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ABSTRACT Charging coordination is employed to efficiently serve electric vehicle (EV) charging requests
without overloading the distribution network. Parameters such as parking duration, battery state-of-charge
(SoC), and charging amount are provided by EVs to the charging coordination center to schedule their
charging requests efficiently. The existing literature assumes that the customers always provide correct
information. Unfortunately, customers may provide false information to gain higher charging priority.
Assessing the impact of cheating behavior represents a significant and open problem. Herein paper, the
impact of providing false information (e.g., parking duration) on the efficiency of the charging coordination
mechanism is investigated. The charging coordination strategy is formulated as a linear optimization
problem. Two different objectives are used to assess the impact of the objective function on the amount
of performance degradation. Our investigations reveal that the degradation of the efficiency of the charging
coordination mechanism depends on the percentage of cheating customers and cheating duration versus the
typical parking duration. In addition, the impact of cheating behavior increases with the number of deployed
chargers. Thus, the severity of the cheating impact will increase in the future as more fast chargers are
allocated in charging networks.

INDEX TERMS Electric vehicle charging, electric vehicles, energy management, optimization, scheduling,
smart grids.

NOMENCLATURE
n Number of time slots.
τ Duration of a time slot.
T Set of all time slots.
V Set of all vehicles.
v Index of a vehicle.
t Index of a time slot.
T arr
v Arrival time of the vehicle v.
T dep
v Departure time of the vehicle v.
T park
v Parking duration of the vehicle v.
S initv Initial state of charge for the vehicle v.
Sdesv Desired state of charge for the vehicle v.
Sfinalv The state of charge for the vehicle v after time

slot n.
Bmax
v Battery capacity.
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approving it for publication was Seyyed Ali Pourmousavi Kani .

ρv Maximum charging rate.
ηv Charging efficiency.
Dv,t Charging decision variable.
B Set of all busses in the network.
b Index of a bus.
PGb,t Active power supply at bus b at time slot t .

QG
b,t Reactive power supply at bus b at time slot t .

PDb,t Active power demand at bus b at time slot t .
QD
b,t Reactive power demand at bus b at time

slot t .
PRb,t Active residential power demand.
QR
b,t Reactive residential power demand.

Pmax
b,t Maximum active power limit.
Pmin
b,t Minimum active power limit.
Qmax
b,t Maximum reactive power limit.

Qmin
b,t Maximum reactive power limit.

vb,t Voltage value at bus b at time slot t .
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Vb,t Voltage magnitude.
6 φb,t Voltage angle.
Vmin, Vmax Voltage limits.
rb,b′ Resistance between buses b and b′.
xb,b′ Reactance between buses b and b′.
C Set of all charging stations.
Cb Set of charging stations connected to bus b.
Vc Set of vehicles at charging station c.

I. INTRODUCTION
Currently, there is a significant drive towards adopting
electric vehicles (EVs) for transportation. EVs represent a
promising solution due to their reduced emission of green-
house gases compared to internal combustion engine vehi-
cles, potential to relieve the dependence on fossil fuels and
increase the energy efficiency of vehicles, and reduced cost
of electricity compared to oil energy [1]. Despite these
benefits, there are still significant technical limitations to the
widespread adoption of EVs.

Large-scale adoption of EVs brings new challenges to the
power grid. Specifically, the charging characteristics of the
customers are highly correlated since most customers tend
to charge their vehicles during evening hours when they are
home, or duringworking hours (8:00am-5:00pm) [2]. In addi-
tion, if all customers charge their vehicles during the same
time interval, the power grid will be overloaded. Furthermore,
[3] points out that even a 10% EV market penetration could
increase the peak power demand in the grid by 17.9%, while
a 20% EV penetration could result in a 35.8% increase in the
peak power load.

One way to cope with the increasing charging demands is
to upgrade the power grid capacity by installing additional
power generation units. However, this translates into an addi-
tional cost that is used primarily to cope with the peak loads
that last only for short periods during the day. Hence, a more
cost-effective solution is highly desirable. A cost-effective
solution is attained via the temporal coordination of the
EV charging requests. A temporal EV charging coordination
scheme helps to flatten and shift the peaks in the daily load
profile of a power grid and to prevent the grid’s congestion.
A temporal EV charging coordination scheme is usually
formulated as an optimization problem that aims to sched-
ule when to serve the EV charging requests such that the
customers’ satisfaction level is maximized subject to the con-
straints from EVs and the power grid. The customer-related
parameters are provided in the charging request, which
is sent before arriving at the charging station. A charg-
ing request normally provides to the EV charging coor-
dination mechanism customer-related information, such as
parking duration, battery state of charge (SoC), and charging
amount.

Psychological factors, such as the perceived fairness of
the strategy, could affect the users’ willingness to engage in
grid-to-vehicle (G2V) charging coordination. People tend to
be biased, perceiving the fairest strategy as the one that is
closer to their self-interests. This self-serving bias can lead

to disagreement when trade-offs must be made among the
interests of different parties [4]. As such, the customers may
provide false information in order to gain higher charging
priority. The cheating customers will be in front of the other
customers in the charging queue. In addition, other psycho-
logical factors relevant to G2V include the users’ perceptions
on violating their privacy via exchanging the information
necessary for charging coordination (their time window of
staying at a given location for charging). No data provides
an estimate of the percentage of such cheating customers.
Our objective in this paper is to investigate the impact of
such a cheating behavior on the effectiveness of the charging
coordination strategy for different percentages of cheating
customers (to conclude a threshold below which such behav-
ior does not cause significant impact while above which a
significant impact is observed). Also, we aim to carry out
this study at various parking scenarios (at offices, homes,
and restaurants/shopping malls) to investigate the impact of
the cheating behavior versus the parking duration. Finally,
we explore the impact of the cheating behavior versus the
charging rate.

A. RELATED WORK
There are two general approaches to schedule EV charging
requests. The first approach is a centralized solution. The
second approach coordinates the EV charging requests in a
distributed manner. The centralized strategy provides better
control over the system parameters, while the distributed
strategy offers more flexibility for customers and breaks the
optimization problem into smaller local problems.

Centralized EV charging coordination mechanisms are
proposed in [5]–[12]. The authors in [5] present an opti-
mization strategy that reduces the grid congestion while
considering the customer demands. A vast amount of works
in the literature employs pricing strategies for charging
coordination. For instance, [6] reports a method to deter-
mine the optimal charging prices and to route the EVs to
the appropriate charging stations, where customers choose
their priority level and charging amount through a menu
of services. Another strategy is developed in [7] based on
a multi-follower Stackelberg game. The work in [8] pro-
poses a charging and discharging coordination mechanism
that forecasts the future EV power demand and relies on a
two-stage optimization unit. A heuristics-based EV charg-
ing coordination mechanism utilizing locally optimal greedy
choices in order to minimize both the total charging cost
and the peak load is presented in [9]. An EV charging
coordination mechanism that aims to flatten the load pro-
file is provided in [10]. The problem is formulated as a
finite-horizon dynamic programming and solved via a model
predictive control-based algorithm. The charging coordina-
tion problem is formulated as amixed-integer program in [11]
for day-ahead scheduling. Then, the precomputed schedules
are updated online with the newly received information.
A similar approach is used in [12] by employing a dynamic
stochastic linear programmingmethod. The proposedmethod
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aims to optimize the charging costs while considering the
variations in the system parameters.

Distributed EV charging coordination schemes are pre-
sented in [2], [13]–[19]. One of the reasons for using dis-
tributed charging scheduling systems is that they run multiple
local optimization algorithms in order to avoid processing
large amounts of data in a central point. A comprehensive
survey on EV distributed charging coordination schemes is
provided in [2]. An optimal iterative algorithm is proposed
in [13] in order to fill the valleys in the power load pro-
files. In [14], the authors modeled the charging coordination
mechanism as a non-cooperative game, in which the players
try to maximize their own payoffs, and the scheduling is
performed days in advance. A spatio-temporal direct vehicle-
to-vehicle (V2V) charging scheme is presented in [15]. The
authors propose a game-theoretic distributed EV charging
mechanism in [16]. The optimal solution is obtained by
employing the full Nash Folk theorem. A decentralized EV
charging coordination scheme is proposed in [17] to valley
filling and battery degradation cost reduction. The suggested
algorithm models the EV charging problem as a mean-field
game. Reference [18] proposes a distributed EV charging
coordination algorithm by decoupling the constraints in a
centralized charging coordination algorithm via a partial aug-
mented Lagrangian method. An EV charging coordination
scheme based on the transactive control scheme is proposed
in [19]. The study constructs a transactive market in which
the customers provide their power consumption targets and
response curves, and the aggregator schedules the customers
accordingly.

Some studies in the literature consider the uncertainties in
the arrival and departure times of the customers. The authors
in [20] provide a price-based charging coordination method
considering uncertainties in the system parameters. They
model a game minimizing the electricity cost of the utility
company and maximizing the revenue of the charging sta-
tions. In [21], the charging coordination mechanism is formu-
lated by a Markov decision process with unknown transition
probability. A model-free deep reinforcement learning-based
method is used for obtaining the optimal strategy. A two-stage
optimization algorithm is proposed in [22] to schedule the
EV charging requests considering the uncertainties in the
market prices and the EV mobility. The work in [23] tries
to minimize the mean waiting time for the customers while
considering the uncertainties in the arrival of EVs, availability
of renewable energy, the electricity price. These studies are
not sufficient to provide insights when cheating behavior
is considered. There is no available dataset in the literature
on the percent of cheating customers and the impact of this
amount on the system response. There are also no insights on
system response versus parking duration and system response
in terms of the number and the charging rate of the chargers.

One common assumption among all existing works in the
literature is that all customers provide true information, i.e.,
no customer cheats while providing the information needed

to solve the coordination problem. However, a customer may
cheat by reporting a shorter parking duration so that the
coordination strategy assigns a higher charging priority to
that customer. Such malicious and selfish behavior could
adversely affect the efficiency of the coordination algorithm.
In this paper, we aim to fill this gap by investigating the
impact of false input parameters on the performance of the
EV charging coordination strategy.

B. CONTRIBUTIONS
The contributions of this paper are summarized as follows:

• The behavior of the EV charging coordination mech-
anism is investigated in presence of the cheating cus-
tomers. This is done by studying the sensitivity of
the charging coordination strategy with respect to the
amount of deviation in the parking duration of the cus-
tomers. The analyses are performed comparatively by
formulating the EV charging coordination problem as
two different linear programs (LPs) with objectives that
try to maximize the average and minimum satisfaction
rates of the charging requests, where the satisfaction rate
is defined in terms of the battery SoC. The effects are
examined for different parameters, such as the ratio of
the cheating customers, cheating duration, actual park-
ing duration, charging power rate, and the number of
charging stations.

• The degradation in the customer satisfaction rate pro-
vided by the EV charging mechanism in the presence of
cheating behavior is evaluated via extensive simulations.
The simulation results suggest that the efficiency of the
charging coordination strategy is affected by both the
percentage of the cheating customers and the cheating
interval. We also concluded that the charging coordina-
tion strategy is less sensitive to cheating behavior under
the Minimum Satisfaction Rate (MSR) formulation, and
it is less prone to the cheating behavior when the actual
parking duration is long. We also verified that the charg-
ing rate and the number of charging stations in the
charging network are the other significant parameters
affecting the sensitivity to the cheating behavior.

The rest of the paper is organized as follows. The system
model is presented in Section II. The charging coordination
problem is formulated together with an optimal strategy, and
the sensitivity analysis that focuses on assessing the effect of
cheating behavior on the charging coordination efficiency is
discussed in Section III. The simulation results are presented
in Section IV. Finally, the conclusions are drawn in SectionV.

II. SYSTEM MODEL
In this section, we describe the system model for the charg-
ing coordination mechanism. First, we introduce the EV
charging coordination scheme and the related parameters.
Then, we provide the parameters related to the distribution
network.
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A. EV CHARGING REQUESTS AND COORDINATION
We study the temporal scheduling of EV charging requests for
a time window. Each customer arrives at a charging location
of his/her choice.

The scheduling of the charging requests is performed by
an aggregator. The aggregator behaves as a proxy between
the customer and the grid operator. The aggregator collects
the charging requests before the arrival of the customers and
tries to assign the charging time slots to each individual EV.
Time is divided into n slots of equal duration τ . The set of all
time slots is given by T .

Customers send a charging request prior to their arrival to
the charging station. The arrival and departure times to the
charging station are indicated in the charging request, and are
denoted by T arr

v and T dep
v , respectively, where T arr

v ,T dep
v ∈

{1, . . . , n}. The parking duration for the vehicle v is denoted
by T park

v . Thus,

T park
v = T dep

v − T arr
v . (1)

It is important to note that the time parameters represent
the time indices, not the absolute time values. That is, the time
parameters correspond to a charging time slot in the system
model.

The charging request also provides information about the
initial and the desired SoC values of the vehicle, which are
denoted as S initv and Sdesv , respectively. The SoC value of
vehicle v at time slot t is denoted by Sv,t . For the SoC rates,
the value 0 corresponds to a fully empty battery while the
value 1 corresponds to a fully charged battery. The final
SoC of the vehicle v is denoted as Sfinalv , which is the SoC at
the end of the whole time window, i.e., at the end of the
time slot n (Sv,n+1). The final SoC value is used to calculate
the success rate for the satisfaction of the charging requests.
A timewindow can assume any duration, e.g., we set 24 hours
for the simulations.

Each vehicle v is characterized by its battery capacityBmax
v ,

maximum charging rate ρv, and charging efficiency ηv.
There are two types of chargers in the market. The first

group consists of simple on-off controllers and assumes only
the discrete values 0 and 1. The second group of chargers
presents variable charging rates that are represented by con-
tinuous decision variables with values in the interval [0, 1].
The latter group provides more precise control over charging.
Therefore, we consider a variable rate charger in our study.
The charging decision for the vehicle v in time slot t is
denoted by Dv,t ∈ [0, 1].

B. DISTRIBUTION NETWORK MODEL
The set of buses in the distribution network is denoted by B.
The active and reactive power supply at bus b and time slot t
are represented by PGb,t and Q

G
b,t , respectively. The active and

reactive power demand (load) introduced by the EVs at bus
b in time slot t are denoted by PDb,t and Q

D
b,t , respectively.

The active and reactive power at each bus of the distribu-
tion network should be within the nominal range for proper

operation. Let Pmax
b,t and Pmin

b,t denote the maximum and the
minimum active power that can be delivered at the bth bus and
at time slot t , respectively. Similarly, Qmax

b,t and Qmin
b,t denote

the limits for the delivered reactive power. Note that PDb,t is
equal to the sum of the power rates of the vehicles that are
connected to the bus at a specific time instant. The active and
reactive components of the residential power load at a bus are
denoted by PRb,t and Q

R
b,t , respectively.

The voltage at bus b is represented by vb,t and it is
expressed as vb,t = Vb,t 6 φb,t , where Vb,t and 6 φb,t denote
the magnitude and angle of the complex voltage phasor,
respectively. For the nominal operation, the voltage values
should lie within the limits represented by the lower and upper
voltage values denoted by Vmin and Vmax, respectively. The
resistance and reactance between buses b and b′ of the distri-
bution network are denoted by rb,b′ and xb,b′ , respectively.

The EV charging stations are placed at different locations
within the distribution network, and each station is connected
to a specific bus in the distribution network. The set of all
charging stations is denoted by C and the set of charging
stations connected to the bus b is denoted by Cb. Finally,
we denote the set of all vehicles by V and the set of vehicles
at the charging station c by Vc. Each vehicle is located and
charged at a single charging station. Therefore, {Vc | c ∈ C}
is a partition of the set V .

III. PROBLEM FORMULATION
Next, we present the problem formulation by defining the
objective function and the constraints related to the distribu-
tion network and customers.

A. CONSTRAINTS
1) DISTRIBUTION NETWORK-RELATED CONSTRAINTS
The charging coordination strategy should yield to deci-
sions that satisfy the power flow equations. Herein paper,
we employ the linear power flow model introduced in [24].
Hence, the active and reactive powers at bus b and time t are
given by

Pb,t =
∑

b′∈B,b′ 6=b
α
(1)
b,b′ (Vb,t − Vb′,t )+ α

(2)
b,b′ (φb,t − φb′,t ),

∀b ∈ B,∀t ∈ T , (2)

Qb,t =
∑

b′∈B,b′ 6=b
α
(2)
b,b′ (Vb,t − Vb′,t )− α

(1)
b,b′ (φb,t − φb′,t ),

∀b ∈ B,∀t ∈ T , (3)

where

α
(1)
b,b′ =

rb,b′

r2b,b′ + x
2
b,b′
, α

(2)
b,b′ =

xb,b′

r2b,b′ + x
2
b,b′
, (4)

where rb,b′ and xb,b′ are the resistance and reactance values
between buses b and b′, respectively.
The total power consumption in the network is the sum

of the residential load and the power load introduced by the
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EV charging. Hence, we have∑
b∈B

PGb,t−
∑
b∈B

PDb,t−
∑
b∈B

PRb,t=0, ∀b ∈ B, ∀t ∈ T , (5)∑
b∈B

QG
b,t −

∑
b∈B

QR
b,t = 0, ∀b ∈ B,∀t ∈ T . (6)

The total power demand (by EVs) at a bus is the sum of the
charging powers of the vehicles connected to that bus:

PDb,t =
∑
c∈Cb

∑
v∈Vc

pv,t , ∀b ∈ B,∀t ∈ T , (7)

where pv,t is the power load for the vehicle v expressed as

pv,t = Dv,tρv, ∀v ∈ V,∀t ∈ T . (8)

The active and reactive power values should satisfy the
following limits:

Pmin
b,t ≤ P

D
b,t ≤ P

max
b,t , ∀b ∈ B,∀t ∈ T (9)

Qmin
b,t ≤ Q

D
b,t ≤ Q

max
b,t , ∀b ∈ B,∀t ∈ T . (10)

The voltage values at each bus satisfy the following
constraints:

Vmin
≤ Vb,t ≤ Vmax, ∀b ∈ B,∀t ∈ T . (11)

2) CUSTOMER-RELATED CONSTRAINTS
The customer-provided arrival and departure times at the
charging location satisfy:

1 ≤ T arr
v < T dep

v ≤ n, ∀v ∈ V. (12)

The initial and desired SoC values are bounded in the
interval [0, 1]. Hence,

0 ≤ S initv < Sdesv ≤ 1, ∀v ∈ V. (13)

We define the time-to-complete-charge (TCC) parameter
T ch
v as the time needed to achieve the desirable SoC. The TCC

value can be expressed in terms of the initial SoC and the
desired SoC as

T ch
v τρvηv = Bmax

v

(
Sdesv − S

init
v

)
, ∀v ∈ V. (14)

By rearranging the terms, it turns out that

T ch
v =

Bmax
v

(
Sdesv − S

init
v
)

τρvηv
, ∀v ∈ V. (15)

Vehicle v is not charged more than the requested value
since it is not feasible to charge the battery more than T ch

v .
Hence, the cumulative decision value for a vehicle satisfies∑

t∈T
Dv,t ≤ T ch

v , ∀v ∈ V. (16)

Vehicle v could not be charged for a total time period larger
than the provided parking duration. Therefore, the cumulative
decision value for vehicle v is less than or equal to the parking
duration, i.e., ∑

t∈T
Dv,t ≤ T

park
v , ∀v ∈ V. (17)

(16) and (17) could be combined into a single constraint as∑
t∈T

Dv,t ≤ min
{
T park
v ,T ch

v

}
, ∀v ∈ V. (18)

An EV can only be charged during the time period
between the arrival time T arr

v and departure time T dep
v . Hence,

the charging decision must be zero outside this interval.

Dv,t = 0, ∀t /∈ [T arr
v ,T dep

v ], ∀v ∈ V. (19)

In order to constrain the charging decisions to the parking
interval, we define Iv,t as an indicator matrix for the charging
intervals of the EVs

Iv,t =

{
1, if T arr

v ≤ t ≤ T
dep
v ,

0, otherwise.
, ∀v ∈ V. (20)

Hence, we have(
1− Iv,t

)
Dv,t = 0, ∀v ∈ V, ∀t ∈ T . (21)

Please note that we force Dv,t = 0 when Iv,t = 0, i.e., t is
not in the parking interval for the EV v.

Finally, the SoC Sv,t progresses over time as follows

Sv,t+1 = Sv,t + Dv,t
τρvηv

Bmax
v

, ∀v ∈ V,∀t ∈ T . (22)

B. CHARGING COORDINATION
In this subsection, we introduce the charging coordination
problem and discuss its solution methodology by exploiting
duality methods from linear optimization. We define two dif-
ferent objectives for the EV charging coordination scheme in
order to assess the impact of the selection of the objective on
the optimization problem. The objectives are defined as Aver-
age Satisfaction Rate (ASR) andMSR, which try tomaximize
the average and minimum charging satisfaction rates of the
customers, respectively. The ASR formulation aggressively
tries to maximize the average satisfaction rate without con-
sidering individual customer satisfaction rates. On the other
hand, the MSR formulation tries to provide a fair distribution
of electric charge among the customers by trying to maximize
the minimum customer satisfaction at the expense of a lower
average satisfaction rate.We study the impact of the customer
cheating on the performance of the EV charging mechanism
under both formulations in order to compare the susceptibility
of both formulations.

1) AVERAGE SATISFACTION RATE
(ASR)-BASED FORMULATION
In this formulation, the average satisfaction rate of the charg-
ing requests is used as a metric to quantify the efficiency
of the charging coordination strategy. This is defined as the
ratio of the amount of the final SoC Sfinalv to the requested
SoC Sdesv for each customer. Hence, the objective function is
defined in terms of the satisfied charging requests as follows:

Uavg =
1
Nv

∑
v∈V

Sfinalv

Sdesv
. (23)
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The objective function value is in the range [0, 1], where
Uavg = 0 corresponds to completely unsatisfied customers
(no charging request has been served) and Uavg = 1 corre-
sponds to fully satisfied charging requests.

We can rewrite the objective function as

Uavg =
1
Nv

∑
v∈V

Sfinalv

Sdesv

=
1
Nv

(∑
v∈V

1
Sdesv

(
n∑
t=1

τρvηv

Bmax
v

Dv,t + S initv

))
. (24)

Hence, we can express the objective function as

Uavg =
∑
v∈V

n∑
t=1

γvDv,t +9, (25)

where γv = τρvηv/NvSdesv Bmax
v and 9 = 1/Nv

∑
v∈V S

init
v /

Sdesv are constants.
The charging coordination problem is formulated as:

max
Dv,t

∑
v∈V

n∑
t=1

γvDv,t +9

s.t. (2), (3), (5), (7)− (11), (15), (18), (21) and (22)

Dv,t ∈ [0, 1], ∀v ∈ V, ∀t ∈ T . (26)

2) MINIMUM SATISFACTION RATE
(MSR)-BASED FORMULATION
In order to ensure fairness for each customer, we use an
objective function that maximizes the minimum charging
amount among the customers. Similarly, the satisfaction rate
for a customer v is defined as the ratio of the amount of
the final SoC Sfinalv to the requested SoC Sdesv . The objective
function is expressed as

Umin = min
v

Sfinalv

Sdesv
. (27)

Hence, the charging coordination problem is formulated
as:

max
Dv,t

min
v

Sfinalv

Sdesv
s.t. (2), (3), (5), (7)− (11), (15), (18), (21) and (22)

Dv,t ∈ [0, 1], ∀v ∈ V, ∀t ∈ T . (28)

The max-min problem (28) can be transformed to a max-
imization problem by introducing an auxiliary variable. Let
the variable W stand for a lower bound on the satisfaction
rate of each customer, i.e.,

W ≤
Sfinalv

Sdesv
, ∀v ∈ V. (29)

Hence, the maximum value of the variableW with respect
to the decision variables provides the solution to (28).

Therefore, the optimization problem can be rewritten in the
following form

max
Dv,t

W

s.t. W ≤
Sfinalv

Sdesv
, ∀v ∈ V,

(2), (3), (5), (7)− (11), (15), (18), (21) and (22)

Dv,t ∈ [0, 1], ∀v ∈ V, ∀t ∈ T , (30)

For both formulations of the optimization problem, the
objective functions are linear. Since all the constraints are also
linear, (26) and (30) are LPs and can be solved efficiently
using the interior point methods [25].

C. TOLERANCE OF THE COORDINATION STRATEGY TO
CHEATING BEHAVIOR
The battery parameters, such as the SoC and battery capacity,
and the other vehicle-related parameters, such as the charging
rate and efficiency, can be easily monitored by the charging
station coordinator. Hence, the customers are less likely to
provide false information about those parameters. On the
other hand, the time-related parameters provided by the cus-
tomers are more prone to cheating behavior. Consequently,
we investigate the impact of providing false information
about the time-related parameters. The problem is formally
defined as follows. We aim to find how the objective function
is affected if a customer lies about the departure time. That is,
what would be the difference in the objective function if the
time of departure changes, and hence, the parking duration
undergoes a variation:

T dep′
v = T dep

v −1T dep
v . (31)

The falsified parking duration is given by

T park′
v =

(
T dep
v −1T dep

v

)
− T arr

v = T park
v −1T dep

v . (32)

Define the vector of departure times as T dep. The entries of
the vector1T dep are nonzero for the cheating customers and
zero for the others. LetU∗i (T

park) denote the optimal value for
(26) and (30) with respect to the parking duration parameter
T park. The optimal value under a cheating scenario is given as
U∗i (T

park
−1T dep). Hence, the degradation in the satisfaction

rate metric is expressed as:

1U∗i (T
park) = U∗i (T

park)− U∗i (T
park
−1T dep). (33)

We will study the effect of the false information about the
parking duration numerically in the following section.

IV. SIMULATION RESULTS
Extensive simulations have been performed to evaluate the
performance of the proposed EV charging coordination
scheme in both the absence and presence of cheating cus-
tomers. First, we introduce the system setup common for
all simulations. In the subsequent subsection, we examine
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FIGURE 1. Schematic of the 33-bus system used in the simulations.

the system performance for the baseline setup, in which we
investigate the performance of the EV charging coordination
algorithm in the absence of the cheating customers. Next,
we examine the effect of the falsified information under
different system variables, such as the ratio of the number
of cheating customers to all customers, percent of deviation
in the parking duration, number of EV charging stations, and
the charging rate.

A. SYSTEM SETUP
The performance of the charging coordination strategy is
evaluated using a 33-bus system model. The bus system is
rated at 12.66 kV, where the base load is 3720 kW and
2300 kVAr [26]. The schematic of the bus system is shown
in Fig. 1.

Five charging stations are located at buses 10, 16, 25, 26,
and 27. The charging rate ρv is 72 kW, which is the charging
rate of the state-of-the-art fast chargers [27]. The charging
efficiency ηv is taken to be 0.9. The battery capacity of the
EVs is chosen to be 85 kWh, which is the battery capacity of
Tesla Model S [28]. The initial SoC and the desired SoC of
the EVs are uniformly distributed in the intervals [0.1, 0.3],
and [0.9, 1.0], respectively.

We have modeled the EV arrivals by using the EV charging
sessions data published for the city of Dundee [29]. The
dataset consists of the entries for EV charging sessions at
charge points throughout the city. We have obtained the EV
arrivals by calculating the average number of transactions for
a time period of 24 hours. Fig. 2 shows the arrival rates per
hour for a 24 hour time period. Themean arrival rate is further
scaled to adapt to our setup as well as analyze the effect of
the mean arrival rate. The parking duration values are chosen
randomly.

The decisions are made for 15 minute intervals over a total
time interval of 24 hours. The simulations are performed
using Python language, and the LPs are defined and solved
using CVXPY convex optimization library [30]. A summary
of the simulation parameters is provided in Table 1.

FIGURE 2. Average number of the EV arrivals per hour during 24 hours
according to the EV charging sessions dataset.

TABLE 1. Parameters used in the simulations.

B. NO CHEATING
First, we need to verify that the charging coordination strategy
works efficiently when there is no cheating behavior. The first
important parameter affecting the charging coordination per-
formance is the mean EV arrival rate to the charging stations.
Accordingly, the proposed strategies are tested under three
different conditions, which cover low to high EV arrival rates.
The average number of EV arrivals are chosen as 40, 60, and
80 EVs per hour. Since we use the real EV arrival values from
the dataset, we have scaled the values in Fig. 2 to change the
mean arrival rate in order to examine the impact of different
EV penetration levels. For this analysis, we set the charging
rate of the chargers as 72kW. The plots of the average satisfac-
tion rate vs. average parking duration for the three cases are
shown in Fig. 3. We also provide the performance curves for
the first-come-first-served (FCFS) scheme as a benchmark
for the proposed charging schemes.

As seen from Fig. 3, the average number of arrivals affects
the system performance significantly. The charging coordi-
nation strategy with the ASR formulation reaches an average
satisfaction rate of 90% for an average parking duration of 3
hours for the average arrival rates of 40 EV per hour, whereas
it reaches the same average satisfaction rate for 8 hours park-
ing duration under the MSR formulation. This is expected
since the objective function of the MSR formulation is to
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FIGURE 3. Average satisfaction rate vs. average parking duration for the
average satisfaction rate (ASR) and minimum satisfaction rate (MSR)
formulations as well as the first-come-first-served (FCFS) scheme as a
benchmark. The curves for each method are plotted for mean arrival rates
40, 60, and 80, respectively.

charge EVs in a fair scheme as opposed to increasing the
charging satisfaction rate in an average sense. For the arrival
rates higher than 60 EV/h, the satisfaction rate converges to a
relatively lower value since the distribution network technical
limits become more dominant. The main factor limiting the
performance is the power limits of the buses to which the
charging stations are connected. It goes without saying that
the proposed EV charging schemes under both formulations
provide more than 20% performance gain compared to the
FCFS charging scheme.

The minimum satisfaction rates are also shown in Fig. 4 for
the same system parameters as Fig. 3. For a mean EV arrival
rate of 40 EV/h, both ASR and MSR formulations provide
a minimum customer satisfaction rate of 30%, whereas the
FCFS scheme is only able to provide 10%. The MSR for-
mulation is able to keep the 30% minimum satisfaction rate
even for the higher EV arrival rates. On the other hand, the
ASR scheme could not perform well for higher EV arrival
rates since it may discard some EVs in order to keep the
average satisfaction rate high. There is an interesting result
that the minimum satisfaction rate for ASR under high EV
penetration drops from 30% to 10% even though the parking
duration increases from 1 hour to 4 hours. The reason for such
a counter-intuitive result is that ASR scheme aggressively
tries to maximize the average satisfaction rate by charging
some EVs less since it does not consider any fairness metric
among the customers. The minimum satisfaction rate could
not increase more than 30% since it is limited by the parking
duration of the EVs that are staying at the charging stations
less than the TCC value they provide.

C. CHEATING
In this subsection, we analyze the performance degradation
in the presence of cheating customers. The deviations in
the parking duration could heavily impact the system per-
formance. In order to assess the performance impact of the
different ratios of cheating customers, we have performed

FIGURE 4. Minimum satisfaction rate vs. average parking duration for the
average satisfaction rate (ASR) and minimum satisfaction rate (MSR)
formulations as well as the first-come-first-served (FCFS) scheme as a
benchmark. The curves for each method are plotted for mean arrival rates
40, 60, and 80, respectively.

experiments for a varying percentage of cheating customers.
The sensitivity of the average satisfaction rate metric Uavg
with respect to the cheating amount is tested by fixing the
average number of EV arrivals and the parking duration in
order to remove the other effects introduced by the other
system parameters. The average number of EV arrivals are
chosen as 60 EV/h. The average EV parking duration is
chosen for three different scenarios. The first scenario is for
the charging stations located near restaurants at which the
customers stay for a short time interval. The second scenario
is for moderate parking duration, such as near shopping
malls. The charging stations at the residential or office areas
constitute the third scenario, where the customers stay for
longer time periods. Hence, we choose the actual parking
duration values for the three scenarios as 2, 4, and 8 hours,
respectively. The ASR formulation presents approximately
82%, 88%, and 89% average satisfaction rate, respectively,
under the chosen parameters if there is no cheating. Similarly,
the MSR formulation presents 72%, 78%, and 80% average
satisfaction rate, respectively, in the baseline setup. Fig. 5
shows the deviation in the satisfaction rate with respect to the
average difference between the actual and provided parking
duration by each customer for the three scenarios.

The sensitivity of the coordination strategy with respect to
the parking duration of the customers depends on the afore-
mentioned EV and distribution network-related parameters.
In order to examine the effect of the deviation of the parking
duration from the actual value, we selected and fixed the sys-
tem parameters. In the next step, the parking duration values
for the customers deviated from the actual value in order
to evaluate the performance degradation in the satisfaction
rate of the charging coordination strategy. If we compare the
three plots in Fig. 5, we conclude that the degradation in
the average satisfaction rate heavily depends on the actual
parking duration. The higher the parking duration, the more
robust the system to the cheating behavior. For instance, if we
fix the ratio of the cheating customers to 50% and the cheating
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FIGURE 5. Deviation in the average satisfaction rate vs. cheating duration for three scenarios with different actual parking duration. The curves
in (a), (b), and (c) are plotted for the actual parking duration of 2, 4, and 8 hours, respectively. Curves for each scenario are plotted for a cheating
customer ratio of 100%, 50%, 25%, and 10%, respectively.

amount to 1 hour, the charging coordination mechanism with
ASR faces 8%, 3%, 0.5% performance drop under the three
scenarios, respectively. We also conclude that the MSR for-
mulation is less prone to the cheating behavior compared to
the ASR formulation. The reason is that theMSR formulation
considers the least charged vehicle, as opposed to the ASR
formulation, which considers the average satisfaction rate.
Hence, there is a trade-off that although the ASR provides a
higher satisfaction rate in the baseline setup, the MSR offers
less susceptibility to the cheating behavior.

For instance, as shown in Fig. 5(c), the relatively smaller
amounts of cheating are acceptable. If the parking duration
deviates from the actual value by 1 hour for 50% of the
customers, the performance drop is less than 1%. However,
if the deviation gets higher around 4 hours, the performance
degradation becomes approximately 5%. If the ratio of the
cheating customers to all the customers in the system gets
lower, the performance degradation gets lower. Neverthe-
less, it is worth noting that even if the ratio of the cheating
customers is low at the beginning, that ratio could increase
with time, and the reduction in the satisfaction rate could

potentially be catastrophic if no precaution is taken to over-
come the cheating behavior. Fig. 5(a) states that there is a
15% performance drop if the parking duration deviates by
1 hour in a cheating scenario. The value of degradation in the
satisfaction rate is around the performance gain introduced
by the smart EV charging coordination algorithms compared
to an uncoordinated scheme. For instance, the results in
Fig. 5(a) suggest that the optimal EV charging coordination
mechanism offers an improvement in the performance around
20% over an FCFS strategy. This suggests a remarkable result
that when the customers provide false information about their
parking duration, in some sense, we lose the performance
gain provided by the smart charging coordination method.

One of the most important factors affecting the system
performance is the allocation of the charging stations.
As mentioned earlier, one could improve the system per-
formance by allocating more charging stations. In order to
see how the system behaves when we change the number
of charging stations, we have assigned different numbers of
charging stations to the charging network. It is worth noting
that we need to consider the network topology when we are
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FIGURE 6. The results for the charger analysis. The figures (a) and (b) shows the satisfaction rates and the figures (c) and (d) shows the deviation
in the satisfaction rates in presence of cheating users.

allocating the chargers. We have determined the bus locations
of each charging station considering the residential power
load at the connected node and allocated the EV charging
stations at the buses with the residential power loads.We have
considered four different setups in which the number of
charging stations is chosen as 3, 5, 8, and 10, respectively.
We also varied the charging power rate of the EV chargers
in order to examine the effect of the charging rate. The
charging rates are chosen as 36, 72, and 144 kW per charger,
respectively.

In parallel with the conclusions from the previous analy-
ses, Fig. 6 states that the MSR formulation is less sensitive
to the cheating behavior compared to the ASR formula-
tion, although it performs worse in the baseline setup, i.e.,
when there is no cheating customer. It is intuitive that if
we increase the number of charging stations in the network,
the average satisfaction rate increases. On the other hand,
according to the results in Fig. 6(a) and Fig. 6(b), the sys-
tem performance does not improve if we add more charging
stations after 8 charging stations. It is because the total power
load in the distribution network is limited by the generated
power. Hence, the generated power should be considered in

addition to the bus power limits when introducing additional
EV charging stations in the network. Fig. 6(c) and Fig. 6(d)
suggest that increasing the number of charging stations in the
network also increases the susceptibility of the EV charging
coordination scheme to the cheating behavior, which may
be counter-intuitive. The reason can be explained by consid-
ering the constraints in the problem formulation. We have
introduced two main types of constraints for the charg-
ing coordination problem: (i) timing and customer-related
constraints and (ii) distribution network-related constraints.
If the number of charging stations is low, the charging net-
work gets congested easily, and therefore, the distribution
network-related constraints become more dominant. On the
other hand, if the number of charging stations is high, the
charging network is less prone to congestion, and the dis-
tribution network-related constraints get less dominant, and
customer-related parameters, such as the parking duration,
become more significant. Thus, even if increasing the num-
ber of chargers improves the system performance, it also
increases the susceptibility of the system performance to the
cheating behavior. Hence, the cheating behavior is expected
to pose a more significant problem as the EV charging
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network grows in the future. Increasing the number of charg-
ers increases the deployment and operational costs as well.
Fig. 6(c) and Fig. 6(d) point out also another significant result
that increasing the charging rate decreases the sensitivity of
the system performance with respect to the cheating amount.
When the charging power increases, the TCC values for the
vehicles decrease. This is because the parking duration gets
relatively significant with respect to the TCC values. Hence,
the parking duration gains more relative importance if the
TCC values are smaller.

V. CONCLUSION
This paper investigated the sensitivity of the EV charging
coordination efficiency in the presence of cheating customers
who provide false information about their parking duration.
First, we modeled the EV charging coordination problem as
an LP that aims to maximize the customer satisfaction rate
while respecting the distribution network technical limits and
the customer-related constraints. In the next step, we tested
the efficiency of the coordination strategy when a portion or
all of the customers cheat by providing falsified information
about their parking duration. The simulation results demon-
strate that efficiency is adversely affected by the presence of
cheating customers. The degradation in the customer satisfac-
tion rate induced by the cheating behavior is dependent on the
actual parking duration. Higher parking duration, such as near
residential and office areas, makes the charging coordination
strategy less susceptible to cheating behavior. However, the
charging stations at locations where customers have shorter
parking duration are more prone to the cheating behavior.
Increasing the number of chargers and decreasing the charg-
ing power rate increases the susceptibility of the system to the
cheating behavior since we have limited power resources.

The adversarial effects of the cheating behavior of cus-
tomers open the door for the development of techniques for
cheating customer detection and robust EV charging coor-
dination. As a future research direction, robust EV charg-
ing coordination algorithms need to be developed by taking
into account the fact that customers may provide erroneous
information. Also, mitigation strategies are necessary to com-
pensate for the adverse effects caused by the provided false
information by the cheating customers.
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