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ABSTRACT The sparrow search algorithm (SSA) tends to fall into local optima and to have insufficient
stagnation when applied to the traveling salesman problem (TSP). To address this issue, we propose a
novel greedy genetic sparrow search algorithm based on a sine and cosine search strategy (GGSC-SSA).
First, the greedy algorithm is introduced to initialize the population and to increase the diversity of the
population. Second, genetic operators are used to update the population, balancing global search and local
development capabilities. Finally, the adaptive weight is introduced in the producer update to increase the
adaptability of the algorithm and to optimize the quality of the solution, and a sin-cosine search strategy is
introduced to update the scroungers. In addition, the GGSC-SSA is compared with the genetic algorithm
(GA), simulated annealing (SA), particle swarm optimization (PSO), grey wolf optimization (GWO), ant
colony optimization (ACO) and the artificial fish (AF) algorithm on TSP datasets for performance testing.
We also compare it with some recently improved algorithms. The results of the simulations are encouraging;
the GGSC-SSA significantly enhances the solution precision, optimization speed and robustness.

INDEX TERMS Sparrow search algorithm, traveling salesman problem, greedy algorithm, genetic opera-
tors, sin-cosine search strategy, combinatorial optimization.

I. INTRODUCTION
The core idea of swarm intelligence algorithms is to find
optimal solutions by simulating the living habits and behav-
ior rules of creatures in nature and by searching for the
spatial distribution of solutions in a limited space. Domes-
tic and foreign scholars have proposed a large number of
swarm intelligence algorithms through the swarm behavior
of various swarms of intelligent creatures such as ants, bees,
birds, wolves, fireflies, sailfish, and sparrows, such as Particle
Swarm Optimization (PSO) [1], Firefly Algorithm (FA) [2],
Ant Colony Optimization (ACO) [3], Grey Wolf Optimiza-
tion (GWO) [4], Sailfish Algorithm (SFO) [5] and Sparrow
Search Algorithm (SSA) [6] and so on [7]–[10]. Among
them, the sparrow search algorithm was proposed by Jiankai
Xue and Bo Shen in 2020. Compared with other intelligent
algorithms, the SSA has the advantages of simple imple-
mentation, strong scalability, robustness, and high solution
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efficiency. Since proposed, it has attracted the attention of lots
of scholars [11], [12], [12]–[18].

Swarm intelligence algorithms are widely used in engi-
neering optimization problems such as the knapsack prob-
lem [19], path planning [20]–[22], robot control [23], data
mining [24], [25] and other issues [26]–[29]. The population
characteristics and behavior of the heuristic algorithm are
conducive to solving the discretization problem [30], [31].
The traveling salesman problem (TSP) is a classic combi-
natorial optimization problem [32], [33]. It is one of the
standard test problems used in the performance analysis of
swarm intelligence algorithms and has NP-hard characteris-
tics. There are other practical problems that can be solved
in real life by abstracting and extending the TSP. For this
reason, the TSP remains a popular topic in current research
on new and different heuristic strategies, and it is significant
in both theory and practice. The continuous development
of swarm intelligence algorithms has shed new light on
NP-hard problems. An increasing number of algorithms have
been successfully applied to TSPs, including PSO [34], the
GA [35], SA [36] and the SSA.
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In basic PSO, there are few parameters that need to be
adjusted, and the algorithm is easy to implement. However,
the accuracy of solving the high-dimensional test function
set is slightly insufficient. The GA has strong parallelism and
global search capabilities. However, it is easily falls into local
optima. SA has a strong ability to jump out of local optima
but has many parameters that need to be adjusted, and the
cooling time directly affects the efficiency of the algorithm.
The advantages of the SSAmainly include strong robustness,
simple implementation and few parameters. However, due
to the random generation problem of early producer spar-
rows, the algorithm falls into local optima. A good SSA for
solving the TSP should have the following characteristics:
(1) Each improvement strategy should be adjusted according
to the size of the TSP. (2) The use of loop sentences should
be reduced in the improved SSA to increase the speed of
the algorithm. (3) In the entire solution process, a balance
between exploration and development should be achieved.
(4) For small or large TSP instances, the algorithm should
be able to converge to the global optimal solution with high
accuracy. In response to the above problems, this article
proposes an improved SSA (the greedy genetic sine cosine
sparrow search algorithm (GGSC-SSA)).

In this paper, the main effort is to improve the convergence
speed and the solution accuracy on TSP instances of different
sizes. The main contributions of this work to research on the
TSP are as follows:
• We propose an improved SSA. The GGSC-SSA offers
three main improvements over the basic SSA:
1) The greedy algorithm is introduced into the SSA.

First, the greedy algorithm is a simpler and faster
design technique for finding a higher-quality TSP
solution set, and it is used when the SSA initializes
the population. Then, the top-down, iterative method
is used to make successive greedy choices, and each
time a greedy choice is made, the problem is reduced
to a smaller subproblem, increasing the ability of the
initial SSA to jump out of local optima.

2) We apply genetic crossover and mutation strategies to
update the SSA population.

3) We introduce dynamic adaptive weights to update the
position of the producers.

4) We introduce the sine and cosine search strategy
to expand the search range of the scrounger, effec-
tively preventing the algorithm from prematurely
converging.

• The GGSC-SSA and other classic algorithms proposed
in the literature are tested on the TSPLIB test set. It is
found that the GGSC-SSA is superior to other algo-
rithms in terms of solution time and solution accuracy.

• We compare the proposed GGSC-SSA with other
improved algorithms that have recently been presented
and show that the proposed GGSC-SSA has great advan-
tages in terms of solution quality.

The remainder of this report is structured in the following
manner. In Section II, the latest SSA and TSP studies are

presented. In Section III, some basic knowledge is briefly pre-
sented. In Section IV, the proposed GGSC-SSA is described
in detail, including the greedy strategy initializing the popu-
lation, genetic variation strategy, and adaptive inertia weight
investigated. In Section V, a series of TSP instances are simu-
lated, and the results of the experiments are analyzed. Finally,
a summary of the paper with conclusions and directions for
future improvement is presented in Section VI.

II. THE RELATED WORK
The TSP is of great significance in the history of operations
research. In 1952, Danzig and others successfully solved the
TSP examples of 48 cities in different states in the United
States and 49 cities in the District of Columbia, introducing
the problem tomore people for the first time. The significance
of combinatorial optimization research has also improved
the accuracy in solving discrete problems. With the rapid
development of heuristic algorithms, an increasing number
of scholars have tried to apply different heuristic algorithms
to solve the TSP. The TSP is an NP-hard problem; thus,
there are no algorithms that can find the optimal solution in
polynomial time, so it is very important to study the swarm
intelligence algorithm of the TSP. A large number of
new meta-heuristic algorithms are produced. As a result,
this natural-inspired algorithm design method has been
widely criticized. How to design an improved algorithm
for solving practical problems in your own domain is very
important [37], [38]. This paper chooses the SSA to solve
the TSP, which is a very large challenge, because the SSA
has just recently been proposed and applied to the TSP for
the first time and has not been widely used.

Most methods that can be used to solve the TSP are usu-
ally divided into two categories: (1) heuristic algorithms and
(2) exact algorithms. Although there are some accurate
methods for solving the TSP with priority constraints in
the literature, such as branching and shearing and dynamic
programming, exact solutions cannot be obtained as the scale
of the TSP continues to grow, and exact methods can solve
only a small part of this problem. In recent years, due to the
complexity of the TSP, metaheuristic algorithms such as the
tabu search algorithm, simulated annealing (SA) algorithm
and genetic algorithm (GA) have been proposed in the liter-
ature to solve this problem. This article briefly reviews the
related literature published in recent years.

In 2019, Al et al. [22] presented a parallel version of the
2-opt algorithm based on Optical Transpose Interconnection
System (OTIS) to solve the TSP. Reference [39] proposed
a novel Artificial Bee Colony(ACO) algorithm based on
a swap sequence. The experimental results show that the
improved ACO has a good performance on the TSPLIB test
set, although it has insufficient solution time. In [40], Kim and
Moon proposed a traveling salesman problem with a drone
stations(TSP-DS) based on the characteristics of UAV system
delivery services. Zhukova et al. [41] developed a hybrid and
accurate algorithm for solving the asymmetric traveling sales-
man problem(ATSP). The key technology is to predict the
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solution time of the exact solution based on the combination
of branch and bound method and approximate algorithm. The
experimental results show that the proposed algorithm solves
the asymmetric traveling salesman problem more effectively.
Zhu et al. [42] proposed a novel ant colony optimization
based on pearson correlation coefficient. A large number of
simulations in TSPLIB show that the proposed improved
ant colony algorithm algorithm can obtain a better solution
for small, medium and large-scale TSP. Zhong et al. [43]
introduced a discrete Pigeon-inspired optimization (DPIO)
algorithm which uses the Metropolis acceptance criterion of
simulated annealing algorithm to solve the TSP problem.
Zhao et al. [44] converted the energy-related mission plan
into a dynamic traveling salesman problem, and proposed
a hybrid method combining the Gaussian pseudospectral
method and the genetic algorithm (GPM-GA). The experi-
mental results show the effectiveness of GPM-GA in terms of
energy efficiency, computational efficiency and smoothing of
the attitude trajectory.

In 2020, Yang et al. [45] proposed a novel game-based
ACO(NACO) that includes two ant colony systems and
introduces mean filtering to process pheromone distribution,
which effectively solves the problem that basicACO is easy to
fall into local optimum. In [46], ABC and Greedy Algorithm
were combined in a novel manner to form an improved ABC,
which was successfully applied to multi-objective traveling
salesman problem. In [47], a modified version of social
group optimization (SGO) has more competitive results when
solving TSP, and its convergence speed is better than GA
and discrete particle swarm optimization. The efficiency
of solving large-scale TSP problems has also been proved.
Tu-san et al. [48] introduced a novel variant of the TSP,
called the intermittent travelling salesman problem (ITSP),
and proposed a branch and bound method to solve the
optimality problem of ITSP. Reference [49] proposed a new
ACO based on dynamic adaptive method. In addition, the
experiment of the variant ant colony algorithm tested on the
TSPLIB instance shows that this method has better algorithm
performance. Tran et al. [50] designed a UAV trajectory that
reduces energy consumption based on the traveling salesman
problem, and proposed a new heuristic search and dynamic
programming (DP) method. The results show that the
DP algorithm is close to exhaustion with significantly
reduced complexity. Cinar et al. [86] proposed an improved
Tree Seed algorithm to solve TSP. Experimental results show
that DTSA is another qualified and competitive solver on
discrete optimization. In [51], a novel heuristicsmathematical
Eq.tion is proposed, which is based ACO to minimize travel
costs. In [52], an analog electronic computing system has
been successfully applied to the traveling salesman problem.
The system spontaneously and dynamically simulates the
effective foraging behavior of similar organisms, and realizes
the flexibility and flexibility of high problem mapping, and
has high application potential. Popescu et al. [53] have
successfully developed a novel approach to approximate the
Shapley value of Euclidean TSG, which is inspired by the

one-dimensional extended case. This method can effectively
reduce the computational complexity of the traveling sales-
man problem. Cavaleri et al. [54] proposed a method of dis-
tance balance diagram which effectively solves the traveling
salesman problem. Reference [55] introduced a metaheuristic
approach, namly (Ib/ub)Alg, which was successfully applied
to the close-enough traveling salesman problem. In [56],
a strategy to consider the size of the time window is proposed,
which effectively improves the efficiency of solving the
traveling salesman problem with a time window(TSPTW).
Reference [57] proposed an agglomerative greedy brain
storm optimization algorithm(AGBSO) for solving
the TSP.

In 2021, several scholars have been proposed various
methods for TSP such as Pan et al. [58] proposed a novel Ant
Colony Optimization based Pheromone refactoring mech-
anism. This algorithm effectively solves the problem of
large-scale TSP falling into local optimality and slower con-
vergence speed. Yang et al. [45] introduced an improvedACO
for symmetric TSP problem based on Long Short-TermMem-
ory network and adaptive Tanimoto communication strategy.
Zhang et al. [59] proposed an improved whale optimization
algorithm based on the adaptive weight, Gaussian
disturbance, and variable neighborhood search strategy.
Experimental results show that, compared with recent related
algorithms, this algorithm has better optimization perfor-
mance and higher efficiency. Zelinka et al. [60] introduced
a gamesourcing approach to replace ACO. The algorithm is
in the form of a maze, TSP nodes move within the maze, and
then the performance of the algorithm is evaluated and com-
pared with some well-known versions of ACO. Experiments
show that this method achieves better results on well-known
NP-hard optimization problems such as TSP. Yousefikhosh-
bakht [61] provided an improved particle swarm algorithm
that shifts the particles to the best particles. This method
takes into account the concept of randomness and prevents
premature convergence of the algorithm. Wu et al. [62]
combined k-means, top-layer ACS, and bottom-layer ACS
to solve large-scale TSP. The experimental results show
that the solution efficiency of the algorithm is effective.
Vasquez et al. [63] studied the Traveling Salesman Problem
with Drone(TSP-D), which is a variant of the TSP prob-
lem, and proposed a mixed-integer programming Eq. and a
Benders-type precise algorithm. Finally, the proposedmethod
has been empirically tested in a randomly generated example
to prove its effectiveness. Sun et al. [64] studied the gener-
alization ability of the machine learning model, which can
effectively solve the problem of the classic traveling salesman
problem (TSP). Experiments have proved that the model can
find a better solution from the optimization problem. Even
if tested on different TSP problem variants, the model can
still make useful predictions and improve the solution quality
of the TSP problem. Stieber et al. [65] introduced a new
type of dynamic model to solve the problem of multiple
traveling salesmen(MTSP)with moving targets in an accurate
way. Compared with other mathematical models and swarm
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intelligence algorithms on randomly generated large-scale
examples, the results show that the proposed model has
strong solution efficiency and robustness. Silva et al. [66]
invented a new technique for parallel computing called Multi
Improvement (MI). In addition, three dynamic programming
algorithms for solving the Maximum Multi Improvement
Problem (MMIP) are developed, and the effective solution of
the traveling salesman problem is given. In order to solve the
inefficiency of the dynamic programming method in solving
the sequential order problem (SOP), Salii et al. [67] proposed
a new dynamic programming method with lower bound
heuristic parameters. The scheme is tested on an example
of TSPLIB, and the effectiveness of the proposed method is
proved.

Overall, a large number of scholars have contributed to the
solution of the TSP, and it has been proven that the TSP has
value in real life. Although scholars havemade some progress
in combinatorial optimization theory and application, there
are still some key issues. The improved algorithms proposed
in [57], [59] and [68] can reach an ideal state when solving
small-scale symmetric TSPs. The improved algorithms pro-
posed in [34], [41], [45] and [69] have achieved satisfactory
solution accuracy when solving symmetric TSPs, but the
solution time is very unsatisfactory. References [40], [70]
and others have converted practical problems into TSPs well,
but the solving efficiency of the algorithm is an obvious
disadvantage. Note that the cited in this section are repre-
sentative of only a small portion of the related work on the
TSP. Due to the increasing number of studies on the TSP,
it is difficult to summarize all the related work. Therefore,
to further understand the solutions related to the TSP and
its variants, it is recommended that readers study the work
introduced in [71], [72] and [73]. On the other hand, readers
who want to knowmore about the possible applications of the
SSA can refer to [11]–[14], [16]–[18].

III. THE BASIC PROBLEM DESCRIPTION
A. TRAVELING SALESMAN PROBLEM (TSP)
The TSP is a classical combinatorial optimization problem.
In this problem, a businessman needs to visit several cities and
then return to the starting city; each city can be visited only
once, and the shortest path needs to be determined. Although
the constraints are simple, it is extremely complicated to solve
as the number of places increases. Currently, the solutions
to this combinatorial optimization problem can be roughly
divided into two categories: precise optimization algorithms
and metaheuristic algorithms. The existing research shows
that precise optimization algorithms can effectively solve
small-scale TSPs, while metaheuristic algorithms are more
suitable for medium- and large-scale TSPs. Precise optimiza-
tion algorithms include the gradient descent method, Newton
method, dynamic programming, enumeration method and
others. Meta-heuristic algorithms include SA, PSO, the SSA,
etc. The SSA employs the ideas of evolution and a flex-
ible behavior strategy and provides a novel method for
solving the TSP. The mathematical model of the TSP can

Algorithm 1 Pseudocode of the Basic SSA
Input: MaxIter : the maximum number of iterations

N : the number of sparrows
PD: the number of producers
ST : the safety value
SD: the number of sparrows that perceive danger
R: the alarm value

Output: Xb: the global optimal individual
Fb: the best fitness value

1: Initialize a population of N sparrows and the parameters.
2: g = 1(Record the number of iterations).
3: while g < MaxIter do
4: Calculate the fitness values of all individuals.
5: Sort the individual fitness values, and mark the best

individual and the worst individual.
6: R = rand(1),
7: for i = 1 : PD do
8: Use Eq.4 to update the producer locations.
9: end for

10: for j = (PD+ 1) : N do
11: Use Eq.5 to update the scrounger locations.
12: end for
13: for J = 1 : SD do
14: Use Eq.6 to update the warning locations.
15: end for
16: Get the current new locations.
17: Compare the new and old individuals.
18: end while
19: return Xb and Fb

be expressed as:

min Z =
n∑
i=1

n∑
j=1

dijxij

s.t



∑n

j=1
xij = 1, i ∈ V∑n

i=1
xij = 1, j ∈ V∑

i∈S

∑
j∈S

xij 6 |S| − 1, ∀S ∈ V

xij ∈ {0, 1}

(1)

In Eq. 1, dij represent the distance between each vertex,
xij represent the decision variable, xij = 1 is on the loop,
xij = 0 is not on the loop. Corresponding to the Hamiltonian
cycle, G = (V ,E), V is the vertex set, E is the edge set, the
third set of constraints are sub-tour elimination constraints.

B. SPARROW SEARCH ALGORITHM (SSA)
The inspiration of the SSA comes from the foraging behav-

ior of sparrows in nature. Sparrows have excellent flying
ability and strong vigilance and are resident birds that like
to live with humans. According to the different foraging
behaviors, sparrows are divided into two types: producers and
scroungers. Producers are responsible for finding food and
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have higher energy reserves. Scroungers follow and monitor
producers and have low energy reserves; some scroungers
compete with producers for food. When predators (natural
enemies of sparrows) appear in a foraging area, a sparrow
recognizes the danger and immediately enters alert mode. The
basic SSA pseudocode is shown in Algorithm 1.

In the SSA, it is necessary to simulate the sparrow foraging
process to find the solution of the target problem. The position
of the sparrows is denoted as follows:

X =

x11 x12 · · · x1d
x21 x22 · · · x2d
...

...
...

...
xn1 xn2 · · · xnd

 (2)

where n represents the population size of sparrows and d is
the dimension of the variables to be optimized. The fitness
values of all sparrows are expressed by the following matrix:

FX =

 f ([x11 x12 · · · x1d ])f ([x21 x22 · · · x2d ])
...
...
...
...
...

f ([xn1 xn2 · · · xnd ])

 (3)

Each value in FX represents the value of the individual.
The higher the fitness value of a sparrow, the easier it is for
it to obtain food during foraging. Additionally, they can act
as producers that are responsible for the food search of the
whole population and can find food outside the search space.
According to Eq. 2 and 3, in each iteration, the producers
update the position, and the formula of the position update
is as follows:

X t+1i,j =

{
X ti,j · exp

(
−i

α·Itermax

)
if W < ST

X ti,j + Q · L if W > ST
(4)

where t represents the current iteration. X ti,j represents the
value of t iterations of the ith sparrow in the jth dimension.
α is the random number in the interval [0, 1]. Itermax rep-
resents the maximum number of iterations of the current
population. W (W ∈ [0, 1]) and ST (ST ∈ [0.5, 1.0]) repre-
sent the alarm threshold and safety threshold respectively.
Q is a random number that follows the normal distribution.
L shows a 1 × d matrix in which each element inside is 1.
When W < ST , the sparrow population is in a safe state and
continues to forage, while the producers search for food in
a large range. If W > ST , then predators are present in the
sparrow population, and all sparrows need to immediately fly
to a safe area.

Except for the producers, all the sparrows in the popula-
tion are scroungers, and their positions are updated with the
following formula:

X t+1i,j

=

Q · exp
(
X tWorst−X

t
i,j

i2

)
if i > n

2

X t+1OP +

∣∣∣X ti,j − X t+1OP

∣∣∣ · AT (AAT )−1 · L otherwise

(5)

where XOP is the best location of the producers.
XWorst denotes the worst position of the scroungers in the
current iteration. When i > n/2, the fitness value of the
ith scrounger is low, and it is unable to access enough
food.

When the sparrow population forages at the feeding source,
10%-20% of the sparrows perform early warning work to
prevent being attacked by predators. The updated position
of sparrows with early warning capability can be shown as
follows:

X t+1i,j =


X tBest + β ·

∣∣∣X ti,j − X tBest ∣∣∣ if fi 6= fb

X ti,j + H ·

( ∣∣∣X ti,j−X tWorst ∣∣∣
(fi−fw)+δ

)
if fi = fb

(6)

where XBest is the current global optimal position. fi rep-
resents the fitness value of the current sparrows. fb and fw
express the current best and worst fitness values, respectively.
β represents standard normally distributed random numbers
with an average value of 0 and a variance of 1. H is a
random number in the interval [0,1], and controls the moving
direction of sparrows and the adjustment of the step size. δ is
the minimum constant,which prevents the situation where the
denominator is 0 and the fitness value of the current sparrow
is the global worst. When fi 6= fb, the sparrows are at the edge
of the foraging area and are vulnerable to predators. fi = fb
shows that the sparrow at the center of the population is aware
of the danger and needs to quickly approach other sparrows
to readjust the foraging strategy.

IV. IMPROVED SSA FOR THE TSP
A. THE GREEDY ALGORITHM INITIALIZES THE
POPULATION
Dynamic programming algorithms usually give solutions
with a bottom-up method, while greedy algorithms, in con-
trast, use the method of constructing the optimal solution
stepwise with top-down method and make greedy choices
in an iterative fashion. Every time a greedy choice is made,
the optimization problem is simplified to a smaller subprob-
lem [74]–[76]. The nature of the greedy algorithm means that
the global optimal solution of the problem can be achieved
through a series of local optimal choices, that is, greedy
choices. Greedy algorithms have been widely used in path
planning [77], job-shop scheduling [78] and other issues [79].
In this paper, the greedy algorithm is used to replace the
random generation of the population in the original SSA,
which not only maintains the diversity of the population,
but also improves the efficiency of the algorithm. Note
that greedy algorithm has some shortcomings, such as the
inability to guarantee that the final solution is the optimal
solution.

B. THE GENETIC OPERATORS UPDATE THE POPULATION
1) OX CROSSOVER OPERATOR
To increase the diversity of sparrow population, OX crossover
operation in the GA is used after population initializa-
tion [80]. Assume that the parent individuals are as follows:
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Algorithm 2 Pseudocode of the GGSC-SSA
Input: MaxIter : the maximum number of iterations

N : the number of sparrows
PD: the number of producers
ST : the safety value
SD: the number of sparrows that perceive danger
R: the alarm value

Output: Xb: the global optimal individual
Fb: the best fitness value

1: Structure coding method. Initializes the sparrow popula-
tion N and the parameters with the greedy algorithm.

2: g = 1(Record the number of iterations).
3: while g < MaxIter do
4: Calculate the fitness value of all individuals.
5: Update the population with the OX crossover operator.
6: R = rand(1)
7: for i = 1 : PD do
8: Use Eq.8 to update the producer location.
9: end for

10: for j = (PD+ 1) : N do
11: Use Eq.5 to update the producer’s location.
12: Use the sine and cosine search strategy to enhance

global ability using Eq.9
13: end for
14: for J = 1 : SD do
15: Use Eq.6 to update the producer’s location.
16: end for
17: Get the current new location.
18: Compare the new and old individuals.
19: end while
20: return Xb and Fb

We randomly select two crossover positions 3 and 6, then
move the crossover segment of parent 2 to the front of
parent 1, and the crossover segment of parent 1 to the front of
parent 2 and delete the duplicate individuals in turn to form
two offspring individuals. This is expressed as follows:

2) MUTATION STRATEGY
The purpose of the GA mutation operator is twofold: first,
to give the GA local random searching abilities [80], [81].
When the GA is close to the optimal solution neighbor-
hood through the crossover operator, the local random search
ability of the mutation operator can accelerate the conver-
gence to the optimal solution [82]. In the SSA, the producer
approaches the global optimal solution from the beginning
iterations, and the search range is restricted, so it is easily
trapped in local optima. Therefore, the variation strategy

of GA is introduced to update the position of the producer
and the exchange operation. The introduction of a mutation
strategy improves the search efficiency and global optimiza-
tion ability of the producers. Dynamic adaptive weights are
imported to update the position of the producers [83]. The
location of the producers are updated with the weight coeffi-
cient [84], and the formula is as follows:

λ =

{
λmin −

(λmax−λmin)·(fi−fw)
favg−fw

if fi < favg

λmax otherwise
(7)

X t+1i,j =

{
X ti,j · exp

(
−i
α·t

)
if W < ST

X ti,j + λ · L if W > ST
(8)

where λ is a random number in the interval [0,1]. Two random
numbers are generated, and after comparison, λmin and λmax
are obtained; favg is the average of the current global optimal
and worst fitness values. Through the introduction of the
dynamic weight coefficient, the adaptation of the algorithm
is effectively increased, and the coefficient is adjusted with
the number of iterations to better perform a global search.

C. SINE AND COSINE SEARCH STRATEGY
In the SSA population update, the scrounger location update
is mainly guided by the producers, which results in a rough
optimization effect. To further improve the convergence accu-
racy and optimization effect of the algorithm, and to balance
the local development and global search abilites, a sine and
cosine search strategy is introduced [85]. After the scroungers
are updated according to the location of the producer, a sine
and cosine search is carried out to obtain the optimal feasible
solution. The mathematical expression of the sine and cosine
search strategy is as follows:

X t+1i,j =

X
t
i,j + r1 · sin (r2) ·

∣∣∣r3 · Pti,j − X ti,j∣∣∣ r4 < 0.5

X ti,j + r1 · cos (r2) ·
∣∣∣r3 · Pti,j − X ti,j∣∣∣ r4 > 0.5

(9)

r1 = a− a ·
t

MaxIter
(10)

where r1 will increase with the increase of iteration times
MaxIter , a is a constant, the value in experiment is 2,
r2 is a random number the interval [0, 2π ], r3 is the random
number between [0,2], and r4 is the uniformly distributed
random number on [0,1]. The function of sine and cosine
search is to make the algorithm effectively prevent premature
convergence and improve the convergence accuracy to a cer-
tain extent, so as to improve the efficiency of each iteration.

D. CONSTRUCTION CODING MODE
Since the basic sparrow search algorithm cannot directly
solve some discrete optimization problems like TSP, it is
necessary to reconstruct the search space of the algorithm
and redefine the objective function according to the actual
problem [86], [87]. Therefore, the solution range of the
sparrow search algorithm needs to be transformed into a
two-dimensional continuous space. Only by defining the
value range of the independent variable and the objective
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function expression, the optimal solution and the correspond-
ing independent variable value can be obtained.

After introducing the TSP problem into the SSA, it can be
defined as the sparrow population size as N and the number
of cities as D. In the D dimensional city search space, the
position Xi of the i-th sparrow is defined as a set of different
positive integer sequences, and the N sparrows search for
prey in the D dimensional space, that is, the search space
domain K is an entity matrix, the formula is as follows:

K =


X1
1 X2

1 · · · XD1

X1
2 X2

2 · · · XD2
...

...
...

...

X1
N X2

N · · · XDN

 (11)

The first row of the matrix indicates the position sequence
of the first sparrow in the search space, and the last row
indicates the position sequence of the N th sparrows in the
search space.

After constructing the sparrow population search space
matrix and the sparrow position sequence expression method,
another important problem is to solve the distance matrix L
in the TSP problem. For the TSP with the number of cities D,
the distance matrix L formed by the distance d(i,j) between
the ith city and the jth city can be expressed as:

L =

d(1,1) · · · d(1,N )
...

. . .
...

d(N ,1) · · · d(N ,N )

 (12)

The distance of d(N ,N ) is 0. Through the above description,
the relationship expression between the search space and the
objective function can be constructed as follows:

C = min K
(∑

d (i, j)
)

s.t


(i, j) 6 D

(i, j) ∈ N
i 6= j

(13)

Among them, i and j represent the city number,
minK represents the optimal population position, and the
distancematrix sum corresponding to

∑
d (i, j). The function

of this function is to read the cumulative sum of the dis-
tance between the position sequence in each sparrow position
matrix K and the corresponding distance matrix L.
Random initialization of different sparrow individuals will

generate different solution vectors, and calculate the distance
between different solution vectors. The optimization of objec-
tive function is determined through function. If the solution
obtained is better than the previous one, it will be replaced
with a better solution and used as the optimal solution for
the current iteration of this sparrow. Otherwise, it remains
unchanged, and the next line of judgment is continued until all
the sparrow solution vector optimizations are all completed.

According to the above re-encoding settings for the spar-
row, the improvement process of the sparrow search algo-
rithm can be abstracted into a combined optimization model
on a continuous space, and the sparrow search algorithm can
be applied to the TSP problem.

E. GGSC-SSA FOR THE TSP
The GGSC-SSA is based on the initial SSA and introduces
a greedy algorithm to initialize the population. When the
producers and scroungers are updateds, the crossover and
variation strategies in the GA are embedded to optimize the
results of sparrow traversal. Finally, global optimization is
carried out according to the position of the early warning
sparrow. The steps for solving the TSP with a combined
a greedy genetic strategy and sine and cosine SSA are as
follows:
1) Initialize the TSP city information and GGSC-SSA

parameters, and discretize the algorithm;
2) Initialize the sparrow population with the greedy

algorithm;
3) Calculate the fitness values of all sparrows in the popu-

lation, and find the sparrow with the best fitness value;
4) Select part of sparrows that have the highest fitness value

as producers, and update their positions according to
Eq. 8. Update the positions of the remaining sparrows
as scroungers according to Eq.5;

5) Randomly select early warning sparrows from the pop-
ulation, and update the positions based on Eq.6;

6) Use the sine and cosine search strategy through the
updated warning sparrows to prevent the algorithm from
falling into local convergence;

7) According to the current state of the sparrow population,
update the optimal position and fitness of the entire
population, as well as the worst position and fitness;

8) Judge whether all individuals are traversed, if so, pro-
ceeding to the next step, otherwise, jumping to step 3;

9) Judging whether the maximum iteration times have been
reached, if so, proceed to the next step, otherwise, go
to step 2;

10) Introduce the program operation, output the optimal
result.

The detailed process of the GGSC-SSA algorithm for solv-
ing the TSP is shown in Figure1. The GGSC-SSA solves TSP
pseudocode as shown in Algorithm 2.

V. EXPERIMENTAL STUDIES
In this section, the experiments conducted on the TSP to test
the improved SSA are introduced in detail. First, we ana-
lyze the parameters related to the algorithm and the related
components of the improved SSA. For the TSP dataset,
the 36 examples used in this article are from the TSPLIB
benchmark. In these 36 instances, the number of city nodes
ranges from 22 to 1291. For each instance, the algorithm
described in this article is run 50 times. To evaluate the perfor-
mance of the GGSC-SSA, we compare it with the following
intelligent optimization methods: (1) traditional intelligent
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FIGURE 1. The GGSC-SSA algorithm.

algorithms, such as the GA, SA, PSO, GWO, ACO, and
AF [88] and (2) other improved intelligent algorithms [6],
[45], [57], [61], [89]–[93]. The simulation experiment is run
on a computer equipped with an Intel Core i7-10600 proces-
sor, the program is created in aWindows 10 environment, and
the programming software used is MATLAB2018a.

A. COMPONENT TESTING AND PARAMETER SETTINGS
For many intelligent optimization algorithms, parameter tun-
ing is the key to algorithm optimization performance. After
analysis of the existing literature related to the SSA [6], [11],
[12], [18], [94], [95], the parameters of the GGSC-SSA are
determined through repeated and in-depth revisions, as shown

TABLE 1. Algorithm related parameter settings.

TABLE 2. Component comparison test results.

in Table 1. Note that the parameters in the sine and cosine
search strategy are set according to the literature [85].

To test the performance of each component of the
GGSC-SSA and to analyze the impact on the basic SSA,
the three components are added to the SSA and renamed.
Additionally, comparative experiments are carried out on the
Ulysses22, Eil51, Berlin52, Rat99 and Ch130 datasets. The
results are shown in Table 2. The algorithm variants for
different components are defined as follows:
1) The SSA introduced with the greedy algorithm is repre-

sented by SSA1.
2) The SSA introduced with the genetic operator is repre-

sented by SSA2.
3) The SSA that introduces the sine and cosine search

strategy is represented by SSA3.
Additionally, we obtain the characteristics of each com-

ponent through experiments, and the results are as follows:
1) The time spent by SSA1 on the tested dataset is
significantly shorter than that of the original SSA, but
the solution accuracy is not sufficient, and the global
search capability is poor. When SSA1 is used to solve
the TSP examples ulysses22, eil51, berlin52, rat99 and
ch130, the solution times (in seconds) are 1.32, 3.69, 10.24,
12.16 and 15.73, respectively. However, the solution accu-
racy is the worst, at 85.63, 460.97, 7956.23, 1398.3 and
7026.34. The optimized value is lower than that of the
original SSA.

2) The solution accuracy of SSA2 is better than that of the
original SSA and weaker than that of SSA3, and the solution
time is significantly longer than those of the original SSA
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TABLE 3. Results of the proposed SSA algorithm and the basic SSA algorithm.

and SSA1. SSA2 has a good local search ability and easily
falls into local optima. The optimal values of SSA2 on the
datasets eil51 and ch130 are 428.36 and 6416.38, and the
times are 12.23 and 49.63. Compared with the optimal values
of the initial SSA, the values are 13.45 and 425.01 higher,
and the solution times are 6.04 and 13.54 seconds longer,
respectively.

3) SSA3 performs relatively well in terms of solution accu-
racy, significantly better than the basic SSA, SSA1 and SSA2,
but it takes more time to reach a solution. SSA3 has excellent
global optimization capabilities that effectively prevent the
algorithm from falling into local optima. The times spent

on test sets berlin52 and rat99 are 39.56 and 67.63 seconds,
respectively, which are 14.84 and 12.93 seconds longer than
the initial SSA solution times. In terms of solution accuracy,
the deviation rate (calculated as shown in Eq.14) of SSA3
are 0.08% and 0.68%, which are significantly higher than the
2.27% and 7.21% of the original SSA.

Dev =
BV − KV

KV
× 100% (14)

where Dev represents the deviation rate, BV represents the
best solution value of the algorithm, and KV represents the
best known value.
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FIGURE 2. Dynamic average convergence curves of GGSC-SSAand the original SSA algorithm.

B. COMPARISON OF THE ORIGINAL AND IMPROVED SSA
In this subsection, a comprehensive comparison between
the GGSC-SSA and SSA is made to prove that the per-
formance of the improved SSA is better than that of the
original SSA. The experimental results of these two algo-
rithms are listed in Table 3, where ‘‘optimal’’ represents
the known optimal solution of the instance, ‘‘best’’ repre-
sents the average value after running the instance 50 times,
and ‘‘time’’ represents the average time after running
the instance 50 times. A total of 36 TSP instances are
tested.

Based on the results shown in Table 3, an obvious con-
clusion can be drawn. For 36 TSP instances, the improved
SSA is significantly better than the basic SSA. We conduct
further analysis to prove the validity of the conclusion. Of all
the TSP instances, six instances of the GGSC-SSA reach
the known optimal solution, namely, on ulysses22, eil51,
berlin52, rat99, kroA100 and tsp225. Note that the optimal
values of ulysses22, kroA100 and tsp225 are lower than
the known optimal solutions, which are 75.24, 20989.04
and 3900.93, respectively. Supporting the authenticity of
the results obtained, many studies related to TSPs report
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FIGURE 3. Some examples of optimal paths obtained by the improved SSA.

FIGURE 4. The dynamic average convergence curves.

solutions better than the known optimal solution for TSP
examples. For example, in [96], using the improved ant
colony algorithm to solve ulysses22, the optimal value of
75.31 found is lower than the known optimal value of 75.67;
in [97], the metaheuristic hybrid algorithm is used on the
examples ulysses22, att488 and berlin52, and the optimal
values are 56.52, 13908.4 and 5970.83, which are all lower
than the known best values; in [57], when using the improved
brainstorming algorithm to solve ulysses22 and kroA100, the
best values are 75.24 and 21070.09, which are both lower
than the known best values. In 29 experimental results, the
standard deviation is less than 3%, accounting for 75% of
all examples. When the number of city nodes is less than or
equal to 100, only the standard deviation of att48 is greater

than 1%. When the TSP scale continues to increase, the
solution performance of the GGSC-SSA is much better than
that of the SSA. For the TSP instance tsp225, the best value
obtained by the GGSC-SSA is 3900.93, which is 698.83
lower than the best value obtained by the SSA, and the
solution time is 59.92 seconds shorter than the 91.15 sec-
onds of the SSA. For TSP instances rat783 and pr1002, the
standard deviation rates of the GGSC-SSA are 3.26% and
4.96%, respectively, which are significantly better than the
SSA values of 24.60% and 16.16%.

Through the above detailed analysis, it is clear that the
GGSC-SSA is superior to the original SSA in terms of solu-
tion accuracy, solution time, and stability. The six examples
of ulysses22, eil51, berlin52, rat99, kroA100 and tsp225 are
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TABLE 4. Experimental results of the SSA algorithm and other classic heuristic algorithms.

FIGURE 5. Run time visualization.

selected to visually analyze the performance of the improved
SSA and the basic SSA. The dynamic convergence curve is
shown in Figure 2. Figure 3 shows the experimental results
of TSP instances where the GGSC-SSA achieves a known
optimal solution.

C. EXPERIMENTATION WITH THE GGSC-SSA AND
CLASSICAL INTELLIGENT ALGORITHM
To prove the efficiency of the GGSC-SSA, we compare the
improved algorithmwith six classic heuristic algorithms, GA,
SA, PSO, GWO, ACO and AF, on the ulysses22, eil51 and
berlin52 datasets. To ensure the validity and fairness of the
experiment, for the same TSP instance, all algorithms are
tested under the same hardware environment. Figure 4 shows
the optimization process of the eight algorithms used to test
the TSP instances ulysses22, eil51 and berlin52.

The information in Figure 4 clearly shows that for
the tested TSP examples, the solution accuracy of the
GGSC-SSA and the optimal number of iterations are bet-
ter than those of the other seven algorithms. Note that

GGSC-SSA can find a better value in the first iteration.
The greedy algorithm is used for the population initializa-
tion of the SSA, which greatly enhances the optimization
ability of the SSA. To further illustrate the advantages of
the GGSC-SSA in terms of the optimization efficiency and
solution time, the optimal value found by each algorithm and
the specific time spent are introduced in detail. The experi-
mental results are shown in Table 4. In this table, Dev,MeanV
and MeanT represent the standard deviation rate, average
running time and average running time, respectively. Taking
the eil51 dataset as an example, the GGSC-SSA reaches the
known optimal value, exhibiting great advantages compared
with other algorithms. In particular, compared with GA, PSO
and GWO, the deviation rate is 97.16%, 78.53% and 94.55%
lower, respectively. Note that the SA algorithm performs
better in terms of solution time, but as the TSP scale increases,
the solution accuracy continues to decrease. Figure 5 shows
the detailed solution time of the eight algorithms used to
solve the three TSP instances. When solving small-scale
TSPs, GGSC-SSA is better than the other algorithms in terms
of optimizing speed, deviation rate and stability. Compara-
tive experiments with traditional heuristic algorithms further
show that the improved algorithm has better optimization
capabilities and greater robustness.

D. COMPARISON WITH OTHER IMPROVED ALGORITHMS
To further comprehensively verify the efficiency of the
GGSC-SSA, it is comparedwith a series of recently improved
intelligent optimization methods. The nine improved algo-
rithms participating in the comparison are as follows:
(1) the novel discrete water cycle algorithm (DWCA) [90];
(2) the improved ant colony optimization (IACO) [98];
(3) the agglomerative greedy brain storm optimization
(AG-BSO) [57]; (4) the parallel ant colony optimization
and 3-opt (PACO-3OPT) algorithm [99]; (5) the genetic ant

VOLUME 9, 2021 153467



C. Wu et al.: Novel Sparrow Search Algorithm for Traveling Salesman Problem

TABLE 5. Statistical results of GGSC-SSA and nine other algorithms used to solve TSP instances.

colony optimization (GACO) [91]; (6) the adaptive brain
storm optimization (ABSO) [100]; (7) the Pearson correlation
coefficient ant colony optimization (PCCACO) [91]; (8) the
novel ant colony optimization (NACO) [45]; (9) the multi-
strategy discrete brain storm optimization (MDBSO) [101].

The statistical results of the GGSC-SSA and other
improved algorithms are shown in Table 5, and ‘‘-’’ indi-
cates that the method is not tested in its article. The con-
clusions drawn from Table 5 are similar to the previous
conclusions. In the small TSP examples eil51, berlin52, st70,
eil76 and kroA100, good results are obtained. In addition,
for the large-scale TSP instance pr439, the performance of
the GGSC-SSA proposed in this paper is significantly better
than that of the other improved algorithms. In contrast, the
GGSC-SSAmaintains good adaptability to all TSP instances.
In summary, the experimental data show that this method
has strong competitiveness. As the complexity of the prob-
lem increases, the GGSC-SSA can jump faster out of local
optimal solutions, thereby improving the global optimization
capability. This effect is mainly derived from the greedy
algorithm to obtain a solution close to the global optimal
value. The sine-cosine search strategy enhances the global
optimization capability, thereby improving the convergence
of the algorithm. The GGSC-SSA proposed in this paper can
obtain a better and more stable solution when solving TSPs,
which is more obvious in large-scale examples.

VI. CONCLUSION
To address the issues of the SSA having insufficient conver-
gence ability and efficiency in solving the TSP, an improved
SSA named the GGSC-SSA is introduced in this paper.
The three key improvements of the GGSC-SSA are as
follows:

1) The greedy algorithm is introduced into the SSA to ini-
tialize the population to enhance the solving efficiency
of the algorithm.

2) The crossover operation of the GA is used to update
the population to enhance the global search ability. The
mutation operation is used to update producers and to
enhance the local search ability of the algorithm.

3) Sine and cosine search strategies are used through early
warning sparrows to prevent premature convergence
and to enhance the global optimization ability of the
algorithm.

On the basis of a thorough and comprehensive theoret-
ical study of the original SSA and the TSP, a novel SSA
(GGSC-SSA) is introduced for the first time to solve the
TSP in this research. To demonstrate that the proposed
GGSC-SSA is an effective algorithm for solving the TSP,
we compare its performance with the basic SSA on 36 TSP
instances. Furthermore, we analyze the GGSC-SSA in
detail through comparative experiments with six classical
algorithms and eight existing improved algorithms. The sim-
ulation results validate the effectiveness of the proposed
algorithm. The GGSC-SSA shows excellent performance in
solving TSP cases on large and small scales and is better
than other improved algorithms in most cases. In future work,
other intelligent algorithms will be introduced into the SSA
to explore the new intergroup communication model and to
improve the robustness and adaptability of the SSA.
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