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ABSTRACT Wireless Sensor Networks (WSNs) play a significant role in providing an extraordinary
infrastructure for monitoring environmental variations such as climate change, volcanoes, and other natural
disasters. In a hostile environment, sensors’ energy is one of the crucial concerns in collecting and analyzing
accurate data. However, various environmental conditions, short-distance adjacent devices, and extreme
usage of resources, i.e., battery power in WSNs, lead to a high possibility of redundant data. Accordingly,
the reduction in redundant data is required for both resources and accurate information. In this context, this
paper presents a comprehensive review of the existing energy-efficient data redundancy reduction schemes
with their benefits and limitations for WSNs. The entire concept of data redundancy reduction is classified
into three levels, which are node, cluster head, and sink. Additionally, this paper highlights existing key
issues and challenges and suggested future work in reducing data redundancy for future research.

INDEX TERMS Cluster-based, data redundancy, energy efficiency, reduction, wireless sensor networks.

I. INTRODUCTION
Wireless Sensor Networks (WSNs) are extensively used in
hostile environments and large-scale applications [1], [2],
such as terrestrial, underground, underwater, multimedia [3].
Other applications include volcanoes, military issues [4], [5],
glaciers, earthquakes, agriculture [6], [7], industry, environ-
mental issues [8]–[10], and healthcare [11] etc. However,
distribution deployment, designing, and energy consumption
are the most common issues, and challenges of these appli-
cations as millions of sensor nodes are distributed in these
large-scale areas. The life span of each sensor is entirely
dependent on the battery power to perform different tasks
such as sensing, computation, processing, and transmission
for data collection. Data transmission, on the other hand, uses
more energy than other processes.

In WSNs, data-driven models are used for various appli-
cations and are classified into four fundamental data-driven
models. A query-driven model is obtained for specific knowl-
edge items required from different places, such as home
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applications and logistic applications [12]. In a query-driven
model, data is gathered, stored locally and transmitted on
a requested suitable module for a certain knowledge item
that is required from multiple locations. Event-driven data
is inactive non-continuous, and transmitted with high energy
consumption when the events occur, such as forest fire, mass
movement, surveillance, earthquake, and forecasting of the
flood, etc. Time driven is also known as periodic sensor data,
mostly used for monitoring of a particular phenomenon such
as melting glaciers, earthquakes, and healthcare. Further-
more, the periodic sensor continually collects data from the
physical environment and reports it to the base station [13].
However, energy is mainly consumed due to the continuous
sensing and reporting data to the sink nodes. Environmental
objects move quickly or slowly, yet the data is identical
or duplicated in both cases, increasing transmission costs.
Different methods or processes, such as data aggregation and
network hoping, are utilized to minimize transmission costs.
The two forms of network hopping are single and multiple
hopping. In single hopping, the data is directly sent from
sensors to the sink node. Due to long-distance, transmis-
sion cost increases. Single hop is not suitable for large-scale
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FIGURE 1. Cluster-based architecture of the WSN.

regions. Thus, multi hop is used in large-scale regions. Multi
hop is primarily used in hierarchical routing protocols such
as chain based, tree based, and cluster based [14]. The best
energy-saving protocol is cluster based architecture [15]. The
data transmission in nodes clustering covers a network view
reduced between the nodes and the sink for an extended
network lifetime.

Figure 1 presents the cluster-based network both single and
multiple hop routing. In general, cluster-based architecture
consists of sensing area, sensor nodes, cluster head, base
station, a sink node, and end-user. Clusters of sensor nodes
are classified into distinct categories. Each cluster group has
a cluster head which is responsible for identifying the nodes
that constitute a cluster. A node in a cluster is responsible for
gathering data from the member nodes in its cluster and for
transmitting these data to the Base Station. The data is kept in
three separate places in the cluster-based architecture: at the
node level, at the cluster head, and finally, at the sink level,
with the entire network’s data.

Previous survey and review studies focused on specific
areas such as a survey on wireless sensor networks [13]–[18],
energy-efficient hierarchical routing protocols [19]–[22],
energy efficiency data aggregation techniques [23]–[27],
challenges and design goals [28]–[31], big data [32]–[34],
energy-efficient scheduling [35]–[37], wireless sensor net-
work applications [4], [7], [8], [11], [38]–[46] and data redun-
dancy [47]–[49] in WSNs (detailed in Section II). However,
this review article aims to classify the existing data collection
and transmissionmechanisms used by sensor nodes inWSNs.
As a result, the state of the art of WSNs is described in terms
of energy efficient data redundancy. The existing methods are
classified into three levels: the node, cluster head, and sink.
For each classification level, the performance of comparative
and simulation parameters are also described based on exist-
ing studies with suggested future works.

In this review article, our contributions are mentioned as
follows: This review article gives a comprehensive litera-
ture analysis of energy efficiency for WSNs, emphasising
energy-efficient data redundancy reduction strategies.
• It elaborates the schemes and methods of data redun-
dancy for reducing in cluster-based architecture with the
classification into various levels.

• It analyzes the different approaches, methods, and
schemes used in the energy-efficient data redundancy
in WSN as well as highlights their benefits and weak-
nesses.

• This review article also highlights all the performance
metrics used to evaluate existing works of WSN.

• Lastly, the summary of the suggested future works from
the previous research is assembled, with the ambition
that it will help new researchers follow new and innova-
tive directions of energy efficiency in WSN.

However, analyzing the existing approaches and considering
their core ideas helps develop some additional applicable and
enhanced techniques that might be an improved version of
the existing techniques. This review article will assist future
researchers in understanding status, needs, and future require-
ments and finding the loopholes responsibly for energy effi-
ciency in WSNs.

The rest of the paper is divided into the following sections:
Section II provides the former survey and reviews researchers
based on energy efficiency in WSNs. Section III presents the
data redundancy problems in WSNs; Section IV shows the
detailed classification of various data redundancy schemes.
In Section V, the study focuses on the analysis of parameters
with statistical determination. In Section VI, some direction
of suggested future research areas in data redundancy reduc-
ing for the energy of WSNs are discussed, recommendation
and conclusion are presented in Section VII.

II. RELATED WORKS
This section presents a comprehensive review of various
existing surveys, comparative studies, and reviews focused
on energy efficiency in the field of various perspectives for
WSNs.

Various programming approaches and model techniques of
WSNs design methodologies are aggregated and explained
by [16]. The study discusses two main approaches including
low-level-based and high-level-based approaches. Designing
environment, power supply design, reconfiguration scenario,
and non-functional property (NFP) verification are some of
the issues stated in research for WSNs design. Furthermore,
the main purpose of the review is to evaluate the architec-
tures, different types, applications, and challenges of wireless
sensor networks [17], [50]. Researchers also study various
techniques for energy and lifetime ofWSNs and explain some
general issues. Connectivity, coverage, node deployment,
environment, fault tolerance, scalability, data aggregation,
quality of service, hardware limits, and energy are some of
the challenges identified in past studies [18].

Chan et al. [22] survey the literature about hierarchi-
cal routing protocols for WSNs and present a comparative
analysis of each routing protocol’s advantages, disadvan-
tages, and performance issues. On the other hand, a com-
prehensive review of the classical and swam intelligence
approach delivers the basics of using inside hierarchical
energy-efficient routing protocols [19]. The recaps on hier-
archical routing protocols are revised by considering energy
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efficiency, fault tolerance, location awareness, load balanc-
ing, quality of service (QoS), scalability, data aggregation,
multipath, and query-based. The issues of objectives, meth-
ods, classifications, performance metrics, and other open
issues are highlighted in detail for further research. Similarly,
energy consumption is studied for WSNs lifetime [44]. The
study explores the specifics of WSNs applications, design,
and network structure and examines the energy efficiency of
proactive routing algorithms considering the strengths and
flaws. The energy efficiency protocols on periodic sensor net-
works based on their performance (life duration) and stability
parameters are also compared. Furthermore, Sabor et al. [20]
give a comprehensive survey about hierarchical-based rout-
ing protocols (HBRP) for WSNs based on communica-
tion paradigm, control method, routing approach, mobile
element, mobility pattern, network architecture, clustering
attributes, protocol operation, path establishment, energy
model, protocol objectives, and applications. The comparison
between survey protocols is based on delay, network size,
energy efficiency, and scalability. Furthermore, the draw-
backs and advantages are also evaluated. Abbasian et al. [23]
present the different data aggregation methods and pro-
tocols. The ground, multimedia, underwater, underground,
and the human body all employ data aggregation in net-
work applications in distinct ways. With the IoT scenario
in WSNs, the study compares data aggregation and non-
aggregation approaches. Individually emphasized data reduc-
tion approaches are used for reducing data volume size and
communication costs.

A detailed review of existing techniques of distributed
data aggregation problems under network settings is pre-
sented [24]. In this regard, the distributed data aggregation
problems are divided into two main categories, communi-
cation and computation. For the communication category,
routing protocols, network topologies, and all protocols are
taken for aggregation process support, while the computation
process is used to compute the aggregation function of algo-
rithms. The review discusses the issues and recent approaches
as well as advantages of data aggregation for underwater [25].
There are three types of underwater data aggregation tech-
niques: cluster-based, non-cluster-based, and other strategies.
These techniques are compared through metric performance.
In the study [27], different data aggregation issues of exist-
ing studies are conferred and compared with the previous
solutions as well for data aggregation issues. Also, it covers
the comparative analysis of various data aggregation tech-
niques based on delay, average energy consumption, redun-
dancy, strategy, and traffic load. In the study [31], WSNs
applications along with their classifications are explained.
The research challenges and concerns are also explained.
Mallick and Satpathy [28] claim that the WSNs struc-
ture, applications, and characteristics are the biggest chal-
lenges during implementation and designing. The WSNs
applications are divided into two groups and are explained
in detail. The study mentions that the main challenges and
design goals in WSNs depend upon resource constraints,

including data redundancy, storage, integration, QoS, and
topologies.

Moreover, the survey is presented in the state-of-art of
WSNs architecture, design and requirements, routing pro-
tocol, and its applications [29]. Further, for future designs
of algorithms and protocols, some directions are also given.
WSNs bring a tremendous change in agriculture monitoring
by introducing smart farming, which has replaced traditional
farming with its technology and applications. Farmers ben-
efit from smart farming, such as water utilization, ease of
agricultural land monitoring, and high yield. However, there
are still issues with WSNs implementation in agriculture,
but in the future, the entire agricultural system is automatic
and sustainable owing to technologies like the internet of
things, fog computing, and cloud computing that save time
and resources [30]. In the same way, the big data chal-
lenges between wireless sensor networks and data aggrega-
tion strategies are reviewed and addressed [34]. The open
issues, including the evolution of the IoTs, network architec-
ture, real-time communications on fog computing, extensive,
flexible framework, modelling, and simulation are also dis-
cussed. The big data concept is presented by integrating the
dimension and tools and addressed issues.

Furthermore, a new classification for big data is created
by WSNs requirements. In WSNs for big data aggregation,
the different existing aggregation strategies are surveyed in
detail. On the other hand, a comprehensive survey is used
to investigate how big data is introduced in WSNs through
its state of art research [33]. Moreover, for large-scale WSNs
coverage, there are many challenges and opportunities. These
challenges and opportunities are important to explore to
increase the WSNs’ lifetime efficiency. Moreover, in [32],
Dai et al. present information on state-of-the-art big data and
make recommendations for large-scale wireless networks to
attain this aim. The authors concentrated on four phases of
big data analytical (BDA) approaches: data acquisition, data
pre-processing, data storage, and data analytics, rather than
outlining the details of big data for WSNs. According to
BDA, the life cycle categorized into four consecutive data
stages (acquisition, pre-processing, storage, and analytics) is
also presented and open research issues and future directions.

According to Pagar andMehetre [36], the energy consump-
tion is a basic challenge for WSNs applications. Different
methods and techniques used to save energy, such as energy
efficient sleep scheduling (EESS) algorithm for WSNs are
discussed. Scheduling is also known as packet scheduling in
WSNs by which packet schedules are managed, transmitted,
and received from queue forms. The WSNs scheduling types
are discussed in detail, along with their benefits and draw-
backs. Bagaa et al. [37] focus on data aggregation scheduling
algorithms for WSNs for energy efficiency, network life-
time, and accuracy. Data aggregation scheduling protocols
are classified into two types according to waiting for time
nature, such as unslotted data aggregation scheduling proto-
cols and slotted data aggregation scheduling protocols. Fur-
thermore, each category is divided into subcategories based
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on its objectives. The unresolved challenges and directions
for future study in data aggregation scheduling techniques are
also explored.

There are several studies published on WSNs applica-
tions explained in detail in [4], [7], [8], [11], [38]–[46].
Ali et al. [38] focus on real-time WSNs applications for
criminal activities on borders, surveillance, traffic monitor-
ing, water level, pressure, vehicular behaviour on roads,
real-time intelligent observation of temperature, and remote
monitoring of patients.WSNs types are according to different
situations, and applications on modern society as well as
the implementation concerning different fields are explained
with strength, weakness, opportunities, and threat (SWOT)
to identify the merit and demerits of WSN’s real-life appli-
cation. A specific application of WSNs for water pipeline
monitoring is focused in [39]. The motivation of usingWSNs
for water pipeline monitoring is presented because being
underground, the pipelines are supposed to phase different
geological phenomena, including sinking, sliding, shaking,
fracturing, and displacement of beds, which ultimately cause
rupture and disruption in pipelines. A special application of
WSNs in precision agriculture (PA) is presented by [41].

WSNs are used in agriculture to minimize labour. The
technology uses wireless communications protocols in agri-
culture to identify communication distance and energy con-
sumption. In agriculture, the energy harvesting technique for
WSNs as well as energy-efficient techniques are used to solve
the power consumption issues and identify more suitable
methods. The existing techniques are compared, and their
limitations are identified. However, recent studies inWSNs in
PA are based on the Internet of Things (IoT) which compares
and surveys some fields such as IoT end devices, IoT appli-
cation layer, IoT platforms, type of sensors, and actuators.
Premalatha and Prathap [43] highlight the underwater sensor
fields as a new field for research, which is an easier way to
get information from hostile areas. The study uses sensors
to explore the underwater endangered species and discusses
the approaches, challenges, and issues. Some researches [8],
[40], [46] focus on reviews and surveys regarding WSNs
applications for environmental monitoring systems as well.
These applications are divided into two types: environmental
monitoring systems and environmental monitoring applica-
tions. The existing environmental monitoring system tech-
niques are compared and then the challenges and limitations
of these techniques are identified. The challenges include
power consumption, communication cost, scalability, remote
management, and data transmission method.

Large-scale WSNs are randomly, densely deployed due to
increase in data size for two reasons. First, the generated data
at each sensor node are highly correlated and redundant due to
the unchanged natural condition of the physical environment.
There is a significant historical correlation among each con-
secutive data of a sensor node. For example, if temperature
data readings are captured on sensor nodes every five seconds
every day, the temperature readings may not change signif-
icantly. Due to this reason, it is not necessary to count the

new reading at five-second intervals; otherwise, the previous
reading matches the actual one. Second, when sensor nodes
are randomly and densely deployed inside or close to the
geographical phenomenon, a large volume of data size is
generated and accessible for transmission as data is captured
by all the sensor nodes in the area. In such a situation, all
these nodes transfer a lot of redundant data. Another issue and
challenge phased byWSNs is data redundancy. The similarity
in the sensed data by a sensor is known as redundant data.
As a result of the data redundancy process, sensor nodes
waste most of their energy. However, to save energy, different
methods and techniques are used. Generally, data redun-
dancy has a huge influence on the quality of the data [49].
Curiac et al. [48] survey the impact of data redundancy by
including and excluding the data redundancy fromWSN. Two
methodologies, which are fault tolerance and save operations
for spatial and temporal data redundancy, are also discussed.

Energy saving is one of the main issues of WSNs, which
is caused by data redundancy. Although redundancy is used
to boost the data security in WSNs, it utilizes a lot of
energy. Data redundancy reduction in WSNs might be the
only solution to save sensor energy. In redundancy reduction,
the removal of useless data ultimately improves storage effi-
ciency and reduces the transmission cast. Some algorithms
and techniques are surveyed and designed for data reduction,
which can improve the lifetime of WSNs and increase the
energy [47].

Therefore, existing studies state the surveys of WSNs and
their application, design routing protocols, implementation
designing, and specific real-time application such as under-
water, underground, multimedia, and terrestrial application
etc. Hence, this review article elaborates the classification of
energy consumption by data redundancy in WSNs where it
occurs and elaborates the parameters used for energy con-
sumption in their classifications. It also includes the mathe-
matical equations for energy consumption inWSNs. Some of
the existing studies established on the classification of energy
consumption by data redundancy in WSNs are detailed in
section III.

This article is a comprehensive review of WSNs in
various levels of data reduction. We classify the data reduc-
tion methods and algorithms proposed in the literature for
energy efficiency inWSNs. This classification is based on the
most important objectives used for developing and solving
energy constraints. The data reduction methods on WSNs
are classified into three main levels: data reduction at the
node level, at cluster head level, and the sink node level.
To the best of our knowledge, a comparative study on the
data reduces energy-efficient issues considering these clas-
sifications has not been conducted yet. However, previous
survey and review studies that focus on the specific areas
on wireless sensor networks include military, agriculture,
environmental monitoring, and wireless body area network,
which also handled the architecture along with the limitations
and challenges [13]–[18]. Various existing studies investigate
based on routing protocols for data aggregation of types and
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FIGURE 2. Classification of data redundancy reduction in WSNs.

applications [19]–[27]. Some of the literature focuses
only on specific types along with their challenges and
issues [28]–[31]. Big data generated by WSNs [32]–[34]
are analyzed, including application and management of
data. [36]–[38] provide a detailed explanation of schedul-
ing sleep algorithms for energy-efficient in WSNs. Data
reduction schemes’ impact is investigated by including and
excluding in WSNs, including at nodes level and aggregator
level data reduction as shown in Table 1. Hence, this article
explored state-of-the-art strategies of data redundancy reduc-
tion and classified into three categories: node level, cluster
head level, and the sink level, as shown in Figure 2. The
purpose of these classifications is built to the basis for future
researchers in WSNs. These classifications are based the
illustrated their advantages and disadvantages, and also dis-
cribe various presented methods and schemes based on some
important parameters regarding cluster-based architecture,
such as percentage of data after applying aggregation phase,
percentage of data sets sent to the CH, duplicate sets of data,
sampling rate adaptation, energy consumption at the node
level, the lifetime of a sensor node, data gathered a number
ratio sent data set, gathered data readings two consecutive
periods, and so on. As well, a side-by-side comparison of all
discussed strategies is presented, and some suggested future
work are addressed.

III. DATA REDUNDANCY REDUCTION
This section describes the issues and problems related to
data redundancy reduction in WSNs. Data redundancy is the
repetition of a single entity more than two times. It is also
known as similarity or the exact value [51]. Redundancy is
found during the sensing process when sensor nodes sense
a physical object. Due to some constraints in WSNs, there
are approximate issues of redundancy, typically in hostile
or harsh areas where the sensors cannot be replaced or
recharged [52]. Conversely, another issue related to WSNs
is big data, as thousands of sensors collect and compile the

data in a wide area and produces a significant portion of big
data. Nowadays, WSNs are one of the main sources of big
data in IoT because the sensors sense a huge amount of data
in a minute before sending it to a base station. However, Big
data processing is quite complex to manage [53]. The issues
and challenges of data redundancy are stated in the section
below, and different levels of redundancy in cluster-based
architecture for WSNs are described. The main data chal-
lenges in WSNs are classified into different categories such
as clustering [54], security, processing, data analysis, data
aggregation, and energy saving.

In addition, big data is classified into two major areas:
network systems and data systems [32]. Usually, a network
system delivers censored data which converts to an exten-
sive form of data. Though many resources are required to
save data, a huge amount of energy is also required for
its processes, sensing, and transmission. After the network
system delivers censored data to an extensive data network,
the data system processes the data [55]. Generally, the data
is received by data network in a redundant form for analysis,
which causes multiple issues during data processing and anal-
ysis [56]. Another issue of WSNs is battery limitation, as the
sensor lifetime relies on its battery. The sensor uses battery
power in several operations with different quantities [57].
Battery power is not only important for sensors life but is also
important for sensing, collecting, and communicating data.
When the sensor uses redundant or raw data in the operations
above, the battery‘s energy depletes quickly [58]. As battery
power saving is one of the most challenging issues, reducing
redundancy could help save battery power. Moreover, data
redundancy in WSNs raises some other issues, such as high
workload, conjunction in-network, and high transmission
cost.

IV. CLASSIFICATION OF DATA REDUNDANCY REDUCTION
In this review article, the data redundancy reduction schemes
are classified into three levels: the node level, the cluster
head level, and the sink level, as shown in Figure 2. These
data redundancy reduction strategies are based on the factors
that have been employed in the estimate of performance in
numerous researches.

WSNs are based on cluster-based architecture, and it is
possible to identify the particular levels where the redundant
data is formed [59]. Usually, the cluster-based architecture
deploys in a large network which is further divided into
small cluster groups [60]; each group has its cluster head and
member node [61], [62] and each cluster is supposed to send
data to the sink node [63].

In addition, redundant data is found at three different levels
such as at node level, cluster head level, sink level. First, while
the sensor is sensing data at its fixed time, where there are no
dynamic changes in the environment, the data is redundant at
the node level. Second, when the cluster head collects data
from its member nodes, there is a big chance that the data is
redundant as nodes are randomly distributed, i.e., some nodes
might be close to each other or there are no dynamic changes
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TABLE 1. Summary of existing reviews and survey for WSNs.
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TABLE 1. (Continued.) Summary of existing reviews and survey for WSNs.

in the environment. Lastly, nodes far away from the sink send
their sensed data to nodes near the sink; thus, big data or
redundant data are formed as the sensor near the sink has
data of nodes away from the sink plus their own sensed data.
When nodes near the sink nodemust forward big or redundant
data to the sink, plenty of energy is used, thus, to conserve
the energy used by the sensors near the sink, the sink node
invents some mechanisms. Recently several researchers are
worked to find the solution to preserve the battery power and
proposed different methods and techniques. Below are the
work of the recent researchers and some issues with their
work. The taxonomy of various data redundancy schemes
classification is presented in Figure 2. The details of these
classification itemized, based on existing techniques used for
energy efficiency in WSNs, are shown in Table 2, 6, and 8.

A. DATA REDUNDANCY REDUCTION AT NODE LEVEL
This section explains the existing studies of the data redun-
dancy reduction schemes and algorithms used at the node
level for the WSNs. However, the current techniques are
analyzed and considered the necessary parameters for the

emergence of data redundancy in WSNs. Table 1 presents the
various problems of data redundancy reduction at the node
level with proposed schemes by combining the models and
strategies. The contributions and limitations inWSNs are also
presented.

A cluster architecture that contains a cluster head and
member nodes are shown in Figure 3. Moreover, each sensor
node collects the data periodically. This periodic data is fur-
ther divided into small intervals known as slots, and every slot
senses unique data. However, the slot has a short, fixed period
to collect the data. During this period, if the physical environ-
ment shows change (rapid or slow), then there are chances
of similar or redundant data coverage [70]. Ultimately, the
redundant data consumes a lot of energy at each sensor due
to periodically sensing data. Even though many researchers
have worked on energy conservation caused by data redun-
dancy and have come up with some mechanisms and algo-
rithms, energy issues continue to require attention [71].

In periodic sensor networks (PSNs), the network lifetime
is based on the energy of each sensor node. Hassan et al. [64]
propose an aggregation and transmission protocol (ATP)
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TABLE 2. Existing studies are based on data redundancy reduction schemes at node level.

construction for each sensor node to reduce data transmission
and ultimately preserve energy. In PSNs, each node gathers
sense data in vector form. Each period is divided into fixed
time slots. At the node level, captured data is a form of vector.
The period is divided into equal fixed time slots. However,
when the time interval is small, the node may have collected

redundant or closely similar data due to the unintentional
changes in the physical monitoring object. The study pro-
poses the node level data redundancy reduction based on two
phases, aggregation and transmission, to reduce redundant
data. The aggregation phase at each node aims to reduce
redundancy or size from raw data which increases the energy
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FIGURE 3. Process of data collection at the node level.

power of each sensor node. Moreover, the aggregation phase
is classified into two functions. The first function is to identify
the similarities between two measurements with application
defined threshold. Furthermore, if these two measurements
are similar, then their function adds 1 to the first measurement
and discards the second measurement. If these two values
are not similar, then it considers the new value. After the
aggregation phase, a node compiles the data sets observed
by each sensor and decides whether to send these aggregated
data to the cluster head (CH) for the transmission phase. Once
the data is sent to the transmission phase, it is checked again to
find out the data redundancy between two successive periods.
Every period has its own data sets and time interval frequency
measures. A statistical model is used for data redundancy
reduction between two periods by using the analysis of vari-
ance (ANOVA) one-way model and Fisher test. Furthermore,
the Fisher test shows whether all prior and new periods are
similar. During the transmission phase, each sensor node uses
the Fisher test to calculate the variance between the prior
period of data sets and the current data sets. It checks if and
only if the variance is not significant, then it discards the new
period data sets and just sends a notification to the CH. The
notification packet is empty, showing that the new dataset
and the previous dataset are equal to avoid sending redundant
sets to decrease the power consumption. However, while the
ANOVA model identifies redundancy between two data sets,
different data sets still need to be measured. Meanwhile, the
Fisher test is usually needed when the small data size has high
computational issues.

The data collecting and aggregation by discerning trans-
mission technique (DCADT) are proposed in [65] to increase
the lifetime of PSNs. DCADT finds correlations among the
collected data in every sensor by sampling rate in a dynamic
way. This technique works in rounds, with each round divided
into two periods and each period consisting of four phases:
data aggregation, data gathering, frequency adjustment, and
selective transmission. To gather samples of data, every sen-
sor node uses dynamic time warping (DTW) to measure
distance. Both data gathering and data transmission are used
for data sampling. The usage of both data transmission and
data gathering is used for data sampling for the removal
of redundant data within sensors while sending data to the
base station. Before transmission, the redundant data first
aggregate data. In the data-gathering phase to get adoptive

data, a sampling rate is fixed in every sensor node. Second,
in the data aggregation phase, the DGAST protocol uses a
symbolic aggregate approximation (SAX) algorithm to elimi-
nate redundant data from temperature reading before transfer-
ring to the CH. This phase is further distributed into two more
stages. The first stage, dimensionality reduction, and adap-
tive piecewise constant approximation (APCA) approach use
different lengths but constant values for the segment. In the
second phase, the SAX method is used to reduce reading
repetition by making a table of readings from segments rep-
resenting symbols for breakpoints specification. This phase
is a decision-making phase that decides whether or not to
forward the data between two complete periods to the CH.
Suppose there is redundant data between the two complete
periods. In that case, it only sends notification packets, while
if there is no redundancy in data, then it sends new period’s
data to the CH. The final phase is the adoption of sampling
rate, which finds redundant reading percentage between two
consecutive periods per round for new redundant rate. For
this, the DTW distance base is adopted for the measurement
using a similarities function redundancy.

The study presents methods to conserve energy and reduce
data size for low transmission cost in every sensor [66].
It finds the differences in new sensed reading and last reading
value and then uses the least number bit, which is used for
transmission. Rather than sending all values to the start-up
phase, every sensor sends its first reading to CH and saves
it in its memory. When CH receives the first reading from
every sensor node in cluster reading, it saves it in memory.
Next, in the data collection phase, sensor node calculates
the differences between the new and previous reading. The
differences are called the least number of bits. It assumes
that if the last sensor reading is 25◦C (110012), then the new
temperature in this reading is increased by 5◦C. The new
reading then becomes 30◦C (111102). Then the difference
(30-25=5◦C) (1012) is computed. The total number of bits
is decreased and evaluated by using bits that save energy and
reduce the data size.

Similarly, the study proposes an energy-efficient and
computational lightweight aggregation technique. The main
advantage of this technique is node processing cost where
it reduces the amount of data being sent to the base sta-
tion which ultimately controls the data conjunction. In this
scheme, every cluster member node places data according to
a stratum that exists in every sensor node within the buffer.
Seven stratums are used for ranging the temperature value
from 260C to 32.990C. These ranges are common for all
temperature readings captured by every sensor node. These
seven strata are based on previously acquired historical data.
In this approach, there are two steps. The values of new
readings are compared to the stratum mean value in the first
phase. The received value from the last stratum is compared
to either the minimum or maximum value for a particular
stratum in the second phase. However, each stratum is divided
into the minimum or maximum values, amongst which each
sensor node compares its values from minimum or maximum
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and then forwards it to cluster head in a predefined time
interval [67].

Al-Qurabat et al. [68] propose an energy-efficient adap-
tive distributed data collection method (EADiDaC) for data
aggregation, which collects data periodically to increase sen-
sors lifetime. This method is divided into cycles and four dif-
ferent stages are built in each cycle. The first stage of the cycle
is data collection, in which the process shows how the sensor
collects the data in a network and its transmission process to
the base station. Each cycle is divided into two periods and
each period is divided into slots. EADiDaC method collects
the sensor readings in time-series form, and it is called tem-
perature readings. The redundancy in these temperature read-
ings increases only under two conditions; when the time slot
decreases or the changes in the area’s physical environment
are slow. The second stage is dimensionality reduction, where
the adaptive piecewise constant approximation (APCA) tech-
nique is used to decrease dimensionality. There is a period
fixed to measure sensor readings at this stage to reduce the
size of data by dimensionality reduction technique using
APCA technique. The study presents some modifications in
APCA i.e., the length of the segment is not fixed and with
the help of user-specified reconstruction error, the adoption
base is set. Then to build different segments, sliding windows
through user-specified reconstruction errors are used. The
third stage is frequency reduction, which is reduced with
the help of SAX. By using this method, redundancy from
temperature readings before sending it to the base station is
reduced. The EADiDaC method is used to build a reduced
vector by imposing a variable length. Now the temperature
readings are divided into an unspecified number of segments
by using a sliding window that varies in length. Each segment
calculates a mean which is called length. The mean values
are turned into symbols and the alphabet to get a fixed size.
It puts a breakpoint on the symbols which are predefined in
a Table form. Before converting to APCA, the mean values
are converted into symbols in which redundant symbols are
also included. To remove the redundant symbols EADiDaC
method uses a function to find the redundancy between the
symbols before sending them to the base station. The final
stage is sampling rate adoption which is based on dynamic
time warping (DTW). This method finds the redundancy per-
centage from the temperature reading in a period and decides
the sampling rate. Initially, it finds data similarities between
two periods. At the end of each period, the EADiDaCmethod
changes APCA, and it selects a different number of a segment
whose length is different in every period. EADiDaC method
uses similar functions to find redundancy between every two
APCA temperature readings and then it verifies the number of
data similarities in a period at each cycle. Thus, periods have
different lengths in each cycle, so the reading percentage is
calculated per cycle. Suppose the redundancy percentage is
high in the readings at different periods. In that case, it means
that there are only minor changes in the environment, but if
the redundancy percentage is less, it means there are minimal
changes in the environment.

In the study [69], an online data reduction method is pro-
posed in which the sensing rate of sensor node depends upon
data variances Kruskal–Wallis test. The Kruskal–Wallis test
is built in every node, so it reduces redundant data. The first
phase at the node level is known as acquisition. It uses three
periods in a cycle where data is organized in an order form in
a table and an ordered rank is fixed for every reading. If the
received reading is redundant, which is named as tied, a mean
of the tied readings is calculated. Additionally, a threshold
value of an application risk level is taken. In every round,
each node decides after differentiating between risk level and
sampling value that either the sampling rate should increase
or decrease. To find the redundancy level, a behavioral func-
tion is used to identify the differences between the crucial
value threshold and sensing data. Furthermore, suppose the
values are higher than the risk level. In that case, it is labeled
as one (1), else if it is lesser than risk level, then it is labeled
as zero (0), and these values are placed in value R. There
are chances of data redundancy in R and similar function
is used to identify it. Three conditions are used to identify
similar data. In the first condition, if the result is (0) zero
after comparison, it labels as one (1). In the second condition,
if it is lesser than the threshold value, then it is referred to as
redundant readings. In the third condition, weight is fixed on
it, and if it is redundant, then the weight generates a vector.
Finally, the sensor sends a set of readings with its weight to
the sink node.

In Table 2, simulation parametric values are based on
a threshold value, measures readings, Eelec, ßamp, K,
MINSAMP, data, and field; simulator and sensor at the node
level are described. Most of the researchers used the 0.03 and
0.05 threshold values with 50 nJ/bit on the intel Berkeley
research lab and due to using a small threshold value, the
measures readings range is also less like 20-100. Some of
the researchers used the large threshold value like 0.07 and
0.1 with large measures readings ranged from 100-2000.
Table 3 shows the existing proposed methods and schemes
with the benchmark’s methods and schemes used for compar-
ison. Also, it mentions the various performance comparison
parameters for evaluating the existing schemes and methods
for data redundancy reduction in WSNs.

B. DATA REDUNDANCY REDUCTION AT THE
CLUSTER-HEAD LEVEL
This section describes the current studies of the data redun-
dancy reduction schemes and algorithms at the node to the
CH level for the WSNs. Although the existing techniques are
examined and measured, the used parameters are essential
for emergence of data redundancy in WSNs. Table 5 high-
lights that some of the current existing methods problems are
addressed with their progress models, and proposed energy
efficiency schemes to reduce data at the CH level for WSNs.
Table 5 also deliberates the contributions and boundaries of
existing methods.

In WSNs, scalability improves with energy efficiency
by preparing a hierarchical design. The typical architecture
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TABLE 3. Simulation parametric values at the node-level.
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TABLE 3. (Continued.) Simulation parametric values at the node-level.

FIGURE 4. Data sets were collected at the CH level from the member
nodes.

technique is called clustering, which replaces single-hop
transmission with multiple hop transmission for improved
scalability. If the clustered-based architecture is considered
in a periodic sensor network, then the network is supposed to
be categorized into different clusters. Each cluster has a CH
that receives its member node data and takes responsibility
for further transmission as shown in Figure 4. Whenever its
member nodes sense data and the nature of the environment
is constant, the data have redundancy. The data is aggregated
and sent to the CH by the member node. Subsequently, the
CH receives different data sets of each member node. Due
to short geographical distance and environmental changes,
there is a greater chance of having redundant data. Among
the member nodes in a cluster, this redundant data contributes
to high traffic, high workload, high memory loss, and rapid
depleting sensors’ battery [67]. However, several researchers
have proposed different techniques and methods to resolve
these problems, which are discussed in Table 3.

For the data redundancy at the CH level, Ying et al. [60]
offer an energy-efficient data collection technique with

cluster-based WSNs to identify spatial-temporal correlation
data. To detect temporal redundant data, a dual prediction
technique is applied to reduce intra-cluster transmission.
Then, hybrid-compress sensing is built in clusters to identify
spatial redundant data among the sensor nodes for inter-
cluster transmission. The prediction model also presents an
error threshold selection scheme to enhance energy con-
sumption and accuracy recovery. In the prediction method,
CH sends a forecasted value to its all member nodes.
To decrease intra-cluster transmission, when cluster mem-
ber nodes received the forecast value from the CH, the
observed and forecasted values are compared within a special
threshold. If there is a large error between forecast value and
observed value, then it ends at a threshold. Cluster member
sends its observed value to the CH, but the CH considers
a predicted value. Afterward, the inter-cluster transmission
starts its work where the CH gathers the data from all member
nodes in the cluster, and it transmits if it is lesser than a
threshold value (M). If it is more than M, it aggregates data
using compressing sense. Finally, the sink node uses the CS
recovery method to restore all of the data to its original form.

Moreover, Idrees et al. [72] provide an expanded version
of the KNN (Modified k-Nearest Neighbour) method at the
sensor node level tominimize energy usage inWSNs. In addi-
tion, to extend sensor lifespan, it uses DaT protocol that is
divided into two stages: data categorization and data trans-
mission in each interval. Modified k-Nearest Neighbours is
used to classify the obtained data into multiple groups while
instead of delivering all data, the DaT protocol picks the
best illustrative data from each class and transmits it to the
sink [60], [86]. Likewise, similar classes are combined into
a single class. Finally, the best representative readings of all
classes with reduced vector are transferred to the sink at the
data transmission stage. The KNN protocol is unfair by the
value of K and has high computational complexity and less
memory for large data sets.

Al-Qurabat et al. [73] propose two-level data aggrega-
tion (TLDA) protocol for extending the lifespan of WSNs.
At the node level, the data aggregation is constructed at
an initial stage. Different lengths of segments for data are
created using slide windows, and aggregate data is collected
using the adaptive piecewise constant approximation (APCA)
technique, which helps to decrease data collection size at each
node level. The second level is created at aggregators or CH.
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TABLE 4. Performance comparative parameter’s for save energy at the node level.
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TABLE 5. Existing studies are based on data redundancy schemes at the CH level.
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TABLE 5. (Continued.) Existing studies are based on data redundancy schemes at the CH level.

The aggregator gathers a set of data by chaining a hash table
together with the SAX method. At this point, it searches and
decreases redundant sets by merging the redundant readings.
Henceforth, it transmits the aggregate data to the sink node.
TLDA protocol enhances the PSN lifetime, decreases redun-
dancy data, saves node power, and maintains accuracy.

In a similar way, Al-Qurabat et al. [75] propose a two-
tier data reduction (TTDR) technique that works in two-tier
networks such as sensor nodes and gateway. The first tier is
at the node level, where a straightforward data compression
strategy is applied ideal for node restrictions. For determining
temporal correlation in sensor node data, delta encoding fol-
lowed by run-length encoding (RLE) is utilized. The purpose
of delta encoding is to reduce the dynamic range in a data
set. Delta encoding finds a difference between current and
previous sensor data, then compresses it, and sends it to the
CH. However, the redundant data is also included at this stage
and to remove the redundant data, RLE encoding method is
used to compress more data. In the second tier, when the
period ends, it sends all gathered data to the aggregator or
CH. Subsequently, when the aggregator receives the data
set from its member nodes in the cluster, it finds the data
redundancy and compresses data size before sending it to the
sink by minimum description length (MDL). Furthermore,
there is a hypothesis through (MDL) at the CH level, and each
cluster follows it. Ultimately, the CH sends the difference
between data and hypothesis to the sink. By this procedure,
they identify the redundant data sets and non-redundant data
sets and send them to the sink. According to (MDL), if two

data sets are similar, then it compresses them; otherwise, they
are considered different.

A Reliable-ESTS (RESTS) in spatio-temporal scheduling
(ESTS) technique is proposed on spatio-temporal correla-
tion of sensor data and ultimately increases the lifetime of
PSNs [76]. In addition, a new model is introduced to use
Euclidean distance to search periodical correlation between
spatio-temporal data of nodes neighbours. Thus, at this level,
a temporal correlation at the sensor node level is identified.
There is redundancy at each consecutive reading and to
check this redundancy, a local temporal correlation is sug-
gested. By using local temporal correlation, redundancy is
found between two consecutive readings; if the redundancy is
found, then only one reading is used and the other discarded,
while in a replace of the discarded value and keep weighted
values. Further, the CH receives data sets with the weights
of each member node at the end of each period. Before
delivering data to the sink, the CH seeks a spatio-temporal
correlation for each node, removing duplicated data among
neighbouring nodes. By using the Euclidean distance, the
CH finds the distance between sensor nodes with the help
of a specific threshold. First, if some nodes are nearer to
the predefined threshold distance, then it considers them in
a spatial correlation. Moreover, the CH checks the temporal
correlation of the nodes which are near to each other. After
finding the spatial-temporal correlation, the CH applies a
scheduling algorithm such as sleep/active sensors mode. Sec-
ond, suppose two nodes are closer to each other and produce
similar data but the remaining energy level amongst one of
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them is weak. In that case, the algorithm keeps the node at an
active mode with more energy, and the other with less energy
is turned into sleep mode. Now, the active node senses collect
data and send it to the sink.

For PSN applications, [77] recommends a novel adaptive
sampling methodology. Aggregation and adoption are two
steps of this method. The primary goal of the first step is
to limit the amount of data acquired by the node. In this
stage, the data is collected in a vector form. Redundant data
from vectors is removed by a data similar function. A new
adaptive sampling technique identifies redundancy between
two values by a special threshold that is given based on an
application. If it identifies the two as similar, then their similar
function is equal to one (1); otherwise, they are recognized
differently. In the case of constantly similar data, it adds
one (1) in their frequency through the frequency measuring
function. In the end, a set of data is collected by each node
and transferred to the sink node. In the second stage, the
CH receives a set of data and its frequency weight. Subse-
quently, the CH found a special correlation between sensor
nodes by using two techniques including closer geographical
sensor nodes and highly spatial correlation between collected
data by their member nodes. However, to find geographical
distance it takes the help of Euclidean distance between two
nodes. On the other hand, to find spatial correlation, it uses
some functions (overlap coefficient, Jaccard similarity, and
cosine similarity) on a dataset of both nodes and data sets.
To find similarity between both data sets and sensor nodes,
two different values, zero (0) and one (1) are taken, whereas
zero (0) is considered as different data sets and one (1) is con-
sidered as redundant data sets. Finding spatio-temporal corre-
lation between sensors helps to decrease energy consumption
between sensors.

By using the EK-means, a new data processing strategy is
given that reduces data transfer without compromising data
integrity. This strategy works in two stages. Data redundancy
is removed at the node level in the first stage, using a linear
interpolation function and the Euclidean distance methodol-
ogy. First, a point is captured as a vector and then two vectors
are considered to identify redundancy between them if these
two vectors of measures are with constant data sets size.
Suppose the measurements of these two vectors are similar
in the threshold value. In that case, the quantity of the data
similarities via threshold value concerning the two vectors is
created on Euclidean distance. Moreover, every node finds its
representative point at each period. However, to find the rep-
resentative point, a starting point and an endpoint are selected.
The use of Euclidean distance calculates the distance between
starting point to the endpoint. After the collection of a set
of representative points at one period, the data is sent to the
CH. In the second step, the aggregator receives the dataset
of representative points by member nodes. At this level, the
main task is to check the data redundancy among data sets
between member nodes and to reduce the data amount before
sending it to the sink node. A CH approach introduced in the
K-mean algorithm is enhanced to make a cluster for the data

sets to accomplish this task. The new approach decreases the
data latency. In the EK-mean, there are two main differences
from classical k mean. First, Euclidean distance is used to
calculate a distance between a dataset of points instead of data
vectors. Second, the Euclidean distance is measured only if
the radius value is higher than the threshold value. Finally,
the EK-mean builds up in clusters for each period and then
identifies special information from each period. In the end,
the aggregator sends all the cluster’s centroid values to the
sink node [78].

An efficient data aggregation technique is done at the node
level, which is also known as local aggregation. At this stage,
most of the data collected by the sensor are strongly depen-
dent on monitoring conditions, whereas there are greater
chances of having redundant data. The measurement selected
in a period contains dissimilar data, and at end of the
period that measurement comes out in form of a vector [83].
Although the vector includes a lot of redundant data, users
can use a similar technique to find redundancy data between
two measures by specifying a threshold value. Only if their
comparable function is equal to one (1), then two successive
redundant measurements exist. The redundant data found in
the vector is presented by the weight measurement function
for information integration. The sensor takes a set ofmeasure-
ments without redundancy after each period and sends it to the
CH. In the second stage, aggregation starts at the CH level by
using similar functions. However, the CH also receives a set
of measurements and their weight from its member nodes.
Aggregation at the CH level aims to deduce redundancy
between the member nodes using a specific threshold value.
The Jaccard (similarity function) is used to identify similar-
ities and their weights between two data sets. Whereas, for
the comparison of the weight and data, the prefix frequency
filtering (PFF) technique is proposed, and it works in two
steps. The first step is candidate pairs generation in which
the sensor searches candidate pairs at every dataset. The CH
chooses a candidate pair only if the calculations are greater
than β. The second step is the Candidates’ verification. After
finding candidate pairs, it considers a candidate pair between
two data sets in case if the similarities of both data sets
are greater than the Jaccard threshold. The analyzed vari-
ances between measurements are calculated using K-mean
and adopting the ANOVA model and the Bartlett test. Both
distance functions, Euclidean distance and Cosine distances,
are used to determine data redundancy between data sets.

Extended cosine regression (ECR) data aggregation is pro-
posed to reduce energy depletion during data collection [84].
It is a prediction model, and the key objectives are used
to reduce data redundancy, maintain accuracy, and enhance
network lifetime. ECR model is based on two vector mod-
els which stop inter-cluster transmission by making a data
sequence that is implemented both at the member node and
the CH in each cluster. A precondition is established for the
prediction model. The node lifetime of each sensor is further
divided into a mixed identical slot and in that slot, a sensor
only has to store one identical value. Moreover, both the CH
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and member node have the same prediction algorithm and if
both receive any knowledge, acknowledge each other. The
base station broadcasts two threshold values to the CH and
member node. One of the values is the application-specific
error threshold, whereas the other is the user predefined
threshold error. Furthermore, each member node forms two
types of vectors. The first one is the actual data vector (ADV)
which saves actual values. The second one is the predicted
data vector (PDV) which saves the prediction values that are
similar between CH and member node. The length of ADV
and PDV remain the same at each cluster, however, the CH
forms a corresponding vector for each of its member nodes.
Everymember node first saves the sensed value intoADV and
PDV then sends it to the CH,which forms its private PDV. The
ECR method is implemented on variations of cosine distance
on linear regression which is divided into three phases. The
first phase is the initialization phase. The based station (BS)
broadcasts an acceptable prediction error to every CH and
member node. In every cluster, its member node transfers its
sensed data to CH in a cluster by using single-hop communi-
cation. Now the CH saves all the member node’s data in an
ordered form. Before predicting each sensor node is a new
value that forms a vector from its old values using an ERM
technique. At the end of the start-up phase, the CH has a huge
amount of data that it uses in the ERM model. The second
phase is the modelling phase that combines linear regression
and cosine distance to increase the prediction accuracy of
each member node. Generally, the linear regression does not
pass any data unless the sequence line has perfect coordi-
nation. The differences between the two data sets are found
by using signal differences between two vectors distance
similarities. The third phase is the working phase where every
member node calculates prediction value and prediction error.
At this point, it compares the value with an error; if the value
is lesser than or the same as the error, then it does not send it
to the CH, while on the other hand, if the value is more than
the error, then it sends actual value to the CH. Furthermore,
the same procedure applies to CHwhen it receives the values.

WSNs also play a key role in big data collection. Themajor
challenge of big data collection is the consumption of sensor
energy which affects network lifetime. The two-level data
reduction approach inWSN by Harb et al. [81] is proposed to
reduce data communication and enhanced network lifetime.
At the first stage, the data compression model is implemented
at the node level where the coefficient of Pearson is used to
identify a correlation between two data sets. If the Pearson
coefficient is equal to 1, it means a positive correlation;
otherwise, it considers no correlation when the indicator is
equal to 0 or −1. The vector of the reading collected at each
sensor node level is to reduce the Pearson Coefficient. The
representation readings selection algorithm is applied on a
vector to divide into sub vectors until these sub vectors show
high correlation. The divide function divides the readings
vector into two equal sub vectors. If the correlation is less
than a certain level, the Pearson Coefficient is used to set a
limit. This vector evaluates the final vector of readings, then

consists of mean reading values and weight of values, which
is the number of readings represented by the mean value.
At the end of the process, each sensor node provides a vector
reading to the CH. Second, the data clustering model is used
at the CH level to identify redundant data sets when received
from member nodes. CH has used the K-mean algorithm to
orderly allocate redundant data into data sets. The group data
sets in K clustering by K-mean algorithm with Euclidean
distance are used to group similar data sets in the same cluster.

To minimize communication and extend the network’s
lifetime, a two-level data reduction strategy is presented. Each
node continues to compress data obtained at the first level
using the Pearson Coefficient [54]. When the Pearson coeffi-
cient is equal to −1, there is no correlation between the two
data sets; otherwise, there is 0. When the Pearson coefficient
is equal to −1, there is a negative correlation between the
two data sets. The high correlation is determined only in
case if the predefined threshold is closely similar or equal to
the data sets. Moreover, the data compression algorithm is
implemented at each member node to compress the collected
data vector and find a subset reading with the whole vector.
Further, the vector readings are divided into sub vectors and
to find a high correlation between vector readings by applying
the Pearson coefficient. At the end of each process, every
node contains mean values and weighted values representing
a repeated number of readings. After receiving the data sets
to CH from their cluster member nodes, the clustering data
model is applied to identify the redundancy between grouping
data sets at the same cluster based on K-mean and TopK near-
est algorithm. The EK-mean algorithm is the combination
of classic k-mean and Euclidean distance. EK-mean is used
for checking the similarities between in cluster data sets to
determine high and low correlation. The main objective of
this process is to eliminate data redundancy from collected
sensory data and nearest neighbouring nodes to reduce big
data and enhance network lifetime.

Energy conservation is one of the critical issues in WSNs.
To preserve energy for WSNs. Khriji et al. [80] propose a
redundancy elimination data aggregation algorithm (REDA).
The algorithm has twomain characteristics, better data aggre-
gation and enhanced network lifetime for reducing energy
consumption. REDA is used to reduce data redundancy
and communication based on the pattern code generation
approach. The pattern code generation algorithm is applied
on all sensor nodes for predefined sensed data. Each CH
generates a ranges number of intervals called lookup table
and then sends it to cluster members. Moreover, eachmember
node compares its sensed data with a look-up table that
was received from CH. According to the look-up table, each
member node computes its pattern and sends the first iteration
to the CH. The sensor node then computes a new pattern code
and compares it to the old one. It does not transmit if both
patterns are the same; else, it is sent to CH.

In Table 6, simulation parametric values of data redun-
dancy at the CH level based on threshed value, measures
readings, Eelec, ßamp, K, data and field, simulator and sensor
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TABLE 6. Simulation parametric values of data redundancy reduction at the CH level.

TABLE 7. Performance comparative parameter’s for energy saving at the ch level.

are presented. Proposed methods and schemes are also men-
tioned with their resource parameters. Table 7 shows the cur-
rent proposed estimation the existing schemes and methods
for data redundancy reduction in WSNs.

C. DATA REDUNDANCY REDUCTION AT NODE TO CH AND
CH TO SINK LEVEL
This section describes the recent studies of the data redun-
dancy reduction algorithms and schemes at node to the CH
and the sink level for the WSNs. The current techniques are
studied and the absorbed important parameters measured for

improvement of data redundancy in WSNs. Table 8 displays
how some of existing methods addressed their problems with
improved models, and proposed schemes for energy effi-
ciency to reduce data at the sink level for WSNs. Table 7
also debates the contributions and weaknesses of existing
methods.

From node to the CH and then the sink level data reduction
model is shown in Figure 5. There are two different processes
of data aggregation in WSNs, containing the simple data
redundancy reduction (DRR) and DRRwith prediction. First,
at simple DRR, a sensor periodically captures and aggregates

157876 VOLUME 9, 2021



G. Sahar et al.: Data Redundancy Reduction for Energy-Efficiency in Wireless Sensor Networks: Comprehensive Review

FIGURE 5. Energy efficiency data redundancy reduction process at Node, CH and Sink Level in WSN.

the data by interacting with the environment and transferring
data to the CH. Then the CH receives the member nodes’
data and aggregates the data between data sets and sends it
to the sink. After receiving data from CHs, the sink further
processes and checks the data accuracy. Second, in many
existing types of research, the same prediction models are
implemented at both levels (sensor node or CH and the
sink) for data redundancy reduction. The study [85] presents
the adaptive dual prediction scheme (DPS) to reduce data
transmission. To update the model’s perimeter, history, data
tables are avoided, and the old collection models that are
already activated from past sequences are used to build DPS.
A new prediction is started at sensor node and sink level
which updates the perimeter models from time to time by
using new data history tables andmaintain the accuracy. First,
an ordinary adoptive DPS is generated and computed on the
sensor node and sink. As the data increases, the prediction
models are supposed to activate and all the data is saved at
the sink node. At the initial phase, the previous sample is

eliminated, and a new sample is considered for the first data
set for new model perimeter prediction.

However, the data size is based on a threshold. For this,
WSNs is used in a ringing model and the sink node is present
at the centre, whereas source to destination transmission
occurs through its intermediate node. In the data routing
scheme, data is sent from one node to another in ring, and this
process goes on until the data reaches the sink node. A time
interval is set to separate two consecutive transmissions on
the sensor node, which is 30 minutes in current research.
A lightweight algorithm is used to set at the node and the
sink levels. The lightweight algorithm does not consume
useless data due to which their storage and running time is
increased. Also, the transmission model informs the number
of exchanged data on the sensor at a period 1 / f is the number
of transmissions found. The prediction model then forms a
unicast transmission and predicts an accuracy at every sensor
node. During transmission, if the data captured by any sensor
match, then that data is not transferred to the sink node where

VOLUME 9, 2021 157877



G. Sahar et al.: Data Redundancy Reduction for Energy-Efficiency in Wireless Sensor Networks: Comprehensive Review

minimum accuracy is maintained so that the average is also
maintained. The prediction data model depends on a sink
or sensor node and gathers data from the cloud. The sink is
responsible for generating the prediction model and spread-
ing it towards sensor nodes. For spatial-temporal correlation
between sensor data, a novel data reduction strategy called
spatio-temporal correlation-based approach for sampling and
transmission rate adaptation (STCSA) is developed. The data
decreases the overall sampling and reduces transmission rate
and maintains data quality [60]. Second, a backend recon-
struction algorithm is proposed at the sink level to maintain
data accuracy. However, at the node level, the algorithm still
needs to perform a unique sampling rate and reduce data
transmission at all sensors. At the end of every round, the
CH runs the algorithm to find the spatial correlation between
member nodes data that was sent to the CH. Next, the CH
transfers the data to its sensors and provides a command to
make a new sampling rate or the next round between cluster
heads. To find a sampling rate, a high correlation is shown
between many sensor nodes which are in a specific number.

The stata is a form of vector of sensor nodes when it sends
its data to CH which has the same size for each node. The
Stata does not compute nan values for correlation; instead,
it replaces the nan values with a number representing how
often those nan values occur. After finding every sensor’s
correlation it prepares a table and divides the table into two
columns: max (maximum) correlation for sensor jth which
forms sensor ith to find the correlation degree. Some sensor
data does not appear in the second column in the table because
their data might not match. The aim of this process is to
find correlation degrees between the sensor nodes which are
found at the CH. Now the sink node is responsible for making
prediction models and disseminating them to sensor nodes
through unicast.

A distributed round-based prediction model for hierarchi-
cal large-scale sensor networks is adopted in the study [87].
The network lifespan is divided into a series of rounds in a
distributed round-based prediction model, with each round
including multiple periods. The periods are separated into
defined slots, and the sensor takes some of the data from
each period and transmits it to the sink node in each round,
while the remaining sensor nodes are in sleep mode. When
data is received, the sink nodes then apply a prediction model
based on the long short-term memory (LSTM) time series
on it and finds which sensor nodes are on sleep mode. The
main purpose of finding data prediction is to reduce data
transmission in sensors to save energy, decrease data, and
improve lifetime. The data that is sent to the sink node is
converted into the training data vector. If the size of training
vectors is big, the maintained accuracy is high. When the
sensor collects data, it sends the active packet name and
collected data to the sink node; otherwise, if the packet is
empty, it is considered as a sleep packet. In addition, when the
sink node receives the training data vectors from the sensor,
it tries to predict data for the next round. After receiving
data from sensor nodes, it uses this data for normalization.

Normalization is formed at different scales which are defined
in the different ranges (0 to 1). The minmax scaler algorithm
is used on received data. The sink processes Minmax scaler
before the data prediction process and then neural network
parameters are determined by three indicators: the selection
of the values of the number of blocks, the number of time
steps, the number of features, and depend on simulation setup
that is fixed. After the training process, the LSTM model
starts to find variation between training data and expected
future data. It is divided into two concepts: loss function and
optimizer. Loss function calculates variations of data between
training data and optimization uses an iterative method which
samples randomly from data and finds an error in the loss
function. To find the error, mean square error (MSR) is used.
The first step is that the data is predicted. In the training
period, when the sink first receives the data, it considers the
last d stands for period values and forms an order to make a
prediction value for the rest of the periods.

Moreover, Nazaktabar et al. [88] prepare a framework
that learns the relation of signal behaviour to find the next
value. The approach is used to reinforce learning-based signal
predictor (RLSP). The purpose behind the preparation of the
framework is to transfer the sensor data to the sink node when
the signal fails at the sink side. The RLSP model is applied
in DSP at both sensor node and the sink level through 0
initialization as well as in Q-learning algorithm, which is
used to Q-table where the perimeter and configuration remain
the same. In addition, on the sensor node side, if there is
a difference between prediction and sensory data, it is sent
to the sink node; otherwise, it discards. Once the data is
received at the sink side, the sink uses it to set the next data
values; in other words, the sink uses it for prediction. If the
prediction values and the data are equal, then it is considered
by signal action, otherwise it is considered by sensory data.
On the other hand, if the sink node does not receive data from
the sensor node, updating the Q-table utilizes old data and
predicts a value. Now it is time to correct the sink node’s
projected data. The getinitiate action is used to declare the
vector’s final element as the initial prediction. The sensor
gathers data from the environment and uses its prediction
model to forecast it on the sensor side. If the data is rectified
during prediction, the sensor does not transmit data to the sink
and insteadmodifies themodel to reflect the new information.
Otherwise, the data is sent to the sink and its model updated
by using the new readings. When the sink receives sensory
data from (#k), it also uses its prediction model to predict
data from the sensor that sends data. If the data gets predicted,
then it is confirmed that the data is predicted and updated the
number of k, and if the data does not get predicted, then that
data is used for text prediction and updates of its prediction.

In the study [89], two models are combined to build a
hybrid model based on historical data reconstruction and
future data prediction for decreasing additional transmission,
controlling delay, and improving the energy efficiency of
sensors. This hybrid model is implemented in real-world
WSNs and two algorithms have been proposed. The first
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TABLE 8. Existing studies are based on data redundancy schemes at sink level.

one is on node-level which is the stage-wise algorithm. This
algorithm avoids the computation load and creates flexibility
in the hybrid model. In the second algorithm, data reconstruc-
tion and the prediction implemented at the sink node level
evaluates hybridmodels’ performances with the help of rough
experiments stimulated based on different data sets taken
from real-world WSN applications. A hybrid linear model is
presented which counts the continuous readings of the certain
physical environment which are captured into time series by
sensors. The sensor senses the data and uploads it without
prediction. The linear model assumes that the environmental
data have a short-term linear behaviour. It builds a training

model in each section. Subsequently, instead of sending the
original value, it sends the parameters of the training model to
the sink node, which then construct pure data. Likewise, the
same model is established at the sink node and sensor node
level for future data.

However, if the prediction error increases, a pre-set thresh-
old is set in the hybrid model, and the sensor sets as a retainer.
There are two data points in each model and each data point
has two data values and two reconstruct values. Using these
data values, three parameters for a data model are used to
stop additional transmission. To train Hybrid Linear models
least square method is used which optimizes the error. After
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TABLE 9. Simulation parametric values of data redundancy reduction at sink level.

that, the new value is compared to the projected value, and
if the difference is more than the absolute error, a new error
is created. When the sensor node sends a hybrid model to
the sink, the data is automatically built for reference, and the
sensor predicts a value based on it.

WSNs have a challenging problem in terms of energy con-
servation and complicated decision-making for large amounts
of data. Marwa et al. [74] present an energy-saving adaptive
approach and decision-making approach. The technique is
composed for grid-based architecture network consisted of
three tiers. The first tier at the node level mostly works with
redundant readings among the period for all slots. The col-
lected readings vector is divided into three equal divisions by
a divide-and-conquer algorithm. After that, the mean value is
calculated for each division and a vector of these mean values
dataset sent to the GL (grid-leader/CH). At the CH level layer,
the GL gets a mean set of data from each sensor node at
the conclusion of each session. After collecting important
information from surrounding member nodes at each grid,
the GL reduces the redundant data from data sets among
the member nodes in grid. GL uses a mean support and
frequent mean support algorithm with a predefined threshold
to look for received mean values. It only sends the mean
value which are equal to or greater to the defined thresh-
old by the sink. At the sink level tier, the decision-making
model is used for real-time decision-making, consisting of
two main tables. The first table scores the decision table
which is used for specific application such as a normal range
of temperature, light, wind speed, and humidity. The second
table is the early decision table which the users prepare to
predetermined value matches with the collected value range
for data aggregation. The technique worked efficiently and
achieved the goals of saving energy and accuracy of the
data.

The spatial and temporal correlation data flow among sen-
sor nodes is one of the most serious problems in WSNs. In a

two-tier data reduction system, dual prediction DP and data
compression DP [79] techniques are given to minimize data
transmission in network traffic. The DP technique is used
at the node level to identify redundant data at each node.
The goal of the DP method is to minimize traffic between
two points, such as a cluster member node and the cluster
head. This scheme algorithm is constructed at both ends of
link points. At the endpoint of CM, the last observation is
held in buffer, but some collected observations are initially
transmitted into the other endpoint CH. Later the observation
value is predicted by using buffer held values which are then
compared with the new observed value. If the new observed
value is fairly similar to the prediction value, then the data
transmission of the other endpoint does not happen; other-
wise, it is sent. However, at the other ending point, CH saves
the previous observation values in the buffer which have
the same length as that other endpoint CM. CH receives a
new observed value, which it saves in the buffer, but if no
observation value is received, then it is considered as accuracy
prediction value and both values are in same conditions,
then it updates the DP model. DC scheme is implemented
at each CH to exploit the spatial correlation data collected
from CMs. CH makes data blocks on CMs transmitted data
and sends these blocks to the sink. After receiving these
blocks, the sink uses inverse operation to recover the block
data. In Table 9, simulation parametric values such as period
size (τ ), measures readings, number of steps (S), number of
blocks (B), number of features (F), size of round (ρ), training
data size (α) and energy cost of message sending at the sink
level are described.

Table 10 displays that the existing proposed methods and
schemes with the benchmarks methods and schemes are
used for comparison. Also, it indicates the various perfor-
mance comparison parameters for the evaluation of the exist-
ing schemes and methods for data redundancy reduction in
WSNs.
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TABLE 10. Performance comparative parameter’s save energy at sink level.

In the data collection, thresholds are fixed depending upon
small and large data readings values. There are two types
of scenarios found in existing studies: the small range of
readings that give small threshold values while the large
range of readings give the large threshold values. However,
work needs to be done on large range of readings, which
should give the small threshold values in terms of date redun-
dancy reduction in WSNs. At the node level, energy analysis,
percentage of data sent after aggregation, data transmission
ratio to the CH and data loss are most useable comparative
performance parameters found, while redundant data calcu-
lation, adoption sample, energy saving at each node and data
sets sent ratio are less considerable comparative performance
parameters and need to be more focused in further research.
At the CH level, energy consumption at the CH, data accuracy
and number of data sent to the sink are most applied per-
formance comparative parameters found while data received
from member nodes, data latency and communication cost
are less substantial performance comparative parameters and
need to be more focused in further research. At the Sink level,
period size fixed, calculation of data transmission ratio, and
energy consumed are most effective performance compara-
tive parameters found while data delay and memory usage
are less extensive performance comparative parameters and
need to be more focused in further research.

Omnet++ and java-based simulator are the most suitable
and used simulators considered for the simulation. Mica2dot
is the most appropriate sensor device and readings from the
temperature are used as a dataset for the simulation of date
redundancy reduction in WSN.

V. ANALYSIS OF PERFORMANCE METRICS USED IN
EXISTING STUDIES
In this section, performance metrics used for assessing in
the previous research studies are presented in Tables 2, 5, 8
and 3, 6, and 9. There are several performance parameter

matrices are used to measure data redundancy reduction at
sensor nodes and CHs level. Numerous performance matrices
are presented, which are used in current studies to determine
energy saving in WSNs.

The main goal is to maximize profits and revenue from
WSN’s. For this purpose, different techniques/algorithms or
schemes are used which increase the user satisfaction, avoid
raw data transmission, decrease energy consumption, and
enhance network lifetime. On the other hand, data redun-
dancy reduction minimizes the overheads and increases the
overall performance. The performance parameters are used
for data redundancy reduction for saving energy in existing
studies are described below:

A. NETWORK LIFETIME
Network lifetime consider in various definitions with the time
in which the network performs the desired task include time
till network becomes disjoint link, first node fail, certain
percentage of nodes fail given predefined threshold, largest
links disconnected, some percentage of data rate loss, and
all nodes fail. In clustering architecture, the network lifetime
is defined as the time till the nodes in the network entirely
deplete their energy in the network [76], [90], [91]. The
network lifetime is calculated when all rounds of network fail
due to the discontinuation of one or more sensors with the
help of Equation (1).

Nlif nn =
mim
sn∈SNNlifsn (1)

where Nlifsn is the lifetime of sn is a sensor node, mim is the
minimum energy sensor nodes and SN is the sets of nodes
without including the sink, Nlif nn represents the failure of the
first node’s life in a network.

B. DATA AGGREGATION RATE
Data aggregation rate is an amount to remove duplicate
values and allows sensor nodes to decrease the quantity of
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data gathered. The amount of decrease is determined by
the threshold value selected as well as the total number of
recorded readings. The threshold value can be increased to
identify additional data redundancy [64], [92]. The primary
motivation for using a data aggregation at the node level is to
conserve energy d-bit data is shown in Equation (2)

DAE = dETC (2)

where DAE is the energy consumption while data aggre-
gating, d is d-bit data and ETC is energy consumption at
transceiver.

C. DATA AGGREGATION AT THE CH
Overall energy usage in WSNs can be reduced by decreasing
transmission costs. For reducing the inter clustering com-
munication by data redundancy elimination at CH level in a
cluster; otherwise, redundant data is influencing the whole
network transmission [75], [92]. Correspondingly, the total
energy consumption at cluster head in a cluster are receiving,
aggregating, and transmitting data to the sink node with the
preference of Equation 3.

CHTE = CHdre + DAE + CHdtr (3)

where CHTC is total energy consumption at CH level, CHdre
is energy consumption of data received at CH, DAE energy
consumption on data aggregation, CHdtr is energy consump-
tion for data transfer.

D. DATA ACCURACY
Error-free data is a term used to describe data correctness.
The data accuracy is calculated by dividing the proportion
of data lost by the amount of data supplied by sensor nodes.
The data loss measurements increase as the sensing range and
reconstruction error threshold value between the data read-
ings. Hence, as the quantity of obtained readings increases
over time [76], [84]. The data accuracy is calculated by the
quantity of data successfully transmitted and the total amount
of data sent on sensor nodes using Equation (4) [92].

DAC =
∑ (EsM − AcM )∑

AcM
× 100 (4)

where EsM is estimation mean, and AcM is actual mean of
data.

E. ENERGY ANALYSIS
Energy analysis is an important concern for WSNs due
to its resource-constrained network [67], [72]. The total
energy consumption is calculated in-network energy con-
sume include the function perform data aggregation, data
received and response, transmissions, and computation. The
energy consumption for data transmission is determine
Equation (5).

DTE (d,D) = Eelec−Dt + Eamp

=

{
D · Eelec + D · εfs × d2, (d ≤ d0)
D · Eelec + D · εamp × d4, (d ≥ d0)

(5)

where DTE is energy consumption of data transmit, d is
distance consist of sending and response, sendingD bit data to
the node, Eelec−Dt data transmission link loss and is amplifier
link loss Eamp

F. DATA AGGREGATION AT EVERY NODE
Each sensor node is found data redundancy between the data
sensed measurements at each time during the aggregation
process. Aggregation is thus dependent on the threshold, the
number of collective measurements each period, and changes
in the monitoring object. However, if data aggregation is not
performed at each sensor node, a higher volume of data is
sent, resulting in increased network energy usage. Aggrega-
tion is advantageous on a network because it reduces trans-
mission costs while increasing network lifespan. As a result,
the proportion of data aggregation focuses on all other factors
such as node lifespan, transmission cost, energy usage, and
network lifetime [65], [78]. As stated in equation (6), the data
aggregation at each node is determine by following formula.

NDa =

∑
DTA
DTt

× 100 (6)

where NDa is data aggregation at node, DTA total aggregated
data before transmitted and DTt is the total data collection
before transmitted.

G. DATA DUPLICATE SETS
At the conclusion of each period, the CH gets all the data
sets from each member node in a cluster. The most common
issue in aggregator/CH is that huge data sets are gathered, and
redundant data sets must be removed before being delivered
to the sink node. To increase data accuracy and network
lifespan, redundant data sets must be eliminated [73]. The
duplicate data examines variations between two dataset’s
comparisons by using Equation (7).

DRs(Ds1,Ds2) =

∑n
k=1(Ds1k × Ds2k )√∑n

k=1D
2
s1k ×

√∑n
k=1Ds2k

(7)

whereDRS is redundant data sets, (Ds1,Ds2) are two data sets,
n is the length of data sets and if and only if DS1 and DS2 are
considered redundant it is (Ds1,Ds2) ≤ δ less than threshold.

H. ENERGY CONSUMPTION AT THE NODE LEVEL
When each sensor node collects data during most of the data
is redundant. it means that the monitoring condition speeds
up and slows down as a result, more readings from each
sensor node are redundant [73], [78]. As a result, energy
consumption is increased because the sensor sends all col-
lected readings to their CH. However, the network lifespan
is quickly depleted energy of each sensor node in network.
The energy consumption of data receiving node receiving d
bit data is NE(R) determine by Equation (8) and (9).

NE(R) = d × Eelec (8)
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and energy consumption of data transmit on sensor node d bit
data is NE(DT ).

NE(DT ) = DT × dE (9)

where DaE is required energy for bit data transfer.

I. DATA REDUNDANCY BETWEEN TWO CONSECUTIVE
READINGS
The data redundancy between two consecutive readings are
calculated by similar functions [60], [92]. Therefore, two
readings are redundant if and only if the similar function
is 1 or 0 as shown in Equation (10).

Similar (R1,R2) =

{
1, if ‖R1 − R2‖ ≤ δ,
0, otherwise

(10)

where (R1, R2) are the two consecutive readings and R1 is
compared to R2 if both are same added 1 on first reading;
otherwise, the second value is considered a new reading with
δ user-defined threshold.

J. ENERGY CONSUMPTION AT THE CLUSTER HEAD
Energy consumption in the CH is illustrated as the energy
needed for data management, data received from member
nodes and transfer data toward the sink [68], [83]. The energy
consumption at CH is determined by the total energy con-
sumed at CH is measured by Equation (11).

CHE = DEelecMN/C + DEDaMN/C + DEamp d4SK (11)

where DEelec energy consumed of data transmit, energy con-
sumption in aggregation is DEDa,MN/C is a number of
average nodes per cluster, and d4SK is the distance from the
sink node to the cluster head.

K. DATA SENT RATIO
Data quantitative analysis by ratio functions determine in
each node, cluster head and the sink node. It uses various
data analysis parameters such as data sent, data aggregate,
data received, data reduction, and data transfer ratio.

DSratio =
DR
DTR
× 100 (12)

where DR data reduction in total data received DTR. The data
ratio is calculated by Equation (12).

L. NUMBER OF REDUNDANT PAIRS
In two or more than two nodes, inter data redundancies are
correlated. Various studies used Pearson correlation [93] to
determine the percentage of data redundancy in the same
type of data collected by various neighbour nodes [15].
Suppose two vectors’ data V1 and V2, with the help of
Equation (13), are determined by the data redundancy cor-
relation coefficient.

ρν1ν2 =
Eν1 · Eν2

‖ν1‖ · ‖ν2‖
× δ (13)

Hence ρν1ν2 the Pearson correlation between two data
vectors where δ is a sign parameter and it takes two values
such as positive 1 or negative −1 values.

VI. SUGGESTED FUTURE WORK
The main common issue associated with energy efficiency in
WSNs are sensor nodes correlation, threshold values define,
energy efficiency at hostile environmental conditions issue,
high transmission, data reduction and aggregation, prediction
system, data accuracy, various level data transmission, check
sum error or bit modulation, data collision and data redun-
dancy etc. Figure 6 is a bubble graph that narrates the future
directions in energy efficiency as pointed out in previous
research articles by other authors.

A. SENSOR NODES CORRELATION
Networks are randomly dense nodes deployed as the distance
nearest two or more sensor nodes, known as neighbouring
sensor correlation. When sensor nodes cross the predefined
distance limit and are geographically close to one another due
to this they generate duplicate data as a result high network
traffic still need to enhance for dense deployment nodes, as
recommended by [64], [65], [72], [74], [78], [81], [82], [87].

B. PREDEFINED THRESHOLD
Predefined threshold values control the data limits. There is
no standard threshold for data size and shape and comparing
research with various applications is challenging. Control and
termination data links are more difficult to achieve [64].

C. ENERGY EFFICIENCY AT HOSTILE ENVIRONMENTAL
CONDITIONS ISSUE
Glaciers, floods, environmental monitoring, and health care
are examples of real-world applications. In WSNs, energy-
efficient data redundant reduction is a prerequisite for
real-world applications such as underwater and healthcare
applications. Therefore, achieving an enhanced lifetime of the
network is still considered in a real-world application as a
most challenging issue in the research [65], [67], [94], [95].

D. HIGH TRANSMISSION
The WSNs transmission means the data or any message that
travels on a link from one node to another node or among
the nodes which reach its end user. It is estimated in real-life
test-bed applications. In WSNs, due to data redundancy, high
bandwidth is required, thus high usage energy and conges-
tion occur due to high data transmission rate and duration.
These are key challenge in WSNs indicators for future work
by [60], [79], [96]–[99].

E. DATA REDUCTION AND AGGREGATION
Data reduction and aggregation means combining multiple
sensor nodes data set to reduce data size and maintain accu-
racy as well as energy saving by an aggregator or cluster head.
However, data processing need more capacity by different
data redundancy processing including data merging with as
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FIGURE 6. Innovative ideas of energy efficiency in WSNs.

key-value stores [100], blockchains [101], and big data [102]
in future work [103].

F. DATA PREDICTION SYSTEM
In WSNs, the sensors predict future data based on the previ-
ous sensed data, reducing transmission and increasing energy.
Previous studies focused on data prediction algorithms on
each sensor level and CH level where there is a need for
high memory, high data analysis processing. As a result,
there is still need to focus on data prediction system for
WSNs to improve energy and transmission cost for further
recommendations [74], [85], [104], [105].

G. DATA ACCURACY
Data accuracy is depending upon data aggregation and data
reduction ratio. In WSNs, data accuracy is the major compo-
nent of information quality. Data redundancy occurs inWSNs
due to inefficient transmission and data process complexity.
In order to measure data redundancy reduction, sufficient
amount of data must be available for maintaining the data
accuracy, it is necessary to fix the amount of data redundancy
reduction in scientific way. So that research needs to work or
fined the accurate amount of data redundancy reduction. The
data accuracy improvements still recommendation for further
research [74], [106]–[108].

H. VARIOUS LEVEL DATA TRANSMISSION
Various level data transmission means three-phase. In the
first phase, data transmits from member node to CH; in the
second phase, the data transmits from the CH to the sink are
known as forward data transmission; and in the last phase,

data transmits from sink to CHor each node in the network are
known as backward data transmission. As future work, data
reduction techniques to reduce data transmission at three-tiers
require more focus such as fog tier, gateways tier, and each
sensor node tier as recommended by [75], [109].

I. CHECK SUM ERROR OR BIT MODULATION
Bit representation means sensor collected data is converted
from digital to binary. The data transmission in WSNs is also
considered as a part of bit representation, which is proposed
by [66] to reduce data transmission for save energy. However,
bit presentation only detects odd bit numbers, and does not
detect when the data values are in even form. Thus, some
errors occur in data, indicating the need for improvement as
a future recommendation.

J. DATA COLLISION
When two sensor nodes are sent similar packets at the same
time, the collision occurs. InWSNs data collision detect more
difficult for determining the sensor nodes location of a fault
can be challenging in [68], [77], [83] for further enhancement.

K. DATA REDUNDANCY
In WSNs, data redundancy occurs for different reasons.
primarily, two consecutive readings may be the same and
between two periods readings are same, neighboring sensor
nodes data sets are the same, nearest neighbor nodes correla-
tion sensed data are same because environmental conditions
have speed up or slowed down. In [65], [74], [75], [77],
[102], [110], [111], data redundancy is suggested, especially
in terms of energy consumption, data quality, and network
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lifetime. Thus, there is a need to design efficient data reduc-
tion algorithms and the enhancement the lifetime WSNs.

Refer to Figure 6, there is still a need to improve data
transmission cost. Data redundancy reduction is highly rec-
ommended for future research in various applications while
less research is required for data accuracy, data prediction and
criticality of application in 2021. In 2020, further research
is focused on the neighbouring node regions correlation,
real application, and data redundancy reduction. Also, more
research is presently focused on the data different sampling
rates, data prediction system, transmission reduction neigh-
boring nodes correlation and data redundancy reduction and
fusion in 2019. Similarly, in 2018, there is a further sugges-
tion to focus research activities towards the area of neigh-
boring nodes correlation, data different sampling rates, and
accuracy. Previously based on 2017-2015, there is an enor-
mous interest in areas such as three-tier data transmission,
neighboring nodes correlation, different sampling rates, data
redundancy, and data redundancy and fusion. These exposed
issues and future works present a conclusive role in relating
the technological strategies for further improving energy effi-
ciency in WSN.

VII. CONCLUSION
WSNs is an inspiring field of research, with the aim of propor-
tional modernization and high performance in terms of tech-
nological express. The data redundancy reduction schemes
or methods should be as simple as possible, requiring less
computation, processing, and transmission so that they con-
sume less energy and increase data accuracy to work as
part of IoT, cloud computing, and smart networks. There are
some challenges and limitations. Scalability, dynamic envi-
ronment, mobility, node localization, and user satisfaction in
wireless sensor networks are also aided by IoT applications,
enhancing the network lifetime and saving energy. In this
review article, a classification scheme and an expressive
literature review of data redundancy reduction are briefly
described for energy efficiency in WSNs. However, exist-
ing data redundancy reduction schemes for energy-efficiency
in WSNs research is still contradictory due to the appli-
cation‘s requirements and technological concerns, such as
application-oriented data redundancy, QoS for designing and
implementing approaches, spatial correlation as a lot of
resources such as transmission, bandwidth, data accuracy,
and energy are wasted in case of data redundancy (like big
data and IoT resources) regarding monitoring environmen-
tal condition of WSNs are involved. The classification and
descriptive review provide a detailed description and open
loopholes with their benefits and limitations for researchers
and experts of the current assertion of data redundancy reduc-
tion and stimulate the further research interest of energy
efficiency in WSNs.
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