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ABSTRACT Radar sensors are gradually becoming a wide-spread equipment for road vehicles, playing
a crucial role in autonomous driving and road safety. The broad adoption of radar sensors increases the
chance of interference among sensors from different vehicles, generating corrupted range profiles and range-
Doppler maps. In order to extract distance and velocity of multiple targets from range-Doppler maps, the
interference affecting each range profile needs to bemitigated. In this paper, we propose a fully convolutional
neural network for automotive radar interference mitigation. In order to train our network in a real-world
scenario, we introduce a new data set of realistic automotive radar signals with multiple targets and multiple
interferers. To our knowledge, we are the first to apply weight pruning in the automotive radar domain,
obtaining superior results compared to the widely-used dropout. While most previous works successfully
estimated the magnitude of automotive radar signals, we propose a deep learning model that can accurately
estimate the phase. For instance, our novel approach reduces the phase estimation error with respect to
the commonly-adopted zeroing technique by half, from 12.55 degrees to 6.58 degrees. Considering the
lack of databases for automotive radar interference mitigation, we release as open source our large-scale
data set that closely replicates the real-world automotive scenario for multiple interference cases, allowing
others to objectively compare their future work in this domain. Our data set is available for download at:
http://github.com/ristea/arim-v2.

INDEX TERMS Autonomous driving, automotive radar, interference mitigation, deep learning, phase
estimation, fully convolutional networks.

I. INTRODUCTION
Autonomous driving and road safety are very important top-
ics in order to reduce the number of traffic accidents and the
number of deaths on the road. One of the solutions proposed
by automotive companies to build autonomous and safer
vehicles is based on scanning the surrounding environment
using radar sensors. The most common radar senors used in
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the automotive industry are frequency modulated continuous
wave (FMCW) / chirp sequence (CS) radars, which transmit
sequences of linear chirp signals. The signals transmitted
and received by such sensors provide the means to estimate
the distance and the velocity of nearby targets (e.g., vehi-
cles, pedestrians or other obstacles). For instance, automotive
radar sensors have even been used to detect very small objects
(e.g., road debris [1]). However, the growing adoption of
radar sensors [2] increases the probability of interference
among sensors from different vehicles, generating corrupted
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FIGURE 1. Top: Range profile magnitude of an FMCW radar sensor. The
clean profile is shown in blue, while the profile with interference is
shown in red. Bottom: The magnitude of the STFT of the corresponding
range profile. The targets are the thin horizontal lines and the
interference sources are the thick (more pronounced) diagonal lines. Best
viewed in color.

and unusable signals. Indeed, radio frequency interference
can raise the noise floor by a large margin, to the point where
potential targets are completely hidden by noise, thus reduc-
ing the sensitivity of target detectionmethods [3]. In Figure 1,
we present a range profile of a radar signal with and with-
out interference, in which some of the targets visible in the
clean range profile are absorbed by the risen noise floor
caused by multiple interference sources. In order to be able to
detect such targets, the radar interference has to be mitigated.
To address this problem, researchers have proposed various
techniques ranging from conventional approaches [4]–[11] to
deep learning methods [12]–[16].

In this paper, we extend our prior work [12] by designing
a novel fully convolutional network (FCN) [17] that (i) can
recover the phase along with the magnitude of radar beat
signals and (ii) can cope with multiple non-coherent radio-
frequency (RF) interference sources. Our network takes as
input the real part, imaginary part and magnitude of the
Short-Time Fourier Transform (STFT) of the beat signal with
interference, providing as output the real part, imaginary part
and magnitude of the range profile, respectively. Although
our network does not directly estimate the phase, it can be
trivially computed from the real and imaginary parts. To our
knowledge, we are among the few to propose a deep learning

model that can accurately estimate the phase, this being a
well-known problem, which is often left as future work in
related articles [18]. While most deep learning approaches
studied radar interference mitigation with a single interfer-
ence source [11], [12], [14], we aim to address the task
under multiple interference sources. To achieve this goal,
we generate a large-scale data set that closely replicates
the real-world automotive scenario for multiple interference
sources, considering up to three interference sources during
training and up to six interference sources during inference.
We compare our approach with three state-of-the-art meth-
ods, one based on zeroing [4], [9] and two based on deep
neural networks [12], [13], reporting superior results for var-
ious evaluation metrics. In this paper, we also apply weight
pruning [19], [20], improving the signal-to-noise ratio con-
tained in the weights of our neural network models. We com-
pare our weight pruning to the widely-adopted dropout [21],
showing that the former approach helps the neural model to
reach a better convergence point. Furthermore, we release our
novel data set as open source, allowing other researchers and
engineers to objectively compare their future work on radar
interferencemitigation. Our data set is available for download
at: http://github.com/ristea/arim-v2. Along with the data set,
we also release the code to reproduce our results.

In summary, our contribution is threefold:

• We propose a deep learning model able to mitigate
non-coherent RF interference from multiple sources.

• We design a fully convolutional network architecture
that outputs clean range profiles, estimating both the
magnitude and, indirectly, the phase.

• We introduce a radar interference data set with a wide
and realistic range of signal parameter variations as well
as multiple interference sources.

We organize the rest of this paper as follows. We present
related work on radar interference mitigation in Section II.
We describe our method based on fully convolutional net-
works in Section III. We present our data set composed of
generated range profiles in Section IV and we provide a com-
prehensive set of experimental results in Section V. Finally,
we draw our conclusions in Section VI.

II. RELATED WORK
A. CONVENTIONAL METHODS
State-of-the-art interference mitigation methods are usually
classified according to the domain in which the interfer-
ence is mitigated [4]–[9]: polarization, time, frequency, code
and space. Polarization-based methods assume the use of
cross-polarized antennas between the two interfering radars
and the mitigation margin is around 20 dB, but ground
reflections or other surrounding targets can severely reduce
this margin. Time domain methods include the following
approaches: using low transmit duty cycles (to reduce the
probability of hitting other receivers), using short receive
windows (to reduce the probability of being hit by an inter-
ferer), or employing a variable pause between transmitted
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chirps or a variable chirp slope (to avoid periodic inter-
ference). Frequency domain methods involve a division of
the authorized operating bandwidth into several sub-bands,
such that nearby systems operate in different sub-bands.
Radio frequency interference (RFI) mitigation in the coding
domain implies the modulation of radar wave forms with a
device-specific code (to minimize cross-talk between radars,
the codes of different devices should be orthogonal), whereas
in the case of space domain techniques, the antenna radiation
pattern is adaptively configured to avoid interfering signals.

A particular class of methods are the strategic RFI mit-
igation techniques [4], which require additional hardware
and/or software, yet rely on some of the basic techniques. The
classical strategic approaches are: ‘‘communicate and avoid’’
(requires inter-vehicle communication to avoid simultaneous
transmission), ‘‘detect and avoid’’ (e.g., detects the interfer-
ence in a sub-band and changes the operating sub-band of
the radar), ‘‘detect and repair’’ (after detection, the measure-
ment with interference is reconstructed), ‘‘detect and omit’’
(after detection, the measurements affected by interference
are removed) and ‘‘listen before talk’’ (the radar transmits
only when no other transmitting device is detected).

Currently, mitigation of a single FMCW interferer on an
FMCW victim radar is quite well understood [22], ongoing
research in the field being focused on other scenarios that
involve multiple interference sources due to the increasing
number of vehicles equipped with radars and the increase in
the number of radar systems per vehicle.

Different from all these methods, which rely on algorithms
handcrafted by researchers, we propose an approach based
on end-to-end learning from data. In order to obtain our
approach, we extended the data set and the method proposed
in our previous work [12] in order to learn deep neural
networks for RFI under multiple interference sources.

B. DEEP LEARNING METHODS
Deep learning techniques have been applied in a vast diver-
sity of tasks with remarkable results, including object detec-
tion [23]–[25], speech separation [26] and medical image
super-resolution [27]–[29]. One such task is image denoising,
where deep learning achieved state-of-the-art results [30],
outperforming classical filtering approaches (i.e., median or
bilateral filtering). By transforming an arbitrary signal with
STFT, we obtain an image-like representation that can elimi-
nate the gap between the task of signal denoising and that of
image denoising. Indeed, the interference becomes a noise
pattern that is overlapped over the signal’s STFT, opening
up the possibility to employ novel ways for interference
mitigation, previously applied only on images. In this context,
we propose to apply fully convolutional networks, a deep
learning technique, to transform a noisy STFT image into a
clean range profile of an FMCW radar sensor.

To our knowledge, there are only a handful of related
works [11]–[15], [18] that employ deep learning models
for radar interference mitigation. Most of the existing deep
RFI mitigation approaches consider only scenarios with one

source of interference. Complex scenarios with multiple
sources of interference, which are very likely to happen
in daily driving, were only considered by Rock et al. [13].
In [13], the authors proposed a convolutional neural net-
work (CNN) to address RFI, aiming to reduce the noise floor
while preserving the signal components of detected targets.
Their CNN architecture can be trained using either range
processed data or range-Doppler (RD) spectra as inputs. The
authors reported promising results, but they still had concerns
regarding the generalization capacity on real data. In the
experiments, we show that our approach outperforms the
model of Rock et al. [13] by a significant margin. Addition-
ally, we demonstrate that our method can generalize to real
data.

Another approach that relies on CNNs is proposed in [18].
The authors employed an auto-encoder based on the U-Net
architecture [31], performing interference mitigation as a
denoising task directly on the range-Doppler map. They sur-
passed classical approaches, but their method fails to fully
preserve the phase information. Similarly, in [14], the net-
work architecture is build upon CNNs, but the authors added
residual connections, inspired from the ResNet model [32].
A different interference mitigation method is proposed
in [11], which is based on applying a recurrent neural network
model with Gated Recurrent Units (GRU) [33] on the time
domain signal. The authors reported better performance and
lower processing times compared to previous signal process-
ingmethods. Similarly,Mun et al. [15] proposed an approach
that is also based on GRU, but they add a novel attention
block. This approach attains better results than classical meth-
ods and the authors empirically prove that the attention block
brings a performance boost. Nevertheless, the algorithm is not
tested on real data or on a large test collection, so there are
concerns regarding its generalization capacity.

1) RELATION TO PRELIMINARY VTC-FALL 2020
VERSION [12]
We recently proposed two novel FCN models in our prelimi-
nary work [12], which are able to transform an STFT sample
affected by interference into the corresponding clean range
profile. The models have the capacity to generalize on real
data, but they are not designed to estimate the phase of beat
signals. In the current work, we extended our preliminary
work presented in [12] by designing a method able (i) to
recover the phase of beat signals and (ii) to cope with multiple
interference sources. In addition, we employ a new training
regime based on weight pruning [19], [20], which is aimed
at improving the signal-to-noise ratio of the neural network
weights. Moreover, the performance of our novel neural
model is highlighted by the experimental results. Indeed,
we achieved the best performance on the ARIM-v2 data set
and we empirically proved the model’s generalization capa-
bility. Additionally, we extended the data set proposed in our
preliminary work [12] to multiple sources of interference,
releasing the first freely available interference mitigation data
set for multiple sources of interference.
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FIGURE 2. Qualitative time-frequency diagrams of (a) the transmitted
signal (green) and an un-correlated interference (red) and (b) the
resulting baseband interference signal after mixing with the transmitted
waveform. B is the band of the transmitted signal, T is the time of chirp,
fc is the radar central frequency, FS is the sampling frequency and FM is
maximum frequency of the baseband interference signal.

III. METHOD
A. RADAR SIGNAL MODEL
In FMCW radar solutions, the transmitted signal sTX (t) is a
chirp sequence, whose frequency usually follows a sawtooth
pattern. In the presence of mutual interferences, the receiving
antenna collects a mix from two signals, the reflected signal
and the interference signal. Consequently, the received signal
is defined as follows:

sRX (t) =
Nt−1∑
i=0

Ai · sTX (t − τi)+
Nint−1∑
l=0

sRFI ,l(t), (1)

where Ai = Ai · ejφi is the complex amplitude, τi is the
propagation delay of target i, Nt is the number of targets, and
Nint is the number of interferers. The receive antenna collects
the reflected signal sRX (t), which is further mixed with the
transmitted signal and low-pass filtered, resulting in the beat
signal sb(t). After mixing the signal reflected by a point-like
target with the transmitted signal, we obtain a signal with
constant frequency, whereas by mixing an uncorrelated inter-
ferencewith the transmitted chirp, we obtain a baseband chirp
signal (as depicted in a qualitative manner in Figure 2).

The slope of the interference chirp (after mixing) is equal
to the difference between the slope of the transmitted sig-
nal k and the slope of the interference kRFI ,l , while its
zero-frequency point tRFI ,l corresponds to the intersection
between the instantaneous frequency laws (IFL) of the trans-
mitted and interference chirps. Based on the time-frequency
diagram from Figure 2b, the IFL of the interference chirp in
baseband can be written as:

fRFI ,l(t) = (k − kRFI ,l) · (t − tRFI ,l)

·p
(
t − tRFI ,l
TAAF,l

)
· p

(
t − T

2

T

)
, (2)

where TAAF,l =
2FM

|k−kRFI ,l |
is the duration of the interfer-

ence, which is limited by the anti-aliasing filter used before
sampling. If the slope of the transmitted signal is close to
the interference slope, TAAF,l can get much longer than the
chirp duration T and the actual time extent of the baseband
interference limited by T . A similar effect occurs if tRFI ,l is
near the ends of the repetition interval. Using the introduced
notations, the resulting analytical beat signal in the presence
of interferences is expressed as:

sb(t) =
{ Nt−1∑

i=0

Ai · exp(j2πkτit)

+

Nint−1∑
l=0

ARFI ,l · exp
[
jπ (k − kRFI ,l)(t − tRFI ,l)2

]
·p
(
t − tRFI ,l
TAAF,l

)}
· p

(
t − T

2

T

)
, (3)

where ARFI ,l is the complex amplitude of interference signal
l and p(t) is the window function described below:

p
(
t
a

)
=

{
1, if −

a
2
≤ t ≤

a
2

0, otherwise
, ∀a ∈ R. (4)

Hence, sb(t) consists of a sum of complex exponentials
(representing the targets) and a sum of interfering signals
(baseband chirps). Therefore, the uncorrelated interference
appears as a highly non-stationary component on the beat
signal’s spectrogram, being spread across multiple frequency
bins, as opposed to the signal received from targets, which
is present only at some frequency values [22]. This explains
the general aspect of the magnitude of STFT presented in
Figure 1.

B. DATA PREPROCESSING
As shown in Figure 1, we need to compute the discrete
STFT in order to disentangle the targets from the inference
sources. The following equation shows how to transform a
time domain signal into an image using the discrete STFT:

STFT {x[n]}(m, k) =
∞∑

n=−∞

x[n] · w[n− mR]e−j
2π
Nx
kn
, (5)
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FIGURE 3. The architecture of our FCN model. The input STFT is processed through a series of four conv blocks (composed of conv and pooling layers)
until the vertical dimension is reduced to 1, while preserving the horizontal dimension. The output is a beat signal spectrum without the interference
removed by the FCN. Best viewed in color.

where x[n] is the discrete input signal (the sampled version of
sb(t)), w[n] is a window function, Nx is the STFT length and
R is the hop/step size [34]. There are a multitude of window
functions proposed in literature, such as hann, blackman
and others. We chose to perform the STFT with hamming
window. Additionally, we scale the STFT (by dividing it with
α = 40, whichwas obtained statistically on the entire training
set) in order to have the input data approximately within the
range of [−1, 1].
Since our data samples are now represented as images,

we consider convolutional neural networks (CNNs) to model
the mapping between input images and clean range profiles,
noting that CNNs attain state-of-the-art results on natural
images [35]–[37], medical images [28] and artificial images
resulted after transforming time domain signals [38].

Our goal is to obtain clean range profiles from the STFT
of the beat signal affected by noise and uncorrelated interfer-
ence. We design a custom FCN architecture to provide the
clean range profiles as output (during training, the FCN has
to learn to reproduce the ground-truth clean range profiles).
For this reason, we perform a Fast Fourier Transform (FFT)
of our time domain labels (to obtain the ground-truth clean
range profiles) and train our network to map the STFT input
to the FFT output (computed in Nx points, as the number
of STFT frequency bins). The intuition behind choosing the
input (STFT) and the output (FFT) domains of our network as
presented above is that the spectrum of a beat signal affected
by interference is covered in noise and the targets are almost
undetectable, as could be seen in Figure 1. The advantage of
using STFT is that there are portions in the representation
where the targets are visible (the thin horizontal lines in the
STFT in Figure 1), even if the signal is affected by multiple
sources of interference. We empirically tested our intuition
by training the same network architecture (redesigned for
the one-dimensional FFT input) and discovered that this
approach has convergence issues and unusable results.

C. NEURAL NETWORK MODEL
Our goal is to create a neural network that can mitigate RFI
and is able to map a noisy STFT input to the clean FFT output
for any given signal, in terms of both magnitude and phase.

Therefore, we propose a novel FCN architecture that canmeet
the above requirement. There are related works which take
an STFT as input and give an FFT as output, such as [10],
but these are not based on deep learning techniques. To the
best of our knowledge, there are no approaches based on
deep learning models that transform an STFT input sample
affected by interference into a clean FFT range profile.

The novelty of our neural architecture is mainly related
to the input and output structures, each consisting of a rep-
resentation composed of three different channels. The first
and third channels of the input are the real and imaginary
parts of the STFT, while the channel in the middle is the
magnitude of the STFT. In terms of information theory,
the second channel is redundant information, which could
be mathematically determined from the real and imaginary
parts. The motivation behind adding the magnitude of the
STFT as input is given by our preliminary FCN models [12],
which successfully used it to predict the magnitude of the
FFT. Furthermore, the magnitude of an STFT has the most
meaningful visual information and can be seen as an attention
map [39], [40], which, in our case, is not computed by the
network, but offered as an input channel. The output fol-
lows a similar design in terms of the number of channels,
the only difference being its spatial dimension, as described
next. Although our network does not directly compute the
phase, it can be computed from the real and imaginary parts.
We hereby underline that we have tried various architectures
to explicitly output the phase of the FFT, such as having as
input channels only the magnitude and phase, but we never
obtained convergence. However, it appears that modeling
the phase indirectly is achievable. Regarding the magnitude,
we can choose between taking the middle output channel
directly predicted by the network or computing themagnitude
from the real and imaginary parts, as a post-processing step.
The results are very close, but slightly better for the former
approach. In summary, we take the magnitude predicted as
output and compute the phase from the real and imaginary
parts.We also noticed that without themagnitude of the STFT
as input channel, our model achieves significantly lower
performance (see Table 4). Hence, the seemingly redundant
magnitude channel is actually of utter importance.
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Our neural model is designed to process an input tensor
of size 154 × 2048 × 3 and give an output tensor of size
1× 2048× 3. The network progressively reduces the dimen-
sion on the vertical axis (154), which corresponds to the num-
ber of time bins in which the STFT is computed, to the size 1,
while keeping the dimensions on the other axes constant
(the number of FFT points, Nx , and the number of channels,
respectively).

Our architecture, illustrated in Figure 3, consists of 10 con-
volutional (conv) layers organized into 4 convolution blocks.
Each of the first 2 blocks are composed of 3 conv layers,
followed by a max-pooling layer. The third block is formed
of 2 conv layers and a max-pooling layer, while the last block
has the same number of convolutions as the third, but without
any pooling layer. Additionally, each conv layer is followed
by leaky Rectified Linear Units (ReLU) [41], except for the
last 2 layers. The number of convolutional filters (kernels)
is independently established for each block. The number of
kernels starts from 32 in the first block, growing by 32 with
each subsequent block, ending up at 128 in the last one.
Exceptionally, the very last conv layer has only 3 kernels in
order to fit to the desired number of output channels. We also
reduce the kernel size from 13× 13 in the first block to 9× 9
in the second block and 5×5 in the third block. Regarding the
last conv block, we set the kernel size to 5×5 in the first conv
layer and to 1×1 in the last conv layer, respectively. The conv
filters are always applied at stride 1, a circular padding being
added to preserve the horizontal dimension of the activation
maps. The pooling filters are always of size 2×1, reducing the
size of the activation maps by half on the vertical axis only.
Zero padding for the max-pooling layers is added only when
we need to make sure that the input activation maps have an
even size.

D. LOSS FUNCTION
The procedure of learning a neural network model f is cast
as an optimization problem, which is typically solved using a
gradient-based algorithm that navigates the space of possible
sets of weightsW the model may use in order to attain a con-
vergence point. Typically, a neural network model is trained
using the stochastic gradient descent optimization algorithm,
theweights being updated using back-propagation [42]. In the
context of an optimization problem, the function used to
evaluate a candidate solution (i.e., a set of weights) is referred
to as the objective function, or the loss function.

In our case, we employ a custom loss function based on
the mean squared error (MSE), in order to properly train
the model and achieve optimal results. Our main goal is to
recover the targets, which are typically at the upper extrem-
ity of the amplitude interval. To make sure that our model
gives proper attention to such extreme values, we favor MSE
instead of the mean absolute error (MAE). Furthermore, our
loss function is designed to adjust the importance of the FFT
magnitude in relation to its real and imaginary parts, because
estimating the real and the imaginary parts of a complex
number is more difficult to achieve compared to estimating its

magnitude [18]. We therefore introduce the hyperparameter
λ ∈ R+ to control this importance. Our loss function is
formally defined below:

L(y, ŷ) = Labs(y, ŷ)+ λ · (Lre(y, ŷ)+ Lim(y, ŷ)), (6)

where y is the true label, ŷ = f (x,W ) is the label predicted by
themodel f for the input x associated with label y, and the loss
function L{abs,re,im} is the MSE applied to the corresponding
parts of y and ŷ, respectively. As explained earlier, the factor
λ adjusts the importance of the magnitude with respect to the
real and the imaginary parts. We stress out that the label y
is actually the FFT of the clean range profile, being com-
posed of the magnitude, the real part and the imaginary part,
respectively.

E. WEIGHT PRUNING
Convolutional neural networks have shown major perfor-
mance improvements in a broad range of domains [28], [36],
[37], once the training on powerful graphical processing units
was made possible by the technological advancements in
parallel processing, gaining orders of magnitude in terms of
training time [36]. This also allowed researchers to explore
deeper and deeper models [32], [43], [44], requiring appro-
priate changes to avoid vanishing and exploding gradients
after a certain point, for example by introducing residual
blocks [32]. However, a downside of such large models is that
they are also likely to capture noise from training data, easily
falling into the pitfall of overfitting. The noise learned by a
CNN through its weights is not representative for the generic
data distribution, inherently leading to high variance and
poor performance. Nonetheless, simply reducing the model’s
capacity would not be a proper solution, because it will lead
to the other extreme, underfitting. This problem may occur
when the high-order relationships between input and output
cannot be captured by a model with reduced capacity. Since it
is already proven that CNNs attain better results as themodels
grow deeper [32], [36], [43], [44], the main focus in this area
of research is to find ways to avoid overfitting for models
with higher capacity. One such example is dropout [21].
Moreover, a well-known fact is that noise reduction is a hot
topic in the field of signal processing, therefore, a lot of
approaches have been proposed by researchers [45]. Both
classic signal processing algorithms [46]–[48] and machine
learning methods [49]–[51] have been developed in order to
mitigate the noise from signals. The noise problem is even
more relevant when we refer to denoising solutions based on
deep learning, because models have a large capacity and tend
to also replicate the noise from label signals, preventing the
network from achieving a global optimum.

To solve this problem, we apply a weight pruning [19],
[20] method that starts with a conventional training phase,
followed by a noise-constrained training phase with the aim
of pruning the inner network noise, thus improving its signal-
to-noise ratio. The network architecture is perfectly consis-
tent, assuming no further modifications at testing time. The
steps required by weight pruning are formally described in
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Algorithm 1. The training starts with the random initialization
of the weightsW from a normal distribution, as usual.

Algorithm 1 Training With Weight Pruning
Input: f - a neural network, X - a training set,
r ∈ [0, 1] - ratio of noise reduction.
Initialization:W (0)

∼ N (0, 6)
Output:W (t)

Stage 1: Conventional training regime
1: while not converge do
2: W (t+1)

= W (t)
− η(t)∇f (W (t), x(t))

3: t = t + 1
Stage 2:Weight pruning training regime
4: S = sort(||W (t−1)

||)
5: k = br/|S|c
6: ε = Sk
7: for w ∈ W (t) do
8: if w < ε then
9: Mw = 0

10: else
11: Mw = 1
12: while not converge do
13: W (t+1)

= W (t)
− η(t)∇f (W (t), x(t))

14: W (t+1)
= W (t+1)

·M
15: t = t + 1

In the first stage, we apply the standard training procedure
based on gradient descent, until we reach an optimal conver-
gence point. During this stage, the weights W are updated
in the negative direction of the gradient ∇f , the update step
being controlled through the learning rate η. After the first
training stage, we observed that our neural networks contains
many weights that are close to zero. When put together, these
very small weights can affect the model, acting as some kind
of noise learned from the training data. In the next phase,
we compute a binary mask M with the aim of clipping the
less important weights to zero. In step 4, the weights are
first sorted by their magnitude in ascending order. The index
of the largest ‘‘noisy’’ weight to be used as threshold is
computed in step 5, based on the ratio of noise reduction
r given as input. The actual value of the threshold weight
is stored into the parameter ε. In steps 7 to 11, we build
the mask M , assigning 0 for every weight lower than ε
and 1 for every other weight. After obtaining the mask M ,
we can further proceed by training the model using gradient
descent. After each weight update, the training algorithm
introduces step 14, which removes the weights close to zero.
We note that the mask M can also be recomputed at every
iteration, but we did not observe any significant improvement
in terms of convergence during our preliminary experiments.
To save computational time during training, we decided to
compute the mask M only at the beginning. Last, we note
that, although Algorithm 1 is based on the standard stochastic
gradient descent, the weight update steps are independent of
the training regime. Hence, weight pruning [19], [20] can

be applied on top of any modern optimization algorithm for
neural networks, e.g. Adam [52].

1) RELATION TO DROPOUT
Being designed as a method to prevent overfitting, we note
that weight pruning can be seen as a competitor to
dropout [21], which may lead to superior results [53].
Dropout is a regularization technique that drops out a certain
percentage of neural units randomly, at each iteration. Weight
pruning works in a similar way, but instead of dropping units
randomly, it chooses the units that have the weights closer to
zero. We expect such units to contain noise rather than useful
information. We therefore believe that weight pruning is able
to preserve (or even improve) the signal-to-noise ratio inside
the neural network. Another difference from dropout is that
our training regime based on weight pruning is divided into
two stages. In the first stage, we allow the network to converge
to an optimal point, using only early stopping to prevent over-
fitting. Weight pruning is applied only in the second stage,
enabling convergence to amore generic solution.We compare
dropout and weight pruning experimentally, showing that the
latter training regime provides superior results.

IV. DATA SET
One of the key factors in the training process of deep models
is the data set. It was empirically shown many times before,
e.g. [32], [36], that a large database, e.g. ImageNet [54],
is essential to enable deep models to attain state-of-the-art
results. Therefore, we extend the automotive radar interfer-
ence mitigation (ARIM) data set proposed in [12] in order to
cover complex real-world automotive scenarios that include
multiple sources of interference. To the best of our knowl-
edge, there are no other public databases for the interference
mitigation task with multiple sources of interference. Our
data set is created in the fast FMCW hypothesis, where
the beat frequency is usually much larger than the Doppler
shift. Each range profile can include both static and dynamic
targets, which will practically appear as straight lines in the
beat signal’s spectrogram.

In this paper, we introduce a novel and complex large-scale
database, called ARIM-v2, consisting of 144,000 syntheti-
cally generated samples, replicating realistic automotive sce-
narios. We generated each sample using randomly selected
values from the set of realistic parameters enumerated in
Table 1. The number of interference sources and the signal-
to-noise ratio (SNR) values are selected using a fixed step
between the minimum and the maximum values. The other
parameters from Table 1 are interpreted as random variables
that follow an uniform distribution between the minimum
and the maximum values. The amplitude of each target is
proportional with the power expected from that particular
target. Moreover, we added a random phase to each target to
obtain more realistic radar signals.

Real data acquisition involves capturing signals with radar
sensors that have specific parameters. Evenwhenwe consider
a particular application, the deployed radar sensor could have
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TABLE 1. Minimum and maximum values for each parameter in our joint
uniform distribution used for generating the samples in our database.

TABLE 2. Fixed parameters for simulating a realistic radar sensor.

distinct values of parameters, which may lead to differences
between captured data. For this reason, in our data generation
procedure, we considered a set of parameters (i.e., bandwidth,
sweep time, sampling frequency and central frequency) that
can be adjusted for a specific radar sensor. In this way, our
database could be adapted and used in various circumstances.
Without loss of generality, we developed the database by
setting the acquisition parameters to typical values used in
automotive radar sensors. The exact values used for these
parameters are listed in Table 2. We underline that, for a
different sensor, the database can be regenerated with the
parameters of the specific radar system.

One of the greatest advantages regarding synthetically
generated data is that we can control the entire process
with the purpose of obtaining more complete and relevant
information, which may help to develop a better solution.
In our case, we have access to the signal with interference
as well as access to the clean signal. Hence, we can properly
evaluate any interference mitigation algorithm. For example,
the clean signals can be used as ground-truth labels when
training a machine learning model. Moreover, access to the
clean signals provides the means to conduct an objective
performance assessment, by comparing the output predicted
by the model with the corresponding ground-truth (expected)
output. In ARIM-v2, a data sample is composed of:

• a time domain signal without interference;
• a time domain signal with interference;
• a label vector with complex amplitude values in target
locations;

• a label vector with the following information: number
of sources of interference, SNR, SIR and interference
slopes.

We randomly split our data samples into a training set
of 120,000 samples and a test set of 24,000 samples. The
generated data set will allow future works on RFI mitigation
to objectively compare newly developed methods with the

state of the art, provided that our data set is freely available
for download at: http://github.com/ristea/arim-v2.

V. EXPERIMENTS
Since both ARIM andARIM-v2 databases consist of multiple
radar signals (with and without interference) referring to
different range profiles, in our experiments, the interference
mitigation is performed individually, on each range profile.
We consider as label the amplitude and phase of targets
from the range profiles obtained by applying FFT on signals
without interference.

A. PERFORMANCE MEASURES
Usually, the goal in radar signal processing is to maximize
the detection performance. Therefore, a rather intuitive mea-
sure is the area under the Receiver Operating Characteris-
tics (ROC) curve, known as AUC for short, which describes
the ability to disentangle targets from noise at various thresh-
olds. When computing the AUC, the target detection thresh-
old slides iteratively from the lowest value to the largest
value in the range profile, modifying the probability of false
alarms. Another performance indicator is the mean absolute
error (MAE) in decibels (dB) between the range profile
amplitude of targets computed from label signals and the
amplitude of targets from predicted signals. However, in radar
signal processing not only the target’s amplitude is important,
but also its phase, because the latter is necessary to estimate
other essential parameters (e.g., target velocity) or to perform
beamforming. Thus, we also report the MAE in degrees
between the range profile phase of targets computed from
label signals and the phase of targets from predicted signals.

In summary, we employ the AUC, amplitude MAE, phase
MAE and mean SNR improvement (1SNR), which is com-
puted for the target with the highest amplitude as the
difference between the SNR before and after interference
mitigation in the range profile.

B. HYPERPARAMETER TUNING
Hyperparameter tuning is performed on ARIM-v2, employ-
ing the same hyperparameters on ARIM without further
tuning. In order to minimize the chance of overfitting in
hyperparameter space, we split the ARIM-v2 training set into
training and validation, keeping 20% (24,000 samples) for
validation, the rest (96,000 samples) being used for train-
ing. Regarding the our regime based on weight pruning,
we trained our model for 100 epochs in the conventional
training regime, followed by 20 epochs with weight pruning.
The ratio of noise reduction r was validated considering
values in the set {0.15, 0.3, 0.45}, the best performance gains
being obtained for r = 0.3. We compared the weight prun-
ing regime with conventional training for 120 epochs and
dropout for 120 epochs, respectively. The dropout rate was
validated in the range [0.1, 0.5], the best rate being 0.25. In all
cases, we used mini-batches of 16 samples using the Adam
optimizer [52] with a learning rate of 5 · 10−5 and a weight
decay of 10−5. Regarding the parameter λ in the loss function,
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TABLE 3. Results on the ARIM-v2 test set obtained by our FCN under
different training regimes: conventional, dropout and weight pruning.
Regarding conventional training, we considered a network with half
capacity (HC) along with the full network. For weight pruning, we report
results for all considered reduction ratios. For the reported metrics,
we use ↑ to denote that higher values are better and ↓ to denote that
lower values are better, respectively. Best scores are highlighted in bold.

we tried out several values ranging from 1 to 20, the best
solution being achieved for λ = 10.

C. RESULTS OF WEIGHT PRUNING VERSUS COMPETING
METHODS
In order to prove that weight pruning attains better perfor-
mance due to its inner network noise reduction principle,
we present the results obtained on the ARIM-v2 test set in
comparisonwith a set of competing training regimes.We con-
sider as competing methods the conventional training regime
applied on a network with full capacity, the conventional
regime applied on a network with half capacity (HC), and the
regime known as dropout [21]. The corresponding results are
presented in Table 3.

We first observe that dropout offers the lowest results
in terms of all performance metrics, even compared to the
conventional training regime. The poor results attained by
dropout actually motivated us to seek an alternative training
regime, this being the main driver behind using weight prun-
ing. In order to establish the optimal noise reduction ratio r
for weight pruning, we performed several validation experi-
ments. However, we observed that weight pruning produces
better results than conventional training, irrespective of the
considered reduction ratio. We therefore present test results
using three different reduction ratios in Table 3. Although
weight pruning is generally better than dropout and conven-
tional training, it seems that the best results are achieved for
the ratio r = 0.3. Even if the noise reduction ratio of 0.45
gives better results in terms of1SNR, the other performance
metrics are in favor of the ratio r = 0.3.
Since weight pruning replaces a certain percentage of

weights with zero, it can be argued that it can be equiva-
lent to simply reducing the model’s capacity. We therefore
present results using conventional training, while considering
a model having 50% of the original FCN capacity. As shown
in Table 3, reducing the network’s capacity is a sub-optimal
solution. In terms of 1SNR, the difference between our best
pruning variant and conventional training with half capacity
is 2.92 dB in favor of the former approach. Additionally,
an important difference can be observed for the MAE com-
puted on the phase of targets, where the score of the best prun-
ing solution is 6.58 degrees, while the score of the model with

half capacity is 3.30 degrees higher. We thus emphasize that
weight pruning is not equivalent to reducing the network’s
capacity, as it attains superior results.

D. RESULTS ON ARIM
On theARIMdata set, which contains one interference source
per data sample, we compared our FCN (considering both
conventional and weight pruning regimes) with the oracle,
the zeroing approach, the CNN proposed by Rock et al. [13]
and the FCN models proposed in our earlier work [12]. The
results are presented in Table 4. The oracle is a model based
on ground-truth labels, which represents an upper bound
for the other models. We used the same network archi-
tecture proposed by Rock et al. [13], but instead of range-
Doppler maps, we trained the network with the STFT of radar
signals.

A major drawback of the FCN models proposed in [12]
is their inability to estimate the phase of signals, which is a
mandatory quality, the phase being necessary in subsequent
radar signal processing blocks. Even if our method attains a
poor performance in terms of1SNR compared with the Deep
FCN, we outperform all methods regarding the other per-
formance measures. On the test set, our FCN model trained
with weight pruning surpasses the Deep FCN with 0.20 dB
in terms of target amplitude MAE, as well as the zeroing
baseline, with 1.49 degrees in terms of target phase MAE.
In addition, we observe that weight pruning leads to slightly
better results, sustaining the idea that noisy weights may alter
the overall performance of the neural model.

In order to show the necessity and the effectiveness of
adding the magnitude channel besides the real and the imagi-
nary parts of the input, we removed the absolute channel from
the input and the output, obtaining an ablated FCN network
(no magnitude). Its results are included in Table 4. Without
the magnitude channel, we observe that the network’s perfor-
mance drops by a significant margin, attaining weaker results
compared with the other methods (even weaker than zeroing).
This enforces the idea that the magnitude channel is a useful
input channel, acting as an attention mechanism that helps the
network to focus on relevant input locations.

In addition to the quantitative results presented so far,
we illustrate a series of qualitative results on the ARIM
test set in Figure 4, comparing our approach against the
zeroing method. The examples are vertically corespondent
and they demonstrate that in certain conditions, for example
when wide-length interference affects the signal, classical
approaches, such as zeroing, fail to mitigate the interference
and provide unsatisfying results. In Figure 4, we observe that
our model successfully produces signals that are very similar
with the labels, while the zeroing method cannot perform the
interference mitigation. All parameters are identical except
for the parameter k (the ratio between signal and interfer-
ence slopes), which quantifies the length of interference with
respect to the length of signal. More exactly, the closer k is
to 1, the longer the interference is, i.e. k = 1 refers to a
coherent interference.
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TABLE 4. Validation and test results on the ARIM data set (containing only one source of interference per range profile) attained by our model (trained
with both conventional and weight pruning regimes) versus the oracle (based on ground-truth labels), the zeroing approach, a state-of-the-art deep
learning method [13] and our earlier FCN models [12]. The best results (excluding the oracle) are highlighted in bold. The symbol ↑ means higher values
are better and ↓ means lower values are better.

TABLE 5. Validation and test results on the ARIM-v2 data set (containing up to three sources of interference per range profile) attained by our model
(trained with both conventional and weight pruning regimes) versus the oracle (based on ground-truth labels), the zeroing approach and a
state-of-the-art deep learning method [13]. The best results (excluding the oracle) are highlighted in bold. The symbol ↑ means higher values are better
and ↓ means lower values are better.

E. RESULTS ON ARIM-v2
On the ARIM-v2 data set, which contains up to three inter-
ference sources per data sample, we compared our FCN (con-
sidering both conventional and weight pruning regimes) with
the oracle (based on ground-truth labels), the zeroing baseline
and the CNN of Rock et al. [13]. The results reported in
Table 5 show that our approach provides superior results for
all metrics, attaining performance levels quite close to the
oracle. The differences between zeroing and our FCN on the
ARIM data set become undoubtedly higher on the ARIM-v2
data set, because ARIM-v2 simulates a more difficult auto-
motive scenario, in which a conventional method such as
zeroing seems to fail to mitigate multiple sources of inter-
ference. Our FCNmodel attains almost half the error reached
by zeroing, in terms of target phase MAE. Furthermore, our
model estimates the amplitudes of targets with 0.86 dB better
than zeroing on the test set. Another remarkable difference
can be seen for the mean SNR improvement, where our
network obtained a score of 15.36 dB, which is better than
zeroing by 6.42 dB. In addition, we note that weight pruning
leads to consistent improvements for all metrics, which seems
to be considerably more important on ARIM-v2 than on
ARIM. With or without pruning, our method also surpasses
the state-of-the-art CNN of Rock et al. [13]. In terms of the
amplitude MAE, even the zeroing baseline outperforms the
CNN of Rock et al. [13]. In summary, the quantitative results
demonstrate the superiority of our method.

In addition to the quantitative results presented so far,
we illustrate a series of qualitative results on the ARIM-v2
test data set in Figure 5, comparing our approach against the
zeroing method. Due to the fact that data samples are syn-
thetically generated, we are able to compare the algorithms
with the ground-truth signal without interference, allowing us
to determine which method provides the desired result after
interference mitigation. The plots depicted in Figure 5 are
vertically corespondent, meaning that, in the top plot on a
column, the interference is mitigated by zeroing, while in the
bottom plot, the same interference is mitigated by our FCN
model. We handpicked three examples with multiple sources
of interference, a type of incident that may occur in a real-life
automotive scenario. We observe that, in this particular case,
when there are multiple sources of interference, the zeroing
approach fails to mitigate the interference and the targets can
be barley observed because of the raised noise floor. Our
model successfully mitigates the interference, providing an
output very similar to the label. Although our model shows
similar performance to baseline approaches when signals are
affected by an interference with narrow length, in a diffi-
cult scenario, with multiple sources of interference or with
wide-length interference, our approach clearly outperforms
approaches such as zeroing, as it results from the plots pre-
sented in Figure 4 and Figure 5.

In order to provide a more detailed picture of our quan-
titative results, in Figure 6, we illustrate how our approach
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FIGURE 4. Qualitative results provided by our FCN+pruning model in comparison with the zeroing method. Examples are selected from the ARIM test
set, each having one source of interference. Both plots on each column illustrate the same reference signal, with and without interference. On the top
row, the interference is mitigated by zeroing, while on the bottom row, the interference is mitigated by our FCN+pruning model. The parameter k refers
to the ratio between signal and interference slopes. Best viewed in color.

FIGURE 5. Qualitative results provided by our FCN+pruning model in comparison with the zeroing method. Examples are selected from the ARIM-v2 test
set, each having multiple sources of interference. Both plots on each column illustrate the same reference signal, with and without interference. On the
top row, the interference is mitigated by zeroing, while on the bottom row, the interference is mitigated by our FCN+pruning model. The Nint parameter
refers to the number of interference sources and SIRmin refers to the minimum value of SIR for every interference source. Best viewed in color.

compares to zeroing in terms of three performance metrics
(AUC, amplitude RMSE and phase RMSE) considering one,
two and three sources of interference, from top to bottom,
respectively. We observe that the differences between our
FCN models and zeroing grows along with the number of
interference sources, in favor of our approach, considering
all performance measures. We notice an important difference
when we consider the RMSE on the phase of targets. The
zeroing algorithm exhibits poor performance because, when
there are multiple sources of interference, a substantial part of

the signal is covered by interference. Therefore, we observe a
substantial difference between our FCN models and zeroing.
In Figure 6, we also illustrate the results of the deep FCN
from our preliminary work [12], excluding it from the graphs
depicting the phase RMSE, since the deep FCN is not capa-
ble of recovering the phase. As the number of interference
sources grows, we observe an increasing gap between our
FCN+pruning and the deep FCN. Certainly, the gap is in
favor of our method. We thus conclude that our current neural
model is superior.
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FIGURE 6. Results provided by our model trained with both conventional and weight pruning regimes against the zeroing baseline and the deep FCN
from our preliminary work [12]. Figures (a), (b) and (c) show results for one source of interference, figures (d), (e) and (f) show results for two sources of
interference and figures (g), (h) and (i) show results attained for three sources of interference. Three different performance measures are presented: AUC,
RMSE for the amplitude and RMSE for the phase. We added confidence intervals (based on the standard deviations for three runs) for the neural models.
Best viewed in color.

In Figure 8, we added some visual results to observe
the network’s capacity to reduce noise and mitigate radar
interference on ARIM-v2. In order to compare STFT data,
we processed the output of the network by performing an
inverse FFT, followed by a STFT. In this manner, we are able
to reconstruct the STFT and compare it with the input STFT.
We can observe that for no interference source (Ns = 0), the
network acts like a denoising model and does not affect the
target. When we feed STFT data affected by interference into
the network, we observe that the interference is completely
mitigated, even if input data is affected by multiple interfer-
ence sources (Ns = 3).
In order to analyze more complex interference scenarios,

we synthetically generated samples with a single source
of interference, while modeling the multipath propagation
of the interference signal. The multipath simulation was

performed by summing the same interference signal to the
signal affected by interference, with a delay and a different
amplitude. The delay was chosen to correspond to 0.5 and
0.7 meters and the amplitude of the reflected signal (relative
to the direct path) was considered 0.3 and 0.8, in order to
simulate both weak and strong reflectors. The results are
shown in Figure 9. We can observe that our model success-
fully mitigates the interference, even if it corresponds to a
multipath propagation.

F. GENERALIZATION TO REAL DATA
The major concern regarding training a neural network on
synthetically generated samples is the model’s capacity to
generalize to real data. Therefore, we evaluate the gener-
alization capacity of our FCN on real data, by testing it
on real samples collected with two different radar sensors.

153502 VOLUME 9, 2021



N.-C. Ristea et al.: Estimating Magnitude and Phase of Automotive Radar Signals Under Multiple Interference Sources

FIGURE 7. Qualitative results provided by our FCN+pruning model in comparison with the zeroing method. The real signals with interference are acquired
with two different automotive radar sensors. Data acquisition was made as follows: (a)-(f) with radar sensor from FAU and (g)-(i) with NXP TEF810X 77
GHz radar transceiver, respectively. The parameter f0 refers to the interference central frequency and B refers to the chirp bandwidth. Best viewed in color.

FIGURE 8. Qualitative results provided by our FCN+pruning model on ARIM-v2. We illustrate the input STFT (top row) and the output of
the network processed with an inverse FFT and a STFT (bottom row), to have the same visualization. Ns represents the number of
interference sources. In all images, there is a single target (horizontal line) in the same position. Best viewed in color.
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FIGURE 9. Qualitative results provided by our FCN+pruning model on synthetically generated data for multipath interference propagation.
On the first row, there are signals affected by interference, and on the second row, the interference is mitigated with our network. Amp
stands for the relative amplitude of the reflected interference and dmp stands for the path difference for the reflected interference with
respect to the direct path. In all images, there is a single target (horizontal line) in the same position. Best viewed in color.

We underline that our FCN is never trained or fine-tuned on
real data samples. In Figure 7, we present qualitative results
on nine real samples with interference, comparing ourmethod
against zeroing.

The first six plots, depicted in Figures 7a to 7f, are gener-
ated with real data provided by FAU [18]. We note that the
targets are different among the presented signals, showcasing
various scenarios. Moreover, the central frequency of the
interference source is not always the same, having three dis-
tinct values: 76.25 GHz, 76.5 GHz and 76.75 GHz. Looking
at the results, it is clear that our network can provide more
accurate estimations of the amplitude of targets, being able
to mitigate the interference and to reduce the noise floor.

The last three plots, depicted in Figures 7g to 7i, are
made on data provided by the NXP company, which were
captured with the NXP TEF810X 77 GHz radar transceiver
in a couple of outdoor experiments on a two-lane road. The
victim radar was mounted on the bumper of a car, while the
interfering radar was mounted on a tripod in a fixed location
outside the roadway. The main target was another moving
car on the road. Besides the car, there were other reflections
in the range profiles coming from surrounding targets (e.g.,
lighting poles, trees). Even if the interference is more visible
in these examples, our approach successfully mitigates the
interference, providing better results in terms of amplitude of
targets compared to the zeroing algorithm.

We highlight that the real data samples are collected with
different radar sensors and have distinct central frequencies.
Nevertheless, our model is able to mitigate the interference
and surpass the baseline method, without any adjustment or

fine-tuning. This demonstrates that our model has a good
generalization capacity, being applicable to a wide range of
radar sensors, without requiring any additional effort.

In addition to range profile processing, we tested the
capacity of our network to clean real range-Doppler profiles,
by processing separately each range profile and then concate-
nating them. We computed the range-Doppler experiment on
data from the NXP company and tested our method against
the zeroing baseline. The results are shown in Figure 10.
We can observe that our FCN trained with pruning is able to
better clean the range-Doppler map in comparison with the
zeroing method.

G. GENERALIZATION TO MORE INTERFERENCE SOURCES
In real automotive scenarios, a wide range of incidents may
cause the radar sensor to fail during driving. A plausible sit-
uation could be that, in a specific moment, more interference
sources affect the radar antenna. Therefore, we investigate
the generalization capacity of our model to mitigate RFI
from more sources than it was trained for. In this scope,
we synthetically generated an additional test data set of
2,400 samples with four, five and six interference sources.
We consider our FCN models trained on ARIM-v2 with
both conventional and weight pruning regimes, resulting in
an out-of-distribution evaluation setting. The results attained
by our FCN models are compared with the oracle and the
zeroing method. As shown in Table 6, our approach clearly
outperforms the zeroing algorithm, being the closest method
to the oracle. In terms of target phase MAE, our FCN based
on weight pruning attains results with 12.81 degrees better

153504 VOLUME 9, 2021



N.-C. Ristea et al.: Estimating Magnitude and Phase of Automotive Radar Signals Under Multiple Interference Sources

FIGURE 10. Range-Doppler maps for signals acquired with the NXP TEF810X 77 GHz radar transceiver. Left: the range-Doppler map for the
original raw signals. Center: the range-Doppler map for signals processed with the zeroing method. Right: the range-Doppler map for
signals processed with our FCN trained with pruning. Best viewed in color.

TABLE 6. Results provided by our FCN model (trained with both
conventional and weight pruning regimes), on a generated test data set
of radar signals with 4 to 6 interference sources, versus the oracle and
the zeroing baseline. The best results (excluding the oracle) are
highlighted in bold. The symbol ↑ means higher values are better and ↓

means lower values are better.

TABLE 7. Results provided by our FCN model (trained with both
conventional and weight pruning regimes), on a generated test data set
of radar signals with a number of targets between 5 and 10, versus the
oracle and the zeroing baseline. The best results (excluding the oracle)
are highlighted in bold. The symbol ↑ means higher values are better and
↓ means lower values are better.

than zeroing. Moreover, the1SNR is almost double for both
FCNmodels compared to the zeroing baseline. Regarding the
AUC, a measure which is very important in radar applications
because it describes the ability to disentangle targets from
noise, our best model has an improvement of 7.8% compared
to zeroing. In addition, we notice that weight pruning attains
better performance compared to the conventional training
regime, even when we test the generalization capacity on
out-of-distribution data. This further supports our claim that
weight pruning can act as a regularization method.

H. GENERALIZATION TO MORE TARGETS
Another less expected situation that can occur in real automo-
tive scenarios is generated by the presence of a multitude of
targets in the same range profile. To demonstrate the capacity
of our network to generalize to such situations, we generated
an additional synthetic test set of 2,400 samples, such that

each sample contains a randomly chosen number of targets
between 5 to 10. Our network trained with weight pruning
attains the best performance, as shown in Table 7. Our best
model has an improvement of 7.55 dB in terms of 1SNR in
comparison with the zeroing method. Moreover, the MAE
of the target’s phase is reduced by half for our best model,
when we take the zeroing baseline as reference. Once again,
the efficiency of weight pruning is highlighted by the results,
as it surpasses the conventional training method in terms of
all metrics.

VI. CONCLUSION
In this paper, we proposed a novel fully convolutional net-
work capable of estimating both magnitude and phase of
automotive radar signals affected bymultiple sources of inter-
ference. We also introduced a large-scale database of radar
signals simulated in realistic and complex settings. We com-
pared our FCN model with some state-of-the-art methods
in a series of comprehensive experiments, showing that the
proposed FCN provides superior results. We also released our
novel data set to allow objective comparison in future work.
To our knowledge, we are the first to establish a benchmark
data set for automotive radar interference mitigation with
multiple sources of interference. In future work, we aim to
modify our FCN or to explore model distillation approaches
in order to perform real-time processing on low-cost embed-
ded devices. At the moment, real-time processing is only
possible on expensive GPUs.
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