details, Section III
briefly sketches the proposed approach in comparison with
Chen et al.’s [7], and Section IV presents some motivational
examples to illustrate how adaptive and stochastic policies
can better optimize resource utilization. After the proposed
approach is presented in Section V, we experimentally vali-
date our approach in Section VI. Finally, concluding remarks
are given in Section VII.

155059

IEEE Access

H.-C. An, H. Yang: Fully Adaptive Stochastic Handling of Soft-Errors in Real-Time Systems

TABLE 1. Comparison of the proposed method with previous works.

soft-error hardenin (m, k)- design-time
Previous work target system workload hardening UNE | error types > reliability target optimization
. policy constraint .
technique algorithm
cyber physical i
cloud system DAG with a . static or soft-error, MTTF w.r.t. .
Zhou et al. [12] . . . re-execution . hard-error, | no heuristics
(multiprocessor single deadline dynamic securit hard-errors
with DVFS) securly
satellite on-board Lo o
. periodic . . soft-error, quantitative w.r.t.
Kim and Yang [13] || computer . re-execution | static yes ad hoc
. multi-task set hard-error soft-errors
(uniprocessor)
real-time control eriodic static or all-or-nothing w.r.t
Chen et al. [7] application beto independent - soft-error yes & WL N/A
. multi-task set dynamic (m, k)-constraints
(uniprocessor)
1-ti 1 L . o .
real-time contro periodic . adaptive and quantitative w.r.t. linear
Proposed application . independent . soft-error yes : .
. multi-task set stochastic (m, k)-constraints | programming
(uniprocessor)

A. RELATED WORK

One of the particularly remarkable related work is due to
Santini et al. [14]. Most of the existing studies on soft-error
hardening, including this paper, assume that the under-
lying operating system is fault-free, and concentrate on
application-level hardening decisions. Therefore, in order to
adopt these studies in an actual system, we need to have the
operating system hardened as well. Santini et al. [14] pro-
posed to harden real-time operating systems via duplicated
kernel data structures. This nicely complements the existing
literature and this paper.

In Table 1, we focus on previous studies that aim at improv-
ing reliability through a systematic deployment of soft-error
hardening techniques in real-time systems, and compare them
with the proposed method while highlighting its difference
from the others.

Zhou et al. [12] proposed a hardening optimization method
for multiprocessor cyber-physical cloud systems that sup-
port dynamic voltage and frequency scaling (DVES) [15].
In addition to soft-errors, they also consider hard-errors!
and security. DVFS is known to create a trade-off between
soft-errors and hard-errors [16], which Zhou et al. [12] opti-
mizes using heuristics. The biggest difference between this
result and the others in Table 1 lies in the workload model.
Zhou et al. [12] considers workloads represented by single
directed acyclic graphs (DAGs), whereas the other papers
consider periodic multi-task sets. Due to this difference in the
model, the challenges in their hardening optimization have
completely different flavors from those in the other papers.

Kim and Yang [13] presented how Chen et al.’s static
method [7] can be applied to a satellite on-board computer
system with re-execution-based hardening technology. Simi-
larly to Zhou et al. [12], they consider hard-errors, optimizing
the mean time to failure (MTTF) [17] subject to a given
soft-error rate constraint. This optimization uses an ad hoc
method based on domain-specific knowledge. The method

'Hard-errors refer to permanent failures of a system, as opposed to
soft-errors.

155060

for example considers the ambient temperature in making its
hardening decisions.

On the other hand, Chen et al. [7]’s model is very sim-
ilar to the proposed method’s. Aside from the differences
already discussed in this section, one more distinction lies in
the optimization methods. The proposed method uses linear
programming as the underlying optimization engine.

All these results in Table 1, except for Zhou er al. [12],
target uniprocessor systems. However, it is now becoming
more plausible to run real-time workloads on multiprocessor
systems. For example, Ali ef al. [18] considered schedul-
ing in cloud datacenters and Khan er al. [19] studied the
migration-aware scheduling of mixed workloads of periodic
and aperiodic tasks. It will be interesting and necessary
to apply the proposed approach to multiprocessor systems,
which we leave as a future direction. We will further discuss
this topic in Section VII.

B. OUR CONTRIBUTION

We summarize the contribution of the proposed method as
follows:

o The proposed method yields hardening policies that are
adaptive and stochastic. This enables us to improve the
CPU utilization compared to Chen et al.’s [7] methods.

o We allow quantitative reliability targets to be specified.
This is in contrast to the reliability targets of the other
works.?

o The proposed method uses LP as the underlying opti-
mization method. The optimization procedure is auto-
mated with an LP that explores the huge design space
of adaptive stochastic policies.

2The MTTF target considered by Zhou et al. [12] is defined by hard-errors,
i.e., permanent failures of the system. Kim and Yang [13] treats individual
soft-errors, not (m, k)-violations, as reliability violations. Both Chen et al. [7]
and the proposed method defines reliability violation as (m, k)-violations,
although they differ in that Chen et al. is based on all-or-nothing assessment
whereas the proposed method allows quantitative assessment.

VOLUME 9, 2021

H.-C. An, H. Yang: Fully Adaptive Stochastic Handling of Soft-Errors in Real-Time Systems

IEEE Access

Il. SYSTEM MODEL
In this section, we review the model of Chen et al. [7] and
define our extension to the model.

A. REAL-TIME TASK SETS

We consider a system that consists of n periodic tasks,
denoted by 71, .. ., 7,. Each periodic task t; is associated with
its invocation period 7; and considered to have the implicit
deadline. That is, the relative deadline of task 7; is equal
to 7;. As in Chen et al. [7], all tasks are independent and
scheduled under the preemptive rate-monotonic (RM) policy
where static fixed priorities are assigned according to the
period of the task, i.e., a shorter period results in a higher task
priority.

B. SOFT-ERROR HANDLING
1) TASK HARDENING
Both Chen et al. [7] and the proposed method are not spe-
cific to any soft-error handling techniques. Without loss of
generality in the choice of hardening techniques, a task is
assumed to be executed in one of the following three modes:
unreliable (u), error-detecting (d), and error-correcting (c).
Let ex/, exfl , and ex{ such that ex;’ < exlfl < ex; respectively
denote the execution time of 7;’s job when executed in these
three modes. Let f and fid denote the probability that a fault
occurs during an unreliable and error-detecting execution of
the job, respectively.

Chen et al. [7] consider two possible ways of executing
a job in the error-correcting mode: reliable execution (RE)
and detection and recovery (DR). DR is an opportunistic
way. In DR, when a job is designated to be executed in the
error-correcting mode, we run the job with error detection
first, check whether a fault occurred, and re-run it with error
correction only if a fault occurred. Since some hardening
techniques require significantly more time correcting errors
than detecting them, this could be effective compared to RE,
a straightforward way. In RE, if a job is to be executed in the
error-correcting mode, we run it with error correction right
away. Since both Chen et al.’s approach and the proposed
method are not specific to a particular soft-error handling
technique, we can handle DR simply by re-defining ex{
accordingly. Therefore, in what follows, we will not describe
the proposed method separately for DR and RE, in favor of
simplicity of presentation.

2) (m, k)-CONSTRAINT AND RELIABILITY TARGET

For each task t;, an (m;, k;)-constraint and a reliability target
p:? are specified. The (m;, k;)-constraint is that at least m;
of k; consecutive jobs must be fault-free (either because they
were executed in the error-correcting mode or we were just
fortunate that no fault occurred). Consider the probability that
this (m;, k;)-constraint is violated at any given job, and our
goal is to keep this probability as low as p. 7, the reliability

target.

VOLUME 9, 2021

TABLE 2. Notation for system parameters.

Symbol Description
n Number of tasks
(mg, k;) | (m, k)-constraint of 7
i Fault probability of 7; (unreliable mode)
f f Fault probability of 7; (error-detecting mode)
ex; Execution time of 7; (unreliable mode)
ex‘ii Execution time of 7; (error-detecting mode)
exs Execution time of 7; (error-correcting mode)
p; 7 Reliability target of T;

T; Invocation period of 7;

We will incorporate both (m;, k;) and p.? into our LP
formulation to ensure that the designed policy meets this
reliability target.

Table 2 summarizes the notation for system parameters.

Ill. OVERVIEW OF THE PROPOSED APPROACH
In this section, we present an overview of our hardening
policy in comparison with Chen et al. [7].

A. CHEN et al.'s HARDENING POLICIES

First, let us briefly review the hardening policies proposed
by Chen et al. [7]. An (m, k)-pattern is defined as a
k-dimensional (0, 1)-vector containing exactly m number of
1’s. Given an (m, k)-pattern, Chen et al.’s static policy iterates
through the pattern one position at a time, and executes each
job in the error-correcting mode if the “current” position of
the pattern contains a 1 and unreliable/error-detecting if 0.
The policy returns to the beginning of the pattern when it
reaches the end.

Their dynamic policy is very similar to the static one except
that, when the pattern says 0, the dynamic policy executes
the job in the error-detecting mode while advancing to the
next position only if the error-detecting execution suffers
a fault. If no fault occurs, it stays at the same position of
the pattern. Chen er al. [7] show that this dynamic policy
satisfies the (m, k)-constraint as well. Its schedulability is
established via the corresponding static policy that interprets
0 as error-detecting. If this static counterpart is schedulable,
the dynamic policy also is schedulable.

Although both policies of Chen et al. are not tied to
a particular (m, k)-pattern, they considered two static pat-
terns borrowed from Quan and Hu [20]: R- and E-patterns.
In an R-pattern, error-correcting executions happen in a row
at the end of the pattern, whereas in an E-pattern they
are distributed as evenly as possible. For instance, when
(m, k) = (3, 10), the corresponding R- and E-pattern respec-
tively are (0,0,0,0,0,0,0,1,1,1) and (0,0,0,1,0,0,
1,0,0,1).

155061

IEEE Access

H.-C. An, H. Yang: Fully Adaptive Stochastic Handling of Soft-Errors in Real-Time Systems

Z : soft-error =k : corrected soft-error

A AZ A AZ A S V- V-
o Fm e e sl |
A A i A;:\”:é deadline A A
| § | ¥ k™ violated .

01011 60 7071 120 180 240

(a) Chen et al.’s static policy with the R-pattern

i 1 el e d® Bt
A A O E A i A
oLk | P | | ¥ y

0 101 60 100 101 120121 180 190 191 240

(b) Chen et al.’s static policy with the E-pattern

Mt et] et ol et A el
A A i A GOA A A i A i A A i A
|k [I S l, TLE [| ¥ | ¥ I

10 11 60 70 71 120 160 161 190191 240

(c) Chen et al.’s dynamic policy with the E-pattern

0 1011 60 70 71 130 131 190°191

(d) An adaptive hardening:
error-correcting if two previous jobs are faulty

FIGURE 2. Hardening decisions of the first motivational example task set, consisting of two tasks 7; and z,. Real-time requirements are satisfied
in all cases except for (a), whilst the CPU utilization differs. The error-correcting mode is triggered twice in (b) & (c), and only once in (d). See

Section IV for further discussion.

B. PROPOSED APPROACH

Our approach aims at designing a fully adaptive, stochastic
hardening policy. An adaptive stochastic policy can be con-
sidered simply as a look-up table: for each job of t;, the
“trace” of the last k; — 1 jobs determines (the probability
distribution of) the hardening mode of the current job. The
trace of a past individual job can be one of the following four
values:

o ‘“‘the job was executed in the unreliable mode”’,

« ‘“‘the job was executed in the error-detecting mode and
no fault occurred”,

« ‘“‘the job was executed in the error-detecting mode and a
fault occurred”, and

« ‘“‘the job was executed in the error-correcting mode”.

For each combination of k; — 1 traces, the look-up table spec-
ifies a probability distribution over {u, d, c}. The run-time
hardening policy is as simple as choosing one of these three
execution modes according to the probability distribution set
by the table. All the optimization effort is made during the
design time, when solving an LP to determine this look-up
table.

Since we aim at finding a stochastic policy, it is sensible
to consider its steady state. Roughly speaking, a steady state
is a state where the probability distribution of the policy’s
“behavior” does not change over time. For example, imagine
a very simple stochastic policy which begins in the unreliable
mode and switches back and forth between the unreliable and
error-correcting modes with probability 1/10 for each job.
Let X; be the probability that the i-th job is executed in the
unreliable mode, and we have that X; = 1, X, = 9/10, X3 =
(9/10)> + (1/10)> = 82/100, and so on. However, rather
than this transient behavior, it is often the “asymptotic” or
steady-state efficiency of real-time systems that one is more
interested in, since these systems tend to operate for a very
long time. (In the previous example, we have lim;_ X; =
1/2.) As such, our LP will describe the steady-state behavior
of a hardening policy.

155062

TABLE 3. System parameters (adaptiveness example, see Table 2).

ki mg fr fE ex? exd ext pit Ty

1 6 2 03 03 10 10 30 0 30
T2 1 1 03 03 05 05 1 0 60

As in Chen et al. [7], the proposed approach can be used
with an arbitrary (m, k)-pattern. In fact, we will use the same
method as Chen et al. in ensuring the schedulability of the
hardening policy, which is letting the static counterpart guar-
antee the schedulability of our policy. To this end, we will
add constraints to the LP that ensures any feasible solution
yields a hardening policy that is schedulable as long as the
static counterpart is. One of the nice implications of this
approach is that we can optimize one task at a time, without
having to simultaneously optimize all tasks. This makes our
approach scalable even for systems with a large number of
tasks.

IV. MOTIVATIONAL EXAMPLES

In this section, we present motivational examples that high-
light the effectiveness of adaptive and stochastic hardening
policies.

A. AN ADAPTIVE POLICY DEVIATING FROM

THE STATIC COUNTERPART

Consider a system with two tasks. Table 3 shows the param-
eters we chose for this simple system to illustrate the power
of adaptiveness. Since (my, k) = (1, 1), we have no other
choice for 1p than always executing in the error-correcting
mode. The question therefore narrows down to the hardening
policy of ;. It is easy to observe that the system is not
schedulable if the R-pattern is adopted. Fig. 2(a) shows that
the third job of 7, misses its deadline when both tasks start at
time offset # = 0. We thus adopt the E-pattern in our example.
Using the results of Chen et al. [7, Lemma 1] based on [21],

VOLUME 9, 2021

H.-C. An, H. Yang: Fully Adaptive Stochastic Handling of Soft-Errors in Real-Time Systems

IEEE Access

TABLE 4. System parameters (stochasticity example).

. . req A
ki omi frfE exl exd exf p*t T

T1 3 2 03 03 3 10 10 007 10

it is easy to prove that the system is indeed schedulable when
the E-pattern is used.
Fig. 2(b) shows the execution of the two tasks when

the static hardening policy of Chen et al. [7] is used. The

total CPU utilization js 10HO3010H10430 4 L~ 57295,
Fig. 2(c), on the other hand, shows the execution when their
dynamic hardening policy is used. An easy calculation shows
that the expected CPU utilization of this policy is 50.4%.
Both policies satisfy the (m, k1)-constraint. For the scenario
presented in Fig. 2 where soft-errors occur in the 2nd, 4th,
6th, 7th, and 8th jobs of 71, we can observe that both policies
ensure that at least two out of any six consecutive jobs of t;
are fault-free. The dynamic policy is schedulable as long as
its static counterpart is. (See [7].)

However, as we noted earlier, the dynamic policy is not the
only policy whose schedulability can be automatically guar-
anteed from that of the static one. Following is a simple exam-
ple of such an adaptive (non-stochastic) policy. For each job
of 71, we consider just the last two jobs. If both suffered faults,
we execute the current job in the error-correcting mode.
Otherwise, we execute it in the error-detecting mode. Note
that this policy satisfies the (m, k1)-constraint. Moreover,
we can show that its schedulability automatically follows
from that of the static counterpart. This policy achieves the
expected total CPU utilization of 39.3%.

This example demonstrates that an adaptive hardening
policy that is allowed to deviate from the static counterpart
can bring significant improvement in efficiency. Fig. 2(d)
depicts how this policy would work for the same scenario as
in Fig. 2(c). In contrast to Chen et al.’s dynamic policy which
chooses the error-correcting mode at the 5th and 8th jobs of
71, the adaptive policy triggers the error-correcting mode only
once at the 8th job.

B. NECESSITY OF STOCHASTIC POLICIES

Now we present an example to show how hardening decisions
can be made stochastically. We keep this example as simple
as possible in the interest of presentation. In fact, our example
consists of a single task whose parameters are shown in
Table 4. The system is trivially schedulable.

3Note that the expected number of error-detecting jobs until a fault is
including the last faulty job itself. We have that the expected total CPU
g 10+30+ 53 10430
(g +1+g5+1-30
4The expected number of error-detecting jobs until two consecutive faults
is ﬁ(& +1)= %O, including the last two faults. The expected total CPU
130.10+30+13%-10+30

A1+ 50 41):30

1
03’

utilization is + é ~ 0.504.

utilization is therefore + 61—0 ~ 0.393.

VOLUME 9, 2021

TABLE 5. An adaptive stochastic hardening policy.

prob. dist. for current mode
Last two traces
u d c
(u,u) 0 0 1
(u, €) 1 0 0
(c,u) 5/11 0 6/11

Imagine a policy that executes one job in every three in
the error-correcting mode and the others in unreliable. While

this policy has the total CPU utilization of 3310 = 53,39,

the probability that a job violates the (mp, k1)-constraint is

(fH? = 0.09 > p|*. This policy is therefore unacceptable.
On the other hand, if we execute two jobs in every three in
the error-correcting mode and the remaining in unreliable,
we ‘“overshoot™ the reliability target by making the proba-
bility zero, at the expense of a higher total CPU utilization
of 76.7%.

Now consider the following (non-adaptive) stochas-
tic hardening policy: for each job, execute it in the
error-correcting mode with probability 1/2 and the unreliable
mode with probability 1/2, regardless what happened in the
past. The pr(gbability tl}lat ajob \l/liolates the (my, k1)-constraint
is now (g)(%)ﬁ—(g)(%)z(l —%) = 0.06075 < p?, meeting
the reliability target. The average total CPU utilization is
65%. This example shows how a system could benefit from
a stochastic hardening policy.

C. A FINAL EXAMPLE

Finally, we will use the previous example (Table 4) to illus-
trate how an LP solution looks, before we rigorously present
our LP in Section V-A. The main goal of this part is to provide
an intuitive overview. Therefore, we will use a simplified
form of solutions that slightly differs from the actual form
of the LP solutions but better exposes the intuition.

Table 5 summarizes an adaptive stochastic hardening pol-
icy for the system. For example, if the second-to-last job
was executed in the error-correcting mode and the last was
in unreliable, in order to determine the execution mode of the
“current” job, we look up the last row of the table. This row
instructs us to choose the unreliable mode with probability
5/11 and the error-correcting mode with 6/11. Note that the
table shows only three combinations of the last two traces,
since the other traces will never be needed.

When the policy is at the steady state, the probability that
the last two traces of an arbitrary job are (u, u) is calculated to
be 5/27. (We omit the detailed calculation.) The probability
that the last two traces are (u, ¢) is 11/27, and (c, u) is 11/27.
Now, for example, in order for the “last two traces” of the
next job to be (u, u), it must be the case that the last two traces
of the current job was (c,) and we decide to execute the
current job in the unreliable mode. The probability that this
happens is (11/27) - (§/11), which is indeed equal to 5/27,

155063

IEEE Access

H.-C. An, H. Yang: Fully Adaptive Stochastic Handling of Soft-Errors in Real-Time Systems

Minimize E

t_(k—1))--st—1€T,a0€A

ao
€L Tt (j_1)sest—1,a0)

subject t0 | Tt _yy,.t 1,00 = 0, for all forbidden Tt (h_1y,et—1,000 | (3)
E : ﬂ-t—(k—m,m,t—mu,ao = E Tt _yeest—2,us th(kfl)a o at72 S T7
ap€A t_r€T
d
Z Tt (hmtyrerost=2,desao = § E , Tt eyt —2,d> VE_(k—1),---,t—2 €T,
ap€EA t_L€T
d
D Teoryptozidnigo = L= FD) D Mpiads V1o toa €T, (b)
apEA t_reT
: : Ft,(k,l),“.,t,%c,ao = § Tt _joyenist—2,C5 th(ktfl)? coo at—2 S T7
ap€EA t_LeT
e
E F(t—(k—l)a-"at—laaO)Trt,(k,l),...,t_l,ao <p q7 (c)
t_(k—1))--st—1€T,a0€A
E : Tt (k—1)s-ost—1,80 — 1,
t,(k,,l),...,t_leT,aoEA
Tt (k—1)s--rt—1,a0 >0, Vt,(kfl), oo t_1€T,a9 € A.

FIGURE 3. The LP to design hardening policies (solved at the design time). See Table 2 for the system parameter notation.

consistent with the fact that this is a steady state. Repeating
similar arguments verify that the given probability distribu-
tion is indeed a steady state.

A job is deemed to violate the (m, k)-constraint if, out of
the last k jobs including the current one, strictly more than
k —m are faulty. The probability that any given job at a steady
state violates the (m, k)-constraint can now be calculated as
follows: (5/27) - (0.3)> 4+ (11/27) - (0.3)> + (11/27) - (5/11) -
(0.3)*> = 0.07, showing that the reliability target is met.

V. PROPOSED METHOD

In this section, we propose a method to design an adaptive
stochastic hardening policy. First, we formulate the search for
an efficient hardening policy as an LP, which is to be solved
at the design time. (Section V-A). The constraints of this LP
ensure that the produced policy meets the reliability target
and guarantees schedulability. At the run time, the execution
mode decision is made stochastically as per the probability
distribution table produced by the LP. Section V-B describes
this run-time process.

A. DESIGN-TIME OPTIMIZATION
We present the LP in Fig. 3.

e Part (@) of the LP is the constraints that guarantee
schedulability. In Section V-A2, we will describe in
details which variables are “forbidden” and how this
ensures schedulability.

o Part (b) is the steady-state constraints. Section V-Al
explains how a solution to the LP can be interpreted as
a hardening policy in its steady state.

« Part (C) encodes the reliability target. We will explain
this part at the end of Section V-Al.

155064

Recall that we can optimize one task at a time. In what
follows, we will focus on a single given task and omit the
subscript i unless necessary.

1) LP VARIABLES AND STOCHASTIC CONSTRAINTS

As the hardening policy needs to act adaptively according
to the (m, k)-constraint, it will consider the “trace” of the
last k — 1 jobs to determine its next ““action’. The trace of
each individual job is represented by an element of the set
T :={u, d,, d., c}, which encodes the decision made for that
job and its outcome. If the trace of a job is u, this means it
was executed in the unreliable mode. If a job was executed
in the error-detecting mode, this is represented by d,, (if no
fault occurred) or d, (if a fault occurred). If the trace of a job
is ¢, this means that it was executed in the error-correcting
mode. The decision made by the policy for the current job is
denoted by u, d, and c, each representing the unreliable, error-
detecting, and error-correcting modes. Let A := {u, d, ¢} be
the set of these three.

Consider a time point in a steady state. Let TCt_e_tyoemnt_1.a0
be the marginal probability that the last k — 1 traces are
t_(k—1), - - - » t—1 and the policy chooses ag as the decision for
the current job. They become the variables of the LP. Since
7 is a joint probability distribution of (t_x—1), ..., t—1, ap),
it must be a stochastic vector. This is ensured by the last two
constraints of the LP.

In order to ensure that feasible solutions encode steady
states, we write LP constraints that say the marginal proba-
bility distribution of the last traces of an arbitrary job must
be equal to that of the previous job. Note that the marginal
probability that the last k — 1 traces are f__1), ..., 7]
IS > uped Tt g_1y,.t_1.a0- Therefore, we must have the

VOLUME 9, 2021

H.-C. An, H. Yang: Fully Adaptive Stochastic Handling of Soft-Errors in Real-Time Systems

IEEE Access

following constraints satisfied in order for & to be a steady
state.

Case 1: If t_1 = u, the decision for the previous job must
have been u. The (k—1)-st job before the previous job does not
affect the last k — 1 traces of the current job. Hence, we must
have ZaoeA Tt _(k—1yseet 2 00 = Zt_keT Ty _g,...t_pu Tor all
t_(k-1),...,t—2 € T.In other words, the constraint states
that the marginal probability that the last k — 1 traces are
t_(k—1), - - - » 1—1 must be consistent, whether it is calculated
using the probability distribution of the last traces of the
current job (the left-hand side) or of the previous job (the
right-hand side).

Case 2: If t_1 = d,, the decision for the previous job
must have been d. Since an error-detecting execution suffers a
fault with probabilityfd, we have ZaoeA Tt ety 2 deag =
fd Zt,keT Tt gyntad forallz_g_py,...,t 2 €T.

The other two constraints of part (b) follow from analo-
gous arguments.

Finally, let us consider the reliability target. Recall that
a job is deemed to violate the (m, k)-constraint if, out of
the last k£ jobs including the current one, strictly more than
k — m are faulty. Let F(t_4_1), ..., -1, ap) denote the con-
ditional probability that a job violates the (m, k)-constraint,
conditioned on the event that the last k — 1 traces are
f_(k—1), ..., -1 and the decision for the current job is ao.
To obtain a closed-form formula for F', let U be the number
of w’s from f_(_1),...,7_1 and E be the number of d.’s.
That is, we have U = [{j | t—; = u,1 < j < k — 1}
and £ = |{j | t-j = d.,1 < j < k — 1}]. For each
u in the trace, the job suffers a fault with probability f“.
If ag € {u, d}, the current job suffers a fault with probability
f9. Suppose that a fault did occur. Then the current job
violates the (m, k)-constraint if at least k — m — E of the E
number of u’s suffer faults. If the current job is not faulty,
the current job violates the constraint if at least k — m —
E + 1 are faulty. We thus have F(r_4_1),...,7-1,a0) =

fﬂo ZiU:max(O,k—m—E) (Lz/)(fu)l(l - fu)U_i + 1 - fao)

U U 4 .
Y immaxk—m_itn ()FA = OV I ap = o,
we have F(t_g-1),...,t-1,a0) = ZiU:max(O,kfmeJrl)

([l])(f i1 — U=t With this definition of F, the uncondi-
tional probability that a job violates the (m, k)-constraint can
be written as Zt,(k,l),.‘.,t,leT,aoeA F(t_¢-1),...,1-1,a0)
nI,(kfl),‘..,t,1 ,ag

This explains how part (c) of the LP encodes the reliability
target. We remark that this is an inequality constraint. If the
LP discovers that an optimal solution does not have to cause
as frequent (m, k)-constraint violations as allowed by the reli-
ability target, it can choose to produce a policy that violates
the constraint less frequently than p"9.

2) SCHEDULABILITY CONSTRAINTS

Let ® = (¢o,...,dc—1) € {0,1}% be an (m, k)-pattern.
We will write the LP constraints which ensure that the policy
output by the LP is schedulable as long as Chen et al.’s static
counterpart is. These constraints are in a very simple form,

VOLUME 9, 2021

which declares some variables as forbidden and requires them
be zero.

Chen et al. [7] used the following lemma to verify system
schedulability. We will base our analysis on the same lemma.
Let W;(£) be the maximum total execution time of £ consec-
utive jobs of t;. For simplicity, let ¥;(0) := 0.

Lemma 1 ([7], [21]): Suppose that the tasks of the system
are indexed in the order of priority: Ty < --- < T,,. The entire
system is schedulable under the preemptive RM scheduling if,
for all i,

i—1
3t e, T;] W)+ \I/,»([%]) <t
j= !

Intuitively speaking, our goal now is forbidding an appro-
priate set of variables to ensure that W;(£) of our policy is no
greater than that of the static counterpart, for all i and £.

Let x(£) be the maximum number of 1’s in a consecutive
length-¢ subsequence of the infinitely repeated version of
®, ie., x(£) := maxsen Zf;ol @(s+j) mod k- If we can show
that the maximum number of error-correcting executions in
£ consecutive jobs under our policy is no more than yx(£),
we will have the desired conclusion since 0 < exl?‘ < exid <
ex{ . (See the proof of Lemma 2.) This motivates the following
definition of w, but the definition does not involve infinitely
repeated versions anymore for a technical reason.

For t_4-1,....,t-1 € T, ap € A, and £ ¢
{1,...,k}, let wl—(k—l)sm;t—lvao(e) be the maximum num-
ber of error-correcting executions in a consecutive length-¢
subsequence of the sequence (f_—1),...,?—1, ap), not its
infinitely repeated version. That is, Ot__yy.ont_y.apl) =
maxs.—k—n<s<i—¢ | | ts4j = ¢,0 < j < £ — 1}|, where
to := ag for notational convenience. It is now simple to
describe the forbidden variables. We declare Tt 1yseennt 1,0
forbidden if and only if there exists some £ € {1, ..., k} such
that x (£) < w(£).

We now show that our LP produces a schedulable policy.

Lemma 2: Suppose that a given system is schedulable
under Chen et al.’s static policy. If we design the hardening
policy of every task by solving the given LP, the system
remains schedulable.

Proof: Consider an arbitrary task 7;. Let \Ilf (©) (and
W7 (£)) be the maximum total execution time of £ consecutive
jobs of 7; under the hardening policy produced by the LP (and
Chen et al’s static policy, respectively). As was also observed
in [7], we have W?(€) = | £/k;] W] (k;) + V7 (£ mod k;). This
is because W* is defined by a static policy of period k;, and
we do not necessarily have the same equality for \I/f .

We claim that \Ilf (£) < Wi(¢) for all £ € N. Note that this
together with Lemma 1 yields the desired conclusion.

When the hardening policy produced by the LP is followed,
for any ¢ € {I,...,k;} consecutive jobs, the number of
jobs executed in the error-correcting mode is at most w(£').

SLater in the proof of Lemma 2, we use a slightly weaker condition than
this. We present a stronger version here because it does not affect the space
of feasible policies.

155065

IEEE Access

H.-C. An, H. Yang: Fully Adaptive Stochastic Handling of Soft-Errors in Real-Time Systems

(Proof. Consider these ¢’ jobs and the preceding k; — £’ jobs.
Let ag be the decision made for the last of these &; jobs and
t_(k;—1), - - - » =1 be the trace of the first k; — 1 jobs. We then
have that Ty 1yseemsl—1:00 is not forbidden.® Therefore, the
number of error-correcting executions during the last £ jobs
is at most w(¢").) We have

WP < (ki — o@))ex! + w(€)exs

(ki — x(€ex + x(£)ext
= @i,

IA

where the first inequality follows from 0 < ex; < exld < exf

and the second from x(¢') > w(¢) since Tty yoet 1,0 1
not forbidden. Since this inequality holds for any £’ consecu-
tive jobs, we have W/'(€) < | £/k; | ¥ (k;) + WP (¢ mod k;) <
L€/ki] Wi (ki) + W}(€ mod k;) = W(€) for any £ € N,
completing the proof. g

B. RUN-TIME HARDENING DECISION

Once we solved the LPs at the design time, the run-time pro-
cedure for hardening decision is simple. Without any ““opti-
mization” computation, we can simply follow the stochastic
policy dictated by the LP solution. The run-time procedure is
easily derived from the following observation.

With a slight abuse of notation, let __1), ..., f—1 denote
the event that the (k — 1)-st, ..., first trace from the last
are f_(x—1), . . . , 11, respectively. Similarly, let ap denote the
event that the decision for the current job is ag. From the
definition of conditional probabilities, we have

Prt_g—1), ..., t-1, a0l
Prlao | t—(k—1)s -+, =11 = Prr_o -
—(k=1)> +++» 11
_ Tt _(k—1)s--sl—1,00
ZaoeA Tt _(k—=1)»--l—1.d0

This shows that the following run-time procedure ensures
that the marginal probability distribution indeed becomes 7.

1) PER-JOB PROCEDURE
Consider an arbitrary job. Let 7__1), ..., t_1 be the trace of
the last k — 1 jobs. For the current job, we execute it

« in the unreliable mode with probability

Trt—(k—l)nnyt—l‘u/E Tt (j—1)s-erl=1,00
ap€A

« in the error-detecting mode with probability

”t—<k—1)s-~»t—1,d/ § :”t—(k—n,---,t—hao’ and
apeA

« in the error-correcting mode with probability

”t—(k—1>,--.,t_1,c/§ TCt_(k—1ysemst—1,a0 "

apeA

6Technically speaking, we need to argue here that probability zero events
never happen in our policy, but this will be clear from Section V-B.

155066

Algorithm 1 Run-Time Procedure to Make Hardening Deci-
sions for a Single Task

1: initialize the last traces: choose 7__1),...,7_1 with
probability ZaoeA Tt etysent 12000

2: for each job do

3 sample a random number R ~ U|[0, 1)

4 ifR < =l phen

ageA Tt (f—1).-1-1.40

5 execute the current job in the unreliable mode

6: fo < u

7. elseif R < Tyt et then

Z”OGA Tt (f—1)-sl—1:00

8 execute the current job in the error-detecting mode
9 if the execution was fault-free then
10: to < dy,
11: else
12: to < d.
13: end if
14: else
15: execute the current job in the error-correcting mode
16: o < ¢
17: end if
18 (F—(h=1)s -+ > 1-1) < (I—k=2), - - -» 10)
19: end for {until the system halts}

2) INITIALIZING PROCEDURE
It still needs to be specified how the ““last traces’ are defined
for the first job. In fact, a careful initialization is crucial to
ensure that the system is jumpstarted into the steady state
from the beginning. When the system starts, we define the
last traces f_(x—1), . . ., -1 by sampling them from the prob-
ability distribution {ZaoeA Tt e—tyront—1 G0 Y —(k—tysnnt—1 - T AL
is, the probability that the (k — 1) last traces are initialized
as f_(k—1), ..., 01 18 ZaoeA Tt _1ynt_1.ao- This stochastic
initialization removes transient behavior from the system and
enables us to immediately achieve the steady-state optimum
computed by the LP.

Algorithm 1 summarizes the run-time procedure described
so far.

VI. EVALUATION
In this section, we evaluate the effectiveness of the proposed

method using various task sets.

A. SYNTHETIC BENCHMARKS

1) GENERATION OF BENCHMARKS

First, we applied the proposed method to a set of benchmarks
synthesized using the procedure of Chen et al. [7]. Although
we randomly synthesized these benchmarks, we used the
same set of parameters and algorithms as [7]. We briefly
describe them in what follows. Further discussions on the
generation of the benchmarks can be found in Chen et al. [7].

« Each benchmark was defined by two parameters: the
sum of the nominal “peak utilizations”” of all jobs, and

TThe peak utilization of a task is defined as its utilization when every job
of the task runs in the error-correcting mode.

VOLUME 9, 2021

H.-C. An, H. Yang: Fully Adaptive Stochastic Handling of Soft-Errors in Real-Time Systems

IEEE Access

; (a) R-Pattern, RE (high m/k) , (b) R-Pattern, RE (low m/k)

, (c) E-Pattern, RE (high m/k) : (d) E-Pattern, RE (low m/k)

g o mke0s g o z o micos z o mke05
=0. - m/k=0.
%osl| v mk=08 gos | o M /k=gg 208/| v mke08 208 03
g m/k=0.7 2 : 2 m/k=0.7 a
S S Q Q
o o o o
\CJO.6 \C/O.S \C'O.G / Z 0.6
ie] k<] K] / ie]
T T T y T
N N N N
=04 Z 04 =04 =04
5 5 5 5
02 02 02 02—
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Utilization (Chen et al.) Utilization (Chen et al.) Utilization (Chen et al.) Utilization (Chen et al.)
; (e) R-Pattern, DR (high m/k) , (f) R-Pattern, DR (low m/k) ; (g) E-Pattern, DR (high m/k) ; (h) E-Patten, DR (low m/k)
y=X y=Xx y=X —y=X
=) o mk=0.9 El o mk=0.5 =) © mk=0.9 l 0 mk=0.5
08l v mk=0.8 & 08 A mk=0.3 308 v mk=0.8 G 08 m/k=0.3
s mk=0.7 s 2 mk=0.7 8
° : ° o — o
Los Los Los Los
c c c c
.9 k<] i) ie]
=04 =04 =04 g =04
=) 5 3 / =)
0.2 0.2 0.2 0.2
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Utilization (Chen et al.) Utilization (Chen et al.)

Utilization (Chen et al.) Utilization (Chen et al.)

FIGURE 4. CPU utilization of the proposed method compared to Chen et al.’s dynamic policy.

the ratio m/k. The former was varied from 60% to 100%,
in the increment of 1%. The latter was chosen as one of
the following three values: 0.7, 0.8, and 0.9. For each of
the 41-3 = 123 combinations of the total peak utilization
and m/k, we generated 10 benchmarks. Each benchmark
in turn consisted of 10 tasks.

« Once the total peak utilization was specified, the peak
utilization U; of each job t; was determined by using
the UUniFast [22] method. The task periods 7; were
generated so that they were distributed in three buckets
[1, 101, [10, 100], and [100, 1000] as evenly as possible.
As Chen et al. indicated, this “exponential” distribution
was suggested by Davis et al. [23]. Since our model
considers implicit deadlines, the relative deadline of t;
is set equal to T;.

o The error-correcting execution time of t; was set as
exi" := T;Uj;, in accordance with the definition of the
peak utilization. The other execution times were set as
ex;' := ex{ /3 and exl.d := 1.21 - ex'. Chen et al. selected
these parameters to emulate the behavior of existing
hardening techniques such as SWIFT+PROFiT [24].
They set the fault probabilities as f}* = fid =0.3.

e In order to determine the (m;, k;)-constraint, we first
chose k; uniformly at random from [3, 10] and then set
m; according to the desired value of m/k, rounded to the
nearest integer.

o The only parameter that was not explicitly discussed
by Chen et al. [7] is the reliability target. Since their
model had no quantitative reliability targets, for fair
comparison, we set pfeq := 0 for all jobs.

VOLUME 9, 2021

2) SIMULATED UTILIZATIONS OF SYNTHETIC BENCHMARKS
For each benchmark, we first checked its schedulability (see
Lemma 1). For each schedulable benchmark, we simulated
and measured the performance of Chen et al.’s dynamic
policy and the proposed policy twice, once with R-patterns
and then with E-patterns. The simulation was performed for
10° - max; 7; units of time. For the sake of generality, the
release offset r; of each task t; was randomly selected from
[0, T;) in each simulation. The whole evaluation was first
performed for the reliable execution (RE) technique, and
then repeated for detection and recovery (DR). The latter
evaluation involved accordingly modifying ex€.

Fig. 4(a) shows the simulation results of the schedulable
benchmarks with R-patterns and RE. Each point corresponds
to a single benchmark, whose x-coordinate is the utiliza-
tion achieved by Chen ef al.’s dynamic policy [7] and the
y-coordinate is by the proposed method. Interestingly, if we
focus on the points with m/k = 0.9 (marked as blue circles in
Fig. 4(a)), we can see that there was no improvement. (Since
faults were randomly injected, small fluctuation appeared.)
This is because, when m/k = 0.9, each task t; can tolerate
up to only one fault in every k; consecutive frames. When
this is the case, there is nothing much better to do than
immediately starting error-correction as soon as we detect
a fault and continuing until this fault goes beyond the time
horizon of k; frames. This is what Chen et al.’s dynamic pol-
icy already does. Hence, for this special case, there cannot be
any improvement. Since we observed some improvements for
m/k = 0.8 and 0.7, this suggested that the relation between
the performance and m/k needs to be more carefully studied.

155067

IEEE Access

H.-C. An, H. Yang: Fully Adaptive Stochastic Handling of Soft-Errors in Real-Time Systems

To this end, we added two more choices of m/k to our test set.
In total, m/k were chosen as one of the following five values:
{0.3,0.5,0.7, 0.8, 0.9}. See Fig. 4(b) for the results on these
additional benchmarks.®

Fig. 4(c)-(d) show the results with E-patterns. Since
E-patterns distribute 0’s more evenly, schedulability could be
guaranteed for a more limited set of policies than R-patterns,
and improvements tended to be smaller. Fig. 4(a)-(d) con-
firmed that, under RE, the proposed method improved the
total CPU utilization, and that the improvement became
greater when m/k was smaller. The improvement for
R-patterns was by 7.16% on average, whereas 2.80% for
E-patterns. In the best benchmark, the improvement was by
as high as 18.45%.

Fig. 4(e)-(h) shows the results when the evaluation was
repeated for DR. The improvement was by 6.41% for
R-patterns on average and 3.39% for E-patterns. The largest
improvement for a benchmark was 13.35%. On one hand,
improvements tended to be smaller than RE because the
opportunistic behavior of DR reduces ex{ in expectation.
This implies that lowering the number of error-correcting
executions became relatively less “profitable’’. On the other
hand, the set of schedulable benchmarks were quite different
between RE and DR. Therefore, even though we used the
same set of benchmarks for RE and DR, a direct comparison
can be misleading. Out of the 2,050 benchmarks,® 2,014
were schedulable with R-patterns under RE (and 2,019 with
E-patterns). On the contrary, only 1,067 (and respectively
1,141) benchmarks were schedulable with R-patterns (and
E-patterns) under DR. Such poor performance of DR in
schedulability was reported also by Chen ez al. [7].

a: EDF SCHEDULING

Finally, we measured the performance of the proposed policy
when EDF scheduling [25] was used in conjunction with it.
While the proposed method assumes RM scheduling (see
Section V-A2), the optimality of EDF scheduling'® implies
that the actual implementation of our system can also use
EDF without harming the system schedulability. Fig. 5 shows
the evaluated performance of the proposed policy under EDF
scheduling. As can be expected from the work-conserving
nature of both EDF and RM, the results showed almost equal
improvements in both scheduling methods. While the average
improvement was by 4.93%, the largest improvement in a
single benchmark was by 18.33%.

8We note that the CPU utilization was generally lower both under
Chen et al.’s dynamic policy and under the proposed method when m/k is
smaller. This is because a smaller value of m/k implies that more jobs can
be executed without error correction, resulting in lower CPU usage.

9We had 41 points of peak utilization and five points of m/k ratio. For
each of these 41 - 5 settings, we generated 10 benchmarks. The total number
of benchmarks was therefore 41 -5 - 10 = 2, 050.

10This can be proven from a typical exchange argument and mathematical
induction used to show the optimality of greedy algorithms. We refer the
interested readers to Jackson [26], although the settings slightly differ in their
details.

155068

(a) R-Pattern, RE, EDF (b) E-Pattern, RE, EDF

=) =)
(7] [}
808 208
Q Q
e o
D\;ove DC'O.G
c c
il S
Noa Soa
=) =)

0.2 4— 0.2

0.2 0.4 0.6 0.8 1 0.2 04 0.6 0.8 1
Utilization (Chen et al.) Utilization (Chen et al.)
(c) R-Pattern, DR, EDF (d) E-Pattern, DR, EDF

=) =) y=x
Q Q
gos 8os o m/k=0.9
g s v mk=0.8
a & mik=0.7
=06 =08 m/k=0.5
2 2 A mik=0.3
Noa Soa
3 3

0.2 0.2

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Utilization (Chen et al.) Utilization (Chen et al.)

FIGURE 5. CPU utilization of the proposed method under EDF scheduling.

B. ADDITIONAL EVALUATIONS

While we synthesized an extensive set of benchmarks using
Chen et al.’s method, there remain aspects that are not
adequately covered by this set. In this section, we com-
plement the previous section by presenting two additional
evaluations.

In the rest of this section, fixing the total nominal peak
utilization and m/k at the midpoints (80% and 0.7, respec-
tively), we focus on ten benchmarks among those gener-
ated in Section VI-A1. All evaluations were performed with
R-patterns and RE.

1) HARDENING WITH RE-EXECUTION

The proposed method is independent from specific harden-
ing techniques adopted by the system, but benchmarks from
Section VI-Al assumed a particular hardening technique.
Kang et al. [10] proposed an error-correction technique that
is based on re-executions. It can be modeled by scaling down
ex;' and exlfl so that 3 - exlfl = ex{ (where the re-execution
degree is 2). We evaluated the proposed method with these
modified benchmarks.

Fig. 6 shows the results, confirming that our approach
yielded improvements under this varied setting too, as was
expected. On average, the improvement over Chen et al.’s
dynamic policy was by 6.80%, which was slightly larger than
the improvement for these ten benchmarks in Section VI-A
(5.76%). This is due to the fact that ex{ was relatively larger
than the other two execution times in the new benchmarks,
and therefore saving error-correcting executions had higher
impact on the CPU utilization.

2) QUANTITATIVE RELIABILITY TARGETS

Another important aspect that was missing from the bench-
mark of Section VI-Al is the quantitative reliability target.
For each task in the ten benchmarks, we randomly set its

VOLUME 9, 2021

H.-C. An, H. Yang: Fully Adaptive Stochastic Handling of Soft-Errors in Real-Time Systems

IEEE Access

0.6 T

, ,
I Chen et al.
0.55 I Proposed |

I
~
o

Utilization
o
»

0.35
0.3
0.25

0.2

1 2 3 4 5 6 7 8 9 10
Synthesized Benchmarks (peak util.=80%, m/k=0.7)

FIGURE 6. CPU utilization of re-execution hardening benchmarks.

TABLE 6. Rates of (m;, k;)-constraint violations by reliability targets.

Target
@)

Average | 0.974x 1072 0.969x1073 0.941x10~% 0.928x10~°

1.000x10~2 1.000x 1073 0.997x10~* 0.998 x10~°
Min. |0.578x 1072 0.018x10~3 0.010x10~* 0.000x10~5

Median

Max. |[1.019x1072 1.354x1073 1.170x10~% 1.800x10~°
Std. Dev. | 0.087 x 1072 0.158 x 103 0.238 x10~% 0.325x10~°

reliability target as one of the following values: p;? €
{10_2, 1073, 1074, 10_5}. We repeated this random genera-
tion five times, obtaining 50 benchmarks in total.

We simulated and monitored the (m, k)-constraint viola-
tion rates of the proposed method for these benchmarks. Since
faults were randomly injected and the reliability target could
be as small as 107, a longer simulation was necessary. The
simulation was performed for 10° - max; T; units of time.
The 50 benchmarks contained 500 tasks in total, which had
different reliability targets. We classified them according to
their reliability targets and calculated the statistics shown in
Table 6. The results confirmed that the proposed method met
the reliability target. As our evaluations were based on ran-
domly injected faults, fluctuations were naturally observed in
all cases, especially those with small reliability targets.

C. CASE STUDY
Finally, as a case study, we evaluated the proposed method
using the parameters profiled by Chen et al. [7] from an
existing real-time control application. They used a robot [27]
on LEGO Mindstorms NXT with an ARM7 microprocessor
and profiled three periodic real-time control tasks with fault
injection. For completeness’ sake, we show the entire set of
parameters in Table 7. We fixed 7 in the error-correcting
mode, as in [7]. We verified that the system was schedulable,
and all simulations were performed for 107 - max; T} units of
time.

For a comparison with Chen et al.’s dynamic policy,
we first evaluated the proposed method for p;eq = 0. Table 8

VOLUME 9, 2021

TABLE 7. System parameters [7] (case study).

Task
Name ki mi fi & eay ex? ex§ pc? T
71 |Balance 1 1 n/a n/a n/a n/a 435 0 4000

72| Path 10 3 03 0.3 99.267 102.598 291.139 0,105 1000
73 |Distance 5 3 0.3 0.3 99.933 103.93 173217 0,105 3000

TABLE 8. Evaluation results (case study).

Chen et al.’s Proposed Proposed
Dynamic ;1 =0) (pg’e?? =10"9)
. 25.116% 25.112%
CPU Utilization 27464% (8.548% improv.) (8.565% improv.)
(m, k)-const. 0 0 1.090 x 10~5
viol. rate of T2
(m, k)-const, 0 0 0.960 x 10~5
viol. rate of 73

shows that the proposed method successfully improved the
CPU utilization by 8.548%. In addition to this, we also eval-
uated the proposed method with py? = pi¥ = 1073. The
results confirm that the proposed method met the reliability
targets. The improvement in the total CPU utilization did not
significantly differ from that when p"? = 0, which was as
expected from the very small value of p"®? = 107>,

STATISTICS ON THE LP SOLUTION TIME

We conclude this section by reporting the computation times
required to solve the LPs in all the evaluations of Section VI.
We solved all LPs on a Naver Cloud Platform Server [28] with
32vCPUs and 128GB of RAM, using the barrier method of
IBM ILOG CPLEX 20.1.0. We selected the barrier method as
it is known to perform well on LPs with sparse columns [29].
On average, solving one LP took 56.685 seconds, with the
standard deviation of 216.926 seconds. The minimum run-
ning time was 0.006 seconds, whereas the maximum was
1,335.811 seconds. The median was 0.229 seconds. This
shows that solving most of the LPs required very short
amount of time, and even the LP that took the longest time
was solved in less than 25 minutes.

In the proposed method, all the optimization happens at the
design time, and therefore we can afford a significant amount
of time on optimization. Nevertheless, the above statistics
show that the computational load was already manageable in
our evaluations.

VII. CONCLUDING REMARKS

In this paper, we proposed a method to design an adaptive
stochastic hardening policy for real-time systems. We allow
the behavior of the policy to significantly deviate from
the static counterpart. We use an LP to explore the huge
space of adaptive stochastic policies whose schedulabili-
ties are guaranteed. The proposed approach lets quantitative
reliability targets be specified, departing from the previous

155069

IEEE Access

H.-C. An, H. Yang: Fully Adaptive Stochastic Handling of Soft-Errors in Real-Time Systems

all-or-nothing viewpoint. We demonstrated that the pro-
posed method brings improvements in CPU utilization while
meeting reliability targets through an extensive evaluation.
We note that the run-time decision process can be easily
implemented by table lookups, as all the optimization efforts
are made at design-time while solving the LP.

We will conclude this paper with some discussion on prac-
tical considerations and/or future directions of research.

While all the computational effort for optimization occurs
at the design time, it may still be desirable to reduce the
design-time computational load in some use cases. Depend-
ing on the platform and/or error-detecting/correcting technol-
ogy used, ex may be close to ex?. In this case, the unreliable
mode may become “less useful” because unreliable and
error-detecting execution times are close, but an unreliable
execution has the obvious disadvantage that a fault cannot be
detected. We could then instruct the LP not to use the less
useful mode at all, by declaring any variables whose trace
contains u as forbidden. This would shrink the size of the
LP and help reducing the computational load. An additional
heuristic we have is the following. If two tasks in a system
have the same parameters (m, k), p'?, and the ratio ex" : ex?
ex®, their LP optimal solutions must be the same, so we do not
need to solve the LP a multiple number of times.

Another practical consideration is related to steady states.
It may be the case that, starting from one trace, one cannot
arrive at another trace in some LP solution. If we want
every trace with nonzero LP variable value to be eventually
observed, we may intermittently re-initialize the policy with
small probability.

Finally, while the proposed method focuses on the hard-
ening policy on a uniprocessor, it would be necessary and
interesting to extend the method to multiprocessor systems so
that the hardening policy can be co-optimized with processor
mapping. This is because today’s real-time workloads are
becoming more likely to be processed on top of multipro-
cessor systems. In particular, the hardening decision can be
co-optimized with the energy dissipation of multiprocessor
systems through task-to-processor mapping and DVFS [18].
For that, the system model used in this work would need
to be extended to capture the trade-off among frequency,
reliability, and schedulability. Another important aspect that
the hardening decision can be co-optimized with is the task
migration between processors [19] as it would remarkably
affect the schedulability and reliability.

We believe further investigation on these future topics
would be of great interest.

REFERENCES

[1] P.Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-power
embedded operating systems,” in Proc. 18th ACM Symp. Operating Syst.
Princ., Oct. 2001, pp. 89-102.

[2] V. Devadas and H. Aydin, “On the interplay of voltage/frequency scaling
and device power management for frame-based real-time embedded appli-
cations,” IEEE Trans. Comput., vol. 61, no. 1, pp. 31-44, Jan. 2012.

[3] V. Chaturvedi, H. Huang, S. Ren, and G. Quan, “On the fundamentals of
leakage aware real-time DVS scheduling for peak temperature minimiza-
tion,” J. Syst. Archit., vol. 58, no. 10, pp. 387-397, Nov. 2012.

155070

[4]

[5]

[6

—

[71

[8]

[9

—

(10]

(11]

[12]

[13]

(14]

(15]

[16]

(17]

(18]

[19]

(20]

[21]

(22]

(23]

[24]

(25]

D. Rai, H. Yang, 1. Bacivarov, J.-J. Chen, and L. Thiele, “Worst-case
temperature analysis for real-time systems,” in Proc. Design, Autom. Test
Eur., Mar. 2011, pp. 1-6.

G. Chen, N. Guan, K. Huang, and W. Yi, “Fault-tolerant real-time
tasks scheduling with dynamic fault handling,” J. Syst. Archit., vol. 102,
Jan. 2020, Art. no. 101688.

A. Burns, R. Davis, and S. Punnekkat, “Feasibility analysis of fault-
tolerant real-time task sets,” in Proc. 8th Euromicro Workshop Real-Time
Syst., Jun. 1996, pp. 29-33.

K.-H. Chen, B. Bonninghoff, J.-J. Chen, and P. Marwedel, “‘Compensate
or ignore? Meeting control robustness requirements through adaptive soft-
error handling,” in Proc. 17th ACM SIGPLAN/SIGBED Conf. Lang., Com-
pil., Tools, Theory for Embedded Syst., New York, NY, USA, Jun. 2016,
pp. 82-91, doi: 10.1145/2907950.2907952.

P. Pop, V. 1zosimov, P. Eles, and Z. Peng, “‘Design optimization of time-and
cost-constrained fault-tolerant embedded systems with checkpointing and
replication,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 17,
no. 3, pp. 389-402, Mar. 2009.

C. Bolchini and A. Miele, “Reliability-driven system-level synthesis for
mixed-critical embedded systems,” IEEE Trans. Comput., vol. 62, no. 12,
pp. 2489-2502, Dec. 2013.

S.-H. Kang, H. Yang, S. Kim, I. Bacivarov, S. Ha, and L. Thiele, “Static
mapping of mixed-critical applications for fault-tolerant MPSoCs,” in
Proc. 51st Annu. Design Autom. Conf. Design Autom. Conf. (DAC),
Jun. 2014, pp. 1-6.

P. Ramanathan, “Overload management in real-time control applications
using (m, k)-firm guarantee,” IEEE Trans. Parallel Distrib. Syst., vol. 10,
no. 6, pp. 549-559, Jun. 1999.

J. Zhou, J. Sun, M. Zhang, and Y. Ma, “Dependable scheduling for
real-time workflows on cyber—physical cloud systems,” IEEE Trans. Ind.
Informat., vol. 17, no. 11, pp. 7820-7829, Nov. 2021.

B. Kim and H. Yang, “Reliability optimization of real-time satellite
embedded system under temperature variations,” IEEE Access, vol. 8,
pp. 224549224564, 2020.

T. Santini, C. Borchert, C. Dietrich, H. Schirmeier, M. Hoffmann,
O. Spinczyk, D. Lohmann, F. R. Wagner, and P. Rech, “Effectiveness
of software-based hardening for radiation-induced soft errors
in real-time operating systems,” in Proc. Int. Conf. Archit.
Comput. Syst. Springer, 2017, pp.3-15. [Online]. Available:
https:/link.springer.com/chapter/10.1007%2F978-3-319-54999-6_1

S. Herbert and D. Marculescu, “Analysis of dynamic voltage/frequency
scaling in chip-multiprocessors,” in Proc. Int. Symp. Low Power Electron.
Design (ISLPED), 2007, pp. 38-43.

J. Zhou, J. Sun, X. Zhou, T. Wei, M. Chen, S. Hu, and X. S. Hu,
“Resource management for improving soft-error and lifetime reliability of
real-time MPSoCs,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 38, no. 12, pp. 2215-2228, Dec. 2019.

Y. Xiang, T. Chantem, R. P. Dick, X. S. Hu, and L. Shang, “System-level
reliability modeling for MPSoCs,” in Proc. 8th IEEE/ACM/IFIP Int. Conf.
Hardw./Softw. Codesign Syst. Synth. (CODES/ISSS), 2010, pp. 297-306.
H. Ali, M. S. Qureshi, M. B. Qureshi, A. A. Khan, M. Zakarya, and
M. Fayaz, “An energy and performance aware scheduler for real-time tasks
in cloud datacentres,” IEEE Access, vol. 8, pp. 161288-161303, 2020.

A. A. Khan, A. Ali, M. Zakarya, R. Khan, M. Khan, I. U. Rahman, and
M. A. A. Rahman, “A migration aware scheduling technique for real-
time aperiodic tasks over multiprocessor systems,” IEEE Access, vol. 7,
pp. 2785927873, 2019.

G. Quan and X. Hu, “Enhanced fixed-priority scheduling with (m,k)-
firm guarantee,” in Proc. 21st IEEE Real-Time Syst. Symp., Nov. 2000,
pp. 79-88.

A. K. Mok and D. Chen, “A multiframe model for real-time tasks,” IEEE
Trans. Softw. Eng., vol. 23, no. 10, pp. 635-645, Oct. 1997.

E. Bini and G. C. Buttazzo, ‘“Measuring the performance of schedula-
bility tests,” Real-Time Syst., vol. 30, nos. 1-2, pp. 129-154, May 2005.
[Online]. Available: https://doi.org/10.1007/s11241-005-0507-9

R. I. Davis, A. Zabos, and A. Burns, “Efficient exact schedulability tests
for fixed priority real-time systems,” IEEE Trans. Comput., vol. 57, no. 9,
pp. 1261-1276, Sep. 2008.

G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I. August, and
S. S. Mukherjee, ‘““Software-controlled fault tolerance,” ACM Trans.
Archit. Code Optim., vol. 2, no. 4, pp. 366-396, Dec. 2005. [Online].
Available: https://doi.org/10.1145/1113841.1113843

C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 4661,
1973. [Online]. Available: https://doi.org/10.1145/321738.321743

VOLUME 9, 2021

http://dx.doi.org/10.1145/2907950.2907952

H.-C. An, H. Yang: Fully Adaptive Stochastic Handling of Soft-Errors in Real-Time Systems I E E EACCGSS

[26] J.R.Jackson, “Scheduling a production line to minimize maximum tardi-

ness,” Univ. California, Los Angeles, CA, USA, Manage. Sci. Res. Project
Res. Rep. 43, 1955.

[27] Y. Yamamoto. NXTway-GS (Self-Balancing Two-Wheeled Robot)

Controller Design. Accessed: Sep. 13, 2021. [Online]. Available:
https://www.mathworks.com/matlabcentral/fileex change/19147-nxtway-
gs-self-balancing-two-wheeled-robot-controller-design

[28] NAVER Cloud Corp. NAVER Cloud Platform. Accessed: Oct. 14, 2021.

[Online]. Available: https://www.ncloud.com/

[29] IBM Corporation. Introducing the Barrier Optimizer—IBM Documen-

tation. Accessed: Oct. 14, 2021. [Online]. Available: https://www.ibm.
com/docs/en/icos/20.1.0?topic=optimizer-introducing-barrier

HYUNG-CHAN AN (Member, IEEE) received
the B.S. degree in computer science and engi-
neering from Seoul National University, Seoul,
South Korea, in 2006, and the Ph.D. degree in
computer science from Cornell University, Ithaca,
NY, USA, in 2012.

From 2012 to 2016, he was a Postdoctoral
Researcher at the Ecole Polytechnique Fédérale
de Lausanne (EPFL), Lausanne, Switzerland.
& He is currently an Assistant Professor with

-

the Department of Computer Science, Yonsei University, Seoul. His
research interests include combinatorial optimization and its application to
engineering problems.

VOLUME 9, 2021

HOESEOK YANG (Member, IEEE) received the
B.S. degree in computer science and engineering
and the Ph.D. degree in electrical engineering
and computer science from Seoul National Uni-
versity, Seoul, South Korea, in 2003 and 2010,
respectively.

He was a Postdoctoral Researcher with
D-ITET, ETH Ziirich, Zirich, Switzerland,
from 2010 to 2014. He joined Ajou University,
Suwon, South Korea, as an Assistant Professor,
in 2014, where he is currently an Associate Professor. His current research
interests include HW/SW codesign, reliability- and temperature-aware opti-
mization/analysis of multiprocessor system-on-chip (MPSoC), embedded
systems design with non-volatile memories, and deep learning for embedded
systems.

155071

