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ABSTRACT Underwater wireless sensor networks (UWSNs) have emerged as a promising networking
technology owing to their various underwater applications. Many applications require sensed data to be
routed to a centralized location. However, the routing of sensor networks in underwater environments
presents several challenges in terms of underwater infrastructure, including high energy consumption,
narrow bandwidths, and longer propagation delays than other sensor networks. Efficient routing protocols
play a vital role in this regard. Recently, reinforcement learning (RL)-based routing algorithms have been
investigated by different researchers seeking to exploit the learning procedure via trial-and-error methods
of RL. RL algorithms are capable of operating in underwater environments without prior knowledge of the
infrastructure. This paper discusses all routing protocols proposed for RL-based UWSNs. The advantages,
disadvantages, and suitable application areas are also mentioned. The protocols are compared in terms of
the key ideas, RL designs, optimization criteria, and performance-evaluation techniques. Moreover, research
challenges and outstanding research issues are also highlighted, to indicate future research directions.

INDEX TERMS Underwater wireless sensor network, routing protocol, reinforcement learning.

I. INTRODUCTION
Underwater wireless sensor networks (UWSNs) represent an
emerging field in wireless communication, owing to their
significant advantages in various underwater applications.
A typical UWSN consists of several self-configurable sensor
nodes anchored to the ocean floor; these are interconnected
by automatically adaptive wireless links featuring one or
more underwater gateways [1]. These sensor nodes are used
to perform various tasks, including pollution monitoring,
offshore oil-drill monitoring, disaster prevention, and geolog-
ical event monitoring [2]. Moreover, different types of data
(e.g., temperature, pressure, and chemical compositions for
water-based-disaster warning, underwater military communi-
cations, and surveillance systems) can also be collected using
UWSNs. However, these networks are considered a more
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challenging wireless communication medium than wired or
wireless terrestrial ones. The marine environment exhibits
several distinctive features that differ from those of the atmo-
spheric environment in which traditional communication is
performed. A simple USWN architecture featuring sensor
nodes, sink nodes, and a base station is shown in Figure 1.
The sensor nodes transmit data to the sink nodes using other
sensor nodes as relays, according to different parameters.
Then, the sink nodes send these data to the base station on
the ocean surface. Sensor nodes are deployed at different
depths (with respect to the surface) and at different distances
from each other underwater. Some nodes are anchored to the
ocean floor, whilst others float in the water at various depths.
The node density may vary according to the necessity and
application of nodes in different locations.

Four types of underwater communications for UWSNs
are commonly employed in different research works:
radio frequency, acoustic, optical, and magnetic induction.
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FIGURE 1. Simple UWSN architecture with sensor nodes, sink nodes, and base station.

The properties, advantages, and disadvantages of these four
communication modes are compared in Table 1.
• Radio frequency communication: Terrestrial wire-
less sensor networks employ different electromagnetic
waves for communication. Radio frequency electromag-
netic waves represent an appropriate option for UWSNs
when high data rates are required over a short communi-
cation range [3]. The data rates vary between freshwater
and seawater when using electromagnetic communica-
tion. The propagation of radio waves differs from atmo-
spheric propagation, owing to the high permittivity and
electrical conductivity of water [4]. Radio frequencies
are unfeasible for long-range underwater communica-
tion because they suffer from high attenuation, which
severely limits their communication range [5]. How-
ever, radio-frequency communications have a range
of applications in short-range navigation, sensing, and
communications.

• Acoustic communication: In underwater acoustic com-
munication, transmission and reception are realized
using sound waves. This is by far the most com-
monly used method for underwater sensing and data
transmission [6]. Acoustic communication is more
attractive than other communication mediums because
it can achieve large communication ranges of up
to 20 km [7]. The underwater acoustic channel has
three main characteristics: an attenuation that increases
with signal frequency, a low sound speed, and multipath
propagation [8]. Acoustic propagation performs better
at low frequencies (10–15 kHz), and the total avail-
able bandwidth (5 kHz) is limited. High-speed acoustic

communication in UWSNs is challenging, owing to the
limited bandwidth, high transmission losses, multipath
fading, and large Doppler shifts [9]. Moreover, acoustic
communication in shallow water channels is more diffi-
cult than in deep-water communication.

• Optical communication: Optical USWN communi-
cation offers the highest data rates (up to Gbps),
lowest delays, and smallest implementation costs
when compared to other underwater communication
approaches [10]. The high propagation speed (i.e., the
speed of light) can improve its applicability in real-time
underwater tasks. However, it suffers from absorption
and scattering problems, attributable to the underwater
characteristics and environment [11]. In optical com-
munication, signal attenuation and scattering degrade
the data transmission quality over long distance [12].
Owing to the narrow divergence properties of light,
several researchers have employed LEDs or blue/green
lasers as light sources; however, these require precise
alignment [13]. The communication range of under-
water optical communications (10–150 m) must be
extended to appropriately implement real-time monitor-
ing applications.

• Magnetic induction communication:UWSNs employ-
ing magnetic-induction-based communication are a
relatively new communication paradigm compared to
others. In this technology, a time-varying magnetic field
is employed for data transmission [14]. This offers
low latency, predictable channel behavior, long com-
munication ranges (with large bandwidths), and silent
and stealth applications in underwater environments.
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TABLE 1. Comparison among different communication techniques for UWSNs.

The cost of the coils used in magnetic induction is
relatively low, which makes it a strong candidate for
large-scale deployment in UWSNs.Moreover, this mode
is not affected by multipath propagation or fading and
is robust against acoustic noise [15]. However, the per-
formance of magnetic induction systems in UWSNs
is still being researched, especially with regard to the
characterization of broadband and complex underwa-
ter magnetic induction channels in shallow and lossy
water [16]. Practical applications in both shallow and
deep water show fully connected multi-coil networks
can be implemented using bandwidths of the order of
tens of kHz for small and large coverage areas [17].

The routing protocol in all types of wireless sensor net-
work (WSN) plays a major role when designing schemes
to transmit data from the source to the destination nodes.
However, routing in UWSNs is of particular importance.
The major challenges include limited bandwidth capacity,
multipath fading, propagation delay, high bit-error rates, and
temporary loss of connectivity. Designing efficient routing
protocols in UWSNs is crucial for the quick and secure
transmission of collected data to the sink node on the ocean
surface. Numerous UWSN routing algorithms have been
reported in the literature. These protocols are proposed to
improve the efficiency with respect to end-to-end delay, node
mobility, network throughput, and energy consumption.

Reinforcement learning (RL) [18] is a subfield of machine
learning (ML) that utilizes an agent to take decisions in an
unknown environment. The agent in RL algorithms follows
a policy based upon immediate rewards for actions taken.

Along with other ML techniques, RL has been widely used
to design routing protocols for different WSNs [19], [20].
RL algorithms can be employed to improve the routing per-
formance in UWSNs, owing to the constrained environment
and the limitations of the UWSN environment. Different
parameters of UWSN routing (e.g., energy efficiency, latency,
network lifetime, link quality, and packet delivery ratio) can
be optimized by implementing the RL algorithm. Because RL
algorithms learn through experience, they have the potential
to improve the routing process under various objectives.

Considering the advantages of RL, many researchers have
proposed RL-based routing protocols for UWSNs. How-
ever, more research is required to successfully integrate the
RL concept into the UWSN routing mechanism. In this
regard, a comprehensive review paper presenting the existing
RL-based routing protocols can help researchers seeking to
design an RL-based UWSN routing protocol. In addition to
filling the research gap in the literature, a survey on RL-based
routing in UWSNs is required to encourage researchers to
increase their focus on intelligent UWSN routing protocols.

Numerous survey works in the literature have compared
different proposed routing protocols for UWSNs [21]–[24].
They divided and categorized the existing routing protocols
according to different objectives. However, none of the exist-
ing surveys focused solely on RL-based routing protocols
for UWSNs, despite numerous studies on this topic. To fill
this gap in the literature and provide a direction for future
research, it is necessary to aggregate these disparate works.
Thus, a comparative study is necessary for RL-based UWSN
routing. The main contributions of this study are as follows:
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TABLE 2. Existing surveys on UWSN routing and RL-based routing.

• A brief overview of RL is presented, to provide a funda-
mental understanding of the technique.

• The existing RL-based UWSN routing protocols are
investigated and summarized along with their advan-
tages, disadvantages, and suitable applications in
USWN environments.

• A comparative study of all the reviewed protocols is
presented. In this regard, the key ideas of all protocols
are compared in a tabular format. Then, a comparison of
the applied RL techniques is provided.

• The optimization parameters adopted in all protocols
are compared. The performance evaluation techniques
are also compared in terms of the simulation environ-
ment, techniques, and performance comparisons of all
the reviewed schemes.

• The key research challenges are highlighted, along with
promising research directions toward making RL-based
UWSN routing protocols more efficient.

The remainder of this paper is organized as follows.
Section II describes existing related surveys in the literature,
to highlight the necessity of the present survey. An overview
of the RL technique is provided in Section III. III. All existing
RL-based routing protocols for UWSNs are discussed in
Section IV. In Section V, comparisons of the reviewed proto-
cols are discussed according to their key ideas, optimization
criteria, RL features, and performance measurement tech-
niques. Challenges and open research issues are discussed in
Section VI. Finally, Section VII concludes the paper.

II. EXISTING SURVEYS
This section describes the existing surveys regarding routing
protocols for UWSNs and RL-based routing protocols for
other WSN environments. The limitations of the existing
works and the contributions of our study are also discussed.
The existing surveys relating to UWSN and RL-based routing
protocols are compared in Table 2.

Several surveys have been performed regarding UWSN
routing protocols, focusing on different issues (e.g., energy
efficient routing, node mobility, delay tolerant routing, and
network-lifetime-aware routing). In [24], routing issues in
UWSNs were discussed in terms of delivery ratio, end-to-end
delay, energy efficiency, delay tolerant applications, mobility,
and reliable routing. All routing protocols proposed thus far
were also described. Cho et al. studied routing protocols
considering the delay/disruption tolerance characteristics of
UWSNs [25]. In this regard, they categorized the routing
protocols into scheduled, opportunistic, and predicted contact
schemes.

Han et al. classified UWSN routing protocols into
sender-based and receiver-based protocols [21]. The pro-
tocols were then compared in terms of energy efficiency,
latency, load balancing, dynamic robustness, communica-
tion overhead, and time complexity. In [26], UWSN routing
protocols for acoustic communication were studied. The
protocols were categorized using the cross-layer and non-
cross-layer design methods. An intelligent algorithm for
UWSN routing was also discussed. However, none of the
RL-based routing protocols for UWSNs were mentioned.
Unlike that, the authors in [27] discussed several RL-based
routing protocols whilst studying the routing and medium
access control (MAC) protocols for UWSNs. Their main aim
was to quantitatively compare the existing MAC and routing
protocols in terms of energy efficiency and reliability.

In [28], the routing protocols were studied by consid-
ering the node mobility in UWSNs. In this regard, the
protocols are classified into vector-based, cluster-based,
autonomous underwater vehicle (AUV)-based, depth-based,
and path-based routing protocols. Both qualitative and
quantitative comparisons between existing protocols were
performed. Khalid et al. discussed the routing issues
in UWSNs [23] whilst classifying the protocols into
localization-based and localization-free routing protocols.
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All protocols were described and compared in terms of the
employed technique, as well as other important performance
metrics. The authors in [29] conducted a simulation-based
survey on UWSN routing protocols. Four routing proto-
cols, namely hop-by-hop dynamic address-based routing,
depth-based routing, energy-aware opportunistic routing, and
energy-efficient depth-based routing, were implemented. The
performances were compared in terms of the numbers of sent
packets, alive nodes, and dead nodes.

Considering the acoustic communication in UWSNs, the
routing protocols are reviewed in [22]. All protocols are
categorized into localization-based and localization-free rout-
ing protocols. Moreover, each of the protocols was sum-
marized whilst mentioning their strengths and weaknesses.
A survey on different aspects of UWSNs was provided
in [30]. The requirements of UWSNs (e.g., longevity, accessi-
bility, complexity, security, and environmental sustainability)
are highlighted.Moreover, the routing protocols are discussed
alongside other issues in the UWSN. The authors in [31]
discussed energy-efficient routing protocols for UWSNs. The
protocols were categorized into depth-based, cluster-based,
cooperation-reliability-based, RL-based, and bio-inspired
routing protocols. However, only three URL-based UWSN
routing protocols were mentioned. Unlike other surveys, the
authors in [1] discussed UWSNs, focusing on both acoustic
and magneto-inductive communication. They discussed the
characteristics and application properties of each communi-
cation channel when designing UWSN routing protocols.

Considering the advantages of RL algorithms in routing
protocol design, RL-based routing has been extensively stud-
ied in the literature. In [32], RL-based routing protocols for
different types of communication networks were reviewed.
The network areas considered were wired networks, wireless
networks, wireless mesh networks, cooperative communica-
tion wireless networks, optical networks, ad-hoc networks,
WSNs, vehicular ad hoc networks (VANETs), delay-tolerant
networks (DTNs), social DTNs, flying ad hoc networks,
cognitive radio networks, named-data networking, peer-
to-peer networks, and software-defined networks. Several
related surveys were also conducted for mobile ad hoc net-
works (MANETs) [33], cognitive radio ad-hoc networks
(CRAHNs) [35], and VANETs [34]. A comprehensive sur-
vey on RL-based routing protocols in MANETs is provided
along with future research directions in [33]. The authors
in [34] extensively surveyed RL-based routing protocols for
VANETs, by discussing their working process, advantages,
limitations, and suitable application areas. Furthermore, the
protocols were compared according to their main features,
characteristics, evaluation methods, optimization criteria,
and RL implementation. In [35], the RL-based efficient
spectrum-aware routing for CRAHN was extensively dis-
cussed. Moreover, a multi-objective spectrum-aware routing
protocol using RL was proposed to increase the probability
of successful transmission with a minimum number of hops.

However, from the above-mentioned surveys in the liter-
ature, it is clear that no survey solely discusses RL-based

routing protocols for UWSNs. The suitability of RL algo-
rithms for solving optimization problems related to UWSN
routing necessitates a survey that discusses all the studies
in the literature. This will provide future researchers with
an idea of the work already conducted, as well as potential
research challenges and directions.

III. REINFORCEMENT LEARNING OVERVIEW
This section provides a brief overview of RL, by discussing
the designs and classification of RL algorithms. RL is a
sub-branch of ML. In RL, an agent learns by interacting
with the environment and selects action based upon that
learning. The learning process is similar to learning in the
real world. The concept of RL seems straightforward, because
it reflects the real world; however, implementing an RL
algorithm can be a complex and challenging task. Such
algorithms manage learning through interactions and feed-
back mechanisms; that is, learning to solve a problem using
a trial-and-error approach.

A. MODELING OF RL ALGORITHM
The agent observes the state of the environment during each
decision step, and it selects actions randomly or by following
a policy. Next, it receives an immediate reward based upon the
selected action and goes on to the next state. The reward func-
tion is designed to provide feedback to the learning algorithm,
reflecting the primary objective of the task. The principle idea
of RL is illustrated in Figure 2. There, the agent observes state
st from the environment. In that particular state, the agent
chooses action at by exploration or exploitation. According
to the taken action, the agent receives a reward rt and goes to
the next state.

FIGURE 2. Basic working procedure of the RL algorithm.

To solve a problem with the help of RL, the problem
should be designed as aMarkov decision process (MDP) [36].
Therefore, MDP can be regarded as the theoretical basis of
RL. The mathematical framework of MDP consists of a tuple
of < S,A,P,R >, where S is a finite set of environment
states, A is a set of actions available for the agent, P is the
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transition probability from the current state to the next state
via a particular action, and R is the reward received after
transitioning to the next state with the taken action. The
transition probability can be written as

Pa(s, s′) = Pr (st+1 = s′|st = s, at = a), (1)

wherePa is the probability of transitioning from state s at time
t to state s′ at time t + 1 by taking action a. After the tran-
sition from s to s′, the agent receives an immediate reward,
which can be denoted by Ra(s, s′). The reward represents an
evaluation of the quality of an action in a particular state.

The goal of an RL agent is to identify a policy π that max-
imizes the cumulative rewards; typically, this is the expected
discounted sum of rewards. The policy is a function that maps
a given state to the probability of selecting each possible
action from that state. Thus, following a policy π , the prob-
ability of taking action a in state s at time t can be denoted
by π (a|s). The function that estimates how desirable it is for
an agent to be in a given state, or how desirable it is to select
a particular action in a given state, is called a value function.
The value function can be a function of state or of state–action
pairs.

The state value function Vπ (s) determines the value of a
state for an agent following policy π . The value of a state s is
the expected sum of discounted rewards starting from state s
at time t following policyπ . The value function can bewritten
as

Vπ (s) = E[R] = E[
∞∑
t=0

γ trt |st = s], (2)

where R is a random variable defined as the sum of the future
discounted rewards. It can be written as

R =
∞∑
t=0

γ trt , (3)

where rt is the reward at time t , and γ is a discount factor
designed such that 0 ≤ γ ≤ 1. The value of γ deter-
mines the importance of future rewards in the current state.
Future rewards are discounted to place more emphasis on
the immediate reward. The policy that optimizes the expected
cumulative reward is referred to as the optimal policy and is
denoted as π∗. An RL algorithm converges when it identifies
the optimal policy from all available policies for a given
state [18].

RL algorithms can be initially classified into model-based
RL [37] andmodel-free RL [38]. Model-based RL algorithms
construct an internal model describing the transitions and
immediate outcomes according to experience. Then, the opti-
mal policy for selecting an action is chosen using the learned
model. However, model-free RL algorithms do not incor-
porate any learned models; learning is performed by either
approximating value functions or following a policy through
experiences. Therefore, RL algorithms can be designed using
the policy or value iteration functions [34]. Examples of pol-
icy iteration-basedRL includeMonte Carlo [39] and temporal
differencing methods [40].

In value-based RL algorithms, the agent attempts to max-
imize the value function. As mentioned earlier, the value
functions in RL algorithms are of two types: state-value and
action-value. The value function given in Equation 2 is the
state-value function, which estimates the expected cumula-
tive reward when starting in state s and following policy
π thereafter. The action-value function denoted as Qπ (s, a)
determines the expected reward when action a is taken in a
given state s following policy π . It can be defined as

Qπ (s, a) = E[
∞∑
t=0

γ trt |st = s, at = a]. (4)

The action-value function Qπ is conventionally called the
Q-function, and the output from this function for any given
state–action pair is called the Q-value.

However, RL algorithms suffer from an exploration–
exploitation trade-off when taking an action. On the one
hand, the algorithms should not stick to the actions with high
rewards, because they might thereby become trapped in a
local optimum; on the other hand, repeatedly taking differ-
ent actions from a single state is also inefficient. Different
methods have been proposed to solve this problem, including
random action [41], greedy strategy [42], epsilon-greedy pol-
icy [43], upper confidence bound [44], explore-first [45], and
Softmax action [46].

B. ADVANTAGES OF USING RL IN UWSN
ROUTING PROTOCOLS
In recent years, RL has been applied to design protocols in
different wireless sensor networks; UWSN is one of them.
The advantages of using RL for designing UWSN routing
protocols are as follows:
• Routing optimization: RL algorithms can solve opti-
mization problems in different distributed systems.
Routing problem optimization can be regarded as a
decision-making task. Therefore, RL can represent
a practical approach for solving routing problems.
In particular, solving routing problems with RL can be
effective because of the reduced overheads for control
packets, memory, and computation.

• Environment observability: In a UWSN, full informa-
tion and knowledge of the network are unavailable. The
RL algorithm can be effectively applied in such scenar-
ios, because RL learns from the environment.

• Adapting to dynamic topology: RL-based routing learns
the network topology whilst relaying packets. Hence,
it can adapt to the dynamic network topology during the
routing process. Moreover, RL algorithms learn itera-
tively, which helps reduce communication and compu-
tation overheads.

IV. RL-BASED ROUTING PROTOCOLS FOR UWSN
In this section, RL-based UWSN routing algorithms are dis-
cussed with respect to their working procedures. The advan-
tages and disadvantages of each protocol are discussed, and
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FIGURE 3. Categorization of RL-based UWSN routing protocols based on
their communication medium.

suitable application areas based on the proposed scheme are
highlighted. These routing protocols are categorized based
on their UWSN communication medium: acoustic, optical,
hybrid (acoustic–optical), and magnetic-induction. Figure 3
shows the taxonomy of the investigated routing protocols.
The majority of protocols considered acoustic communica-
tion in UWSNs.

A. Q-LEARNING-BASED ENERGY-EFFICIENT
LIFETIME-AWARE ADAPTIVE
ROUTING (QELAR)
Hu et al. proposed QELAR [47], a distributed UWSN rout-
ing protocol that initially applies Q-learning to balance the
workload between sensor nodes and thereby increase network
lifetime and reduce network overhead. QELAR is an older
UWSN routing protocol compared to the other protocols
reviewed in this survey. In QELAR, when a node receives
or overhears a packet, it extracts information from the packet
header, including the residual energy, average group energy,
previous-hop node, and V-value. The V-value of the node is
calculated using the Q-learning algorithm. Once the Q-values
of state–action pairs in a state sn have been calculated for
all available actions, another value function (the V-value) is
calculated. The V-value of a state sn is denoted by V (sn)
and contains the maximum Q-value received by an action
out of all actions in that state. Therefore, the V value can

FIGURE 4. Case of transmission failure and retransmission in QELAR.

be updated according to Vs = maxaQ(s, a). The state space
of the algorithm contains the node that holds the packet.
This action is represented as packet forwarding by a node.
The reward function is designed using the cost function of
the sender node’s residual energy and the energy distribution
among the group nodes. When choosing an action from a
state, the Q-values of all actions from that state are calculated
first. Then, the action with the maximum Q-value is chosen,
and the V-value of the state is updated.

One important feature of QELAR is the acknowledgment
(ACK)-receiving mechanism, which confirms packet trans-
mission. The sender node does not remove the packet from
the buffer immediately after sending; rather, it waits until
the next forwarder forwards the packet to the next-hop node.
Thus, retransmission is triggered if the forwarder does not
overhear transmission. The transmission failure and retrans-
mission mechanisms are shown in Figure 4.

As we can see from the figure, node A waits till node B
forwards the packet to node C. Upon transmission failure,
node A retransmits the packet and when node B forwards
the packet to node C, it receives that as ACK. However,
the number of retransmission is limited by a predefined
value maxtrans.
• Advantages:Being one of the earliest Q-learning-based
UWSN routing protocols, QELAR designs the RL algo-
rithm to make routing decisions in a way that it could
be further improved. The method used here for trans-
mission confirmation after sending a packet reduces
the communication overhead and the number of packet
drops.

• Disadvantages: The reward function is designed con-
sidering only the residual energy whilst neglecting other
important selection parameters, such as the distance or
depth of the neighbor nodes. Sometimes, a node may
have more residual energy but a higher distance; hence,
the energy consumption will increase when traveling
over longer distances.

• Application:QELAR is designed for a UWSN environ-
ment in which the source node is fixed; meanwhile, the
other sensor nodes are dynamic. QELAR is unsuitable
for UWSN routing across networks in which all nodes
are dynamic, because the source node can be any one of
the nodes.
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B. MULTI-LEVEL ROUTING FOR ACOUSTIC-OPTICAL
HYBRID UWSN (MURAO)
Extending their work in [47], the authors of [48] pro-
posed another routing protocol named MURAO, which
was designed for an acoustic–optical hybrid UWSN envi-
ronments. A multilevel Q-learning method suitable for a
multilevel UWSN was applied. The multilevel distributed
Q-learning approach accelerates convergence. In this type
of approach, the state space is divided into different groups,
where each group contains one agent. This agent supervises
all other lower-level agents, whilst logically being in the
higher level. Thus, the number of states becomes smaller,
which accelerates termination. A clusteringmethod is applied
in MURAO, in which clusters are updated based on changes
in network topology. The routing process consists of several
concurrent lower-layer routings inside cluster members and
one upper-layer routing among the CHs. Several gateway
nodes exist in the network; these connect two clusters because
the nodes that receive broadcast messages frommultiple CHs
becomemembers of multiple clusters and eventually function
as gateway nodes.

The inter-cluster routing process in the upper layer is
realized via both the acoustic and optical channels, whereas
the intra-cluster routing in the lower layer is performed
using only the optical one. The CHs in the upper layer
assign gateway nodes to the clusters, by applying Q-learning.
The gateway nodes represent the destination nodes for each
intra-cluster routing assigned by the CHs, which is the termi-
nal state in the Q-learning approach. The intra-cluster rout-
ing process is similar to that in QELAR. The Q-values and
V-values are updated after each action. Routing is initiated
in one of the gateway nodes and terminates when it reaches
the designated gateway node. Three types of information
exchange occur in the network: (1) between cluster members,
(2) between CHs, and (3) between cluster members and CHs.
• Advantages: Applying the multilevel Q-learning algo-
rithm to multiple layers of the UWSN accelerates the
algorithm convergence. The number of states is reduced
by applying the algorithm to different clusters; this
also helps the algorithm to reach the terminal state
faster. Hybrid communication exploits both acoustic and
optical channels.

• Disadvantages: Applying Q-learning separately for
each cluster can complicate the network. Although it
reduces the number of states for each cluster, the com-
putational costs may increase. Moreover, in a dynamic
UWSN, the clustering changes according to node
mobility, so the routing will also be changed.

• Application: MURAO is more suitable for a static
UWSN environment. In such scenarios, clustering will
occur only once, and routing will be more efficient.

C. Q-LEARNING BASED DELAY-AWARE ROUTING (QDAR)
Jin et al. proposed QDAR routing algorithmwith an objective
to extend the network lifetime of UWSNs [49]. Q-learning
was used because it can determine the globally optimal next

hop, rather than a greedy one. The routing decision is taken
with regard to the propagation delay and residual energy.
A multi-agent Q-learning technique is employed by con-
sidering each packet in the network as an agent. The sink
node performs a virtual experiment, utilizing the algorithm
to determine a routing path by sending a virtual packet in
the virtual topology, because the sink node possesses infor-
mation regarding the nodes. The overall routing mechanism
is divided into five phases: data ready phase, routing deci-
sion, interest phase, packet forwarding, and acknowledgment.
A flowchart of the routingmechanism is presented in Figure 5
Three assumptions are considered: the depth information

of each node is held by those nodes, and it can be embedded
in the packets; nodes implement Source_initiates_Query; and
the records of successful or failed communication are saved
in the sink node. The source node sends a DATA_READY
packet to both request communication and collect informa-
tion in a reactive manner; hence, the source node must send
a packet to the sink node. The neighbor node whose depth
is smaller than that of the previous node forwards the packet
only. In the routing decision phase, the QDAR algorithm is
applied to select the routing path. Through Q-learning, the
next-hop node is selected from the neighboring nodes, to opti-
mize the residual energy and propagation delay. After the sink
node makes the routing decision, it creates an INTEREST
packet in the interest phase; this is sent back to the source
node as an acknowledgment.
• Advantages: The algorithm mitigates the trade-offs
between network lifetime and end-to-end delays in an
adaptive and distributive manner. The virtual topology
concept used in this protocol increases the cost of failed
transmission.

• Disadvantages: The packets are considered as the agent
in the network, and the state is the node that holds
the packet. Under an increasing number of nodes and
packets in the routing path, the number of states also
increases. This will increase the state space, and the
algorithm may fail to converge.

• Application: This protocol is suitable for both static
and dynamic underwater environments. Therefore, it can
be applied to UWSNs in which the dynamic topology
changes. It can function in an adaptive and distributive
manner.

D. HARVESTING-AWARE DATA ROUTING (HyDRO)
Basagni et al. proposed a routing protocol (referred to as
HyDRO) in an energy-harvesting UWSN, by assuming all
nodes to be capable of energy harvesting [50]. This proto-
col considers both the residual and harvested energy in its
optimization. The sender node acts as an agent of the RL.
The action aims to select the forwarding node and thereby
the route to the sink. The algorithm considers residual energy,
foreseeable harvestable energy, and link quality when choos-
ing the route. All of these optimization criteria are considered
when a sender node must select a relay node for forwarding a
packet to the sink node. The reward function is designed with
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FIGURE 5. Flowchart of routing mechanism in QDAR.

a penalty for packet dropping, to reduce the packet drop ratio.
The sender node i always possesses information regarding the
neighbor node j to be selected as a relay node. Flooding for
route acquisition occurs only during the initiating period and
upon returning from an all-off or temporarily malfunctioning
state. The all-off state of a node occurs when the node is
out of energy. The nodes proactively update their neighbor
nodes according to the signal received at a given time. When
node i does not receive the signal from node j at time t ,
it temporarily removes j from its active neighbor list. Node
j notifies its neighbors just before running out of battery,
by setting a field in its header. Upon transmission failure, the
sender retransmits the packet for a given period of time, after
which the packet is dropped.
• Advantages: The penalty given for packet dropping
ensures that the nodes select more reliable relays and
route the packets through shorter routes.

• Disadvantages:Network lifetime considerations are not
considered for performance comparison in this protocol;
however, this is an important metric for evaluating a
routing protocol.

• Application: The protocol is only applicable to an
underwater environment in which energy harvesting is
possible. It exhibits performance degradation without
this harvested energy; thus, it cannot be applied to
UWSNs without energy harvesting.

E. Q-LEARNING GAME-THEORETIC DISTRIBUTED
ROUTING (QGDR)
In [51], the author proposed a distributed routing protocol
for UWSNs, by integrating a game-theory approach with
Q-learning (QGDR). The sensor nodes are assumed to be
individual agents; they try to maximize their profit by making
a cooperative routing decision that is acceptable to all other
agents. The nodes learn the policy to select the optimal strat-
egy according to the RL algorithm. The routing problem is
designed as a multiplayer routing game model that extends
theMDP problem. A new gamemodel is developed following
the assumptions for UWSNs, referred to as the routing game.
First, the UWSN topology is configured with the help of the
configuration algorithm proposed in this study. The topology
is formed using a payoff history array U [.] and a path_cost

value PC which determines the cost of the link in the source-
to-sink-node route. A virtual topology is structured and can
be dynamically reconfigured by changing these two values.
• Advantages: This protocol can adapt to dynamic topol-
ogy changes, which is practical for UWSN scenarios.
The sensor nodes can adjust their learning parameters
according to changes, and they can dynamically take
routing decisions.

• Disadvantages: This protocol does not consider net-
work lifetime, which is a necessary parameter. For cases
of route failure, no retransmission scheme is mentioned,
only a penalty. This may increase the initial packet drop
rate when the agent learns.

• Application: This protocol is applicable to UWSN
environments involving node mobility, because it can
function under dynamic changes in the environment.
In security and military applications where the dynamic
environment is necessary, this protocol can be applied to
provide information.

F. Q-LEARNING-BASED EFFICIENT AND BALANCED
ENERGY CONSUMPTION DATA
GATHERING (QL-EEBDG)
Karim et al. proposed QL-EEBDG in [52], by considering
the void hole problem for routing in a UWSN. This problem
occurs when a selected next-hop node does not have any
neighbor node or does not lie within range of the sink node.
This leads to an increase in packet dropping and energy con-
sumption. To mitigate the void hole problem, only nodes that
have a next-hop node are selected as forwarding nodes. Each
node functions as theQ-learning agent, where the sender node
is the source agent and the neighbor node is the receiver.
A control packet is generated from all nodes and sent to
the neighbor nodes. Then, the neighbor nodes send back
acknowledgment packets by which the sender node declares
the neighboring nodes. Then, the Q-value of all neighbor
nodes is calculated; the nodes with the highest Q-value rep-
resent the shortest distance towards the sink.

Based on the distances of the nodes, three types of rewards
are computed: reward sink, for choosing the sink as the next
node; reward pos, for choosing a neighbor node; and reward
neg, for choosing neither a sink nor neighbor node. The node
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with the maximum Q-value is selected as the next-hop node.
If more than one node has the same Q-value, then that with
a higher residual energy is selected as the next-hop node.
A circular network topology is created using a static sink
node and sender nodes. Another parameter (MS) is used in
the simulation; it moves clockwise. When a node must send
data, it determines whether the MS is within the shortest
transmission range. Then, the sender node sends the data to
the MS; otherwise, it utilizes the Q-learning-based method to
choose the next-hop node.

• Advantages: In this protocol, only the nodes for which
either one neighbor node or sink exists in the one-hop
distance are selected as the neighbor nodes. Therefore,
even if a node with no further one-hop node is nearer
than the source node, it will not be selected as a neighbor.
This procedure helps to reduce the void hole prob-
lem, leading to fewer packet drops and lower energy
consumption.

• Disadvantages: No retransmission strategy or penalty
is applied in the Q-learning algorithm upon route fail-
ure. This may lead to an increased packet-drop rate.
Moreover, the agent (sensor node) does not consider the
end-to-end delay when choosing the next-hop node.

• Application: This routing protocol can be applied to
a dynamic UWSN environment because the neigh-
bor nodes can be selected dynamically. If the UWSN
exhibits node mobility, this algorithm can be utilized to
select the next-hop node.

G. Q-LEARNING BASED LOCALIZATION-FREE
ROUTING (QLFR)
Zhou et al. [53] proposed the routing algorithm QLFR for
UWSNs; their objective was to extend the network lifetime
and minimize the end-to-end delay. When a node has to send
a packet, it checks the Q-values of all neighboring nodes and
places these nodes in a priority list sorted in the reverse order
of Q-values. The nodeswith a smaller depthwill have a higher
priority. The priority list is added to the data packet sent to
the neighboring nodes. The nodes in the list hold the packet,
following a holding time mechanism provided by Q-learning.
The other nodes drop the packet. The holding time mecha-
nism design is shown in Figure 6. Here, when node s wants
to send a data packet, the three neighboring nodes p, q and r
will receive it. The depth of r is lower than that of the sender;
therefore, it will drop the data packet. For the remaining
two nodes, if p has a higher Q-value than q, it is selected
as the next-hop node. The Q-value is calculated according
to two cost functions: depth-based cost and energy-based
cost. Therefore, the reward is designed considering these two
parameters. When node si sends a packet to sj following the
action aj, the reward can be calculated by

r
aj
sisj = −ce(si)− ce(sj)− cd (si, sj), (5)

where ce(.) is the energy-based reward and cd (.) is the
depth-based reward; both lie within the range of [0,1].

FIGURE 6. Graphical representation of holding time mechanism in QLFR.

Furthermore, a packet-delivery ratio-based multipath-
suppression mechanism was proposed to maintain the pri-
ority list length. The packet delivery ratio was calculated to
control the length of the priority list for reducing unnecessary
transmission.
• Advantages: The holding time mechanism causes the
nodes with a lower depth to drop the packet; this in
turn reduces the redundant retransmission in the net-
work. Moreover, the overall holding time of the packet
is reduced because the node with the highest Q-value
transits without holding.

• Disadvantages: The nodes not included in the prior-
ity list drop the packet. This increases the packet drop
ratio in the network; in particular, when the node den-
sity increases, more nodes are amongst the neighboring
nodes of the sender node but have lower depths; hence,
more nodes will drop the packet.

• Application: This protocol is suitable for UWSN envi-
ronments with underwater monitoring applications and
few nodes. Basically in the application, when the source
node is anchored to the ocean floor and transmits data
to the upper nodes, toward the sink. So, data are only
passed from nodes with more depth to nodes which have
less depth in the underwater environment.

H. CHANNEL-AWARE RL-BASED MULTI-PATH ADAPTIVE
ROUTING (CARMA)
Valerio et al. proposed the routing protocol CARMA in [54],
to select the set of relay nodes in a UWSN. Their main objec-
tive was to simultaneously optimize the route-long energy
cost and maintain the network lifetime and packet delivery
ratio. The size and composition of the relay set are determined
dynamically at each transmission time. When a node sends a
packet to the sink node, it discards the packet and transmits it
to all nodes in the list of relay nodes. All required information
is added to the header of the packet. An implicit acknowledg-
ment mechanism is used to overhear the retransmission of
the packet. The sender node waits for this acknowledgment
for a specified period. If no acknowledgment is received, the
packet is retransmitted thereafter. The transmission is con-
sidered successful when acknowledgment is received. During
the entire procedure, RL is employed to select a list of relay
nodes when forwarding the packets. The RL agent selects
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this list according to the local channel quality and energy
consumption across the entire route.

Initially, the nodes have no knowledge of the environ-
ment and with experience, the nodes learn and update their
knowledge. When a node sends a packet to the sink node,
it uses the Q-value to obtain the optimal route. This algorithm
chooses the optimal action according to the value of the
action, which is the cost required to transmit the packet from
the sender to the sink node. Furthermore, increasing num-
bers of retransmissions affect the network performance for
increased network traffic. Therefore, the maximum number
of retransmissions is determined dynamically by utilizing the
well-known ALOHA closed-form expression, S = Ge−2G.
Here, G is the average number of transmission attempts in a
time interval equal to that required to transmit one packet.
• Advantages: The size and composition of the relay set
at each transmission attempt is determined dynamically,
which increases the packet delivery ratio and ensures a
lower energy cost. Another useful feature of this pro-
tocol is that it facilitates packet forwarding, by broad-
casting a packet when no neighbor node is known to the
sender.

• Disadvantages: CARMA considers only the static
UWSN environment, which may not be suitable for all
types of USWN scenarios in which the node exhibits
mobility.Moreover, it selects a set of relaynodes (instead
of the one-hop neighbor relay) at a time, which may lead
to network performance degradation in cases of higher
network traffic.

• Application:This protocol is suitable for a static UWSN
environment (i.e., where nodes are deployed in station-
ary positions and when only the data from that position
are delivered to the sink node). This routing protocol is
suitable for monitoring temperature and other environ-
mental attributes.

I. RL-BASED CONGESTION-AVOIDED ROUTING (RCAR)
In [55], Jin et al. investigated the congestion control problem
in UWSN routing, and they proposed an RCAR protocol
to minimize energy consumption and end-to-end delay. The
protocol comprises four stages: initialization, virtual pipe
creation, virtual routing, and packet forwarding. In the initial-
ization stage, all nodes exchange their location information
and residual energy with one-hop neighbors collected from
the physical layer. A neighbor table is generated in each node
using the one-hop neighbor information. Then, a dynamic
virtual routing pipe is generated by the node that holds the
packet forward. The radius of the pipe is based upon the
average residual energy of the neighboring nodes. The radius
of the pipe is given as

Ripipe = −
2(R− Riini)

Eini
× E i + 2R− Riini, (6)

where Eini and R are the initial energy and transmission range
of the nodes, respectively. Riini is the initial radius of the pipe,

FIGURE 7. Structure of DATA packet and ACK packet in RCAR.

and E i is the average residual energy of the next-hop nodes.
This virtual pipe helps to reduce unnecessary initial explo-
ration detours. Then, virtual routing is performed using the
RL-based algorithm to select the next forwarding node. After
the node forwards the packet, packet forwarding is considered
completed if the selected node is available. If unavailable,
the algorithm is reapplied to choose the next-hop node, and
the information regarding the link is updated. A handshake
mechanism based on S-FAMA is utilized in the MAC layer
to update the node information in the initially generated
neighbor table. During this period, DATA and ACK packets
are used to exchange information. In RCAR, three additional
pieces of information are included in these packets: residual
energy, current buffer state, and V value. These determines
the value of a node for selection as a next-hop node. The struc-
tures of the DATA and ACK packets are shown in Figure 7,
with the additional information highlighted. When a node has
to send a packet again, the Q-value is calculated using the
updated information.

• Advantages: Unlike other RL-based UWSN routing
protocols, RCAR prevents congestion in the network.
The handshake-based method for updating information
in the MAC layer helps to reduce energy consumption,
because nodes need not broadcast periodically to update
their information. It also mitigates collisions between
nodes during broadcasting.

• Disadvantages: The state-space contains information
regarding the one-hop neighbors of each node. Under an
increase in the number of nodes in the environment, the
number of one-hop neighbors also increases. In this case,
the state size becomes large, and the algorithm takes
more time to converge.

• Application: This protocol can be applied to dynamic
underwater acoustic communication-based networks,
because it can adapt to dynamic topologies. It is suit-
able for UWSNs, where the number of sensor nodes is
moderate.
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J. Q-LEARNING BASED ENERGY-DELAY
ROUTING (QL-EDR)
Wang et al. proposed a clustering-based routing protocol
QL-EDR in [56], employing Q-learning learning to select
the next-hop node in a hierarchical UWSN. Communication
between the nodes was considered via magnetic induction.
The main objective of this protocol is to extend the network
lifetime by minimizing energy consumption and end-to-end
delay. The framework is divided into three parts: data collec-
tion, data processing, and decision management. In the first
phase, cluster heads (CHs) are selected by forming several
clusters in each layer of the three-layered UWSN. Cluster
members send their sensed data to the CHs for transmission
to the base station. In the second phase, the data features from
the data sent by the sensor nodes are extracted. The third
phase employs the Q-learning algorithm to select the next
one-hop node according to the residual energy and distance
of the nodes. Two parameters are used to obtain a single-hop
bonus, from which the reward function and Q-values are
designed. The parameters are Dhop for the distance-based
bonus andEhop for the residual energy-based bonus. They can
be calculated by

Dhop =
Dt

dt + Dt+1
, (7)

Ehop =
Et

1
et
+ Et+1

, (8)

whereDt is the shortest-distance-based path, dt is the distance
between two nodes, Et is the maximum energy-based path,
and et is the residual energy of the nodes. A regulatory
factor β is used to emphasize the value of the residual energy
or transmission delay according to the state, to prolong the
network lifetime.

• Advantages: The clustering of sensor nodes helps to
minimize the overall end-to-end delay and energy con-
sumption in the network, because not all sensor nodes
need to join as the relay node, and only the CHs will
perform data transmission.

• Disadvantages: The multi-hop path is selected after
the CH receives all the data in the cluster. If a single
node (rather than all the nodes in a cluster) must send
data, the node must wait until all nodes send data to the
CH. This increases the latency for a single sensor node,
even if it decreases the overall end-to-end network delay.
Moreover, if a cluster member is just one hop away from
the sink, it cannot transmit data, because it must send
data to the CH. CH selection was not optimized here.

• Application: QL-EDR is not suitable for emergency
applications in UWSNs because data are sent by CHs.
However, it is applicable in environments where sensor
nodes only perform monitoring tasks after a specific
timestamp. All nodes send data to the CH at that time,
and the CH transmits it to the sink node and eventually
the base station.

K. DISTRIBUTED MULTI-AGENT RL ROUTING (DMARL)
Li et al. proposed DMARL in [57] as a routing protocol for
UWSNs, by considering an optical communication medium.
They designed the UWSN as a distributed multi-agent sys-
tem that supports information interaction between adjacent
nodes. Subsequently, a multi-agent RL algorithm is applied
in the routing process, to prolong the network lifetime and
adapt to the dynamic topology of the UWSN. The imple-
mentation of DMARL is performed in three stages: pre-
liminary stage, route discovery, and route forwarding. The
preliminary stage involves the sensor node deployment and
routing-table-related parameter initialization. Then, in the
route discovery stage, each node determines its one-hop
neighbors by periodically broadcasting hello packets. The
Q-table is updated according to the neighbor node informa-
tion. Q-learning is applied in the route-forwarding stage. Each
node operates as an agent and maintains a Q-table. The state
is regarded as a node with a data packet at a particular time t .
The action of the agent is to select the next-hop node. The
reward mechanism is designed based on local and global
rewards. The local reward function is designed considering
the residual energy and link quality between sensor nodes;
these are received by an ACK packet after data transmission.
The local reward can be defined as:

r t+1(st+1j ) =

{
Knon-ACK, w/o ACK
WE .E +WL .LQ, w/ ACK

, (9)

where E is the normalized residual energy of the receiver
node j, and LQ is the normalized link quality. WE and WL
represent the weights of the residual energy of node j and link
quality, respectively. Knon-ACK represents a negative reward
when no ACK is received (i.e., when the routing quality is
poor). The global reward is given here to obtain feedback
regarding changes in the environment; this reward depends
on the transmission direction—that is, upon whether the
current node is closer to or farther from the sink node than
the previous node. If it is closer, then a positive reward is
given; otherwise, a negative reward is given. One important
aspect of DMARL is that, to accelerate the convergence of
the RL algorithm, two optimization strategies are utilized:
position-based Q-value initialization and learning-rate vari-
ation. The first strategy initializes the Q-value according to
the initial distance to the sink from a node and one of its
neighbor nodes. In the second strategy, the learning rate is
optimized according to link stability, to reflect the changes in
the neighbor set.
• Advantages:Q-value initialization helps to decrease the
learning time of the RL algorithm. Moreover, adjust-
ing the learning rate according to the dynamic environ-
ment accelerates the algorithm’s convergence. Integrat-
ing both techniques reduces the number of training steps
and accelerates convergence, which subsequently saves
energy in UWSNs.

• Disadvantages: DMARL is specifically designed
for underwater optical communication. In addition,
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as mentioned in the paper, DMARL is unsuitable for
a UWSN environment in which more than 14 neigh-
boring nodes (on average) are present. Despite its good
performance in dynamic environments, the node density
constraint limits its performance to specific UWSN
environments.

• Application: DMARL is designed considering node
mobility in a UWSN. Therefore, this protocol can be
applied to any dynamic UWSN environment featuring
a limited number of nodes.

L. ENERGY-EFFICIENT DEPTH-BASED OPPORTUNISTIC
ROUTING WITH Q-LEARNING (EDORQ)
Lu et al. proposed a routing protocol EDORQ [58] for
UWSN; they sought to ensure energy-saving and reliable
data transmission from sensor nodes to sinks. The overall
routing process of EDORQ consists of two stages. First,
candidate-set selection is performed based on void detec-
tion; second, candidate-set coordination is performed via
Q-learning. The first stage aims at choosing candidate nodes
from the neighboring nodes to forward the packet to the sink.
The depth and void-flag information of the nodes are used
as candidate-selection metrics. The candidate-set selection is
composed of two modes: a greedy mode and void-recovery
mode. In the greedy mode, the nodes closer to the sink than
the sender node (according to depth) are selected as candidate
nodes. A void can arise when a forwarder node is selected
(because of its smaller depth) but has no further forwarder
node closer to the sink. Void recovery is triggered when a
node returns the packet upon detecting a void and does not
receive information that the packet has been successfully
forwarded. In such a case, the node for which a void is
detected selects a forwarder node with a greater depth.

The candidate set coordination stage utilizes the
Q-learning algorithm along with a holding time mecha-
nism to select the forwarder node. The reward function in
the Q-learning algorithm is designed with residual-energy-
related values, depth-related values, and void-detection fac-
tors. Using this reward function, the Q-values of all nodes
in the candidate set are calculated. Subsequently, a holding
time is assigned to all candidate nodes, such that the node
with a higher Q-value has a lower holding time and therefore
a higher priority for sending the packet. The mechanism is
illustrated in Figure 8. Nodes n2 and n3 are in the candidate
forwarder set for sender node n1. The holding time is calcu-
lated for both nodes according to the Q-values of nodes n2
and n3. In the figure, node n2 forwards the packet when the
timer is over and, upon overhearing the transmission, node n3
discards the packet. The holding time of node nj is defined as
follows

Tj = [1−
2
π
arctanQ(si, aj)]Tmax, (10)

where Q(si, aj) is the Q-value of node nj in state si, and
Tmax is the predefined maximum holding time calculated
using the maximum communication range of a node and

FIGURE 8. Candidate set coordination mechanism with Q-learning and
holding time in EDORQ.

the propagation speed. This holding time is used to prevent
the overheads entailed by packet forwarding of all candidate
nodes. When a candidate node with lower priority overhears
the same packet transmission from a higher priority node
within its holding time, it drops the packet. Thus, the optimal
candidate node is selected for packet forwarding.
• Advantages: The reward design ensures that, upon
selecting a node with higher residual energy, smaller
depth, and greater void-detection factor, the agent
receives a higher reward. The candidate set coordi-
nation does not require any additional ACK packet
transmission, owing to the holding time mechanism.
Moreover, this protocol ensures reliable packet transmis-
sion because each node holds the packet until the end of
its holding time before dropping it.

• Disadvantages: The holding time mechanism increases
the delay because each node must wait until the end
of its holding time before the packet is forwarded.
This increases the end-to-end delay for routing in the
network.

• Application: EDORQ is suitable for dynamic topolo-
gies, because it is an on-demand routing protocol that
can be adjusted according to node mobility. However,
this protocol may be unsuitable for time-critical applica-
tions, because each forwarder node must wait until the
end of the holding time, which may cause a delay.

M. REINFORCEMENT LEARNING-BASED
OPPORTUNISTIC ROUTING (RLOR)
Zhang et al. proposed an opportunistic routing protocol with
RL (named RLOR) for UWSN acoustic communication [59].
In an opportunistic routing procedure, packet routing is per-
formed via the cooperation of multiple nodes receiving the
packet rather than a single relay node. When a node ni must
send a data packet, the candidate forwarding set of the node
is determined first. This set of candidate nodes is selected
according to the depth, energy, and number of neighbor
nodes. Then, the sender node sends its location information
to its neighbors in the candidate set. The next-hop node from
the candidate nodes is selected using an RL algorithm. In this
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RL algorithm, the state space contains information about the
current node, as well as its candidate node set. The action is
to select the next-hop node from the candidate node set. The
reward for taking action aj (of selecting the next-hop node nj
from node ni) can be defined as

Rni,nj = 1dep(i,j) · p(d, l) · Gabove(nj) · E(nj), (11)

where 1dep is the depth difference between nodes i and j,
p(d, l) is the probability of successful packet transmission,
Gabove(nj) is the number of neighbor nodes above nj, and
E(nj) is the energy of nj. Upon receiving a packet transmis-
sion request from the sender node, all candidate nodes calcu-
late their Q-value using the discounted reward function. After
receiving the Q-values of the candidate nodes, the sender
node selects the next-hop node with the largest Q-value.
In the case of a routing void problem (i.e., when selecting
a node with no neighbor nodes to transmit the packet to),
a method called the recovery mode is applied. When a void is
detected, the void node enters the recovery mode and selects
a downward forwarder node using the RL algorithm. The
forwarder node is selected based on the smaller depth differ-
ences and higher energies. In addition, opportunistic routing
is used alongside an adaptive dynamic timer mechanism.
A waiting time is set for every candidate node (according
the communication delay), to choose the forwarder node with
higher priority. The node for which the waiting time elapses
first forwards the packet, and other candidate nodes will
drop it.
• Advantages: The adaptive dynamic timer mechanism
ensures successful packet transmission. In addition, the
waiting time of the candidate nodes leads to the selection
of the best relay node. The end-to-end delay is also
reduced by considering the communication delay as a
parameter for setting the waiting time.

• Disadvantages: In RLOR, the state space contains the
current node and set of candidate forwarder nodes. In a
dynamic UWSN, the candidate set varies during the
routing process at different times. Therefore, the state
space is larger, and the RL algorithm may be slow to
reach convergence.

• Application: RLOR exhibits better performance in the
case of a dense network, because the risk of rout-
ing void problems is smaller. Moreover, this protocol
can only be applied to UWSNs operating via acoustic
communication.

V. COMPARATIVE STUDY AMONG ROUTING PROTOCOLS
In this section, a comparative study of all the investigated
routing protocols is presented from different perspectives.
The key ideas of all routing protocols are listed in Table 3.
The specific features of each routing protocol used to select
forwarding nodes or routing paths differ, despite all being
based upon RL. Themain ideas of the protocols are compared
and discussed in Section V-A.

A. KEY IDEAS OF RL-BASED ROUTING PROTOCOLS
The novelty of QELAR novelty lies in the design of its
reward function, which contains two cost functions related
to the residual energy: one relates to the residual energy of
the node holding the packet, the other relates to the energy
distribution in the group of direct neighbors of that node. The
average residual energy of the neighboring nodes is thereby
computed. The key idea of MURAO is to physically divide
the network into several clusters and logically partition these
clusters into two layers. Multi-level RL is applied to both
layers, and the upper layer contains the cluster heads that
function as agents for their associated clusters.

In QDAR, the sink node implements Q-learning to deter-
mine the routing path; meanwhile, each packet functions as
an agent. Using all information from the UWSN nodes, the
sink nodes create a virtual topology by sending a virtual
packet. However, the HyDRO protocol selects the route that
maximizes the residual energy; hence, when choosing the
neighboring node to the sink node, the main objective is to
select the nodeswithmaximum residual energy. The reward is
designed such that the relay node selected for sending packets
always as the maximum residual energy.

QGDR assumes that each sensor node is a player in a
multiplayer routing game. Each node learns the policy of
choosing the best relay node to send packets to the sink
node, by utilizing Q-learning. QL-EEBDG aims to mitigate
the void hole problem encountered in UWSNs by selecting a
node with at least one neighbor node or the sink within their
one-hop distance. Then, the node with the shortest distance is
selected as the next-hop node.

In QLFR, a new holding-timemechanism is designed using
RL, to schedule packet forwarding according to node prior-
ities. This mechanism helps reduce redundant transmissions
between multiple forwarding nodes. Unlike other RL-based
routing protocols, CARMA chooses a set of relay nodes to
forward packets toward the sink node, using the RL algo-
rithm. However, most protocols choose the next-hop neigh-
bor only. The channel condition and route-long energy are
considered when determining the list of relay nodes.

The RCAR is performed by each node that holds a packet
forward. The node creates a dynamic virtual routing pipe
using the residual energy of the neighboring nodes, and it
performs virtual routing to select the next forwarding node.
A clustering approach is used in the QL-EDR to collect
data from the sensor nodes. After all data in the cluster are
collected by the CH, Q-learning is adopted to select the next
hop. The residual energy and transmission delay are used as
indicators for selecting the routing path.

B. COMPARISON OF THE RL APPLICATIONS
RL has been applied to different protocols to solve different
problems. In all investigated protocols, the designs of the RL
algorithm differed. The state, action, and reward functions
were constructed with different objectives. The reviewed pro-
tocols are compared in terms of RL applications in Table 4.
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TABLE 3. Key ideas of RL-based UWSN routing protocols.

In most protocols, the RL algorithm is designed in a dis-
tributed manner, where each node acts as the RL agent. The
sender node observes the states (essentially the Q-value of
neighboring nodes) and chooses either the next-hop node or
the routing path. Some RL designs are also centralized such
that the sink node functions as the agent and chooses the
routing path. Here, the RL designs in the reviewed protocols
are described individually.

As shown in Table 4, in all the reviewed protocols (except
for MURAO, QDAR, and QL- EDR), the sensor nodes
function as the agent of the RL algorithm. In general, the
source node or sender node becomes the agent and performs
data forwarding by following a policy or according to the
maximum Q-value. In MURAO, routing is performed in a
hierarchical manner in which the CHs select the routing path
in the corresponding clusters and perform packet routing.
However, QDAR assumes that each packet is an agent of
the Q-learning algorithm. The agent’s policy is the routing
path that directs the packet (agent) to take proper actions.
In QL-EDR, the base station observes and makes routing
decisions as the Q-learning agent.

The agent’s state is the observation factor of the RL agent,
from which the agent decides the action. The information
available in the state is crucial for the agent learning pro-
cess. In addition, the state space should not become large.
In QELAR, MURAO, QDAR, DMARL, and EDORQ, the
state of the algorithm relates to the node that holds the packet.
Therefore, at any time t, the state in the RL algorithm is
the ID of the node where the packet resides at that time.
The routing action is selected according to the ID of that

node. Retaining the nodes holding the packet as the state is
beneficial, because the next state will be the next-hop node.
Therefore, consecutive states form the routing path for the
routing protocol.

The state spaces in HyDRO and CARMA are similar.
They contain sets indicating the number of times node i has
transmitted packet p unsuccessfully, as well as the packet
transmission or packet drop. Depending on the status of the
packet (i.e., whether it is received or dropped by the neighbor
nodes), the packet status is established in the state of the node.
The state is designed according to single-packet forwarding.
In QGDR, the goal of RL is to identify the optimal routing
policy in which each node is considered as a player in a
multiplayer MDP problem. The state consists of a payoff
history array and path cost value. The reason for designing
such a state-space is to transmit the packet to the sink with
the maximum payoff.

The state space in QL-EEBDG includes the control packets
generated by the source node; meanwhile, the source node
is referred to as the source agent. These control packets are
sent by the source nodes to all sensor nodes within its range.
The receiver node, as the receiver agent, sends back an ACK
packet, which is used to select the neighbor node. In QLFR,
the residual energy and depth of the node comprises the
state of each node. With these two types of information, the
selection of the next-hop node has the advantage of selecting
the optimal forwarding node. The state of a node in RCAR is
designed with information regarding one-hop neighbors and
the link condition between them. The Q-value of each node
is calculated from this information, and the highest Q-value
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TABLE 4. Applications of RL in the reviewed routing protocols.

determines the optimal link condition. The next-hop node can
be selected from the optimal link quality in this manner.

The action of all reviewed RL-based routing protocols for
UWSNs is the selection of one or more relay nodes for packet
forwarding. CARMA acts to select the set of relay nodes;
meanwhile, all other protocols act to select the next-hop
neighbor.

The reward function in each of the reviewed RL-based
routing protocols reflects the main objective of the proto-
cols. For example, QELAR, MURAO, HyDRO, QL-EDR,
DMARL, and EDORQ consider the residual energy of the
neighbor nodes when designing the reward function, such
that the node with higher residual energy can provide higher
rewards and therefore be selected as the forwarding node.
However, the residual energy alone cannot determine the like-
lihood of a node being selected as the optimal next-hop node.
Therefore, other parameters (e.g., energy distribution among
neighbor nodes, link quality, distance or depth of node,
and delay) have been added alongside the residual energy.
Protocols besides those mentioned above involve reward
functions that neglect residual energy, similarly reflecting
their objectives.

C. COMPARISON OF THE OPTIMIZATION PARAMETERS
The reviewed RL-based UWSN routing protocols were
designed to optimize the performance from different perspec-
tives. Given that the optimization criteria have trade-offs,
a routing protocol should attempt to maximize the outcome of
the expected performance metrics whilst also minimizing the

negative impacts upon other performance metrics. In Table 5,
the optimization parameters and evaluation metrics of the
reviewed routing protocols are presented. In the table, ‘O’
indicates that the specific parameter is considered in the
specific protocol, and ‘X’ indicates that the parameter is not
taken into account for that protocol.

The residual energy of a sensor node is the remaining
energy of the node [60]. This is an important optimization
parameter because it determines how long a node can par-
ticipate in packet forwarding. The residual energy can be
computed as

Er =
n∑
i=1

Ri, (12)

where Ri denotes the residual energy of the i-th sensor nodes,
and n denotes the total number of sensor nodes.When design-
ing a routing protocol, the next-hop node must be selected
by considering its residual energy. All the reviewed proto-
cols (excluding CARMA) optimize the residual energy when
making routing decisions. Residual energy can be saved by
reducing the energy consumption of the sensor nodes during
sensing and data transmission.

The network lifetime also depends upon the energy con-
sumption of the sensor nodes. Therefore, to be efficient, one
of the most crucial features of a routing protocol is minimiz-
ing energy consumption and thereby extending the network
lifetime. Considering and evaluating the network lifetime is
essential when designing a routing protocol. The network
lifetime can be estimated from the data transmission duration
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TABLE 5. Comparison of optimization parameters in the reviewed routing protocols.

(or round) until all nodes are alive or the first sensor node in
the network dies [60]. Of all the reviewed protocols, HyDRO,
QGDR, RCAR, and EDORQ do not explicitly consider the
network lifetime when designing routing protocols.

End-to-end delay describes the average time required for a
packet to traverse from the source node to the destination one;
this includes the transmission delay, holding time, process-
ing time, propagation delay, and receiving time [61]. While
choosing a routing path, it is important to choose the path
that will minimize the time required to deliver the packet to
the sink node. In a UWSN, the sink node is the destination
node. Therefore, to transmit the packet to the sink node faster,
the routing protocol must consider the end-to-end delay.
However, QL-EEBDG and DMARL have not considered the
data-transmission delay from the source node to the sink node
when designing their protocols.

The link quality is an important parameter when select-
ing the subsequent forwarding node, to ensure that a more
reliable link is chosen from amongst the candidate nodes.
Owing to the highly error-prone nature of underwater wire-
less links, data transmission over poor-quality links leads to
packet losses, whichmay necessitate retransmission. Because
data retransmission increases energy consumption and delay,
it is necessary to select a reliable, good-quality link to
reduce the likelihood of packet losses [62]. However, the
majority of the reviewed protocols do not consider the link
quality when designing routing protocols, as can be seen
in Table 5.

Of all reviewed routing protocols, only HyDRO considered
energy-harvesting-enabled UWSNs. Nodes deployed at dif-
ferent depths harvest energy from the environment to support
their operations. In such networks, the nodes at the seafloor
harvest energy through turbines; meanwhile, harvesting in
nodes closer to the sea surface happen using solar panels
attached to floating devices cabled to the nodes. The energy-
harvesting-aware protocol can effectively bypass the energy
constraints of sensor nodes in UWSNs.

The packet drop ratio is the ratio between the number of
packets dropped by the sensor nodes and the total number of
packets sent by the source nodes during a data transmission
round [63]. Packet drop ratio can be calculated as

PD = 1−
Pr
Ps
, (13)

where Pr denotes the packets received, and Ps denotes the
packets sent during any specified round. Considering the
number of packet drops in the routing protocol design ensures
proper selection of the next forwarder, to realize successful
packet delivery to the sink. HyDRO and CARMA considered
the number of packet drops in the state of the agent.Moreover,
QGDR, QL-EEBDG, and RLOR also consider this parameter
in their routing protocols.

The constant node mobility in the UWSN environment
leads to continuous topology changes [24]. Therefore, it is
important to consider dynamic topology changes when
designing a routing protocol, to reflect real-world UWSNs.
However, HyDRO, QLFR, CARMA, QL-EDR, and RLOR
do not consider this parameter. The performance evaluation of
a protocol does not ensure accurate results if dynamic topol-
ogy is not considered. Nevertheless, node mobility has also
been neglected when evaluating certain reviewed protocols,
such as QDAR, HyDRO, QGDR, QL-EEBDG, CARMA,
and RCAR.

During the routing process, a packet may have to hop
throughmultiple nodes from the source node to the sink node.
Reducing the number of hops can reduce the delay and energy
consumption of the overall network. In this regard, choosing
the routing path such that the number of hops is lower can
improve efficiency. Among the reviewed protocols, hop count
is considered in only two: QGDR and QL-EEBDG.

The distance between two nodes is an important parameter
for choosing the next-hop node in terrestrial networks. In con-
trast, in UWSNs, the depth of the sensor nodes also plays a
crucial role. Because the sink is placed on the surface, the
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TABLE 6. Comparison of the network design and performance evaluation techniques in the reviewed protocols.

routing path is oriented toward shorter depths. In this regard,
the routing process in QDAR, HyDRO, QLFR, QL-EDR,
EDORQ, and RLOR is designed considering the depths of
the sensor nodes.

The packet delivery ratio is defined as the total number of
packets sent until the end of a transmission round.When eval-
uating a routing protocol, it is necessary to measure its perfor-
mance in terms of the packet delivery ratio. A higher packet
delivery ratio reflects the higher efficiency of the routing
protocol. The majority of the reviewed protocols considered
these parameters, as shown in Table 5. During the routing of a
packet, congestion can be detected because of the flooding for
route discovery or route acquisition. Congestion can degrade
network performance if left uncontrolled. However, among
the reviewed routing protocols, only RCAR is designed to
prevent congestion.

D. COMPARISON OF NETWORK DESIGN AND
PERFORMANCE EVALUATION TECHNIQUES
The UWSN designs adopted in the reviewed routing
protocols differ. The communication channel, deployment,
topology, number of nodes, and other parameters are
considered in various ways. Moreover, different researchers
have used different evaluation techniques; these techniques
are summarized in this subsection and presented
in Table 6.

In the table, ‘NG’ indicates that no option is specified in the
paper for the routing protocol. The deployment in the table
indicates the dimensions of the topology considered for the
simulation. Several protocols considered the 3D deployment
of UWSNs, whereas others considered 2D deployment. Other
geometric shapes (e.g., circular shapes in QL-EEBDG and
rectangular shapes in CARMA) have been considered for
designing protocols.

The simulation area refers to the width and height of
the network scenario in the 2D network case, and the width,

height, and depth in the 3D network one. As shown in Table 6,
a wide variety of simulation areas have been considered for
the performance evaluation of different routing protocols.
The simulation area and number of sensor nodes are related:
a large number of nodes in a small simulation area indicates
a dense network, whereas a small number of nodes in a
large simulation area represents a sparse one [64]. Both are
possible in a UWSN environment, depending on the applica-
tions considered in that particular environment. For example,
routing protocols such as RLOR offer superior performances
in dense networks because they are designed to consider the
routing void problem. The number of nodes may also be
varied depending on water-depth, energy consumption, and
cluster forming technique. One routing protocol may not be
suitable for another environment, and the number of nodes
may need to be varied accordingly.

The performance evaluations for the reviewed routing
protocols were conducted using different simulators, each
with their own advantages and disadvantages. However, the
simulator used for most of the reviewed protocols was not
mentioned in the studies. Among the mentioned simulators,
the SUNSET simulator provides a realistic representation of
the UWSN environment; it supports various channel models
and provides a detailed representation of the communication
component and node energy [65]. Network Simulator ver-
sion 2 (NS-2) has been used for QELAR and EDORQ
with an aquatic environment simulation package called
Aqua-Sim [66].

The number of sink nodes can be one or more in UWSN
applications. Both single and multiple sinks have been con-
sidered for performance evaluations of the reviewed UWSN
routing protocols. For the multiple-sink scenario, the desti-
nation can vary; meanwhile, for a single sink, the destination
remains the same. Therefore, RL-based routing with multiple
sinks may become more difficult than with a single sink,
because the terminal state can vary.
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The data packet size has impact on the performance of
multihop communication in UWSNs [67]. In the reviewed
routing protocols, the data packet sizes varied from 50 bytes
to 1 MB. The simulation time represents another impor-
tant factor for an RL-based routing protocol, because the
learning of the agent improves over time. The protocol may
not be effective if the simulation time terminates before
the agent converges. For the performance evaluations of the
reviewed protocols, simulation time was mentioned in sev-
eral cases, such as QDAR, RCAR, DMARL, EDORQ, and
RLOR. The simulation time represents the total time required
for one round of data transmission. However, HyDRO was
evaluated over a 6 day simulation, and QGDR was simulated
100 times.

In addition to simulation for performance evaluation, the
efficiencies of the schemes were validated by comparing
them against other well-defined and widely accepted pro-
tocols. All the reviewed routing protocols were likewise
compared with other existing protocols. Since QELAR is
an early RL-based UWSN routing protocols, it has been
used for comparison with QDAR, HyDRO, CARMA, RCAR,
and EDORQ.

VI. CHALLENGES AND OPEN RESEARCH ISSUES
The challenges and open research issues for RL-based
UWSN routing protocols are highlighted in this section.
Although the proposed protocols have shown significant
performance improvements in routing, they can be further
improved. Many challenges remain to be solved before these
routing protocols can be implemented in real UWSN environ-
ments. These challenges, as well as future research issues, are
discussed here.

A. NODE MOBILITY
In UWSNs, underwater nodes can be static (i.e., anchored
to the ocean floor) or dynamic (i.e., floating with chang-
ing mobility). Most RL-based routing protocols consider
only a scenario comprising static nodes, neglecting the node
mobility. In a real underwater environment, node mobility
arises because of water pressure and water current [28].
This node mobility changes the topology structure of the
UWSN [68]. Moreover, AUVs have been used to collect data
from underwater sensor nodes in different research works
[69]–[71]. In these cases, the AUVs can be considered as
the sink nodes with mobility. This scenario has not been
considered in any of the reviewed schemes.

RL can be used to adapt to the mobility of both the
sensor and sink nodes. Because RL algorithms can explore
and learn in a network without knowing its full architec-
ture, this feature may be suitable for the scenario with
node mobility in UWSNs. The Q-table of each node can be
updated with the changed location information of the neigh-
boring nodes, along with the sink nodes at every timestamp.
Therefore, if topology change occurs within the interval of
two packet forwarding, nodes can update the neighboring
information.

B. CONVERGENCE OF RL
In the RL algorithm, an agent must experience all possible
states and actions to obtain the optimal result. Therefore, the
agent must traverse the entire Q-table. When the number of
states and actions increases, the Q table becomes large; thus,
the agent requires a longer time to converge. In some cases,
it may not converge; that is, it may become stuck in a local
optima, without reaching the global optima.

When designing routing protocols, the convergence time
must be considered. The number of states and actions should
be minimized, to obtain an optimal result faster. Integrating
other techniques such as fuzzy logic [72] can help limit the
number of states. If the states are continuous values, it needs
to be converted into discrete values. Otherwise, the number
of states may become infinite, and the algorithm may not
converge.

C. Q-TABLE INITIALIZATION
Q-table initialization significantly determines the learning
speed of the RL algorithm. In most cases, Q-values are ini-
tialized to zero and updated only when the corresponding
state–action pair is visited in the network. This process may
slow the algorithm convergence. To speed up the convergence
of the RL algorithm, Q-table initialization can be performed
using several learned values from the same environment.
In addition, to update the Q-table in the case of a large
number of states and actions, virtual Q-value updating can be
performed. This accelerates convergence, because the agent
need not visit all states and actions.

D. Q-VALUE UPDATING
At the outset of the Q-learning algorithm, the agent takes
actions and learns with no prior knowledge of the environ-
ment. This is one of the major drawbacks of RL and is
computationally expensive in certain cases. Taking the wrong
action may lead to a drastic changes in the environment.

Initializing Q-values by incorporating prior knowledge
can improve the Q-learning algorithm [59] and reduce the
convergence time. However, no precise rules are available
for appropriately choosing the Q-value. Different researchers
have adopted different techniques for Q-table initialization.
Updating the Q-values by applying certain tricks can also
lead to faster convergence. One such trick is to update two
Q-values: one for an action and another for the corresponding
opposite action [73]. This helps to increase the learning speed
of the agent.

E. APPLYING A VARIETY OF RL ALGORITHMS
Although RL has been used to design various routing proto-
cols for UWSNs, it can be seen from the reviewed protocols
that only Q-learning is utilized for that purpose. RL includes
a variety of algorithms, each having its own advantages and
disadvantages. Q-learning is the most popular RL algorithm
for solving routing problems in WSNs; however, other RL
algorithms such as SARSA [74], actor-critic learning [75],
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deep Q-learning [76] and more can be applied. It may hap-
pen that other RL algorithms achieve superior results to
Q-learning, because they have been previously applied for
routing in other wireless network scenarios.

F. SECURITY
Security issues are of major concern not only in UWSNs
but in any type of wireless network. When collecting sensi-
tive data, security problems represent a consistent threat to
the UWSN. None of the afore-discussed routing protocols
considered secure data transmission. Designing trust-based
routing protocols is necessary, because UWSNs are widely
used for military purposes, where data confidentiality is
essential. Malicious attacks, unauthorized access, and data
leakages should be considered when designing routing pro-
tocols, to make them applicable and effective for real-world
UWSN tasks.

G. NODE DENSITY
Several routing protocols reviewed in this paper used sparse
UWSNs, whilst others used dense UWSNs. In many cases,
it has been observed that the performance of the algorithm
deteriorates under an increasing number of nodes. In a
real-world UWSN scenario, the node density can be high.
Therefore, such routing protocols are not effective. This issue
requires further research, to ensure that the performance of
routing protocols is robust against node density variation.

VII. CONCLUSION
Routing for UWSNs is one of the most crucial issues in
underwater applications. In RL, the efficiency of a system
is increased with experience and time. This capability of RL
algorithms has been widely considered in different wireless
networking scenarios. RL has also been shown to signifi-
cantly improve the design of routing protocols or UWSNs.
In this article, we present an extensive survey of RL-based
underwater routing protocols. The methods are discussed,
and their advantages, disadvantages, and suitable applica-
tion environments are presented. The reviewed protocols are
further compared in terms of their key ideas, RL mecha-
nisms, optimization parameters, and evaluation techniques.
The applications of RL are also separately compared for
all protocols. For future researchers, the research gaps and
areas requiring critical improvement are emphasized as open
research issues. The analysis, discussion, comparison, and
future research directions highlighted in this investigation
will provide UWSN researchers with an in-depth overview
of existing routing protocols.

REFERENCES
[1] M. Jouhari, K. Ibrahimi, H. Tembine, and J. Ben-Othman, ‘‘Underwater

wireless sensor networks: A survey on enabling technologies, localiza-
tion protocols, and internet of underwater things,’’ IEEE Access, vol. 7,
pp. 96879–96899, 2019.

[2] I. F. Akyildiz, D. Pompili, and T. Melodia, ‘‘Underwater acoustic sensor
networks: Research challenges,’’ Ad Hoc Netw., vol. 3, no. 3, pp. 257–279,
Mar. 2005.

[3] H. Kaushal and G. Kaddoum, ‘‘Underwater optical wireless communica-
tion,’’ IEEE Access, vol. 4, pp. 1518–1547, 2016.

[4] A. Palmeiro, M. Martin, I. Crowther, and M. Rhodes, ‘‘Underwater radio
frequency communications,’’ in Proc. IEEE OCEANS, Jun. 2011, pp. 1–8.

[5] C. Gabriel, M.-A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud,
‘‘Channel modeling for underwater optical communication,’’ in Proc.
IEEE GLOBECOM Workshops (GC Wkshps), Dec. 2011, pp. 833–837.

[6] P. Lacovara, ‘‘High-bandwidth underwater communications,’’ Mar. Tech-
nol. Soc. J., vol. 42, no. 1, pp. 93–102, 2008.

[7] E. M. Sozer, M. Stojanovic, and J. G. Proakis, ‘‘Underwater acoustic
networks,’’ IEEE J. Ocean. Eng., vol. 25, no. 1, pp. 72–83, Jan. 2000.

[8] M. Stojanovic and J. Preisig, ‘‘Underwater acoustic communication chan-
nels: Propagation models and statistical characterization,’’ IEEE Commun.
Mag., vol. 47, no. 1, pp. 84–89, Jan. 2009.

[9] M. Chitre, S. Shahabudeen, and M. Stojanovic, ‘‘Underwater acoustic
communications and networking: Recent advances and future challenges,’’
Marine Technol. Soc. J., vol. 42, no. 1, pp. 103–116, 2008.

[10] Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, ‘‘A survey of underwater
optical wireless communications,’’ IEEE Commun. Surveys Tuts., vol. 19,
no. 1, pp. 204–238, 1st Quart., 2017.

[11] G. Schirripa Spagnolo, L. Cozzella, and F. Leccese, ‘‘Underwater optical
wireless communications: Overview,’’ Sensors, vol. 20, no. 8, p. 2261,
Apr. 2020.

[12] C. Gabriel, M.-A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud,
‘‘Channel modeling for underwater optical communication,’’ in Proc.
IEEE GLOBECOM Workshops (GC Wkshps), Dec. 2011, pp. 833–837.

[13] S. Arnon, ‘‘Underwater optical wireless communication network,’’ Opt.
Eng., vol. 49, no. 1, 2010, Art. no. 015001.

[14] I. F. Akyildiz, P. Wang, and Z. Sun, ‘‘Realizing underwater communica-
tion through magnetic induction,’’ IEEE Commun. Mag., vol. 53, no. 11,
pp. 42–48, Nov. 2015.

[15] M. C. Domingo, ‘‘Magnetic induction for underwater wireless com-
munication networks,’’ IEEE Trans. Antennas Propag., vol. 60, no. 6,
pp. 2929–2939, Jun. 2012.

[16] H. Guo, Z. Sun, and P. Wang, ‘‘Multiple frequency band channel mod-
eling and analysis for magnetic induction communication in practical
underwater environments,’’ IEEE Trans. Veh. Technol., vol. 66, no. 8,
pp. 6619–6632, Aug. 2017.

[17] B. Gulbahar and O. B. Akan, ‘‘A communication theoretical modeling and
analysis of underwater magneto-inductive wireless channels,’’ IEEE Trans.
Wireless Commun., vol. 11, no. 9, pp. 3326–3334, Sep. 2012.

[18] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[19] D. P. Kumar, A. Tarachand, and C. S. R. Annavarapu, ‘‘Machine learning
algorithms for wireless sensor networks: A survey,’’ Inf. Fusion, vol. 49,
pp. 1–25, Sep. 2019.

[20] M. Di and E. Meng Joo, ‘‘A survey of machine learning in wireless sensor
netoworks from networking and application perspectives,’’ in Proc. 6th Int.
Conf. Inf., Commun. Signal Process., 2007, pp. 1–5.

[21] G. Han, J. Jiang, N. Bao, L. Wan, and M. Guizani, ‘‘Routing protocols
for underwater wireless sensor networks,’’ IEEE Commun. Mag., vol. 53,
no. 11, pp. 72–78, Nov. 2015.

[22] T. Islam and Y. K. Lee, ‘‘A comprehensive survey of recent routing pro-
tocols for underwater acoustic sensor networks,’’ Sensors, vol. 19, no. 19,
p. 4256, 2019.

[23] M. Khalid, Z. Ullah, N. Ahmad, M. Arshad, B. Jan., Y. Cao, and A. Adnan,
‘‘A survey of routing issues and associated protocols in underwater wireless
sensor networks,’’ J. Sensors, vol. 2017, pp. 1–17, May 2017.

[24] M.Ayaz, I. Baig, A. Abdullah, and I. Faye, ‘‘A survey on routing techniques
in underwater wireless sensor networks,’’ J. Netw. Comput. Appl., vol. 34,
no. 6, pp. 1908–1927, 2011.

[25] H.-H. Cho, C.-Y. Chen, T. K. Shih, andH.-C. Chao, ‘‘Survey on underwater
delay/disruption tolerant wireless sensor network routing,’’ IET Wireless
Sensor Syst., vol. 4, no. 3, pp. 112–121, Sep. 2014.

[26] N. Li, J.-F. Martínez, J. M. M. Chaus, and M. Eckert, ‘‘A survey on
underwater acoustic sensor network routing protocols,’’ Sensors, vol. 16,
no. 3, p. 414, Mar. 2016.

[27] N. Z. Zenia, M. Aseeri, M. R. Ahmed, Z. I. Chowdhury, and M. S. Kaiser,
‘‘Energy-efficiency and reliability inMAC and routing protocols for under-
water wireless sensor network: A survey,’’ J. Netw. Comput. Appl., vol. 71,
pp. 72–85, Aug. 2016.

[28] M.Ahmed,M. Salleh, andM. I. Channa, ‘‘Routing protocols based on node
mobility for underwater wireless sensor network (UWSN): A survey,’’
J. Netw. Comput. Appl., vol. 78, pp. 242–252, Jan. 2017.

VOLUME 9, 2021 154597



R. T. Rodoshi et al.: RL-Based Routing Protocol for UWSNs

[29] A. Datta andM. Dasgupta, ‘‘Underwater wireless sensor networks: A com-
prehensive survey of routing protocols,’’ in Proc. Conf. Inf. Commun.
Technol. (CICT), Oct. 2018, pp. 1–6.

[30] S. Fattah, A. Gani, I. Ahmedy,M.Y. I. Idris, and I. A. T. Hashem, ‘‘A survey
on underwater wireless sensor networks: Requirements, taxonomy, recent
advances, and open research challenges,’’ Sensors, vol. 20, no. 18, p. 5393,
2020.

[31] S. Khisa and S. Moh, ‘‘Survey on recent advancements in energy-efficient
routing protocols for underwater wireless sensor networks,’’ IEEE Access,
vol. 9, pp. 55045–55062, 2021.

[32] Z. Mammeri, ‘‘Reinforcement learning based routing in networks: Review
and classification of approaches,’’ IEEE Access, vol. 7, pp. 55916–55950,
2019.

[33] S. Chettibi and S. Chikhi, ‘‘A survey of reinforcement learning based
routing protocols for mobile ad-hoc networks,’’ in Recent Trends
in Wireless and Mobile Networks. Berlin, Germany: Springer, 2011,
pp. 1–13.

[34] R. A. Nazib and S. Moh, ‘‘Reinforcement learning-based routing protocols
for vehicular ad hoc networks: A comparative survey,’’ IEEEAccess, vol. 9,
pp. 27552–27587, 2021.

[35] R. N. Raj, A. Nayak, and M. S. Kumar, ‘‘A survey and performance
evaluation of reinforcement learning based spectrum aware routing in
cognitive radio ad hoc networks,’’ Int. J. Wireless Inf. Netw., vol. 27, no. 1,
pp. 144–163, Mar. 2020.

[36] M. Van Otterlo and M. Wiering, ‘‘Reinforcement learning and
Markov decision processes,’’ in Reinforcement Learning. Berlin,
Germany: Springer, 2012, pp. 3–42.

[37] A. S. Polydoros and L. Nalpantidis, ‘‘Survey ofmodel-based reinforcement
learning: Applications on robotics,’’ J. Intell. Robot. Syst. Theory Appl.,
vol. 86, no. 2, pp. 153–173, May 2017.

[38] T. Degris, P. M. Pilarski, and R. S. Sutton, ‘‘Model-free reinforcement
learning with continuous action in practice,’’ in Proc. Amer. Control Conf.
(ACC), Jun. 2012, pp. 2177–2182.

[39] R. Huang and G. V. Záruba, ‘‘Monte Carlo localization of wireless sensor
networks with a single mobile beacon,’’ Wireless Netw., vol. 15, no. 8,
pp. 978–990, 2009.

[40] S. Chettibi and S. Chikhi, ‘‘Adaptive maximum-lifetime routing in mobile
ad-hoc networks using temporal difference reinforcement learning,’’
Evolving Syst., vol. 5, no. 2, pp. 89–108, Jun. 2014.

[41] W. D. Smart and L. P. Kaelbling, ‘‘Practical reinforcement learning in
continuous spaces,’’ in Proc. ICML, 2000, pp. 903–910.

[42] R. J. Williams and L. C. Baird, ‘‘Tight performance bounds on greedy
policies based on imperfect value functions,’’ College Comput. Sci., North-
eastern Univ., Boston, MA, USA, Tech. Rep. NU-CCS-93-14, Nov. 1993.

[43] A. dos Santos Mignon and R. L. D. A. da Rocha, ‘‘An adaptive implemen-
tation of ε-greedy in reinforcement learning,’’ Proc. Comput. Sci., vol. 109,
pp. 1146–1151, Jan. 2017.

[44] A. Garivier and E. Moulines, ‘‘On upper-confidence bound policies for
switching bandit problems,’’ inProc. Int. Conf. Algorithmic Learn. Theory.
Berlin, Germany: Springer, 2011, pp. 174–188.

[45] K. Verbeeck, A. Nowé, J. Parent, and K. Tuyls, ‘‘Exploring selfish rein-
forcement learning in repeated games with stochastic rewards,’’ Auton.
Agents Multi-Agent Syst., vol. 14, no. 3, pp. 239–269, Apr. 2007.

[46] K. Asadi and M. L. Littman, ‘‘An alternative softmax operator for
reinforcement learning,’’ in Proc. Int. Conf. Mach. Learn., 2017,
pp. 243–252.

[47] T. Hu and Y. Fei, ‘‘QELAR: A machine-learning-based adaptive rout-
ing protocol for energy-efficient and lifetime-extended underwater sensor
networks,’’ IEEE Trans. Mobile Comput., vol. 9, no. 6, pp. 796–809,
Jun. 2010.

[48] T. Hu and Y. Fei, ‘‘MURAO: A multi-level routing protocol for acoustic-
optical hybrid underwater wireless sensor networks,’’ in Proc. 9th Annu.
IEEE Commun. Soc. Conf. Sensor, Mesh Ad Hoc Commun. Netw.
(SECON), Jun. 2012, pp. 218–226.

[49] Z. Jin, Y. Ma, Y. Su, S. Li, and X. Fu, ‘‘A Q-learning-based delay-aware
routing algorithm to extend the lifetime of underwater sensor networks,’’
Sensors, vol. 17, no. 7, p. 1660, Jul. 2017.

[50] S. Basagni, V. Di Valerio, P. Gjanci, and C. Petrioli, ‘‘Harnessing HyDRO:
Harvesting-aware data ROuting for underwater wireless sensor networks,’’
in Proc. 18th ACM Int. Symp. Mobile Ad Hoc Netw. Comput., Jun. 2018,
pp. 271–279.

[51] S. Kim, ‘‘A better-performing Q-learning game-theoretic distributed rout-
ing for underwater wireless sensor networks,’’ Int. J. Distrib. Sensor Netw.,
vol. 14, no. 1, pp. 1–15, 2018.

[52] O. A. Karim, N. Javaid, A. Sher, Z. Wadud, and S. Ahmed, ‘‘QL-EEBDG:
QLearning based energy balanced routing in underwater sensor net-
works,’’ EAI Endorsed Trans. Energy Web, vol. 5, no. 17, Apr. 2018,
Art. no. 154459.

[53] Y. Zhou, T. Cao, and W. Xiang, ‘‘QLFR: A Q-learning-based localization-
free routing protocol for underwater sensor networks,’’ in Proc. IEEE
Global Commun. Conf. (GLOBECOM), Dec. 2019, pp. 1–6.

[54] V.DiValerio, F. L. Presti, C. Petrioli, L. Picari, D. Spaccini, and S. Basagni,
‘‘CARMA: Channel-aware reinforcement learning-based multi-path adap-
tive routing for underwater wireless sensor networks,’’ IEEE J. Sel. Areas
Commun., vol. 37, no. 11, pp. 2634–2647, Nov. 2019.

[55] Z. Jin, Q. Zhao, and Y. Su, ‘‘RCAR: A reinforcement-learning-based
routing protocol for congestion-avoided underwater acoustic sensor net-
works,’’ IEEE Sensor J., vol. 19, no. 22, pp. 10881–10891, Nov. 2019.

[56] S. Wang and Y. Shin, ‘‘Efficient routing protocol based on reinforce-
ment learning for magnetic induction underwater sensor networks,’’ IEEE
Access, vol. 7, pp. 82027–82037, 2019.

[57] X. Li, X. Hu, R. Zhang, and L. Yang, ‘‘Routing protocol design for
underwater optical wireless sensor networks: A multiagent reinforcement
learning approach,’’ IEEE Internet Things J., vol. 7, no. 10, pp. 9805–9818,
Oct. 2020.

[58] Y. Lu, R. He, X. Chen, B. Lin, and C. Yu, ‘‘Energy-efficient depth-
based opportunistic routing with Q-learning for underwater wireless sensor
networks,’’ Sensors, vol. 20, no. 4, p. 1025, Feb. 2020.

[59] M. Pouyan, A. Mousavi, S. Golzari, and A. Hatam, ‘‘Improving the per-
formance of Q-learning using simultanouse Q-values updating,’’ in Proc.
Int. Congr. Technol., Commun. Knowl. (ICTCK), Nov. 2014, pp. 1–6.

[60] R. A. Nazib and S.Moh, ‘‘Sink-type-dependent data-gathering frameworks
in wireless sensor networks: A comparative study,’’ Sensors, vol. 21, no. 8,
p. 2829, Apr. 2021.

[61] M. Ismail, M. Islam, I. Ahmad, F. A. Khan, A. B. Qazi, Z. H. Khan,
Z. Wadud, andM. Al-Rakhami, ‘‘Reliable path selection and opportunistic
routing protocol for underwater wireless sensor networks,’’ IEEE Access,
vol. 8, pp. 100346–100364, 2020.

[62] A. Wahid, S. Lee, and D. Kim, ‘‘A reliable and energy-efficient routing
protocol for underwater wireless sensor networks,’’ Int. J. Commun. Syst.,
vol. 27, no. 10, pp. 2048–2062, 2014.

[63] A. Yahya, S. U. Islam, A. Akhunzada, G. Ahmed, S. Shamshirband, and
J. Lloret, ‘‘Towards efficient sink mobility in underwater wireless sensor
networks,’’ Energies, vol. 11, no. 6, p. 1471, 2018.

[64] Y. Bayrakdar, N. Meratnia, and A. Kantarci, ‘‘A comparative view of
routing protocols for underwater wireless sensor networks,’’ in Proc. IEEE
OCEANS, Jun. 2011, pp. 1–5.

[65] C. Petrioli, R. Petroccia, J. R. Potter, and D. Spaccini, ‘‘The SUNSET
framework for simulation, emulation and at-sea testing of underwater
wireless sensor networks,’’AdHoc Netw., vol. 34, pp. 224–238, Nov. 2015.

[66] The Network Simulator-ns-2. Accessed: Jul. 28, 2021. [Online]. Available:
https://www.isi.edu/nsnam/ns/

[67] S. Basagni, C. Petrioli, R. Petroccia, andM. Stojanovic, ‘‘Optimized packet
size selection in underwater wireless sensor network communications,’’
IEEE J. Ocean. Eng., vol. 37, no. 3, pp. 321–337, Jul. 2012.

[68] J. Partan, J. Kurose, and B. N. Levine, ‘‘A survey of practical issues in
underwater networks,’’ACMSIGMOBILEMobile Comput. Commun. Rev.,
vol. 11, no. 4, pp. 23–33, 2007.

[69] G. Han, X. Long, C. Zhu,M. Guizani, Y. Bi, andW. Zhang, ‘‘AnAUV loca-
tion prediction-based data collection scheme for underwater wireless sen-
sor networks,’’ IEEE Trans. Veh. Technol., vol. 68, no. 6, pp. 6037–6049,
Jun. 2019.

[70] S.-W. Huang, E. Chen, and J. Guo, ‘‘Efficient seafloor classification and
submarine cable route design using an autonomous underwater vehicle,’’
IEEE J. Ocean. Eng., vol. 43, no. 1, pp. 7–18, Jan. 2018.

[71] J. J. Kartha and L. Jacob, ‘‘Delay and lifetime performance of underwater
wireless sensor networks with mobile element based data collection,’’ Int.
J. Distrib. Sensor Netw., vol. 11, no. 5, p. 128757, 2015.

[72] S. Chettibi and S. Chikhi, ‘‘Dynamic fuzzy logic and reinforcement learn-
ing for adaptive energy efficient routing in mobile ad-hoc networks,’’ Appl.
Soft Comput., vol. 38, pp. 321–328, Jan. 2016.

[73] Y. Song, Y.-B. Li, C.-H. Li, and G.-F. Zhang, ‘‘An efficient initialization
approach of Q-learning for mobile robots,’’ Int. J. Control, Autom. Syst.,
vol. 10, no. 1, pp. 166–172, Feb. 2012.

[74] N. Aslam, K. Xia, andM. U. Hadi, ‘‘Optimal wireless charging inclusive of
intellectual routing based on SARSA learning in renewable wireless sensor
networks,’’ IEEE Sensors J., vol. 19, no. 18, pp. 8340–8351, Sep. 2019.

154598 VOLUME 9, 2021



R. T. Rodoshi et al.: RL-Based Routing Protocol for UWSNs

[75] T. Wang, S. Wu, Z. Wang, Y. Jiang, T. Ma, and Z. Yang, ‘‘A multi-
featured actor-critic relay selection scheme for large-scale energy harvest-
ing WSNs,’’ IEEE Wireless Commun. Lett., vol. 10, no. 1, pp. 180–184,
Jan. 2021.

[76] Y. Su, R. Fan, X. Fu, and Z. Jin, ‘‘DQELR: An adaptive deep Q-network-
based energy- and latency-aware routing protocol design for underwater
acoustic sensor networks,’’ IEEE Access, vol. 7, pp. 9091–9104, 2019.

REHENUMA TASNIM RODOSHI (Graduate
Student Member, IEEE) received the B.Sc. degree
in computer science and engineering from the Uni-
versity of Chittagong, Bangladesh, in 2018. She is
currently pursuing theM.Sc. degreewith the Smart
Networking Laboratory, Chosun University, South
Korea. Her current research interests include user
association and resource management in cellular
network architecture like cloud radio access net-
work (C-RAN) and deep learning algorithms.

YUJAE SONG (Member, IEEE) received the Ph.D.
degree in electrical engineering from the Korea
Advanced Institute of Science and Technology
(KAIST), South Korea, in 2016. He was a Visiting
Scholar in communication systems with the KTH
Royal Institute of Technology, Sweden, in 2015.
Since 2016, he has been a Senior Researcher
with the Maritime ICT Research and Develop-
ment Center, Korea Institute of Ocean Science and
Technology. His research interests include design,

analysis, and optimization of various wireless communication systems,
including 5G, maritime/underwater, and smart grid communications.

WOOYEOL CHOI (Member, IEEE) received the
B.S. degree from the Department of Computer
Science and Engineering, Pusan National Uni-
versity, Busan, South Korea, in 2008, and the
M.S. and Ph.D. degrees from the School of Infor-
mation and Communications, Gwangju Institute
of Science and Technology (GIST), Gwangju,
South Korea, in 2010 and 2015, respectively.
From 2015 to 2017, he was a Senior Research
Scientist with the Korea Institute of Ocean Sci-

ence and Technology (KIOST), Ansan, South Korea. From 2017 to 2018,
he was a Senior Researcher with the Korea Aerospace Research Institute
(KARI), Daejeon, South Korea. He is currently an Assistant Profes-
sor with the Department of Computer Engineering, Chosun University,
Gwangju. His research interests include cross-layer protocol design, deep
learning-based resource optimization, and experiment-driven evaluation of
wireless networks.

VOLUME 9, 2021 154599


