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ABSTRACT As the basis of human-computer interaction (HCI), gesture recognition interprets user-
performed gestures as commands, followed by the content execution expressed by users’ gestures. Gesture
recognition through wireless signals denotes a novel branch of human perception. Despite the recent
popularity of Radio Frequency Identification (RFID) following specific advantages (lightweight, low-
cost, and universality), several intricacies remain unresolved in RFID sensing research. First, most studies
performed simplified body movements assessments instead of identifying complex and fine-grained or
subtle gestures. Second, users require extensive training in a novel discipline to collect training data in a
specific pattern. Given the paucity of an intuitive and effective means of identifying user gestures, the RF-
E-letter proposed in this study denotes an RFID recognition system for complex, fine-grained, and domain-
independent gestures. A multi-label array was utilized to gather gesture signals. Fine-grained gesture data
could be obtained pre-processing with a novel data-processing method. Seemingly irregular RFID phase
data could be converted into intuitive images for the deep learning module input as convolutional neural
networks (CNNs) encompass automatic extraction characteristics for complex space-time features. The
average accuracy of new environments for novel users is 95.6% and 96.6%, respectively (significantly better

than current RFID-based solutions), thus demonstrating effectiveness and versatility.

INDEX TERMS Gesture recognition, RFID, tags.

I. INTRODUCTION

Given the rapid development of wireless technologies to
locate and track people [33], researchers have been exploring
different means of performing fine-grained human percep-
tion. Human gesture recognition implies one of the emerging
branches of human perception that significantly influences
multiple applications [32]: smart homes, virtual reality
(VR), sign language recognition, and smart cities [33]-[36].
Gesture recognition facilitates improved user experience
compared to conventional techniques. Gesture recognition in
public areas, such as hospitals, libraries, supermarkets, and
museums could improve user experience without physical
contact due to the current health crisis. The non-contact
approach could also prevent the spread of germs and bacterial
infections. People could also execute specific gestures to
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interact with smart assistants in 5G smart homes and further
promote smart home development.

Traditional solutions involving gesture recognition
typically utilize wearable sensors [3]-[9] and cam-
eras [1]-[4], [37] for gesture recognition. Nevertheless,
the approaches remain limited despite the high recogni-
tion accuracies of such alternatives. Although computer-
ized vision-based gesture recognition through cameras could
achieve high gesture recognition accuracy, the camera-based
approach is inefficient in dark environments and poten-
tially violates user privacy [10], [11]. Wearable sensor-
based approaches utilize inertial sensors, accelerometers,
smartphones, tablets, and smartwatches for gesture recog-
nition. In [61], the Myo armband was utilized for elec-
tromyographic (EMG) signal acquisition. A simple network
structure of a fully connected neural network was employed
to achieve seven specific gesture recognition. Although
the method could be effective and accurate for hand ges-
ture recognition, wearing such sensing devices might be
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practically inconvenient. For example, some older adults and
children might refuse to wear the devices or forget them at
home.

This study explored a flexible and deployable gesture
recognition mechanism. Generally, wireless signal-based
solutions recognize gestures as a particular user gesture
that would affect the wireless channel and cause RF signal
changes (amplitude or phase). Through specific gesture data
acquisition, data pre-processing, and gesture data feature
extraction [19], [20], the system could perform gesture recog-
nition with the extracted features: dynamic time warping
(DTW)-based template matching or distance-oriented clas-
sifiers. Regardless, both components require extensive and
labor-intensive data pre-processing and feature extraction.
Gesture recognition performance is also highly dependent on
the selection of feature extraction algorithm.

The recent development of deep learning has rapidly
advanced the CNNs in natural language processing (NLP),
image recognition, and other disciplines [48], [49]. As CNNs
could automatically learn and extract complex features, the
possibility of automatically extracting the feature represen-
tation of gesture signals from complex time-series wireless
signals is questioned. In this vein, a device-free, fine-grained,
and domain-independent (different environments and users)
gesture recognition system named RF-Eletter was designed.
Following Figure 1, the tag array and antenna were placed
facing one another while users drew specific letters in
between. The RF-Eletter subsequently mapped the captured
signal to the performed gesture. In the experiment, volunteers
freely drew the given letters between the antennas and tag
arrays in three different places: dormitory, conference room,
and classroom.

FIGURE 1. RF-Eletter’s lab scenario deployment.

Three barriers were encountered in designing the
RF-Eletter. Although the volunteers were not statically
placed (immobile) between the tag array and antenna
in the letter-drawing process, the users dynamically per-
formed letter-drawing that involved complex, diverse,
and fine-grained gesture transformations as many letters
encompassed similar hand movements (c vs. 1). Nevertheless,
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current commercial RFID readers provide signal (received
signal strength (RSS) and phase) indicators with limited spa-
tial resolution. As hand gesture recognition involves complex
spatio-temporal transformations, some subtle finger move-
ments might be difficult to identify. Due to the multipath
effects within the experimental environment, the additional
noise produced in the collected data caused complexities in
determining the letters drawn by users.

Compared to the conventional target recognition activity
using Received Signal Strength Indication (RSSI), the phase
reflected higher fine-grained resolution. Given that RSSI is
highly influenced by multi-path effects, the spectrograms
were compared through RSS and phase. The phase was uti-
lized for letter recognition works based on significant gesture
recognition features. The final barrier involved domain-
independent feature extraction works. Typically, RF sig-
nals carry much gesture-independent information with high
dependence on users and their environment (referred to
as domain in this study). As a gesture recognition model
trained by users in one environment would be significantly
less accurate in a novel domain, domain-independent fea-
ture extraction denotes a highly challenging issue. The RF
signal attributes also instigate complexities in implementing
domain-specific feature extraction.

Several solutions were identified in the raw signal and
deep learning network contexts to address the aforemen-
tioned intricacies. As current commercial RFID readers could
only provide limited information, sensing capabilities could
be optimized with two-dimensional multi-tag arrays. In this
study, a 2*3 two-dimensional tag array was deployed where
the spatial distribution could capture complex and fine-
grained gestures. Given the raw noise in the collected data
that is not easily recognized, smoothing, subtraction and nor-
malization operations, and data expansion were performed
on the gathered data to further optimize RF signal sensing
capability. A novel idea was proposed to convert the raw
phase data into a 100*100 pixel picture as the conversion
could intuitively represent the executed gesture as the deep
learning module input. A multimodal CNN was designed to
extract features and complex temporal and spatial features in
each tag. Spatio-temporal warping was employed to extract
modal features across time and space by extracting phase
features at higher levels. Accurate gesture recognition is thus
achieved by performing feature analysis.

This study experimented with three different scenarios
(conference rooms, classrooms, and dormitories) and invited
three volunteers (two men and one woman) to collect approx-
imately 6,000 sample sets for system evaluation. Notably,
the distance between the label array and antenna denotes the
distance set by the actual experiment.

The current study contributions could be summarized as
follows: (1) the RF-Eletter is device-free as the system
employs a (i) multi-tag array (2*3) and a (ii) multi-modal
CNN for feature collection and extraction to sense complex
and fine-grained gesture data; (2) RF-Eletter adopts a novel
approach to convert the original low-resolution RFID phase
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data into a more intuitive and high-resolution image as the
deep learning module input, thus facilitating the conversion
of complex and low-resolution gesture data while retaining
gesture-specific information; (3) dynamic, complex, fine-
grained, and device-free continuous gesture recognition is
attained on commercial RFID devices. Based on the results,
RF-Eletter is deemed to be flexible, deployable, and highly
accurate in recognizing different alphabetic gestures with an
overall accuracy of 96.1%.

The remaining sections in this article are organized
as follows: Section 2 presents the research overview,
Section 3 describes the preliminary work, Section 4 thor-
oughly explains the posture recognition system design,
Section 5 discusses the experimental method implementation
and evaluation, Section 6 elaborates on the study experiment
and future research prospects, and Section 7 concludes with
future studies and the study summary.

Il. RELATED WORK

A. GESTURE RECOGNITION TECHNOLOGY

Current gesture recognition is divided into three categories:
wearable-based gesture recognition, computerized vision-
based gesture recognition, and wireless technology-based
gesture recognition. Wearable sensor-based approaches uti-
lize sensors that are embedded in sensing devices to cap-
ture hand and finger movements. For example, [16], [50]
employed inertial sensors that were embedded into a bracelet
to recognize eating and smoking gestures while [15] inte-
grated gyroscopes and accelerometers with a glove and uti-
lized the glove to track subtle finger movements. Other
scholars employed bracelets for fine-grained gesture recogni-
tion [5], [18], [61]. In [61], the Myo armband was placed on
the forearm for gesture signal acquisition and duly processed
and utilized as input for a fully connected network to rec-
ognize gestures. Despite the prevalence of real-life wearable
sensing devices, people inevitably forget to wear the devices
or experience discomfort.

Computerized vision-based gesture or human recognition
systems employ cameras or light sensors [21]-[24] to rec-
ognize gesture movements or humans. In [22], the RGB
camera in a mobile device was utilized to recognize ges-
tures. In the deep learning environment context, comput-
erized vision-based methods were significantly optimized
and incorporated into activity and gesture recognition accu-
racies [1], [2]. Some researchers also utilized Kinect [26]
and Leap Motion [27], [28] to further improve gesture
recognition performance. Nevertheless, the systems are sus-
ceptible to variations in lighting conditions that do not
apply to occlusion-oriented situations. Although computer-
ized vision-based approaches encounter specific intricacies,
such as the invasion of user privacy, RF-Eletter is independent
of illumination-based conditions due to its lightness, scalabil-
ity, and pervasiveness.

Wireless infrastructure could provide device-free gesture
recognition given the prevalence of gesture recognition with
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wireless technology. The Wi-Fi [12]-[14], RFID [38]-[40],
ultrasound [41], [42], radar [43]-[45], and other wireless
technologies have been employed for gesture recognition,
such as the channel state information (CSI) of WiFi utilized
in reference [12] to whole-body activity and coarse-grained
gesture recognition. For example, [14] and [22] employed
WiFi signals to recognize common sign language and ges-
ture recognition. In [41], LLAP utilized a microphone and
speaker to precisely recognize hand-tracking in the millime-
ter range. Regarding wireless-based positioning and tracking
technologies, some researchers tracked object movements
with RF signal analysis [29], [30]. Witrack [29] employed the
frequency-modulated continuous-wave (FMCW) technology
to track target personnel with unique and complex equipment.
Although target gesture tracking was achieved by eliminating
the reflection from surrounding objects in [30], fine-grained
gesture recognition could not be attained as such methods
typically require specific equipment for gesture recognition.
Consequently, IoT devices were incorporated into various
applications [31]. Overall, RF-Eletter facilitates device-free
fine-grained gesture recognition as the system is incorporated
into commercial RFID devices.

B. RFID-BASED PERCEPTION

The RFID is generally utilized for object identification. For
example, [46], [47] employed RFID signals to determine
target materials, specifically liquid. Notwithstanding, recent
studies have revealed RFID signals to be information-rich
for localization [51]-[53], activity identification [54], [55],
human identification [56], [57], and vital sign detec-
tion [58]-[60]. Specifically, [60] proposed the LunkTrack
system that performs breath detection on a commercial RFID
device without any equipment placed on the target. Detection
could be accomplished through receivers’ signal fluctuations
following chest movements while breathing. Meanwhile,
optimization techniques serve to locate multiple RFID tags
and facilitate the system to monitor the breathing of two target
individuals.

The TagSleep system designed in [59] proposed a two-
layer sensing concept with breathing information as the first
layer to obtain rich second-layer sensing information, includ-
ing sleep activities (coughing, snoring, and sleep talking)
and detect the target individual’s breathing status through
subtle changes. Meanwhile, RFIDraw [55] was utilized for
a high-precision tracking of subtle hand movements. Some
researchers explored tagless sensing to avoid the inconve-
nience of physical body tagging. For example, TagFree [54]
extracted signal angle-of-arrival (AOA) information from a
multi-antenna array to achieve device-free activity recog-
nition albeit with AOA information processing. Although
current device-free RFID sensing solutions emphasize the
recognition of coarse-grained or simple gestures rather than
fine-grained and complex counterparts, accuracy tends to
decrease dramatically in novel environments or with new
users despite being domain-specific.
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C. RFID-BASED GESTURE RECOGNITION

Gesture recognition with wireless signals, such as RFID is
an emerging non-touch user interface technology that has
garnered much attention following its lightness, affordability,
and prevalence. CAO DIAN er al. [25] proposed RFree-GR,
a domain-independent RFID system that utilizes a 3*4 array
of tags to capture users’ gesture signals through the designed
multi-modal convolutional neural network (MCNN) to aggre-
gate information between signals, abstract complex spatio-
temporal patterns, and facilitate complex and fine-grained
gesture recognition. Despite an average accuracy of 90% for
novel users and environments, the system failed to recognize
dynamic gestures. Meanwhile, Ding et al. [17] recommended
RFnet to recognize static or dynamic gestures with time-
series RFID signals through extensive experiments in three
environments. Resultantly, RFnet achieved an average accu-
racy of 94.8% in dynamic gesture recognition. The system
reflected high recognition accuracy for dynamic gestures
albeit with reliance on a sensing plane that encompassed an
array of 7*7 tags.

Multiple tags might instigate coupling effects between tags
and cause the sensing plane to occupy a large space. In alle-
viating such effects and minimizing the occupied area, a 2*3
tag array was adopted as the sensing plane. The RF-Eletter,
a framework based on multi-branch CNN, was also proposed
as a novel approach to convert the raw low-resolution RFID
phase data into a more intuitive and high-resolution image
as the deep learning module input. The input subsequently
enabled the conversion of complex low-resolution gesture
data while retaining gesture-specific information. The model
was validated with extensive experiments. Based on the study
outcomes, the RF-Eletter system was found to be flexible,
deployable, and highly accurate in dynamic gesture recog-
nition.

Ill. PRELIMINARIES
This section presents some fundamental RFID technology
principles for an optimal RFID sensing model.

A. RF TECHNOLOGY PRINCIPLES

The RFID tags are utilized to perceive target environments in
RFID technology. When the tag accesses the antenna receiv-
ing range, the antenna subsequently senses the RF tag product
information in the environment through the RF signal emitted
by the reader. The read and decoded information is then
conveyed to the central information system for relevant data
processing. As a natural reflecting and receiving medium,
the human body encompasses a wide range of applications
in RFID. In the simulation environment of the RFID sys-
tem, the signal emitted from the antenna would be disrupted
by various media in the environment and induce different
waveforms. The RF-Eletter system parallels the RFID tech-
nology principle and deploys a tag array to capture human
finger movements and complete the gesture recognition
spectrum.
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1) RFID-AWARE TECHNOLOGY PRINCIPLES

In RFID systems, the reader transmits an RF signal from the
antenna for target label access, derives energy from the RF
signal to respond, and returns the backward-scattering signal
S (1) to the reader as follows:

S() = a()e O 1)
4md
0(1) =6+ — 2

Specifically, o (#) and 6 () denote the receiving signal
amplitude and phase, respectively, 6y implies the initial
offset, i is an imaginary unit, d reflects the propagation path
length, and A demonstrates the wavelength. A dynamic signal
impacts the signal change when the user gestures between
antennas and labels. Static signals beyond user influence are
also identified. Thus, S (¢) can be computed as follows:

N (t) = Ss (t) + Sd (Z) == (){Se_ig-r + ay ([) e—ied(l) (3)

The S and S, represent static and reflective dynamic sig-
nals, respectively. Human reflection causes shifts in phase
and receiving signal. As amplitude is not a primary factor in
this experiment, dynamic amplitude(ay) and static amplitude
(o) are perceived as constants and (3) could be computed as
follows:

St) =« (e-fes + e_ie"(t)) @)

The final S () result is conclusively obtained.

2) PRELIMINARY EXPERIMENTS

A set of 2 x 3 tag arrays were utilized to study the effect
of human motion on the back-scattered signal while 4 x 3
tag arrays were employed for data acquisition following [25].
Resultantly, 2 x 3 tag arrays enabled the acquisition of com-
plex and fine-grained gesture data. Dynamic gestures were
also performed between the tag arrays and antenna to collect
RSS and phase values. A high coupling effect was identified
when the tags were placed closer to one another. As the
spacing between the tags deployed in this study exceeded
15 cm [59], higher accuracy was attained with fewer tags.

B. SETTINGS OF THE EXPERIMENTAL DEVICE
Two fundamental questions are posed before conducting a
human gesture recognition experiment: (1) How to select
and set labels to capture motion gesture information? and
(2) How can the distance between the antenna and label be
controlled? Based on past research, the H47UHF label was
selected and formed into a2 x 3 label array to precisely cover
human gestures and produce more accurate signal changes.
The label array of 2 x 3 could also better eliminate coupling
effects with higher accuracy and fewer labels. Figures 1a and
b demonstrate the H47UHF labels and label array settings
employed by the RF-Eletter system, respectively.
Specifically, volunteers were only required to move their
fingers slightly in drawing the corresponding letters without
overstretching the label to the antenna (direct distance) and
controlling the label-antenna distance in RF-Eletter at 35 cm.
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(b)
FIGURE 2. a) H47UHF label. b) Experimental label array.

C. GESTURE AWARENESS ANALYSIS

This study analyzed the perceptions of human gesture recog-
nition. Figures 3a and b illustrate the RSS and phases
under various dynamic letters, respectively. Different ges-
tures exhibited distinct waveforms with higher recognition
compared to RSS. Generally, the signal received by the
antenna from the label contained human gesture informa-
tion that could be analyzed by docking the signal to deduce
human body gestures. In Figure 3a, the RSS in human ges-
ture perception demonstrated a less obvious trend of change.
Thus, a phase was chosen in this experiment to perform
the corresponding experimental analysis of human gesture
recognition [25].

Different users’ human gesture recognition capabilities
were also studied. Figures 4a and b represent the RSS and
phase maps, respectively when various users wrote the same
dynamic gesture under the same label. Specifically, differ-
ent users demonstrated distinct characteristics for the same
gesture. In this experiment, as many gestures as possible
were gathered from different users to increase dataset diver-
sity. In comparing the RSS and phase spectrums, phase was
found to contain palpable and recognizable human gesture
characteristics.

The ability of different labels to recognize human gestures
was also examined. Figure 5 represents a phase map where
the same user wrote the same dynamic gesture under different
labels. Resultantly, different labels reflected different varia-
tions in the user’s characteristics. Based on the user’s time-
varying characteristics, a 2 x 3 label array was implemented
to minimize the perceived blind spot of the RFID signal.
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FIGURE 3. a) RSS information under different letters. b) Phase
information under different letters.

Based on the study experiment, label 5 was selected as the
experimental analysis label given that tag 5 was more rec-
ognizable to the user’s gestures. For example, the volunteers
habitually utilized five labels as references when writing ges-
tures. In comparing the RSS and phase spectrums, phase was
found to contain palpable and recognizable human gesture
characteristics.

IV. SYSTEM DESIGN

This section provides an overview of the study system (see
Section 4.1) and thoroughly elaborates on the core system
modules.

A. OVERVIEW OF THE SYSTEM

Following Figure 6, RF-Eletter primarily encompasses three
modules: signal acquisition, signal pre-processing, and deep
learning. In the signal acquisition module, a 2 x 3 RFID tag
array was employed to capture the original RSS and phase
values. Based on the original signal analysis, the phase was
finally selected as the characteristic signal input follow-up
module. In the signal pre-processing module, the original
phase was subtracted to highlight the differences between
different gestures and normalize the processed signal data
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FIGURE 4. a) RSS information for different users. b) Phase information for
different users.
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FIGURE 5. Phase information under different labels.

into the data-smoothing operation for low noise interference.
Additionally, the data was expanded to further improve data
diversity and output for conversion into the image format.
Lastly, the pre-processed signal data were incorporated into
the deep learning module for gesture recognition.
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FIGURE 6. Overview of RF-Eletter systems.

B. SIGNAL PRETREATMENT MODULE

Owing to environmental noise and interference, it was
deemed inappropriate to directly integrate the original signal
with the neural network for training. Thus, the signal was ini-
tially incorporated into the pre-processing module for optimal
signal recognition.

1) SUBTRACTION OPERATIO

Based on the antenna-tag array distance, reader, and tag
(physical characteristics of the impact), the original signal
was frequently accompanied by environmental noise in the
output. In this vein, the signal output significantly differed
from the anticipated counterpart. The RFID acquisition of
phase denoted the super-position of LOS and NLOS signals.
As the NLOS signal primarily occurred through static (tables
and chairs) and dynamic (human gesture motions) reflection
within the RFID hardware, the signal was initially gathered in
an empty environment without the dynamic reflection signal.
Gesture motion was then performed between the RFID and
tag for signal collection by subtracting both signals [17].
The dynamic reflection signal could be extracted following
human gesture motions and the reflected dynamic signal
caused by human gesture movements. The signal was then
utilized as the characteristic signal of human gesture move-
ments. The noise interference from physical characteristics,
such as the environment could be effectively omitted for a
distinct feature curve.

2) DATA NORMALIZATION

In RFID systems, the original phases gathered might demon-
strate different scale units following the nature of the label
and position of human gesture movements to alleviate data
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comparability and gesture recognition accuracy. Data nor-
malization operation aimed to normalize the original data
to the same order of magnitude, resolve the comparability
between data indicators, and improve the model convergence
rate and accuracy. Specifically, the minimum-maximum stan-
dardized method was implemented for a linear transformation
of the original data (X7) output as follows:

X — min
Xi=—— (5

max — min

Specifically, X denotes the subtraction processed data, max
implies the maximum value of the current sample data, and
min reflects the minimum value of the present sample data.

3) DATA SMOOTHING

Excessive noise from raw data is a common challenge in
gesture recognition experiments, such as the original data ““a”
output from tag 1 (see Figure 7). Specifically, output “a’ was
merely smoothed due to the jittery signal and complexities in

distinguishing accuracy.

The original ‘phase of "a"

Phase(radian)

0 50 100 150 200 250 300
Timestamp

FIGURE 7. Label 1 outputs the original phase information for the
letter “a.”

The fundamental notion of data smoothing could be sum-
marized as “hijacking the rich and the poor”. In other words,
the probability distribution was inclined to the actual level as
much as possible for increased zero probability (low prob-
ability) and reduced high probability. In this study, the data
were smoothed with a Savitzky-Golay filter that proved more
appropriate for RFID following data change dominance. The
width of the filter window was set to m = 2n + 1, the
prediction point was x = (t —n,t —1,--- ,t,t+ 1, +n),
and the data in the window was fitted with a k — 1 polynomial.
The fitting formula is presented in (6) as follows:

y=a0+a1x+a2x2+...—i—ak,lxk_l (6)

In obtaining a similar solution and 2n + 1 > k, the least
squares were obtained to determine the fitted parameter A as
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presented in (7):
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: Do : : : —1
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€t—n
€r—1
+| e (N
€r+1
€t+n
The matrix above is simplified as follows:
Yontyx1 = X@nt1yxk - Akx1 + E@nt1yx1 3

In the aforementioned formula, Y, X, A, and reflect the
matrix representations of the formulas in (7) while the sub-
scripts represent their respective dimensions. For example,
Ay represents a parameter with k rows and 1 column.
The solution of A« could be derived from the least square
method as follows:

A:(XT-X>_1-XT~Y ©)

The aforementioned mark, 7', indicates transposition. The
predicted or filtered model Y value is computed as follows:

—1
P:X.A=X.(XT.X) xT.y=B.Y (10

Lastly, a matrix of the filter value-observation relationship
is formulated as follows:

B:X.(XT.X)_l.XT (11)

The observations could be quickly converted into filter
values for data smoothing upon obtaining matrix B.

4) DATA AUGMENTATION

Neural network training requires large data to mitigate value
loss and obtain high accuracy. Convolutional networks tend
to overfit in managing small datasets. To prevent overfitting
and attain a better training effect, the study dataset required
expansion for high accuracy. In the study system, the data
deformation and adjustment method for increased dataset
optimized data diversity and robustness. Specifically, the data
output was smoothed as a 100 x 100 pixel image. The lit-
erature [17] uses GAN for data expansion. Regardless, the
expanded data image resulted in biased training data. As the
effect of incorporating the biased data into the deep learning
module could not attain the anticipated effect, noise was
embedded into the converted image to expand the training set
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and convey the data to the deep learning module as network
input.

C. DEEP LEARNING MODULE

The collected gesture signals were pre-processed and uti-
lized as the deep learning module input to implement feature
extraction and gesture recognition. This section introduces
the deep learning module in detail (see Figure 8). The frame-
work diagram of this designed network encompasses two
parts: feature extractor and gesture recognizer.

Feature Extraction .

’ (ONV ' RELV ' pooL ’ [y SOFTMAX

FIGURE 8. CNN frame.

Gesture Classifier

1) FEATURE EXTRACTION PHASE

A three-tier CNN network structure was employed for feature
extraction. The data were pre-processed for input to the deep
learning module. The CNN was utilized following its suitabil-
ity in analyzing the time-series of sensing data and optimizing
feature extraction from the fixed-length segment of the whole
sequence. The convolution layer output characteristics are
defined as follows:

X = POOL (ReLu (WXO0 + b)) (12)

This study utilized a three-layer convolution. The convolu-
tion core size was 3 x 3, the number of data input channels
was three, the number of channels in the first layer convo-
lution was eight, the number of channels in the second-layer
convolution was 16, and the number of channels in the third
convolution was 24. Through the three-layer convolution,
different dimensional phase features could be extracted from
the pre-processed image.

After the image passed through the convolution layer, the
ReLU activation layer [19] was employed to increase the non-
linear segmentation ability of the image and apply the aver-
age pooling operation to the activated image along the time
dimension. As such, the network parameters could be reduced
to prevent overfitting through pooling operation. A high-level
phase representation was extracted using CNN as follows:

RM = FE (X, 6fe) (13)

Specifically, x denotes a picture of the pre-processed data
while 0fe represents all the feature extraction parameters.
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2) GESTURE RECOGNITION STAGE

As the advanced feature representation of gesture data was
obtained post-feature extraction, the gesture recognizer could
simply employ the complete connection and softmax layers
for gesture classification.

GP = GR (RM,, Ogr) (14)

The 6gr implies all the gesture recognizer (GR) parame-
ters. Additionally, the cross-entropy loss function could be
implemented to compute the LG loss between the predicted
GP and ground truth (GT):

N J
Ly (6, 0r) = —Ilv DA (GTZ) (15)
1 1

Notably, N and J denote the number of gesture samples
and categories, respectively.

V. IMPLEMENTATION

This section presents the hardware and software employed
in this experiment with RFID equipment and multi-label
arrays to test and verify the model accuracy and performance.
Based on the experimental parameters (see Table 1), the study
model was designed based on different novel domains and
various users with average accuracies of 96.6% and 95.6%,
respectively.

A. EXPERIMENTAL ENVIRONMENT

Three experimental sites were designed in this study. Exper-
imental site 1 was arranged in a classroom area of approx-
imately 7m x 10m with several tables and chairs (see
Figure 9). Experimental site 2 was arranged in a conference
room area of approximately 7.2m x 8.5m with much elec-
tronic equipment (see Figure 10). Experimental site 3 was
arranged in a dormitory area of approximately 4.5m x 8.5m
with four iron bunk beds (see Figure 11). The label array was
designed as a 2*3 two-dimensional multi-label array with a
target in the antenna and label array at a 35 cm distance.
Regarding gesture recognition, the user sat in front of the
desk and performed specific gestures between the antenna
and tag array for users’ gesture movements, data extraction,
and identification by transmitting Ethernet to the PC side.

B. HARDWARE FACILITIES

The hardware encompassed four parts: an Impinj R420RFID
reader (see Figure 12) operating at 920.875MHz, an RFID
UHF circular polarization antenna (see Figure 13), six 4 cm
x 4 cm labels, and a Lenovo R7000p computer.

C. SOFTWARE FACILITIES

The study model was operated on a Lenovo computer
equipped with 2.5GHz AMDR?7 and 16G memory (for data
acquisition and pre-processing), RFID card readers con-
nected to laptops through Ethernet cables, and low-level card
reader protocols (LLRPs) for communication. The method

155267



IEEE Access

Z.Yang et al.: RF-Eletter: Cross-Domain English Letter Recognition System Based on RFID

i~ A ™~ I

(] o

M A

AN/ I~ X

o o

N A/

! X
D Reader antenna O O
=S \ORN)

* Volunteer m H H
ATag array o A =l o
Reader M M @ M

o

FIGURE 9. Classroom experiment scene diagram.

D Reader antenna

* Volunteer
A Tag array
" Reader

FIGURE 10. A picture of the lab scene in a conference room.

was implemented by ¢ while the designed neural model was
implemented with Python.

D. EXPERIMENTAL DATA SET
A total of 15 volunteers (eight males and seven females) were
invited for data collection. Specifically, 10 of the individuals
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FIGURE 11. Dormitory experiment scene map.

FIGURE 12. Impinj R420 RFID reader.

FIGURE 13. UHF circular polarization antenna.

were randomly employed for dataset training while the
remaining five encompassed the test set (three males and
two females). Each volunteer drew seven different letters in
three distinct scenes. Drawings ¢ and I produced more similar
images while i and w produced images that significantly
differed. All seven letters were utilized for drawing as the
letters proved sufficient to cover the 26-letter differences
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TABLE 1. Experimental parameter table.

Parameter Value

Spacing between adjacent labels Scm

Spacing between tag and antenna 35cm

Angle between antenna and ground 90°C
Reader frequency 920.875MHz

between them. Each letter was drawn 25 times. Lastly, the
collected dataset was expanded by embedding noise into it
thrice. Out of the 23, 625 gathered data (25*7*15*3*3), 15,
750 (25%7*10*3*3) were training set samples while 2625
(25%7*5*3) were test set counterparts.

E. METRICS

Two evaluation metrics accuracy and correct recognition
(FRR) were employed to describe the model performance.
The ACC measures the likelihood of precisely recognizing
users’ gesture movements as follows:

B TP + TN
" TP+ FP+FEN+ TN

The TP represents the number of accurately predicted posi-
tive examples while TN reflects the number of accurately pre-
dicted negative examples. The FP represents the number of
inaccurately predicted positive examples while FN represents
the number of negative inaccurately predicted examples. The
FRR implies the model likelihood of precisely identifying a
word as ‘yes’ and is computed as follows:

TP
" TP+ FN

ACC (16)

FRR (17)

F. PERFORMANCE IN DIFFERENT ENVIRONMENTS

Comparative experiments were performed to authenticate the
cross-domain performance of the study model. Three envi-
ronmental types were established without loss of generality.
Environment 1 involved a classroom with four tables and
chairs in an area of approximately 7m x 10m. Environ-
ment 2 encompassed a conference room with an area of
approximately 7.2m x 8.5m and multiple electronic devices
interfering in the experimental environment. Environment 3
involved a dormitory encompassing an area of approximately
4.5m x 8.5m with four iron bunk beds. Each user drew
175 gestures per environment (25 per letter). The FRR rate
of the RF-Eletter system was evaluated using the model
(see Figures 14 and 15). The matching model accuracies in
conference rooms, dormitories, and classrooms were 93.14%,
97.14%, and 100%, respectively. Following the interference
of multiple electronic devices in the conference room, the
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phase characteristics of the words ¢ and 1 were similar while
the FRR rate was under 90%. Regardless, the average accu-
rate recognition rate of other words exceeded 95%.

G. PERFORMANCE UNDER DIFFERENT USERS

The impact of different users’ performance regarding the
same gesture on the channel was explored despite performing
the same action. Regardless, different users demonstrated
various signal impacts following distinct letter-drawing
speed, size, and other relevant factors. In authenticating
the RF-Eletter model accuracy for different users’ gesture
recognition, five volunteers were invited to participate in
this experiment. The participants executed seven letters in
Environment 2 by drawing each letter 25 times. The FRR
rates of the RF-Eletter system for different users’ gesture
recognition are presented in Figures 16 and 17.

The average matching accuracy of recognition among the
five volunteers with the RF-Eletter model was 100%, 98.28%,
89.14%, 96%, and 96.57%, respectively. The accuracy of user
3 was under 90% as the phase maps of ¢ and 1 that were
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drawn by the user were more similar and resulted in lower
model accuracy. The FRR rate performance results could be
divided into two groups. The first group encompassed gesture
activities a, m, r, t, and w with an average FRR rate exceeding
97%. The second group involved gesture activities ¢ and 1
with an average FRR rate of 88.8% and 93.6%, respectively.
Compared to the first group of activities, the measurement
accuracy of gesture recognition was mitigated as the ¢ and t
gestures were highly similar during the drawing process.
Although the phase graphs were not significantly different,
the system still provided a correct rate exceeding 88.8%.

H. PERFORMANCE UNDER DIFFERENT

INTERFERENCE FACTORS

The system design and production are influenced by metal
and electronic products as RFID tags and other electronic
products are susceptible to interference from metals and
other wireless signals. Metal would cause eddying currents
around the over-clocked RFID tags and readers and reduce
the overall effectiveness of the RFID electromagnetic field.
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The surrounding objects would also reflect RFID signals and
cause interference. In verifying the model performance under
the interference factors, three scenarios were established for
comparison. Regarding Scenario 1, the user performed a
gesture action in Environment 3 without interference factors.
Regarding Scenario 2, a metal water cup was placed close
to the tag and reader. The user performed the gesture action
while the metal water cup caused interference.

Concerning Scenario 3, the user performed a gesture
with multiple people walking around the house and causing
interference. The user performed such gestures 175 times
(25 times for each letter) in every scenario. The exper-
imental results are presented in Figures 18 and 19. For
each different scenario, the average accuracy reflected 100%,
98.28%, and 97.14%, respectively. The accuracies measured
in Scenarios 2 and 3 proved similar to the counterpart
without interference factors (Scenario 1), thus indicating
the high resistance of RF-Eletter against environmental
interference.

Accuracy under interference factors
r
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FIGURE 18. ACC under interference factors.
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FIGURE 19. FRR under different interference factors.
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I. COMPARISON WITH OTHER GESTURE

RECOGNITION ALGORITHMS

A novel method was adopted in RF-Eletter to convert the
initial low-resolution phase data into more intuitive and high-
resolution pictures. The pictures were utilized as the training
model input of the CNN network for gesture recognition.
A series of comparative experiments were constructed to ver-
ify the gesture recognition algorithm effectiveness. Several
advanced gesture recognition systems were compared based
on wireless signals, such as RFree-GR [25] and RFnet [17]
(see Figure 20). The average accuracy rates of RFree-GR
for novel users and environments were 89.03% and 90.21%,
respectively (lower than the two preceding counterparts). The
RFnet utilized a 7*7 tag array to increase the average accuracy
of novel users and environments to 95.1% and 94.4%, respec-
tively. Contrarily, RF-Eletter demonstrated the most optimal
performance in both tests at 95.6% and 96.6%, respectively
with fewer tags for higher accuracy.

VI. DISCUSSION

The RF-Eletter system encountered some limitations in real-
life applications. First, more gesture data were required to
practically meet specific application prerequisites. Addition-
ally, the designed neural network required additional param-
eters for real-time gesture recognition. This study aimed to
employ the simple fully connected neural network in [61]
for real-time gesture recognition and improve the gesture
recognition algorithm in the future. In this vein, the MUSIC
(multiple signal classification) algorithm was deemed appro-
priate. The researchers intend to design a neural network with
better robustness and generalizability for real-time detection
and gesture recognition to complement realistic future appli-
cations.

Although the designed RF-Eletter could achieve individ-
ual letter recognition in different domains, word recogni-
tion proved challenging following the highly complex and
fine-grained gesture recognition of words (an intriguing com-
plexity to be examined in future research). As such, data
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segmentation and subsequent techniques [62] could be con-
sidered to split the words into different parts and splice the
content for word recognition. Different signal waveforms
could also be generated for different words through relevant
word recognition analysis.

Lastly, RF-Eletter required more gesture data to accu-
rately identify gesture performance for different users.
The researchers aim to implement the DCGAN adver-
sarial neural network in future research to retain spe-
cific gesture-related information and omit domain-specific
knowledge using the adversarial learning process for
improved model generalization capabilities. In this vein,
the DCGAN network facilitates data expansion and user-
environmental domain distinctions for accurate user gesture
recognition.

VIi. CONCLUSION

This study proposed RF-Eletter, a device-free, RFID-based,
and domain-independent system that facilitated complex and
fine-grained gesture recognition. The RFID tag array was
implemented to efficiently capture gesture space-time trans-
formations. Subtraction operation and the data normalization,
smoothing, and expansion of some pre-processing columns
were performed to ensure that the original variance was
not particularly high. The RFID gesture signal could be
utilized for CNN network feature extraction towards accu-
rate and robust gesture recognition. Multiple experiments
demonstrated RF-Eletter to reflect an average accuracy of
100% in classrooms and 95.6% and 96.6% in other coun-
terparts (different users in different scenarios). As the rate
proved higher than the current RFID-based gesture recogni-
tion scheme, RF-Eletter designs could significantly facilitate
gesture-based HCIs.
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