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ABSTRACT Image captioning is a cross-disciplinary task to automatically generate textural descriptions
for a given image using computer vision and natural language processing techniques. Remote sensing
image captioning refers to the application of this task to remote sensing images taken from high altitude by
satellites, aircraft or drones. This interesting and valuable topic has only emerged in recent years and attracted
considerable research attention. There has been extensive related work in the literature, with considerable
results and an independent body of research, and various issues must be addressed in future work. However,
to the best of our knowledge, there has been no review study in this area that can provide researchers with
systematic reference information, which is the motivation of this study. To achieve this goal, 30 relevant
articles were conditionally filtered and obtained for the review study. We analyzed and summarized
the existing work from various perspectives, including technical solutions, data, evaluation metrics, and
the experimental results of state-of-the-art methods. Based on this summary, the trends, pros and cons of the
existing studies, issues to be addressed and valuable research directions in future work are discussed. The
results of this paper can provide valuable reference information for researchers in related fields.

INDEX TERMS Image captioning, remote sensing, deep learning, natural language processing.

I. INTRODUCTION
Image captioning [89]–[92] is a cross-disciplinary topic cov-
ering computer vision, natural language processing and deep
learning, with the goal of recognizing the content of a given
image and generating a descriptive text through computer
technology. Remote sensing images (RSIs) [93], [94] refer
to images containing geographic information captured by
satellites, aircraft, drones, etc. from high altitude overhead.
Remote sensing image captioning (RSIC) is a combination of
the above two concepts, i.e., generating textual descriptions
for RSIs, describing the scenes and ground objects in the
image, as well as their attributes and relationships. Figure 1
shows some examples of RSIC. This research direction has
very high potential for application [2], such as in generat-
ing real-time text or voice descriptions for photos taken by
unmanned aerial vehicles (UAVs) in war, reconnaissance,
traffic command and rescue scenarios.

Many researchers have worked on making machines better
understand RSIs through studies such as scene classification
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and object detection [83]–[87], [93], [94]. Compared to these
studies, RSIC focuses on providing higher-level semantics
and human-readable descriptions. In addition, while many
methods in natural image captioning (NIC) studies [71], [72],
[75], [76], [89]–[92] can be applied to RSIC research, some
unique challenges need to be addressed in this field. For
example, natural images have a clear viewing direction, i.e.,
sky at the top and earth at the bottom, while RSIs taken
from ‘‘God’s perspective’’ do not have a fixed viewing direc-
tion [3]. Another example is that the scales of objects in RSIs
vary greatly, resulting in the same objects having completely
different sizes and appearances in different images [22].

Since the first RSIC study [1] was proposed, in recent
years, an increasing number of scholars have devoted them-
selves to contributing technical solutions, large-scale datasets
and ideas with potential application value to this new research
field. The related data, methods, and evaluation metrics have
gradually formed an independent system different from other
fields. However, to the best of our knowledge, there are no
review articles focusing on RSIC in the literature, which can
provide researchers with a systematic analysis of the research
status, trends, challenges and future work in this field.
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FIGURE 1. Examples of remote sensing image captioning.

To fill this gap, in this article, we present a systematic
review of the RSIC work in the literature. Our contributions
are mainly as follows. First, we collected articles related to
RSIC on Web of Science and Google Scholar and classified
them into different categories based on technical solutions
and then discussed the characteristics, theoretical founda-
tions, and pros and cons in detail. Second, we discussed the
benchmark RSIC datasets and commonly used evaluation
metrics and analyzed and compared the performance of the
state-of-the-art methods to summarize the research trends.
In addition, we briefly discussed the outline and the limi-
tations of the existing work and the future research direc-
tions in this field. To the best of our knowledge, this is
the first systematic survey of RSIC and can be expected to
provide researchers with a strategic and detailed reference in
this area.

II. BACKGROUND
Image captioning is an interesting research direction to
auto-generate descriptive sentences for a given image to
describe the objects that appears in the image, their attributes
and relationships, etc. Conventional image captioning
[89]–[92], which is also called NIC, focuses on generating
descriptions for natural images, i.e. photographic images of
everyday life scenes.

According to the method to generate sentences, there are
mainly three categories of NIC methods [89]: template-based
methods, retrieval-based methods, and sequence generation-
based methods. The template-based methods require arti-
ficially designing sentence templates with fixed structures
containing blanks and filling in the blanks with recog-
nized objects, attributes and other information through image
recognition technology. A retrieval-based method requires
maintaining a large-scale database that contains images and
the corresponding descriptions. The image in the database
that is most similar to the input image is retrieved, and its cor-
responding descriptions are output as the captions. Although
template- and retrieval-based approaches can generate syn-

tactically and grammatically correct sentences and are suit-
able for some scenarios, they cannot generate flexible and
variable descriptions. This issue can be solved by sequence-
generation-based methods. These kinds of approaches treat
sentences as sequences of words and train models to learn not
only the correspondence between image features and words,
but also the sequential relationships between adjacent words.
Then, the trained models can generate flexible and variable
word sequences to describe the input images. The drawback
of sequence generation-based methods is that the generated
sentences may have grammatical or syntactic errors.

Although research for NIC can be traced back over a rela-
tively long time, research focusing on RSIC has only started
in recent years. To the best of our knowledge, the first study
for RSIC was proposed by Qu et al. [1] in 2016. Qu et al.
borrowed the state-of-the-art models from NIC, extracted
features from RSIs using convolutional neural networks
(CNNs) [31] and generated captions using recurrent neural
networks (RNNs) [67]. In this work, the first two benchmark
RSIC datasets, namely Sydney-captions and UCM-captions
were also annotated. It is worth noting that at the beginning
of the first RSIC study, deep learning methods had been
widely used in computer vision and natural language pro-
cessing. Therefore, unlike the situation in the field of NIC,
RSIC researchers have made extensive use of deep learning
methods such as CNNs, RNNs from the very beginning.
An early RSIC study by Lu et al. [3] compared non-deep
learning methods with deep learning methods and showed
that deep learning methods were far superior. This fact was
carried forward by subsequent studies; since then, researchers
have only focused on deep learning-based methods.

Inspired by the early studies, many researchers have
devoted themselves to the field of RSIC. Unlike natural
images whose contents are mainly everyday scenes taken by
regular cameras, RSIs that are taken by satellites, aircrafts
or UAVs from high altitude have unique characteristics. For
example, RSIs taken from ‘‘God’s view’’ do not have a
clear direction of observation with the sky above and the
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FIGURE 2. Process of extracting relevant papers.

earth below [3], as ordinary photographs do. The scale of
the same type of objects in different RSIs can vary [22].
In response to these unique characteristics, many excellent
RSIC studies have emerged in recent years and gradually
formed an independent body of research. These studies
have achieved impressive results, but many issues must be
addressed in future work. However, to the best of our knowl-
edge, no review articles on RSIC can provide researchers with
a systematic analysis of this field, which motivated us for this
study.

Many excellent review studies have focused on image
captioning and RSI processing in the existing literature. In the
studies of Bernardi et al. [91] and Bai et al. [90], different
categories of models and representation spaces used to imple-
ment image captioning tasks were reviewed in detail. A
review study of the evolution of image captioning solutions
was given by Kumar et al. [92] in a chronological manner.
Based on these studies, Hossain et al. [89] focused on review-
ing deep learning-based image captioning solutions. In the
field of RSI processing, review studies of RSI classifica-
tion were conducted by Li et al. [95] and Song et al. [96].
Cheng et al. [97] focused on a review study of object detec-
tion methods for RSIs. Abdollahi et al. [94] presented a
review study of road extraction methods based on deep learn-
ing and remote sensing techniques. Ma et al. [93] conducted
a meta-analysis study on applications of deep learning-based
techniques in the field of remote sensing.

In this paper, we draw on the valuable methods and infor-
mation from the abovementioned review studies. Also, unlike
these studies, we focus solely on the RSIC domain, providing
a meta-analysis and summary of the unique models, data,
issues and solutions within it. Compared with review studies
of NIC [89]–[91], we focus on captioning solutions for

RSIs rather than other types of images. In contrast to other
RSI-related reviews [93]–[97], our research revolves around
image captioning rather than other tasks. More importantly,
most of the articles screened and reviewed in our work do not
appear in the abovementioned review studies. Therefore, our
work can be expected to provide unique and valuable review
information for researchers in RSIC and related fields.

III. METHODOLOGY
To obtain high-quality papers related to RSIC for the review
study, we followed the process specified by the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) statement [98], as shown in Figure 2. Exclusion
and inclusion criteria were developed to filter the record
objects and full-text articles. The exclusion criteria are as
follows:

• Not peer-reviewed.
• The full text is not available from the publisher.

The inclusion criteria are as follows:

• The article is written in English.
• The images used in the study must be RSIs and no other
types of images.

• RSIC must be the primary research goal, not a way to
enhance the performance of other tasks, such as RSI
retrieval.

In the identification phase, the databases ofWeb of Science
and Google Scholar were utilized to search for and initially
access records in the literature. Specifically, we searched all
articles to date (search date: October 20, 2021) using the
expressions ‘‘remote sensing image captioning’’, ‘‘remote
sensing image description’’, ‘‘remote sensing caption gener-
ation’’ and ‘‘remote sensing image description generation’’.
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In the screening phases, duplicate records were removed and
further filtered by exclusion criteria. In the eligibility stage,
the full-text papers related to the above obtained records were
further filtered by the inclusion condition, and 30 articles
were ultimately included for further study.

Then, the extracted articles were classified into different
categories according to the technical solutions. We analyzed
the theoretical foundations and pros and cons of the studies
in each group in Section IV. Then, the datasets and auto-
matic evaluation metrics in the literature are summarized and
analyzed in Section V. Based on this information, we com-
pared and analyzed the experimental results of state-of-the-art
methods in this field in Section VI and discussed the existing
research and future work in Section VII.

IV. TECHNICAL SOLUTIONS FOR RSIC
In this section, methods in the literature for RSIC are
grouped into seven categories, i.e., encoder-decoder architec-
ture, image feature extraction, attentionmechanism, language
model (LM), training strategy, active attention and auxiliary
component, according to the technical solutions. We discuss
each category of these methods in detail in the following
subsections.

Figure 3 illustrates the overall summary of all technical
solutions. The majority of RSIC studies follow an encoder-
decoder architecture. This architecture contains an encoder
for extracting image features and a decoder for translating
image features into textual descriptions. Technical solutions
for image feature extraction are concerned with how to effi-
ciently extract valuable information from RSIs. The work
of LMs is to generate each descriptive word based on the
image features and contextual information obtained from
other modules. When generating each word, an attention
mechanism can output an attention mask telling the model
to focus on a specific region in the image. For example,
when generating the word ‘‘plane’’, a well-trained attention
mechanism can generate the mask associated with the plane
in the image. During training, the training strategy optimizes
the parameters of the RSIC models based on the differences
between the generated sentences and the annotated sentences.
Active attention technology uses additional information such
as sound or topic information to guide the model to gen-
erate sentences of interest. Technical solutions of auxiliary
components refer to enhancing the overall performance of
RSIC systems by designing auxiliary modules that can be
embedded into any encoder-decoder architecture, such as the
persistent memory mechanism [21], which can enhance the
performance of LMs, and the graph convolutional network
(GCN)-based module [11], which can capture relations of
objects and attributes in RSIs.

Each technical solution will be discussed in detail sepa-
rately in Section IV-A to IV-G.

A. ENCODER–DECODER ARCHITECTURE
Qu et al. [1] pioneered the task of RSIC. These researchers
proposed an encoder-decoder model, as shown in Figure 4,

based on Vinyals et al.’s method [71]. The encoder extracts
features from the input RSI, and the decoder translates the
extracted image features into textual descriptions. The struc-
ture of a CNN [31], which is suitable for extracting image
features and successful in large-scale image classification
tasks, is used as the backbone for the implementation of the
encoder. The decoder is based on an RNN [67], i.e., a neural
network that can efficiently learn the sequence relationships
in text data.
I is denoted as anRSI, and S is denoted as its corresponding

annotated sentence in the training set. The goal of training is
to maximize the probability of generating a correct sentence
given an RSI:

θ∗ = argmax
θ

∑
(I ,S)

logp(S|I ; θ ) (1)

where θ are the parameters of the RISC model. Since S
represents a sentence containing a variable number of words,
the above equation can be expressed according to the chain
rule as:

logp(S|I ) =
N∑
t=0

logp(wt |I ,w0, . . . ,wt−1) (2)

where wt represents the t-th word in S and N is the length
of the sentence. Here, we omit the parameter θ . In [1],
p(wt |I ,w0, . . . ,wt−1) is modeled with an RNN, where the
next output ht+1 of each time step is calculated using the
previous output ht and the new input xt :

ht+1 = f (ht , xt ) (3)

where the exact form of f can be a specific RNN variant, such
as a long short-term memory (LSTM), a gated recurrent unit
or a vanilla RNN, and xt is calculated using the image features
extracted by the CNN encoder and the previously generated
word:

x−1 = CNN (I ) (4)

xt = Wewt (5)

where wt is the one-hot vector of the word generated at time
step t and is embedded into a space with the same dimension
as the image representation CNN (I ) via We. Regarding the
concrete implementation of f in Equation (3), the experi-
mental results in [1] show that LSTM achieves significantly
superior performance in the RSIC task compared to the
vanilla RNN. LSTM is a variant of the RNN proposed by
Hochreiter et al. [68] to solve the problem of vanishing and
exploding gradients in RNN model training and has achieved
great success in the task of machine translation and sequence
generation [40], [69], [70].

The core of LSTM is the memory cell encoding the knowl-
edge in each time step. Three different gates are designed to
control the behavior of the memory cell:

it = σ (Wxixt +Whiht−1) (6)

ft = σ (Wxf xt +Whf ht−1) (7)
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FIGURE 3. Overall summary diagram of technology solutions for RSIC.

FIGURE 4. Vanilla encoder–decoder framework for RSIC.

ot = σ (Wxoxt +Whoht−1) (8)

ct = ft � ct−1 + it � tanh(Wxcxt +Whiht−1) (9)

ht = ot � ct (10)

pt+1 = softmax(ht ) (11)

where it , ft , ot denote the input, forget and output gates,
respectively, � represents the product operation, and the
variousW matrices are trainable parameters. Figure 4 shows
the LSTM decoder in an unrolled form. All LSTMs in the

figure share the same parameters, and the output ht−1 of the
LSTM at time t − 1 is fed to the LSTM at time t .
During training, the overall loss value is obtained by sum-

ming the negative log-likelihood of the correct word in each
time step:

L(I , S) = −
N∑
t=1

logpt (wt ). (12)
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The goal of training is to fine-tune the parameters of the
CNN encoder and the LSTM decoder to minimize the loss
value in the above equation. To train and test the proposed
RSIC model, Qu et al. annotated two new datasets using
the RSIs in the University of California Merced Land-Use
(UCM) [50] and Sydney [49] datasets. The newly built
datasets, named UCM-captions and Sydney-captions, are the
first two image captioning datasets for remote sensing, con-
sisting of not only RSIs but also five textual descriptions for
each image.

Inspired by Qu et al.’s work, many researchers have
devoted themselves to the study of RSIC. In the vast majority
of RSIC studies, CNN-based encoders and RNN (usually
LSTM)-based decoders have been employed as the backbone
of the overall architecture. Around this kind of ‘‘encoder-
decoder architecture’’, many technical solutions have been
proposed. We group these technical solutions into different
categories and discuss them in the subsequent IV-B to IV-G
sections. In addition, several approaches [2], [6], [18] that do
not employ the encoder-decoder framework are grouped into
the LM category discussed in Section IV-D along with other
LM-related studies.

B. IMAGE FEATURE EXTRACTION
In this subsection, we discuss the image feature extraction
solutions in the literature of RSIC from three aspects: select-
ing suitable CNN backbones, extracting features from CNN
layers with different depths, and obtaining valuable informa-
tion from RSIs via multitask approaches. The statistics of
these three aspects in each RSIC study are shown in Table 1.

1) CNN BACKBONES
Extracting high-quality and valuable information from RSIs
is a key part of the RSIC process. There are two categories
of methods to extract information from RSIs, namely, hand-
crafted methods and deep learning-based methods. Hand-
crafted methods extract human-specified local features from
images and transform them into image representations by
encoding techniques such as bag of words (BOW) [34] and
Fisher vector (FV) [35]. Deep learning-based methods utilize
large-scale datasets to train CNNmodels. The trained models
can automatically extract valuable information from unseen
images. In recent years, many variants of CNN structures,
such as AlexNet, VGG, and GoogLeNet, have been proposed
for better extracting image features. These CNN structures
are often used as the backbone of encoders in RSIC studies.

As shown in Table 1, Qu et al. [1] tested the performance of
four different CNN backbones, AlexNet, VGG-16, VGG-19
and GoogLeNet, in extracting image features in the pro-
posed encoder-decoder based RSIC framework. According
to their experimental results, VGG and GoogLeNet outper-
formed AlexNet on the newly constructed UCM-captions and
Sydney-captions datasets, with the combination of VGG-19
and LSTM achieving the best overall performance.

Later, Lu et al. [3] introduced the attention mechanism
into the RSIC task and constructed a larger scaled dataset

called the remote sensing image captioning dataset (RSICD).
In addition to the CNN methods of AlexNet, VGG and
GoogLeNet, handcrafted features, including BOW, FV, vec-
tor of locally aggregated descriptors (VLADs) [36] and
scale-invariant feature transform (SIFT) [37], are tested for
extracting RSI features. Experimental results show that the
features extracted via all CNN methods significantly outper-
form the handcrafted features. In addition, almost all CNN
methods obtain similar results in the encoder-decoder-based
RSIC framework with the attention mechanism proposed
in [3].

In subsequent RSIC studies, some works compared the
performance of different CNN backbones in the experiments,
including AlexNet, VGG, GoogLeNet, CaffeNet, residual
neural network (ResNet), Inception and DenseNet. However,
the research focus of all these works is to propose improved
models rather than comparing different CNNs. In addition,
in some studies, VGG and ResNet are selected as the back-
bone for fair comparisons with other works.

In summary, CNN-based deep learning methods are sig-
nificantly better than handcrafted feature-based methods, and
selecting the most appropriate CNN backbone can improve
the overall performance of the RSIC models. On the other
hand, since almost all RSIC studies focus on proposing better
designed frameworks or models rather than comparing differ-
ent CNN backbones, recent studies tend to choose commonly
used backbones such as VGG and ResNet for a fair compar-
ison with other works.

2) MULTILEVEL FEATURES
When an image is fed into a CNN extractor, layers of differ-
ent depths extract features containing different information.
Figure 5 illustrates the information extracted from the layers
with different depths of a CNN encoder (taking VGG-16
as an example). The features extracted from the shallower
layers contain more spatial and detailed information of the
input image. The features extracted via the deeper layers con-
tain more global and high-level semantic information. In the
first encoder-decoder framework proposed by Qu et al. [1],
only the information extracted from the deeper fully con-
nected (FC) layers is utilized, while the information from
the shallower convolutional layers is not used. In contrast,
only the spatial information extracted from the shallower
convolutional layers is utilized in the later proposed attention
mechanism-based framework [3].

Zhang et al. [7] first combined the spatial information
extracted from shallower convolutional layers and the
high-level semantic information extracted from deeper FC or
softmax layers. The combined multilevel features are used
to train a novel attention model called the attribute atten-
tion mechanism (AAM). Compared with the conventional
attention mechanism [3], [72], which only utilizes the spatial
information extracted from shallower convolutional layers,
the AAM can provide a better attention mask for the decoder
to generate more appropriate captions.
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TABLE 1. Image feature extraction methods of each RSIC study. ‘‘conv’’ and ‘‘FC’’ represent features obtained from the shallower convolutional layers and
the deeper fully connected layers, respectively, and ‘‘conv+FC’’ represents both.

This combined utilization of multilayer features was
adopted by later RSIC studies. In [18], Wang et al. used
a ResNet101-based CNN encoder to extract multilevel fea-
tures from RSIs. Specifically, the convolutional features with
dimensions of 2048 × 49 before the pool5 layer are utilized
as spatial information. The features output from the pool5
layer with dimensions of 2048 × 1 are used as high-level
semantic features. Huang et al. [19] utilized multilevel fea-
tures from the 3rd, 4th and 5th max pooling layers of
the CNN encoder in the proposed denoising-based RSIC
framework.

In summary, the RSI features extracted from the shallower
convolutional layers contain more spatial and detailed infor-
mation. The features extracted from deeper FC layers contain
more global and high-level semantic information. Utilizing
both types of features in combination can improve the overall
RSIC performance.

3) OBTAIN INFORMATION VIA MULTITASK
In many RSIC studies, the task of CNN encoders is to receive
RSIs as input and output the image representations extracted
by the convolution of FC layers to other modules. This single-
task-based image feature extraction approach has limitations
in addressing the problem of diversity and scale variability of
ground objects in RSIs. In some studies, researchers designed
multitask-based methods to extract various types of infor-
mation from RSIs or to better train the parameters of CNN
encoders.

In [2], Shi et al. proposed an object detection and
template-based RSIC method. In the object detection phase,
three different tasks are designed to obtain different levels
of information, i.e., key-instance, environment-element and
landscape. The information obtained via multitask learning is
input to the language template for generating textural descrip-
tions for RSIs. Wang et al. [5] proposed a method named the
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FIGURE 5. Different types of image features are extracted from layers of different depths of the CNN extractor (VGG-16 is used as an
example).

intensive positioning network. An intensive positioning layer
is designed to extract coordinates, confidence scores and
features of valuable regions in RSIs. Zhao et al. [30] obtained
region proposals of RSIs via additional tasks and utilized
them to optimize the proposed RSIC model.

In some work, the classification information of the images
is obtained and fused with CNN features to improve the
overall performance of the model. Zhang et al. [12] designed
an additional multiclassification task to detect objects in
RSIs and generate corresponding labels in the form of word
vectors. The word vectors are fused with the feature vectors
extracted by the CNN encoder to train a better attentionmodel
named the label attention mechanism. Kumar et al. [13] col-
lected RSIs using UAVs and annotated a new RSIC dataset.
A region-driven method is proposed to obtain the classifica-
tion information via an additional image classification task.
The performance of the model is improved by combining
the region-driven information with the features extracted by
the CNN encoder. Wang et al. [26] designed a multi-label
classification module for extracting word information from
RSIs to optimize RSIC models.

Ma et al. [25] extracted features of different levels in an
RSI through two tasks. In the conventional feature extraction
task, RSIs are fed into a ResNet-50 network whose FC layer
is removed. The output feature vectors, which are spatially
adjacent, are utilized as scene-level features. Another object
detection task is used to extract the target-level features.
A VGG-16-based SSD-512 framework [47] is trained on
the DIOR dataset [56] for this auxiliary task. The obtained
target-level features are in the form of lists of vectors. Then,
both the scene and target-level features are fed into an LSTM
LM to further generate image captions.

Wang et al. [28] extracted three different types of image
features, namely, object, patch and global features, via a mul-
titask method. The object features are obtained by an object

detection model based on a Faster region-based convolutional
neural network (RCNN) [48], whose output is a list of regions
of interest (ROIs). The patch features are the features of the
expanded region around each ROI. The global features are
obtained from the FC layer of the CNN encoder. These three
different features are then fused and fed into the attention
model to generate the attention mask.

Shen et al. [16] designed an additional image reconstruc-
tion task to train a better CNN encoder. The parame-
ters of the CNN encoder are simultaneously fine-tuned on
RSIC datasets through the image captioning task and on a
large-scale RSI classification dataset NWPU-RESISC45 [60]
via the image reconstruction task. The network before the
last convolutional layer of the CNN encoder is connected
to a variational autoencoder (VAE) branch for the image
reconstruction task. Since the scale of the NWPU-RESISC45
dataset is much larger than that of the existing RSIC datasets,
the CNN encoder trained by the proposed multitask can solve
the overfitting problems caused by small datasets in the RSIC
task.

Huang et al. [19] optimized the RSI features extracted by
the CNN encoder by denoising tasks. The feature vectors
extracted by the convolutional layers of the CNN encoder
have H × W × C dimensions, where dimension C repre-
sents different channels and dimension H × W represents
different spatial locations of the RSI. Two different denoising
tasks, namely, spatial-wise and channel-wise, are designed.
Spatial denoising aims to denoise features at different spa-
tial locations in each channel, while channel-wise denoising
addresses features in different channels at each location.
Technically, the convolutional feature vectors are fed into
multilayer perceptrons consisting of FC layers and activation
functions for denoising.

In summary, obtaining and utilizing additional information
such as words, labels, and attributes from multiple tasks can
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FIGURE 6. Diagram of the attention mechanism.

improve the overall performance of RSIC models. In addi-
tion, better-quality RSI features can be obtained through
additional tasks, such as VAE training and denoising.

C. ATTENTION MECHANISMS
Lu et al. [3] first introduced the attention mechanism [72]
into the task of RSIC. As shown in Figure 6, the attention
mechanism acts as a middleware between the CNN encoder
and the LSTM decoder. At the t-th time step, the attention
module calculates a weight distribution α for each spatial
image region according to the features v obtained from the
CNN encoder and the previous output ht−1 of the LSTM
decoder:

α = σ (g(v, ht−1)) (13)

where g represents a multilayer perceptron network contain-
ing trainable parameters, and σ denotes a softmax layer. The
context vector ct is calculated by summing the product of
each spatial feature vi and the corresponding attention weight
αi:

ct =
L∑
i=1

αivi (14)

The LSTM decoder can then generate the next hidden state
ht according to c and the previous hidden state ht−1:

ht = LSTM (c, ht−1) (15)

The word selector module can then generate the word
wt for time step t according to ht . Intuitively, the attention
mechanism is consistent with human habits of describing
pictures. As we pronounce each word, we focus our attention
on a specific region on the image. The experimental results
demonstrate a significant performance improvement in the
encoder-decoder-based RSIC framework after the introduc-
tion of the attention mechanism.

A more efficient attention mechanism for RSIC named
attribute attention mechanism (AAM) was proposed by
Zhang et al. [7]. As shown in Figure 7, compared to [3], who
only used the spatial features (i.e., v in Eq.(13)) extracted
from shallower convolutional layers, the AAM additionally

utilizes high-level features vattr obtained from the FC layer or
softmax layer of the CNN encoder to calculate the attention
weight distribution α:

α = σ (g([vconv; vattr ], ht−1)) (16)

where [; ] denotes the concatenation operator and vconv and
vattr represent the spatial features obtained from the shallower
convolutional layers and the attribute features obtained from
the deeper FC or softmax layer. The theory behind the AAM
is that features extracted from the shallower convolutional
layers contain mainly detailed features of the image, while
features obtained from deeper layers contain more global
semantic features. The combined use of these two types of
features can effectively handle the ‘‘various scales of objects’’
problem in RSIs and obtain more accurate attention weights.

In addition to image features, the label attention mecha-
nism (LAM) method [12] utilizes the classification labels of
the RSI to calculate attention weights:

α = σ (g(wlab, vconv, ht−1)) (17)

where wlab is an embedded word label (e.g., ‘‘plane’’) for the
input RSI, and vconv represents the image features obtained
from the convolutional layers of the CNN encoder. A clas-
sifier is additionally trained to obtain the word label wlab.
Experimental results show that the LAMmethod outperforms
the AAM [7] and the vanilla attention mechanism [3] in the
task of RSIC. The rationale behind the experimental results
is that accurate label information can help calculate better
attention weights. The structure of the LAM is illustrated in
Figure 8.
Wu et al. [23] proposed amethod called the scene attention

mechanism (SAM) with a residual structure. As shown in
Figure 9, unlike the conventional attention mechanism [3],
SAM utilizes the hidden state of the current rather than
the previous time step for calculating the attention maps.
In addition, the output of SAM is not directly used to train
the LSTM decoder, which is different from other attention-
based methods. At each time step, the attention weights are
calculated as follows:

α = σ (g(v, [v; ht ])) (18)
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FIGURE 7. Diagram of the attribute attention mechanism.

FIGURE 8. Diagram of the label attention mechanism.

FIGURE 9. Diagram of the scene attention mechanism.

where v is the mean of the image features extracted by the
CNN encoder, and the concatenation of v and ht , i.e., [v; ht ]
is utilized as the ‘‘scene features’’. The residual structure of
the hidden states helps enhance the stability of SAM to obtain
better attention weights.

Li et al. [22] proposed a multilevel attention mechanism,
which has a more complex structure (as shown in Figure 10)
and a better performance. The final context vector zt fed into
the LSTM decoder at each time step is obtained by weighting
the visual and text context vectors vt and st :

zt = αvvt + αsst (19)

where αv and αs denote the weights for the visual and text
context vectors, respectively, and αv+αs = 1.When generat-

ing the next word, a larger αv makes the model attend more to
the spatial image features, while a larger αs makes the model
focus more on previously generated words. For example,
when generating the word ‘‘plane’’, more attention should be
given to the corresponding region in the image, while when
generating the word ‘‘by’’, more attention is given to the
previous generated word ‘‘near’’. The visual context vector vt
is obtained through the conventional attentionmechanism [3],
[72] (‘‘attention1’’ in Figure 10). The text context vector s is
calculated by the previously generated words:

αi =
exp(g1(

∑i
m=0 g2(cm, hm)))∑i

k=1 exp(g1(
∑k

m=0 g2(cm, hm)))
(20)
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FIGURE 10. Diagram of the multilevel attention mechanism.

s =
t∑
i=1

αici (21)

where αi denotes the attention weight (‘‘attention2’’ in Fig-
ure 10) for the memory cell ci at time step i, g1 and g2 are
multilayer perceptron networks, and cm and hm are the content
of cell memory and hidden state of the LSTM decoder at time
step m. The proposed multilevel attention structure not only
utilizes both image and text features (i.e., vt and st ) but also
takes into account whether generating the next word requires
more focus on the spatial image or the previous words.

In summary, there are two main ways to optimize the
attentionmechanism. One approach is to input richer valuable
information into the attention model. The earliest attention
model [3] (Equation 13) only accepts image features and
the previous hidden state as the inputs. Later approaches
additionally feed image features of different layers [7] (Equa-
tion 16), label information [12] (Equation 17), scene infor-
mation [23] (Equation 18), and combined image and text
information [22] (Equations 19-21) into attention models.
The second approach is to design attention models with
more ingenious structures, such as the residual structure in
Figure 9 and the multi-layer and multi-connected structure in
Figure 10. Both of them aim tomake the attention mechanism
generate a more accurate region map for each word.

D. LANGUAGE MODEL
In the task of RSIC, the function of the LM is to transform
the information obtained through other modules into readable
sentences. In the first RSIC study [1], RNN-like LMs, i.e.,
LMs based on RNN or its variant LSTM, were employed.
In each time step, an RNN-like LM can predict the next
word in the sentence based on the image features and the
previously generated words. In early RSIC studies [1], [3],
the performance of RNN and LSTM as the LM for the task
of RSIC were compared in experiments. Experimental results
show that LSTM is far superior to the RNN. In most of
the subsequent RSIC studies, LSTM was widely used as the
backbone of LMs.

Shen et al. [15], [16] designed RSIC frameworks with bet-
ter performance using a transformer instead of LSTM as the

FIGURE 11. Diagram of the transformer-based language model.

LM. Unlike the recursive structure of LSTM, the structure of
the transformer is a stack of many identical layers, as shown
in Figure 11. Each layer consists of three sublayers. The first
sublayer contains masked multihead attention, which keeps
the model from seeing the future information and generates
the current word based only on the previous information.
The second sublayer is the core of the model, which pro-
vides multihead attention without the masked mechanism,
correlating RSI features with textual information. The third
sublayer is a feed-forward FC network. The residual connec-
tions around each sublayer and the stack structure allow the
transformer decoder to capture various types of relationships
in the sequence data. In addition, thanks to the absence of a
time-dependent recursive structure, each sublayer in a trans-
formermodel can be trained in parallel, which greatly reduces
the training time compared to LSTM.
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In an early study [2] when the RSICD dataset [3] was
not published, Shi et al. trained a template-based LM on
an unpublished large-scale satellite dataset. Templates are
prestructured sentences containing blanks to be filled. The
blanks in the templates are generally scenes, ground objects,
attributes and relationships among objects in RSIs. In [2],
semantic information in RSIs is obtained via fully convo-
lutional network (FCN)-based [32] object detection tasks
and then transformed into words to fill in the blanks in the
templates. The advantage of a template-based LM is that the
structure of the sentence can be well defined and modified
for specific tasks. The limitation of template-based LMs is
that it cannot generate flexible and multivariate descriptions
for RISs and cannot obtain high ratings by automatic evalua-
tion metrics of RSIC. Therefore, after the three benchmark
datasets [1], [3] were widely known, there was no more
research focusing on template-based LMs.

In [6], a retrieval-based LM was designed. The CNN
representation of each RSI and the corresponding multiple
ground-truth captions are mapped into a common semantic
space, in which the distance of the image and text represen-
tation can be calculated. A Mahalanobis matrix is trained to
retrieve the sentences with the closest distance with an RSI
in the space. Compared with LSTM- and transformer-based
LMs, the captions obtained by the retrieval-based LM come
directly from the ground-truth annotations in the training
set, so there are no grammatical and syntactic errors. How-
ever, sentences generated by this method lack flexibility and
variety and even contain descriptions that do not match the
input image. Therefore, the model proposed in [6] achieved
significantly lower scores on the benchmark datasets than the
methods adopting LSTM- or transformer-based LMs.

Wang et al. [18] designed a recurrent memory network-
based RSIC framework along with a novel CNN-based LM.
Specifically, three different types of memory cells, namely,
image, topic and temporary cells, are employed to store the
information of the image, topic and previously generated
words. In each step, a 1-D convolution is operated along
with the dimension of the concatenation of the three types
of memory cells. The convolutional result is fed into a soft-
max layer to generate the next word, and the corresponding
temporary memory cell is updated using the newly generated
word. This convolution operation is repeated every step until
the end symbol is generated. Compared with the RNN, the
convolution operation in each step goes along the temporary
cells storing all the previously generated words, which solves
the information dilution problem.

In summary, although template- and retrieval-based LMs
have some advantages in terms of task-specific and grammat-
ical correctness, these two types of methods cannot generate
flexible and variable sentences and cannot achieve high per-
formance on benchmark datasets. Therefore, these two types
of LMs have attracted little attention in recent studies. LSTM-
based LMs are utilized in most studies. This kind of LM can
dig deeper into the dependencies between text sequences and

generate flexible and versatile or even new sentence struc-
tures corresponding to the input RSIs. Transformer-based
LMs that adopt a stack structure without recursive connec-
tions outperform the conventional LSTM model in terms of
both performance and training time consumption. In future
RSIC research, more optimized transformer-based LMs are
expected to be proposed to outperform RNN-like models
across the board. In addition, well-designed CNN-based LMs
are expected to be proposed and utilized in specific scenarios
and tasks of RSIC.

E. ACTIVE ATTENTION
The concept of ‘‘active attention’’, which was first proposed
in the work of the sound active attention framework [8], refers
to the generation of words guided by extra information other
than images during the process of RSIC. The opposite of
‘‘active attention’’ is ‘‘passive attention’’, which refers to the
generation of text descriptions that focus only on the image
itself. In [8], sound information is utilized as an additional
input to guide the generation of RSI captions. The image
features are extracted by VGG16, and the extra sound infor-
mation is encoded by the mel-frequency cepstral coefficients
algorithm. The processed image and sound representations
are sent into the model to generate RSI descriptions word by
word. In this way, the caption generating process is guided by
sound. That is, inputting different soundswith the same image
into the trained model will obtain different descriptions. For
example, when the sound ‘‘trees’’ are inputted, a description
focusing on trees will be generated.While inputting the sound
‘‘factory’’ will obtain captions concentrating on factories.
Since different observers usually describe the same RSI with
different attention and people tend to speak out their concerns
in voice in practical applications, this interesting sound-based
research is expected to inspire many valuable real-time appli-
cations.

Another active attention-related RSIC method is proposed
in the retrieval topic recurrent memory network (RTRMN)
framework [18]. Topic information is used as an additional
input to guide the generation of captions. During training, two
kinds of topic information, namely, semantic and statistical
topics, are extracted from the corresponding ground-truth
annotations of the RSIs. The semantic topics are nouns, adjec-
tives and verbs, while the statistical topics are words with
high term frequency inverse document frequency (TF-IDF)
[79] scores. In the test time, the topic information sent into
the model can be either obtained from the annotated sen-
tences of the most similar images in the training set via a
retrieval-based method or manually controlled to guide the
generation of the descriptions.

In summary, the training and inference of active
attention-based models require additional data, such as sound
or topic information. Along this direction, more interesting
and valuable RSIC studies for practical applications are
expected to be proposed.
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F. AUXILIARY COMPONENT
Yuan et al. [11] designed an attribute relation encoding mod-
ule that can be integrated into any encoder-decoder RSIC
framework. The module receives an RSI as input and gen-
erates the attribute words (i.e., nouns and adjectives) via
a ResNet-18-based multilabel classification network. The
generated attributes are then fed into a GCN [73]-based
relation learning module. Attribute words and their rela-
tionships are represented as the nodes and edges in the
graph. An adjacency matrix with conditional probabil-
ity is trained to learn the co-occurrence between differ-
ent attribute words. The relationship information is then
fed into the LM to improve the quality of the generated
captions.

Fu et al. [21] proposed an external storage structure called
the persistent memory mechanism (PMM), which can be
integrated into any RNN-like RSIC decoder. The core part
of PMM is a storage memory implemented in the form of
matrices. In each time step, the proposed PMM module per-
forms search and update operations on its storage memory
according to the previous output of the RNN-like decoder and
the input RSI. The search result is input into the LM to gen-
erate the next word. The update operation makes the storage
memory provide valid information for later generation. The
experimental results show that the proposed PMM module
can be integrated into any RNN-based LM and improve the
overall performance.

Sumbul et al. [24] proposed a framework called
summarization-driven RSIC. This framework contains a con-
ventional encoder-decoder module, a summarization module
and a fusion module. The latter two modules are auxiliary
components that can be embedded into any encoder-decoder-
based RSIC framework. The encoder generates multiple sin-
gle sentences for the input images based on the beam search
algorithm. The summarization module is a pointer genera-
tion network [81] pretrained on the Gigaword dataset [55].
This module can merge multiple sentences into a single
summarization sentence. The merged summarization sen-
tence retrains the semantics of multiple single sentences
and removes redundant information. The fusion module is
implemented based on an LSTM network, which calculates
the probability distribution for all words in the vocabulary
based on the input image, the multiple single captions and
the summarization sentence in each time step. The word with
the highest probability is selected as the next word in the final
output sentence. Experimental results show that the proposed
external modules can not only improve the performance of
traditional encoder-decoder frameworks but can also generate
valuable new words for describing RSIs, i.e., words that
are contained in the Gigawords corpus but not in the RSIC
training sets.

In summary, auxiliary components are proposed to provide
a flexible refinement for the traditional encoder-decoder and
attention mechanism-based RSIC frameworks. The contri-
butions of this type of research can be easily borrowed and
utilized by other studies.

G. TRAINING STRATEGY
The training strategy refers to the strategy used for adjust-
ing the parameters of RSIC models according to the differ-
ence between the generated captions and the ground-truth
annotated sentences during training. Cross entropy (CE) is
employed as the training strategy inmost RSIC studies, where
the generation of each word is treated as a multiclassification
task. The probability distribution of each word in the vocab-
ulary is calculated in every time step, and the object of the
training is to minimize the loss value L:

L = −
N∑
i=1

y(i) ∗ logŷ(i) (22)

where y(i) and ŷ(i) represent the generated and ground-truth
probability of the i-th word in the vocabulary, and N is
the total number of words in the vocabulary. Intuitively,
CE forces the model to generate the target word with a
probability of 1 at each time step.

Li et al. [17] pointed out that the importance of the tar-
get word is overemphasized by CE, resulting in some valu-
able words, such as synonyms, being excluded as non-target
words. Such an optimization method would lead to overfit-
ting, especially in small datasets. In [17], a new loss func-
tion called truncation cross entropy (TCE) was proposed
for RSIC. A truncation threshold is designed to reserve a
margin for the non-target words to prevent overoptimiza-
tion of the target words. When the probability of the output
word exceeds the threshold, CE optimization is not used.
In each time step, the loss value is calculated by the following
equation:

LTCE =
{
−y(st )t ∗ logŷ

(st )
t , if y(st )t < 1− γ

−log(1− γ ), otherwise
(23)

where γ denotes the value of the truncation threshold and y(st )t
and ŷ(st )t represent the generated and ground-truth probability
of the target word st at time step t , respectively. Experiments
on benchmark RSIC datasets demonstrate the efficiency of
the proposed TCE optimization scheme.

In the CE-based training strategy, loss values are calcu-
lated based on the difference between the generated and
ground-truth sentences. For models with attention mecha-
nisms, CE-based optimization cannot help align the attention
regions and the corresponding texts. To solve this prob-
lem, Zhang et al. [9] proposed a new loss function called
visual aligning loss for directly optimizing the attention
mechanisms during each training epoch. Visual aligning loss
is calculated based on the similarity between the attended
image region and the corresponding visual word. Concretely,
a vocabulary containing visual words is constructed by
excluding nonvisual words in the RSIC datasets. Image fea-
tures extracted by CNNs and embeddings of visual words in
the vocabulary are mapped into a common vector space via
two separate multilayer perceptrons. In the common space,
the similarity of an image feature vector v and the embedding
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x of a visual word can be calculated via cosine similarity:

simeqnarray(v, x) = cos(v, x) (24)

When a sentence is generated, the visual aligning loss
Leqnarray for optimizing the attention mechanisms can be
calculated by the similarity of each visual word xi in the
sentence and the corresponding feature vi of the attended
region:

Leqnarray =
{
1− 1

N

∑N
i=1 simeqnarray(vi, xi), if N > 0

0, otherwise
(25)

whereN is the number of all visual words that appeared in the
generated sentence. The overall loss L in each training epoch
is obtained by weighting the newly proposed visual aligning
lossLeqnarray and the CE lossLCE between the generated and
ground-truth captions:

L = LCE + λLeqnarray (26)

where λ is the trade-off parameter. Experimental results on
Sydney-captions andUCM-captions datasets shows the effec-
tiveness of the proposed visual aligning loss.

Although CE is effective and easy to implement, this
teacher-forcing training strategy has an exposure bias issue.
That is, the optimization goals during training are not con-
sistent with the evaluation metrics in test time. To address
this issue, Shen et al. [15] and Yang et al. [29] utilized the
reinforcement algorithm-based self-critical sequence train-
ing [76]method to train RSICmodels. In reinforcement learn-
ing terminology, the RSIC model is viewed as an ‘‘agent’’,
and the RSI features and words are viewed as the ‘‘envi-
ronment’’. During the interaction between the ‘‘agent’’ and
‘‘environment’’, the ‘‘policy’’ pθ defined by the parameters
θ of the generator makes an ‘‘action’’ that predicts the next
word. When a complete sentence is generated, the agent
receives a reward r , which is a score of an evaluation met-
ric such as the consensus-based image description evalua-
tion (CIDEr) calculated using the generated sentence and the
ground-truth sentence. The goal of training is to minimize the
negative expected reward:

L(θ ) = −Ews∼pθ [r(w
s)] (27)

where ws = (ws1, . . . ,w
s
T ) and w

s
t is the word sampled from

the generator at time step t . A reinforcement algorithm with a
baseline [76] is utilized to compute the gradient of loss for r .
The reward obtained by the current model under the inference
algorithm used at test time is utilized as the baseline for ‘‘self-
critical’’. This approach optimizes the model directly with the
test-time evaluation metrics, thus solving the exposure bias
problem of CE.

Chavhan et al. [14] proposed an improved training strat-
egy based on actor-critic reinforcement learning [75] for
RSIC. In addition to the LSTM-based critic in [75], a sec-
ond encoder-decoder critic is added. The newly added critic
translated the generated captions back into an RSI and reward
the actor by calculating the similarity of the back-translated

RSI with the input RSI. Experimental results show that the
proposed actor- and dual-critics-based reinforcement learn-
ing approach achieved better performance compared with
the state-of-the-art RSIC methods and the actor-critic-based
reinforcement learning approach in [75].

In general, most RSIC studies utilize a CE-based training
strategy, which is effective and easy to implement. However,
CE-based methods are prone to overfitting and exposure bias
problems. There are two routes in the literature to solve the
above problems. One is to propose a modified loss function
based on CE, and the other is to adopt reinforcement learning-
based approaches.

V. DATASETS AND EVALUATION METRICS
A. DATASETS FOR RISC
Datasets play a critical role in RSIC studies. To spawn better
models and ideas, a good RSIC dataset should contain a large
amount and a reasonable distribution of RSIs covering a rich
variety of remote sensing scenes and ground objects, as well
as well-annotated sentences corresponding to each image.
In this section, we discuss in detail the characteristics and pros
and cons of the existing RSIC datasets in the literature.

1) UCM-CAPTIONS
Qu et al. [1] annotated the UCM-captions dataset on the basis
of the UCMLand Use Dataset [50]. The images in the dataset
were manually extracted from the large images in the USGS
National Map Urban Areas Imagery collection for various
urban areas around the country. There are 21 different types
of scenes included in the dataset, specifically containing:
agricultural, airplane, baseball diamond, beach, buildings,
chaparral, dense residential, forest, freeway, golf course,
harbor, intersection, medium residential, mobile home park,
overpass, parkinglot, river, runway, sparse residential, storage
tanks, and tennis court. The whole dataset contains a total of
2100 images and 100 images for each scene. Some represen-
tative images are shown in Figure 12.
Each image is annotated with five different sentences.

The final dataset contained 10,500 annotated sentences with
a vocabulary of 368 words. Compared to Sydney-captions,
another RSIC dataset created in [1], the annotated sen-
tences in UCM-captions are relatively simple and somewhat
monotonous in sentence patterns. Figure 13 shows an exam-
ple image with the five annotated sentences from this dataset.

2) SYDNEY-CAPTIONS
The Sydney-captions dataset, which was annotated on the
basis of the Sydney dataset [49], is another RSIC dataset
published in [1] along with UCM-captions. The dataset con-
tains a total of 613 land-use images cropped from a very large
satellite image of Sydney, Australia, acquired from Google
Earth. Seven different scenes are included, i.e., residential,
airport, meadow, rivers, ocean, industrial, runway. Figure 14
shows some representative images in the Sydney-captions
dataset.
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FIGURE 12. Sample images in the UCM-captions dataset: (a) farmland, (b) airport, (c) beach, (d) buildings,
(e) chaparral, (f) dense residential, (g) forest, (h) freeway, (i) golf course (j) harbor, (k) parking lot, and (l) river.

FIGURE 13. An example image with annotated sentences in the UCM-captions dataset.

Each image was annotated with five different sentences,
and the number of words in the vocabulary was 237. Fig-
ure 15 shows an example image along with the annotated
five sentences. As shown in the figure, the description sen-
tences in this dataset have a larger average length and a more
appropriate and richer vocabulary compared with the UCM-
captions dataset.

However, there are two obvious drawbacks of this dataset.
First, the distribution of images in each category of a scene is
severely unbalanced. As shown in Table 2, the scene with the
highest number of images, residential, contains 242 images,
while the lowest, airport, contains only 22 images. Second,
the size of the dataset is small, containing only 613 images.

Training RSIC models on such a small and unbalanced
dataset is likely to lead to overfitting problems.

3) RSICD
The RSICD dataset was published in 2017 by Lu et al. [3]
and is the largest publicly available RSIC dataset to date.
A total of 10,921 RSIs covering 30 scenes collected
from GoogleEarth, BaiduMaps, MapABC, and Tianditu
were included in this dataset. Images belonging to dif-
ferent scenes have good differentiation in terms of con-
tent and features. Some representative images in RSICD
are shown in Figure 16. The numbers of images in dif-
ferent scenes are relatively evenly distributed, and each
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FIGURE 14. Sample images in the Sydney-Captions dataset: (a) residential, (b) airport, (c) meadow, (d) river,
(e) ocean, (f) industrial, and (g) runway.

FIGURE 15. An example image with annotated sentences in the Sydney-Captions dataset.

TABLE 2. Number of images of each type of scene in the Sydney-Captions
dataset.

category of scene contains more than 200 images. The spe-
cific number of images for each type of scene is shown in
Table 3.

During annotation, in addition to the instructions referring
to the work of constructing NIC datasets [51]–[53], a set
of RSI-specific instructions was proposed to guarantee the
quality of the annotated sentences. These instructions include
the following: not to use directional words (unlike photos
of natural images that have a fixed direction of observation,
RSIs with a ‘‘God’s view’’ does not have a fixed direction),

not to use vague concepts such as large, tall (the size of
objects in RSI is variable), and so on. The annotated dataset
contains 10,921 images and 24,333 different sentences with
a vocabulary of 3323 words.

A drawback of the RSICD is that not every image
was annotated with the same number of sentences. Only
724 images were annotated with 5 different sentences, while
the remainder of the images were annotated with 1-4 sen-
tences. Lu et al. expanded the number of annotated sentences
to 54605 (5 for each image) by randomly copying the existing
sentences when there were not five. Figure 17 shows an
image that was annotated with five different sentences, and
Figure 18 shows an image that was annotated with only one
sentence The number of annotated sentences was expanded
to five by duplicating the existing sentence. Table 4 shows
the number of images annotated with different numbers of
sentences. In addition, there are some errors in the annotated
sentences. For example, the word ‘‘separated’’ is misspelled
as ‘‘seperated’’ in the first sentence in Figure 17. Although
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FIGURE 16. Sample images in the RSICD dataset: (a) beach, (b) airport, (c) bareland, (d) baseball field, (e) bridge,
(f) commercial area, (g) dense residential, (h) desert, (i) farmland, (j) industrial, (k) mountain, and (l) parking.

TABLE 3. Number of images of each type of scene in RSICD dataset.

TABLE 4. Number of images with different numbers of sentences
annotated.

humans can easily correct such spelling errors when reading,
there are two completely different words to the computer.

4) OTHERS
In [2], Shi et al. trained a target detection and template-based
RSIC model using images acquired from Google Earth

and GaoFen-2 satellites without textual annotations. The
dataset contains 330 RSIs with a very large size of
1000-8000 pixels and 200 images of 480 × 640 pixels.
Although the well-designed multilevel object detection task
and the template-based language generator in [2] are able
to generate detailed and appropriate text descriptions, this
dataset cannot be used to incubate RSIC methods other than
template-based models due to the absence of textual annota-
tions as ground truth.

An RSIC dataset consisting of images captured by UAVs
was annotated by Kumar et al. [13]. The images in this
dataset involved 12 scenes, i.e., barren lands, farmlands,
forests, gardens, highways, playgrounds, residential areas,
roads, runways, solar panels, water bodies, and temples.
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The annotated dataset contains 1285 UAV images of 400 ×
400 pixels, each annotated with 5 ground-truth sentences,
with a vocabulary of 940 words. In addition, Zhang et al. [4]
annotated 2000 sentences for the RSIs in UCM [50] and
trained an encoder-decoder-based RSIC model. However,
these two datasets are not publicly available.

B. EVALUATION METRICS FOR RSIC
In RSIC studies, many evaluation metrics are utilized to
measure the quality of the descriptive sentences generated
by the models. In the following subsections, we discuss the
evaluation metrics commonly used in RSIC research.

1) BLEU
The biLingual evaluation understudy (BLEU) [61] was orig-
inally designed to evaluate the performance of machine
translation models and is now also widely used in sequence
generation tasks, including image captioning. The core idea
of BLEU is to calculate the co-occurrences of the consecutive
words (i.e., n-grams) between the candidate sentence and
the reference sentence. To address the problem that shorter
sentences are more likely to achieve higher scores, the brevity
penalty (BP) is introduced to penalize candidate sentences
that are shorter than the reference sentence:

BP =

{
1, if c > r
e(1−r/c), if c ≤ r

(28)

where r and c represent the number of words in the reference
and candidate sentences, respectively. The BLEU score can
then be calculated by the following equation:

BLEU = BP · exp(
N∑
n=1

wnlogpn) (29)

where N represents the number of consecutive words, pn is
the modified n-gram precision, and wn represents the weight
for each modified n-gram precision. The result of the calcu-
lation of N = n in the above equation is usually expressed as
BLEU-n, where in practice n is usually taken as one of 1-4.
Because of its effectiveness and easy implementation, BLEU
is widely used for evaluating models in RSIC studies.

2) METEOR
METEOR [62] stands for metric for evaluation of translation
with explicit ordering. This sequence generation evaluation
criterion was designed to address some of the problems found
in the more popular BLEU metric. Unlike BLEU, which
seeks correlation at the corpus level, METEOR produces
good correlation with human judgement at the sentence or
segment level. The main idea of METEOR is to compute an
alignment, i.e., a set of mappings between unigrams, in the
generated sentence and the ground-truth sentence. Once the
final alignment is computed, the unigram precision P and
recall R are calculated as:

P =
m
wc

(30)

R =
m
wr

(31)

where m is the number of unigrams in the candidate sentence
that are also found in the reference sentence and wc and wr
are the number of unigrams in the candidate and reference
sentences, respectively. Then, the harmonic mean Fmean is
calculated to combine the precision and recall:

Fmean =
10PR
R+ 9P

(32)

with recall weighted 9 times more than precision. The above
calculations consider only the congruity with respect to single
words rather than larger segments that appear in both the
reference and the candidate sentence. A penalty p is designed
to address this issue:

p = 0.5
(
c
um

)3

(33)

where um is the number of unigrams that have been mapped
and c is the number of chunks, where a chunk is defined
as a set of unigrams that are adjacent in the candidate and
reference sentences. The final resultM is calculated as:

M = Fmean(1− p) (34)

3) ROUGE-L
The design of recall-oriented understudy for gisting evalua-
tion (ROUGE [63]) is inspired by BLEU, with the difference
that recall rather than precision is utilized as the main criteria.
ROUGE is a metric set containing ROUGE-N, ROUGE-
L, ROUGE-W, and ROUGE-S. Among them, ROUGE-L,
whichmeasures the longest common subsequence (LCS) [82]
between the candidate and reference sentences, is widely used
in RSIC studies. LCS(Sr , Sc) is denoted as the length of the
LCS of the reference sentence Sr and the candidate sentence
Sc. The recall Rlcs and precision Plcs are calculated as:

Rlcs =
LCS(Sr , Sc)
len(Sr )

(35)

Plcs =
LCS(Sr , Sc)
len(Sc)

(36)

where len(S) is the length of sentence S. The ROUGE-L score
RL can be calculated as:

RL =
(1+ β2)RlcsPlcs
Rlcs + β2Plcs

(37)

In practice, β is often set to a very large number; therefore,
only Rlcs is taken into account.

4) CIDEr
Consensus-based image description evaluation (CIDEr [64])
is an evaluation metric specifically designed for image cap-
tioning tasks. ‘‘Consensus-based’’ means that n-grams in
all multiple ground-truth sentences of an image are taken
into account when evaluating a candidate sentence. More-
over, n-grams that appear frequently in all images should
be given lower weights since they usually do not contain
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FIGURE 17. An example image in the RSICD dataset annotated with five different sentences.

FIGURE 18. An example image in the RSICD dataset annotated with only one sentence. The number of annotated
sentences is expanded to five by duplicating the existing sentence.

valuable information. Based on the above considerations, a
TF-IDF [66] weighting gk (sij) for each n-gramwk is designed
as follows:

gk (sij) =
hk (sij)∑
wl∈� hl(sij)

log

(
|I |∑

Ip∈I min(1,
∑

q hk (spq))

)
(38)

where hk (sij) denotes the number of times an n-gram wk
occurs in a reference sentence sij, � is the vocabulary of
all n-grams, and I is the set of all images in the dataset.
The TF of each n-gram wk is measured in the first term,
while the second term measures the rarity of wk using the
IDF. The introduction of gk ensures that high-frequency n-
grams occurring in the ground-truth sentences are given high
weights by the TF, while the IDF reduces the weights of those
n-grams that occur frequently across all images. Then, the
score for n-grams of length n is obtained by calculating the
average cosine similarity between the candidate sentence ci
and the reference sentences sij:

CIDErn(ci, Si) =
1
m

∑
j

gn(ci) · gn(sij)
‖ gn(ci) ‖‖ gn(sij) ‖

(39)

where gn(·) represents a TF-IDF vector calculated by Equa-
tion (38) corresponding to all n-grams of length n and the
‖ · ‖ operation calculates the magnitude of a vector. The
final CIDEr score is the combination of n-grams with various
lengths:

CIDEr(ci, Si) =
N∑
n=1

wnCIDErn(ci, Si) (40)

where wn is the weight for the CIDErn score and is usually
set to 1/N . In practice, N is commonly set to 4.

5) SPICE
Semantic propositional image caption evaluation (SPICE [65])
is a graph-based evaluationmetric for image captioning tasks.
Different from the abovementioned n-gram matching-based
metrics, SPICE transforms each caption c into a scene graph:

G(c) =< O(c),E(c),K (c) > (41)

whereO(c) is a set of objects that appear in the image, E(c) is
the set of hyperedges representing relations between objects,
and K (c) is the set of attributes associated with objects. The
function T is designed to transform a scene graph into logical
tuples:

T (G(c)) , O(c) ∪ E(c) ∪ K (c). (42)

Each tuple contains 1-3 elements representing objects,
attributes and relations. Then, the precision P, recall R and
the final SPICE score are calculated as:

P(c, S) =
|T (G(c))⊗ T (G(S))|

|T (G(c))|
(43)

R(c, S) =
|T (G(c))⊗ T (G(S))|

|T (G(S))|
(44)

SPICE(c, S) = F1(c, S) =
2 · P(c, S) · R(c, S)
P(c, S)+ R(c, S)

(45)

where the binary matching operator ⊗ returns matching
tuples in two scene graphs.

154104 VOLUME 9, 2021



B. Zhao: Systematic Survey of Remote Sensing Image Captioning

6) HUMAN RATING
In early RSIC studies, due to the lack of large-scale annotated
datasets, the human-ratingmethodwas utilized to evaluate the
performance of models. For example, in [2], 10 human raters
were asked to give one of four grades, i.e., ‘‘without errors’’,
‘‘with minor errors’’, ‘‘related to the image’’, and ‘‘unrelated
to the image’’, to each caption generated by the model. Since
the goal of the RSIC task is to generate human-readable
descriptions for RSIs, the evaluations given by humans may
be more valuable in some scenarios than automated evalu-
ation metrics such as BLEU, METEOR, ROUGE, CIDEr,
or SPICE. However, human evaluation is prone to subjec-
tivity and cannot be carried out on a large scale because it
is time- and labor-intensive. Therefore, after the large-scale
benchmark datasets were published, researchers tended to use
automated evaluation metrics rather than human ratings to
verify the performance of their RSIC models.

VI. COMPARISON OF STATE-OF-THE-ART METHODS
A. EXPERIMENTAL RESULTS
A brief comparison and analysis of the state-of-the-art meth-
ods in the RSIC literature is presented in this section. The
specific experimental results of each method on the three
benchmark datasets are shown in Table 5. The highest scores
for each evaluation metric are shown in bold font.

The first RSIC method proposed by Qu et al., named
multimodal [1], is based on a vanilla CNN encoder and LSTM
decoder architecture. Subsequently, Lu et al. [3] introduced
the attention mechanism into the RSIC and achieved sig-
nificantly better performance than the multimodal method.
Afterwards, a number of RSIC methods [7], [9], [12], [22],
[23], [30] focusing on optimizing the attention mechanism
were proposed (see Section IV-C for details). Among them,
multi-level AM [22] and structured AM [30] performed best.
The experimental results show that the performance of the
RSIC model can be effectively improved by introducing and
optimizing AM.

In some solutions [19], [25], [26], [28], modules that can
extract richer information (e.g., words, object features, region
proposals, and classification labels) from RSIs are designed.
As shown in Table 5, the valuable information extracted from
RSI makes these methods perform better compared to the
baseline methods [1], [3].

Compared to the other methods in Table 5 that adopt
the generation based methods, the retrieval-based collec-
tive semantic metric learning framework (CSMLF) [6]
achieved theworst score in the experiment. This demonstrates
that although retrieval-based methods are valuable in some
aspects, such as no grammatical errors in the output sen-
tences, and can be utilized by downstream tasks such as bidi-
rectional text-image retrieval, their performance measured by
automatic evaluation metrics on benchmark datasets is far
inferior to that of generation based methods.

Auxiliary components that can be integrated into any
encoder-decoder RSIC framework are proposed in the studies

of the PMM [21] and GCN [11] and significantly improve the
overall performance of vanilla encoder-decoder [1] and atten-
tion [3] based methods. In addition, although the sound-a [8]
method did not achieve particularly high scores in the exper-
iment, the proposed ‘‘active attention’’ concept, i.e., guiding
the generation of captions by additional sound information,
has valuable practical applications and can be applied to other
RSIC studies. The contributions of methods such as the three
abovementioned methods [8], [11], [21] are not limited to
their experimental results, but provide valuable modules or
ideas that can be utilized by all other RSIC studies.

In terms of the training strategy and LM, the TCE [17]
method significantly improves the encoder-decoder-based
RSIC model by setting a truncation threshold for the cal-
culation of CE loss. Notably, in the experiment of [17],
TCE optimization is only applied to the vanilla CNN-
LSTM framework, and it is highly expected that TCE can
be combined with other RSIC methods to achieve bet-
ter experimental results. In Actor-Dual-Critics (ADC) [14],
Transformer+self-critical sequence training (SCST) [15], and
the variational autoencoder and reinforcement learning-based
two-stage multitask learning model (VRTMM) [16], rein-
forcement learning is introduced into RSIC, and a transformer
is utilized as the LM instead of LSTM in [15], [16]. These
proposals substantially enhance the overall performance of
the RSIC models. According to the results of various evalua-
tion metrics, the VRTMM [16] achieves the best performance
in the experiment because of its combined use of reinforce-
ment learning, transformer and multitask-based training of
the CNN encoder.

Notably, we used the scores from the original papers of
each study directly in Table 5. Therefore, the scores of
multimodal methods on the RSICD dataset and the scores
of VRTMM on UCM-captions and Sydney-captions are not
contained in the table. In addition, some methods in the table
could be expected to achieve better evaluation scores in a
more optimized experimental setting than the original papers.
Moreover, some valuable methods [2], [4], [5], [10], [13],
[20], [27], [29] are not included in the table due to their lack
of experimental results on the three benchmark datasets.

B. ADVANTAGES, DRAWBACKS AND APPLICATION
SCENARIOS
Table 6 shows the advantages, drawbacks and application
scenarios of different types of RSIC methods.

In the field of image captioning [89]–[92], template-
based and retrieval-based approaches offer irreplaceable
advantages. Manually defined sentence structures or directly
retrieving methods make grammatical or lexical errors rare
for the generated descriptions. In some tasks with explicit
requirements for sentence format and content, well-designed
templates can be used to generate super-compliant descrip-
tions for RSIs. However, these two types of approaches are
rarely found in the RSIC literature due to the inability to
generate flexible and variable sentences and the lack of ability
to learn lexical sequence features from large corpora. The
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TABLE 5. Experimental results of the state-of-the-art methods. B1–B4 denote BLEU1–BLEU4 and M, R, C, and S represent METEOR, ROUGE-L, CIDEr, and
SPICE respectively.

relevant studies [2], [6] reviewed in this article are detailed
in Section IV-D.

Most of the existing RSIC studies (all but [2] and [6]) have
adopted the Encoder-Decoder based architecture because
they can benefit from deep learning techniques and large-
scale datasets. Well-designed encoders and decoders are able
to learn and extract features from RSIs and text descrip-
tions to generate new sentences with variable syntax. The
drawback of this type of method compared to template-
and retrieval-based approaches is the possibility of syntactic
or lexical errors occurring in the generated sentences. See

Section IV-A for a discussion of the Encoder-Decoder based
architecture, Section IV-B for a discussion of the extraction
of RSI features by different encoders, and Section IV-D for
a discussion of the design of different structured LMs as
decoders.

Optimizing AM for RSIC models [3], [7], [12], [22],
[23], [30] provides an improved alignment of each word
or phrase in the generated sentences with the features in
RSIs. Training AM-based models requires well annotated
sentences and large-scale datasets to enable the model to
learn enough alignment relationships between RSI features
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TABLE 6. Comparison of the advantages, drawbacks, and applicable scenarios of the existing RSIC methods.

and text; otherwise, it may counterproductively learn invalid
matches. Improving the structure of AM modules or feeding
them with more valuable information can lead to enhanced
model performance, as discussed in Section IV-C.

Compared to the solutions of the traditional CE-based
training strategy, although requiring greater computational
and training overhead, the reinforcement learning-based
RSIC solutions [14], [15], [29] can directly optimize the
parameters of the models with the metrics (e.g., CIDEr and
others) used at the test time. Proper use of this training
strategy allows for the targeted optimization of RSIC models
to generate better sentences. See Section IV-G for a detailed
discussion.

Although additional data such as voice and topic words, are
required for training RSIC models with active attention [8],
[18], the trained models can be adjusted by voice, keywords,
etc. to guide the generation of captions. This feature supports
interesting and valuable applications in real-world scenarios,
such as generating targeted descriptions for captured RSIs

through speech guidance during military or reconnaissance
missions. A detailed discussion can be found in Section IV-E.
The auxiliary component-based approaches [11], [21], [24]

aim to achieve specific optimization by designing modules
that can be flexibly integrated into generic encoder-decoder-
based RSIC models. With additional time or space com-
plexity, such methods can provide special optimizations or
additional functionality. See Section IV-F for details.

VII. DISCUSSION AND FUTURE RESEARCH DIRECTIONS
A. RSIC METHODS
Except for a few studies that have adopted template
or retrieval-based methods, the majority of RSIC studies
have adopted generation methods with an encoder-decoder
architecture. This is because encoder-decoder methods
can automatically and jointly learn image and text fea-
tures in large-scale datasets to generate more variable
and flexible sentences. The introduction of an attention
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mechanism greatly enhances the encoder-decoder-based
RSIC approaches, as it allows the models to focus on
key regions in the image when generating specific words.
Some studies in the literature have focused on improving
the structure of the attention mechanisms by utilizing more
information from RSIs and context and have achieved better
results.

From the aspect of image feature extraction, researchers
have focused on extracting multilevel features from the layers
of CNN encoders with different depths, and obtained richer
image information through multitask approaches. These
methods are well suited to meet the challenge of variable
object sizes in RSIs. Moreover, since comparing different
CNNs is not the focus of research, VGG and ResNet are often
selected as the backbone of RSI encoders in many studies for
a fair comparison with other works.

LSTM has been employed as the LM in most RSIC studies
due to its ability to effectively learn sequence relations in a
large-scale corpus and to solve the vanishing and exploding
gradient problem of traditional RNN models. In some recent
studies, transformers have been chosen as an alternative and
outperformed LSTM in both training time and performance.
This new kind of LM can be expected to achieve better results
in more RSIC studies in the future. In addition, CNN-based
LMs can be utilized in combination with specific frameworks
to achieve good applications. Template- and retrieval-based
approaches, although generating less flexible and various
captions, can still be expected to play important roles in
some scenarios, such as generating formatted descriptions for
specific tasks.

The conventional CE-based training strategy treats RSIC
model training as a multiclassification task. The probability
of the target word at each time step is forced to be 1. Valuable
non-target words such as synonyms are excluded, which leads
to overfitting problems. In addition, the evaluation metrics at
test time are not directly applied during training. Improving
the training strategy by modified CE loss calculation and
the reinforcement learning-based method effectively solves
these problems. In addition, auxiliary components that can be
integrated into any encoder-decoder-based model and ideas
with potential applications such as active attention for guid-
ing the process of caption generation with extra informa-
tion are proposed, which contribute positively to the field
of RSIC.

Although many excellent studies have been proposed in
the literature of RSIC, there are still issues that need to be
addressed in the future. Existing supervised learning-based
approaches rely too much on the scale of datasets and the
quality of annotations. Methods that can leverage exter-
nal knowledge and unsupervised approaches deserve to be
explored. In addition, borrowing and introducing successful
methods from the field of NIC can benefit RSIC research.
However, some methods proposed in existing RSIC studies
can be applied to both RSIC datasets and NIC datasets.
The image characteristics and task characteristics of RSIC
need further consideration. In future work, it would be more

worthwhile to propose exclusively improved RSIC methods
for the unique characteristics of RSIC data and tasks.

B. DATASETS
The images in the existing publicly available RSIC datasets
are taken by satellites from high altitude, where the content
distribution and coverage are as described in Section V-A.

From the perspective of images, all RSIs in the existing
publicly available benchmark datasets are taken by satellites
from super high altitude, and all contents are artificially
constructed or natural surface objects. In recent years, the
technology of high-altitude photography by UAVs is becom-
ing increasingly mature, and images taken by UAVs from
high altitude, which cover daily scenes such as traffic, rallies,
disasters, and area patrol reconnaissance, can be applied to
specific RSIC applications such as rescue and investigation.
However, no large-scale well-labeled dataset of everyday
scenes captured by UAVs is publicly available in the existing
RSIC literature. This gap can be expected to be filled in future
research.

For text annotation, the ground-truth captions in the exist-
ing RSIC datasets are manually annotated for research pur-
poses, and certain instructions have been developed to ensure
the quality of annotated sentences. However, many problems
remain to be solved. First, there is a mismatch between the
content of RSIs and the corresponding vocabulary size in
the existing benchmark RSIC datasets, with some sentences
being complex and others simple, and with many RSIs not
annotated with enough five sentences, as shown in Figure 13,
Figure 15 and Table 4. Second, the existing corpus is anno-
tated for deep learning research instead of real applications.
Therefore, some important information such as direction is
simply ignored in the annotation process, and the annotated
sentences tend to be simple, containing only the main objects
and attributes. In addition, there are spelling and grammatical
errors in the existing annotated sentences.

Many valuable studies can be expected to appear in future
work. On one hand, supplementing and improving the RSIs
and sentences in the existing datasets have positive implica-
tions for RSIC research. On the other hand, taking images
of daily scenes (e.g., road traffic and public places) and
special scenes (e.g., disaster and rescue) at different heights
using satellites and UAVs and purposefully annotating them
in combination with specific application scenarios can give
rise to many valuable studies. In addition, new annotating
methods in conventional IC studies such as stylized caption-
ing [88] can be expected to be borrowed to construct RSIC
datasets.

C. EVALUATION METRICS
The performance of the RSIC models in the literature are
mainly evaluated using the metrics described in Section V-B,
i.e., BLEU, METEOR, ROUGE, CIDEr, and SPICE. All of
these metrics compare the captions generated by the models
with the ground-truth sentences, with higher scores repre-
senting higher quality. BLEU, which is easy to implement
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and the most widely used metric, measures the ability of
the models to generate continuous words in the ground-truth
sentences. METEOR focuses on smaller semantic segments
and accounts for synonyms. The basic idea of ROUGE is
identical to that of BLEU but emphasizes recall instead of
accuracy. Intuitively, ROUGE focuses more on the correct-
ness rather than the fluency of the generated captions than
BLEU. Unlike these three metrics, which were originally
designed to evaluatemachine translatingmethods, CIDEr and
SPICE were specifically designed for evaluating image cap-
tioning models. In CIDEr, important words are given higher
weights. SPICE represents and measures the relationships
between phrases through graph structures.

In order to validate the proposed RSIC methods, the scores
of multimodel [1] and CMSLF [6] are often compared as
baselines. It is worth noting that CMLSF is a retrieval-based
method which cannot generate new sentences that do not
exist in the retrieval databases and therefore scores low in all
automated evaluations. However, these types ofmethods have
their own unique advantages, as detailed in Section IV-D.
Although the existing evaluation metrics can be utilized

to validate, verify and compare the performance of RSIC
models, theywere originally designed formachine translation
or NIC tasks, so there is room for enhancement from this
perspective. Evaluation metrics that are specifically designed
for RSIC tasks are expected to be proposed in future work,
e.g., assigning higher weights to focal objects or attributes in
the RSIs for particular scenarios or tasks, assigning higher
scores to special word sequences in the corpus, proposing
more efficient data structures to represent and evaluate the
correspondences between content of RSIs and phrases, etc.

D. APPLICABLE SCENARIOS AND USE CASES
Compared to other studies that focus on remote sensing, RSIC
is a relatively new topic. The existing studies of methods and
datasets are in the preliminary exploration stage, although
they have achieved impressive results. In future research,
RSIC can be applied in many real-world scenarios and output
interesting and valuable information to users.

On one hand, there have been many mature application
studies for RSIs [93], such as scene classification, change
detection, target detection, land-use and land-cover classifi-
cation, etc.. Compared with these applications, whose outputs
are simply labels or a fewwords, RSIC can provide users with
richer semantic information and excellent reading experi-
ence. A reliable and easy-to-implement idea is to build RSIC
datasets by annotating descriptive sentences for the RSIs in
the existing large-scale datasets of these traditional mature
applications, and applying targeted and modified methods
from the NIC domain to the newly constructed datasets. Most
of the existing RSIC studies are formally conducted along this
direction.

On the other hand, in addition to the above research ideas,
RSIC studies for specific scenarios are worth exploring.
Some examples are road traffic management, security mon-
itoring of public areas, disaster scene rescue, identification

of drugs and other plants. In such special scenarios, RSIs
taken by satellites or UAVs from high altitude contain super
valuable information that ordinary camera photos do not
have. It makes sense to perform RSIC studies to gener-
ate human-readable and semantically rich captions for these
RSIs.

VIII. CONCLUSION
RSIC is an interesting and valuable topic that has emerged in
recent years. The existing studies in this field have achieved
remarkable results, but many issues must be addressed in
future work. In this article, we present a systematic survey
of the literature on RSIC. To the best of our knowledge, this
is the first review article in this field. Our main findings are
as follows.

First, 30 high-quality papers in the field were conditionally
filtered and obtained. Second, existing studies are grouped
according to technical solutions, and the fundamental theory,
pros and cons and trends of the methods in each group are
described and presented. Third, the construction of existing
RSIC datasets, commonly used evaluationmetrics, and exper-
imental results of the state-of-the-art methods are compar-
atively analyzed and presented. Finally, trends in existing
RSIC research, pressing issues to address in future work, and
valuable use cases that are worth studying are discussed and
presented.

The findings in this article can be expected to provide
valuable reference information for relevant researchers. With
advances in deep learning, RSI processing, and natural lan-
guage processing, RSIC research is expected to attract the
participation of more researchers.
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