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ABSTRACT Discrepancies between the needle feature position on magnetic resonance imaging (MRI)
and the underlying physical needle position could increase localization errors during needle-based targeting
procedures in MRI-guided percutaneous interventions. This work aimed to develop a deep learning-based
framework to automatically localize the physical needle position using only the needle features on
MR images. Physics-based simulations were performed to generate single-slice and 3-slice images with
needle features from a range of underlying needle positions andMRI parameters to form datasets for training
single-slice and 3-slice Mask Region-Based Convolutional Neural Network (R-CNN) models for physical
needle localization. Ex vivo tissue images were combined with simulated needle features for fine-tuning.
Next, the physics-driven Mask R-CNN models were combined with a previously developed Mask R-CNN
model for needle feature localization to form an automated framework to localize the physical needle. To test
the accuracy of the proposed framework, both single-slice and 3-slice MRI data were acquired from needle
insertion experiments in ex vivo tissue phantoms. Using the single-slice model, the proposed framework
achieved sub-millimeter physical needle localization accuracy on single-slice images alignedwith the needle.
The fine-tuning step reduced in-plane physical needle tip localization error (mean±standard deviation) to
0.96±0.69 mm in ex vivo tissue data. The 3-slice model further reduced the through-plane physical needle tip
localization error to 2.3±1.1 mm in situations where the imaging plane may be misaligned with the needle.
The processing time of the framework using both models was 200 ms per frame. The proposed framework
can achieve physical needle localization in real time to support MRI-guided interventions.

INDEX TERMS Interventional MRI, device tracking, needle susceptibility, deep learning, convolutional
neural network.

I. INTRODUCTION
The success of minimally invasive image-guided percuta-
neous procedures, such as targeted biopsy and focal abla-
tion, depends on intra-procedural imaging to visualize tissues
and devices (i.e., needles) simultaneously for guidance and
confirmation [1], [2]. Magnetic resonance imaging (MRI)
has multiple advantages for intra-procedural imaging, includ-
ing high soft tissue contrast, flexible plane orientations,
and no ionizing radiation [3]–[6]. In addition, recent

The associate editor coordinating the review of this manuscript and

approving it for publication was Marco Giannelli .

developments of robotic needle control based on real-time
MRI have potential to achieve dynamic needle placement
with high accuracy [7]. Automatic, accurate, and rapid needle
localization will be required for needle adjustment under both
intra-procedural and real-time MRI guidance.

Automatic needle localization based on the passive
needle feature is challenged by variations of the needle
susceptibility-induced signal void feature due to different
situations [8], [9]. Recently, we have developed a deep
learning-based method to segment and localize the needle
feature on MRI at the instance level using mask region-based
convolutional neural networks (Mask R-CNN) [10].
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R-CNN directs the strong classification power of CNN to
certain regions instead of each pixel. An additional mask
branch is integrated with the R-CNN to form an end-to-end
instance segmentation network [11]. Our model trained with
manual annotations of the needle feature achieved rapid
(60 ms/frame) and accurate (median tip error around single
pixel) needle feature detection and segmentation on differ-
ent types of MR images. Furthermore, the processing is in
real-time since no additional ensemble method, as adopted
in other pixel-based CNN segmentation methods [12], [13],
is required. Although these emerging deep learning-based
techniques show promise for accurate detection and seg-
mentation of the needle feature on MRI, a major limitation
is that the discrepancy between the needle feature and the
underlying physical needle position has not been addressed.

The susceptibility difference between the needle and
surrounding tissue causes magnetic field perturbation and
MR signal dephasing [8]. With MR-compatible needle mate-
rials, such as titanium alloys, the needle susceptibility and
geometry usually lead to a long tubular signal void feature
on MR images. This needle signal void feature can have
an irregular shape at the tip and the axis can be shifted
from the physical needle axis [9], [12], [14]–[16]. Therefore,
even if the image plane is perfectly aligned with needle,
there may be discrepancies between the needle feature and
physical needle [9], [14], [17]. Previous studies [15], [17]
have reported that this discrepancy can reach 5-10 mm and
depends on theMRI sequence type and parameters, the needle
material, and the needle’s orientation relative to the B0 field.
For reference, clinically relevant tumors for image-guided
interventions may have a diameter of 5-10 mm [18]. There-
fore, only localizing the needle feature tomonitor the physical
needle position during the procedure may cause substantial
errors in needle targeting.

There are some approaches that have potential to overcome
this limitation. One approach is to reduce or correct the
distortion of the signal void feature vs. the physical object
with multispectral MR imaging. For example, slice-encoding
metal artifact correction (SEMAC) can minimize the average
needle tip error (∼0.4 mm) with improved time efficiency
using compressed sensing (CS) reconstruction [19]. How-
ever, the combined acquisition and reconstruction time of
CS-SEMAC (∼30 sec) is still not appropriate for immediate
updates of the needle position for feedback during proce-
dures. Another approach is to reconstruct the precise physical
object shape by forming an inverse problem based on a set
of acquired MRI signals. The forward modeling of the nee-
dle susceptibility-induced signal void has been reported for
different sequence parameters and needle geometry [9], [20].
However, due to the ill-posed nature of the inversion problem,
multi-orientation sampling and iterative computation similar
to strategies for quantitative susceptibility mapping may be
required [21], which are not practical for time-sensitive inter-
ventional procedures.

Supervised deep learning using CNNs is a potential
approach to rapidly and accurately calculate solutions to

ill-posed inversion problems involving magnetic suscep-
tibility. For example, DeepQSM [22] and QSMNet [23]
both use pixel-level semantic models based on U-Net [24]
to solve ill-posed field-to-source inversion problems and
reconstruct quantitative tissue susceptibility maps from
single-orientation MRI phase data with rapid inference time.
Hence physical needle localization based on the needle fea-
ture may potentially be achieved using a deep learning-based
approach. These previous pixel-based CNN models aimed
to solve for the tissue susceptibility map over the entire
field of view (FOV) based on the phase map, but this may
not be suitable for the physical needle localization problem,
which requires local information about the device. In addi-
tion, pixel-level semantic methods could be sensitive to false
detection of small objects (e.g., a needle segment in a full
FOV image). Therefore, a deep learning-based framework
using an instance-level method such as Mask R-CNN can
have advantages for physical needle localization.

In MRI-guided interventions, single-slice and multi-slice
imaging are used to inform different aspects of the proce-
dure. Imaging plane orientation selection for intra-procedural
single-slice and multi-slice imaging is typically performed
using information from a multi-slice planning scan in order
to ensure that the needle feature is aligned with the slices
with minimal through-plane deviation. Single-slice MRI is
usually performed to achieve dynamic needle guidance with
fast imaging speed [3], [25]. However, through-plane mis-
alignment between the image plane and needle could lower
physical needle localization accuracy using single-slice MRI.
Sequential multi-slice and orthogonal plane acquisitions have
the potential to assist interpretation of this misalignment by
physicians [26], [27]. In particular, 3-parallel-slice imaging is
a recommended choice from previous studies [26], [28] and
our clinical interventional radiologist colleagues.

The main objective of this study was to develop and test an
instance-level deep learning framework using Mask R-CNN
to automatically and rapidly localize the physical needle
position from the passive needle features on MRI. This study
first established a single-slice physical needle localization
model based on Mask R-CNN by assuming the physical
needle was perfectly aligned with the MRI scan plane and
focused on addressing in-plane discrepancies between the
needle feature and the physical needle. In addition, this study
established a 3-slice physical needle localizationmodel based
on Mask R-CNN to estimate the physical needle position
in the in-plane and through-plane dimensions for 3D local-
ization. Preliminary versions of this work were previously
published as a conference abstract [29] and a chapter in the
author’s Ph.D. dissertation [30].

II. METHODS
A. OVERVIEW OF THE PHYSICAL NEEDLE LOCALIZATION
FRAMEWORK
We developed a new physical needle localization frame-
work consisting of two Mask R-CNN stages (Figure 1), with
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FIGURE 1. (a) The overall physical needle localization framework consisted of two stages of Mask R-CNN. In both stages, the region
proposal network (RPN) was initialized with 64 anchors for candidate region creation. The first ‘‘needle feature’’ Mask R-CNN detected
and segmented the needle feature on an MR image with field-of-view (FOV) of 300× 300 mm2. Next, the single-slice image or 3-slice
images with needle features were automatically cropped to an in-plane FOV of 75× 75 mm2 centered at the detected needle feature tip
and used as the input to the second ‘‘physical needle’’ Mask R-CNN, with options (b) and (c), which detected the 2D or 3D physical
needle tip and axis. (b) The single-slice physical needle Mask R-CNN was trained using physics-based simulated data of single-slice
MRI. Ground truth labels for training were structured as a 2D bounding box with corners that defined the physical needle tip location
and axis orientation. Dashed lines indicate data labels and computation steps for training. (c) The 3-slice physical needle Mask R-CNN
was trained using physics-based simulated data of 3 adjacent parallel slices of MRI. Ground truth labels for training were structured as
a 3D bounding box with corners that defined the physical needle tip location and axis orientation.

the software implementation based on Keras and Tensor-
flow [31]. For the first stage, we used a ‘‘needle feature’’
Mask R-CNN that we previously trained to detect and seg-
ment the needle feature on the input MR image [10]. Based
on the results of the first stage, the image was automatically
cropped to a patch centered on the needle feature. For the
second stage, we trained two separate ‘‘physical needle’’
Mask R-CNNmodels: 1. A single-slice physical needleMask
R-CNN that takes a needle feature patch from a single slice
as input to localize the in-plane 2D physical needle tip and
axis (Figure 1b), and 2. A 3-slice physical needle Mask
R-CNN to localize 3D physical needle position (in-plane
and through-plane) on three adjacent and parallel slices
(Figure 1c). Single-slice and multi-slice MRI simulations
and experiments were performed to train, validate, and test
the proposed framework for physical needle localization.

Ex vivo tissue phantom data were acquired for testing, since
the tissue features resemble features on in vivo MRI and the
phantom setup allowed us to measure the physical needle
position under controlled conditions to serve as the reference.

B. MRI-GUIDED NEEDLE INSERTION EXPERIMENTS
We used a golden-angle (GA) ordered radial spoiled gradient-
echo (GRE) sequence [32] for real-time 3T MRI-guided nee-
dle (20 gauge, 15 cm, Cook Medical) insertion in phantoms.
Three sets of imaging parameters (echo time [TE] = 1.9 ms,
readout bandwidth [BW]= 888 Hz/pixel; TE= 3 ms, BW=
888 Hz/pixel; TE = 2.8 ms, BW = 300 Hz/pixel) and differ-
ent needle orientations were used to create variations in the
passive needle feature on MRI. To achieve sufficient image
quality and signal-to-noise ratio (SNR) for needle visualiza-
tion, a temporal resolution of around 1 sec/frame was used for
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TABLE 1. Imaging parameters for real-time radial radiofrequency
(RF)-spoiled gradient-echo (GRE) MRI of the gel phantom and ex vivo
tissue phantom at 3T. Three combinations of repetition time (TR), echo
time (TE), and bandwidth (BW) were used to acquire images with
different tissue contrast and needle signal void feature. Similar imaging
parameters were used to generate simulated images that form the
network training dataset. 3-parallel-slice input used the same imaging
parameters and had temporal resolution of 2.4-3.6 sec/image.

single-slice real-timeMRI. The imaging parameters are listed
in Table 1. Images were reconstructed using non-Cartesian
conjugate gradient sensitivity encoding (SENSE) with recon-
struction window size of 200 radial spokes [32], [33].

We performed needle insertion experiments in gel and
ex vivo tissue phantoms (Figure 2a). The ex vivo tissue (pork
shoulder or beef chuck steak) was submerged underneath
gelatin to create a flat surface on the top. An MRI-visible
fiducial marker (MR-SPOT, Beekley Medical, Connecticut,
USA) was affixed to the surface to define the needle entry
point (Figure 2b). To directly control and confirm the physical
needle orientation and insertion depth during experiments,
we used an MRI-compatible master-slave needle actuator
system [34]. We defined the orientation of the needle in terms
of its rotation angle (θ) in one plane and tilting angle (α) in the
orthogonal plane (Figure 2c). A linear guide on the actuator
ensured a straight needle insertion path and a fixed length of
the needle (50 mm) was inserted so that the physical needle
tip can be measured in 2D image coordinates based on the
position of the fiducial marker. These measurements were
taken as the references of the physical needle tip position and
axis orientation (Figure 2d) for single-slice physical needle
Mask R-CNN. The range of needle axis orientation is
reported in Table 2.

In addition, a similar set-up was used to acquire the ref-
erence physical needle position for 3-slice physical needle
Mask R-CNN. One smaller MRI-visible fiducial marker was
affixed on the surface to mark the needle entry point and
another longer fiducial marker was attached on the needle
shaft. 3D high-resolution T1-weighted gradient echo images
with isotropic voxel size of (0.6 mm)3 were acquired to mea-
sure the physical needle position based on the pre-determined
position of the entry point relative to the small fiducials
and a fixed needle insertion length (60 mm) (Figure 3b-d).
The reference physical needle tip positions were measured
in the RAS (right/left, anterior/posterior, superior/inferior)

FIGURE 2. (a) Experimental setup in the 3T MRI scanner. (b) An MRI-
visible fiducial marker was affixed to the phantom to measure the
physical needle position in the ex vivo tissue phantoms. (c) In phantom
MRI experiments, the needle orientation was varied in terms of its
rotation (θ) and tilting angle (α) relative to B0. A needle actuator system
was used to insert the needle into a phantom by 50 mm without bending.
The ranges of α and θ are reported in Table 2. (d) Example ex vivo tissue
phantom MR images (α = −16.5o and θ = −13o) with three different sets
of imaging parameters. All phantom MR images were reconstructed using
conjugate gradient SENSE. TE: echo time. TR: repetition time. BW: readout
bandwidth.

TABLE 2. Physics-based simulated datasets used for training of
single-slice physical needle Mask R-CNN (top row). Datasets used for
fine-tuning and testing of the overall physical needle localization
framework with two Mask R-CNN stages (middle and bottom).
θ : needle rotation angle. α: needle tilting angle. N/A: not applicable.
∗Data augmentation included rescaling, translation, and additive
Gaussian noise.

coordinate system using open-source software (3DSlicer) [35],
The range of needle axis orientation is reported in Table 3.
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TABLE 3. Physics-based simulation dataset for training of 3-slice physical needle Mask R-CNN and ex vivo tissue datasets used for testing the overall
physical needle localization framework. θ : needle rotation. α: needle tilting angle relative to B0 field. η: needle-to-slice orientation difference. h: pivot
point. N/A: not applicable. ∗ Data augmentation included rescaling, translation, and additive Gaussian noise.

FIGURE 3. (a) An example diagram showing the sagittal view of an
inserted needle misaligned with 3 parallel oblique coronal imaging
planes. Needle tilting angle (α) is −49.1o, needle-to-slice orientation
difference (η) is 5.5o and pivot point (h) is 2.5 mm. (b) maximum intensity
projection of high-resolution 3D MRI in the sagittal view showed the
fiducial markers used to locate the needle tilting angle (α) relative to the
main magnetic field B0 and entry point. (c) 3D rendered model of the
phantom and the fiducial markers in a 3D environment. Physical needle
tip is determined based on fixed needle insertion length (60 mm) and
entry point that was marked at the centerline of the small fiducial marker,
which was 1 cm from its center point. Needle rotation angle (θ) is −17.9o.
(d) Corresponding 3-parallel-slice MR images in the actual needle
insertion experiment in a phantom. (e) Simulated passive needle features
showed similar feature pattern and distribution on different imaging
planes.

C. NEEDLE SUSCEPTIBILITY SIMULATION AND
CALIBRATION
Training the physical needle Mask R-CNN requires a sub-
stantial amount of data with reliable reference needle posi-
tion information. However, collecting data from the MRI
experiments described in the previous section is expensive,
time-consuming, and subject to experimental uncertainties.
Therefore, we performed MRI physics-based simulations of

the needle susceptibility effects to generate a large set of
training images that accurately depict the needle feature with
respect to actual intra-procedural MRI.

We implemented the Fourier-based off-resonance artifact
simulation in the steady state (FORECAST) method to cal-
culate the susceptibility effects in steady-state GRE MRI [9].
The field inhomogeneity or field shift 1B0 (x, y, z) was cal-
culated as a function of different needle orientations and
needle materials with different magnetic resonance proper-
ties using a first order perturbation approach to Maxwell’s
equations, combined with the Fourier transformation tech-
nique [36]. In the original FORECAST method, a thin slice
with the desired FOV and slice thickness was modeled in
3D space, with the third dimension of 1B0 set to be par-
allel to B0, which does not capture the tilting angle of the
needle. To simulate the needle with a tilting angle, which
is a more realistic scenario in interventional procedures,
we created an expanded 3D model (Figure 4). Specifically,
1B0 (x, y, z) was calculated and re-sliced to an oblique vol-
ume parallel to the needle with certain excitation slice or
slab thickness. A linear interpolation step was performed to
assign the 1B0 to each pixel of the model with the original
pixel dimensions. In addition, a non-uniform fast Fourier
transform (NUFFT) was applied for the GA ordered radial
sampling trajectory during the simulations [37]. The overall
k-space signal (s) model of the needle susceptibility-induced
effects on the discrete isochromatic grid with proton density
ρ′ (x, y, z) was:

s
(
kx , ky, kz

)
=

∑
x

∑
y

∑
z

ρ′ (x, y, z) e−i2πγ1B0(x,y,z)t
′
−kzt ′

×e−
t′
T2 e−i2π(kxx+kyy) (1)

where γ is the gyromagnetic ratio and t’ is the time after
radiofrequency (RF) excitation. Note that the T∗2 of the signal
was decomposed into T2 (e.g., 50 ms for muscle) and the field
inhomogeneity caused by the needle susceptibility effects.
Finally, an inverse NUFFT was applied to the simulated
k-space data to reconstruct the image, which contains the
needle signal void feature.

For these simulations, we assumed that the needle mate-
rial is stiff enough [38] and there was no deflection
close to the tip. Therefore, we modeled the needle as
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FIGURE 4. (a) In the original FORECAST method, the susceptibility map can only be calculated for an imaging slice/slab that has
one direction aligned with the main magnetic field B0. (b) To calculate the susceptibility map for a needle model that is tilted
with respect to B0, we created an expanded 3D model. The susceptibility map in this 3D model was interpolated to the
coordinates and model elements in the excited imaging slice/slab, which contained the needle with a certain tilting angle. The
gray plane represents a single slice or a thin slab of multiple parallel slices excited for imaging. At the end, the susceptibility
map was cropped to match the size of the imaging slice/slab.

a cylindrical rod with diameter of 0.9 mm (20 gauge)
at different rotation (θ) and tilting (α) angles in 3D space
similar to the actual experimental setup (see previ-
ous section). The range of θ (−30◦ to 30◦) and
α (0◦ to −90◦) of the needle was set according to actual
reports of needle placement in abdominal percutaneous inter-
ventions by other groups [17], [39], [40] and our clinical
colleagues.

To ensure that the simulations matched the conditions of
the needle used in experiments, we used actual experimental
data from a gel phantom with different needle orientations
and imaging parameters (Table 1) to calibrate the suscepti-
bility value of the needle material. The Euclidean distance
between the physical needle tip and the needle feature tip
(dxy in mm, Figure 5) was calculated for simulated data
and gel phantom experimental data. The susceptibility value
that minimized the average dxy was identified and used in
simulations to generate training data.

D. SINGLE-SLICE PHYSICAL NEEDLE MASK R-CNN
TRAINING, FINE TUNING AND TESTING
The input to the single-slice physical needle Mask R-CNN is
an image patch centered on the needle feature and surround-
ing tissue, obtained from the needle feature Mask R-CNN
output. The training dataset for the single-slice physical nee-
dle Mask R-CNN consisted of simulated images with the
same size as the expected input patches (75 × 75 mm2 FOV
with 256× 256 matrix size) and the needle feature tip in the
center of the patch (Figure 1). The input 2D gray-scale image
patches were normalized to pixel intensities of 0-255 and
stacked into 3 color channels to match the dimensions of the
pre-trained needle feature Mask R-CNN model. We used the
output bounding box corners to define the physical needle tip
(e.g., at the top left corner) and axis (e.g., the line connecting
the top left and bottom right corners) since the diameter of
the actual physical needle is less than the pixel size. Since the
needle tip location and axis orientation were more important
than the needle segmentation mask in the physical needle
Mask R-CNN stage, we weighted the bounding box loss to
twice that of the losses in other branches during training.

FIGURE 5. The discrepancy between the needle feature position and the
actual physical needle position was quantified in terms of the Euclidean
distance between the feature tip and the physical needle tip (dxy), and
the absolute difference between the feature axis and the physical needle
axis orientation (dθ), both in image coordinates in 2D space. The accuracy
of physical needle localization using the proposed framework with
single-slice physical needle Mask R-CNN was also quantified in terms of
dxy and dθ .

We first generated simulated data for single-slice physical
needle Mask R-CNN training. A set of 741 simulated images
with the same parameters as phantom experiments (θ from
−30◦ to 30◦, and α from 0◦ to−90◦) was created for training
(Table 1). Five-fold data augmentation was performed by
rescaling, translation, and adding Gaussian noise to form a
training dataset with 3705 images. A small rescaling factor
(95% or 105%) was used to minimize changes in pixel size
and maintain validity of the simulated physical needle model.
The training hyperparameters were based on our previous
work on needle feature segmentation [10] and the number
of epochs (480 epochs) was increased to accommodate the
larger data size. In a preliminary study [29], model validation
using simulated data confirmed that the majority of physical
needle tip localization error was less than the model ele-
ment size (0.3 mm). This close agreement with the ground
truth corroborates the capability of the physics-based model
to predict the in-plane physical needle location in different
situations and there is no need to further expand the training
dataset, which considerably reduced the training time.

However, interventional MR images acquired during
actual procedural guidance have more complex backgrounds
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FIGURE 6. (a) An example training image generated from MR physics
simulation. (b) An example image for physical needle Mask R-CNN model
fine-tuning, which was created by superimposing the simulated needle
on a patch of tissue background from ex vivo MRI.

compared to the simulated images. In addition, certain types
of tissue with off-resonance effects (e.g., fat) may also gen-
erate signal voids (e.g., fat-water signal cancellation) that
occlude the needle feature. These effects might degrade
the accuracy of our framework. Therefore, after training
with simulated data as previously described, we performed
fine-tuning of the physical needle Mask R-CNN by using
an additional training dataset with enriched variations of
the background. To do this, we acquired MR images of
ex vivo tissue in different slices without a needle. Patches
were randomly cropped from these ex vivo tissue images and
superimposed with the simulated needle images (741 images)
(Figure 6), followed by similar data augmentation to increase
the size of the fine-tuning dataset (3705 images) (Table 2).

We tested the physical needle localization accuracy of
the proposed single-slice two-stage framework using ex vivo
tissue phantoms, which have realistic image characteristics
that are representative of interventional MRI. 186 images
were collected from experiments to form a testing dataset
with 62 different needle orientations (Table 2). We com-
pared the accuracy of physical needle localization using the
single-slice physical needle Mask R-CNN models without
and with fine-tuning. The Euclidean distance between the
estimated physical needle tip position from the two-stage
framework and the measured reference physical needle posi-
tion (dxy in mm) was calculated based on image coordinates
(Figure 5). The absolute difference between the needle axis
orientations (dθ in degrees) was also computed to evaluate
the localization accuracy.

E. THREE-SLICE PHYSICAL NEEDLE MASK R-CNN
TRAINING AND TESTING
In addition to the single-slice strategy, we also devel-
oped a Mask R-CNN model for physical needle localiza-
tion using 3 parallel slices. The bounding box output was
increased from 4 to 6 dimensions to capture the 3D coordi-
nates of the physical needle’s two ends (tip and entry point).
The input to this network was acquired in the same approach
as the single-slice network, except that it contains three
image patches, including needle features from three adjacent

parallel slices. The three patches were normalized to pixel
intensities of 0-255 and stacked into three color channels
of the network input. Then we applied the same simulation
method to generate the training dataset. The thickness of the
slab in the 3D model (Figure 4) was expanded from 5 mm
to 15 mm to emulate three parallel imaging slices without
any gap. Misalignment between the needle model and 3D
acquisition slab was characterized by two additional geomet-
ric parameters: needle-to-slice orientation difference (η) and
pivot point (h) within the imaging slab (Figure 3a).

To determine the range of the additional parameters for
simulations, needle obliqueness with respect to the imaging
plane was analyzed in clinical MRI-guided prostate biopsy
datasets (326 images from 125 cases). We found that the
misalignment of the image plane with the needle feature had a
median of 3.1◦ with interquartile range of 2.6◦ [10]. Around
92% of the cases had misalignment between needle feature
and imaging plane of <6◦. The passive needle features were
contained within 1 to 3 slices (slice thickness of ∼5 mm) for
each imaging dataset based on the relative position between
the imaging plane and needle feature axis. Based on these
typical ranges of needle angles, we can assume that the tilted
needle feature would be contained within 3 parallel slices
with 5-mm slice thickness. Therefore, we considered 35 rep-
resentative parameter combinations of η = [−6◦, −4◦, −2◦,
0◦, 2◦, 4◦, 6◦] and h= [5, 2.5, 0,−2.5,−5] mm. The physical
needle reference was defined with a 3D bounding box and the
third-dimension coordinate can be visualized from the side
view of the 3D acquisition slab (Figure 3a).
We trained the 3-slice physical needle Mask R-CNN for

needle localization using a set of 2160 simulated images
with the same parameters as phantom experiments (θ from
−30◦ to 30◦, and α from 0◦ to −90◦) (Table 3). 10 random
choices of different combinations of η and h were selected
for each imaging plane orientation. Ex vivo tissue images
were superimposed with these simulation images and 5-fold
data augmentation was performed to form a training dataset
with 10800 images. The epoch number was increased to
480 to accommodate the larger training dataset. The network
parameters were initialized with random weights instead
of using any pretrained single-slice physical needle Mask
R-CNN model because of the structural differences of the
3-slice network and different feature encoding of channel-
wise information from input images.
We tested the needle localization accuracy of the pro-

posed two-stage framework in ex vivo tissue phantoms using
3-parallel-slice MRI. 150 images were collected from exper-
iments to form a testing dataset with 25 different nee-
dle orientations (Table 3) that were misaligned with the
imaging plane orientation. At each needle position, three
sets of imaging parameters with two different η were
used to acquire the imaging dataset for testing. We com-
pared the accuracy of physical needle localization using
the single-slice physical needle Mask R-CNN and 3-slice
physical needle Mask R-CNN. One of the 3-parallel-slice
images with the complete needle feature was selected as
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the input for the single-slice physical needle Mask R-CNN.
The error metrics were all measured in 3D (tip localization
error: dxyz; 3D orientation difference: dφ). dxyz was calcu-
lated as the Euclidean distance between the estimated and
reference physical needle tip positions. dφ was calculated as
the orientation difference (angular separation) between the
estimated and reference physical needle axes in 3D space.

F. PHYSICAL NEEDLE LOCALIZATION ERROR ANALYSIS
For tip localization error (dxy or dxyz), we considered a
2.5-mm threshold since clinically relevant tumors for inter-
ventions may have diameters of 5-10 mm [18]. In addition,
the needle tip and axis orientation discrepancy between the
needle feature and physical needle were manually measured
by a trained researcher to serve as a baseline to assess the
improvement using the proposed Mask R-CNN framework.
The physical needle localization results using different mod-
els and the error from the needle feature discrepancy were
first compared using a non-parametric analysis of variance
(ANOVA) (i.e., Kruskal-Wallis test). If significant differences
were detected by the Kruskal-Wallis test, the medians of
the results were compared in a pair-wise fashion using the
non-parametric Wilcox signed rank test. In addition, the vari-
ances of the results were compared using the Brown-Forsythe
test.We considered differenceswith p<0.05 to be significant.

III. RESULTS
A. NEEDLE SUSCEPTIBILITY CALIBRATION
Simulated MR images that contained the needle feature with
different rotation and tilting angles were compared with the
MR images from actual MRI-guided needle insertion exper-
iments using a gel phantom (Figure 7). The characteristics
of the needle feature from simulations closely matched the
needle feature on experimental images, with one difference
being the additional noise seen on experimental images. The
physical needle position in the coordinates of the experimen-
tal MR images were determined based on the fiducial marker
position. The spatial relationship (discrepancy) between the
physical needle and the needle feature were almost identical
for simulated and experimental images. During the calibra-
tion process, we found that a needle susceptibility value
of 190 ppm (corresponding to titanium) achieved close agree-
ment between the simulations and experiments for 7 dif-
ferent rotation angles (Figure 7). Therefore, we used this
calibrated susceptibility value for subsequent simulations.
Example 3-parallel-slice simulation images using this sus-
ceptibility value also generated needle features that are in
close agreement with theMR images from actual experiments
(Figure 3d-e).

B. SINGLE-SLICE PHYSICAL NEEDLE MASK R-CNN
TRAINING AND TESTING
We trained the single-slice physical needle Mask R-CNN
using a batch size of 8 on two graphics cards (NVIDIA
GTX 1080Ti). Generation of the simulated data for

FIGURE 7. (a) An example real-time 3T single slice MR image with needle
tilting angle (α) of 11.1o and rotation angle (θ) of −24o with respect to
B0, TE = 1.9 ms, and bandwidth (BW) = 888 Hz/pixel. (b) Example
simulated image using a 300× 300×5 mm3 field-of-view (FOV) with
1024× 1024×17 model elements, 256 radial readout points, and a
20-gauge needle with the same orientation in (a). The images were
reconstructed using non-uniform fast Fourier transform (NUFFT) and then
cropped to a FOV of 75× 75 mm2 with image matrix size of 64× 64.
(c) Calibration results of needle susceptibility (190 ppm) showing dxy for
seven different needle rotation angles.

training took 10 hours. Training with simulated data took
about 12 hours and the fine-tuning step (simulated nee-
dle features combined with tissue image patches) took
another 12 hours.

Representative results for physical needle localization in ex
vivo tissue testing data using the fine-tuned single-slice Mask
R-CNNmodel are shown in Figure 8a-c. The processing time
of the whole framework was about 200 ms per frame. These
examples showed not only the needle localization accuracy
of the framework, but also the improvement of the fine-tuned
single-slice physical needle Mask R-CNN model compared
to the non-fine-tuned model. Figure 8d shows an example
where the fine-tuned model successfully detected the phys-
ical needle, but the model without fine-tuning failed to detect
the needle. Figure 8e shows an example with accurate phys-
ical needle tip localization and axis orientation estimation
using the fine-tuned model. In contrast, the tip localization
results for this case had large errors (dxy = 5.76 mm) using
the model without fine-tuning.

The overall testing results for the two-stage framework
using the single-slice physical needle Mask R-CNN mod-
els without and with fine-tuning are shown in Table 4.
The framework using the non-fine-tuned model achieved
median dxy and dθ of 0.94 mm and 0.64◦, respectively,
while the framework using the fine-tuned model reduced
the median dxy and dθ to 0.81 mm and 0.63◦, respectively.
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FIGURE 8. (a-c) Example single-slice physical needle Mask R-CNN localization results in three ex vivo tissue phantom
testing images with different imaging parameters and different needle α and θ . The needle tip location (dxy) and axis
orientation (dθ) differences compared to the reference (measurement during experiments) are reported in each example.
(d) Example of much larger physical needle localization error using the model without fine-tuning compared to the model
with fine-tuning. (e) Example of needle detection failure using the model without fine-tuning and success using the
model with fine-tuning.

In addition, the distributions of these results are sum-
marized and compared using violin plots (Figure 9).
Figures 9a-b show dxy and dθ using the proposed framework
(without and with fine-tuning) and the discrepancy between
the needle feature tip/axis orientation and physical needle
tip location/axis orientation. There were differences in dxy
(p= 8× 10−78) and dθ (p= 2.7× 10−11) among these three
sets of results. The pair-wise comparison among 3 sets of
results indicated that the median and variance of dxy were
both significantly reduced by using the fine-tuned model.
There were significant differences in the median and variance
of dθ between the non-fine-tuned and fine-tuned models

compared to the discrepancy between needle feature and
physical needle axis orientation, but there were no significant
differences between the non-fine-tuned and fine-tuned mod-
els. More details about significance and p value are shown
in Figure 9.

C. THREE-SLICE PHYSICAL NEEDLE MASK R-CNN
TRAINING AND TESTING
Overall training time for the 3-slice physical needle Mask
R-CNN model was 48 hours. Representative results of
3D physical needle localization projected on 2D image
slices and an orthogonal side view of the estimated physical
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TABLE 4. Physical needle localization accuracy using the proposed models in the testing datasets (see Table 2). Needle tip position errors (dxy or dxyz)
and absolute needle axis orientation differences (dθ or dφ) are reported. SD: standard deviation. IQR: interquartile range. Success: the physical needle
Mask R-CNN detected the physical needle in the image. ∗Pixel size of the acquired image. #2.5 mm threshold considering clinically relevant tumor sizes
of 5 mm diameter.

FIGURE 9. Violin plots of single-slice physical needle (a) tip localization
and (b) axis orientation results for the ex vivo tissue phantom testing
dataset using needle feature localization and the physics-driven Mask
R-CNN model without and with the fine-tuning step. In (a), The red line
represents the 2.5 mm threshold considering clinically relevant tumor
sizes of ≥5 mm diameter. In the pair-wise comparisons, p1 value of
Wilcoxon signed rank test is on the left and p2 value of Brown-Forsythe
test is on the right. * indicates Wilcoxon signed rank test with p1 < 0.01.
1 indicates Brown-Forsythe test with p2 < 0.05.

needle using the single-slice and the 3-slice physical needle
Mask R-CNN models are shown in Figure 10. These results

showed accurate physical needle localization in 3D using the
3-slice model, compared with the reference. Physical needle
axis orientation difference was reduced in the through-plane
direction using the 3-slice model compared with the single-
slice model. The processing time of the whole framework
was about 200 ms per set of 3-parallel-slice images, which
is suitable for real-time interventional MRI applications. The
overall results are summarized in Table 4. The framework
using the single-slice model achieved median dxyz and dφ
of 2.9 mm and 2.5◦, respectively, while the framework using
the 3-slice model reduced the median dxyz and dφ to 2.2 mm
and 1.2◦, respectively.
The distributions of the results from all testing

datasets are summarized and compared using violin plots.
Figure 11 shows dxyz and dφ using the proposed framework
with single-slice and 3-slice models and the discrepancy
between the needle feature tip/axis orientation and physical
needle tip location/axis orientation. There were differences in
both dxyz (p= 1.1×10−59) and dφ (2.8×10−28) among these
three sets of results. The pair-wise comparison among three
sets of results indicated that dxyz and dφ were significantly
reduced using the 3-slice model. No significant differences
of variance in dxyz were observed from any of these pairs.
On the other hand, the variance of dφ was significantly lower
by using the 3-slice model. More details about significance
and p values are shown in Figure 11.

IV. DISCUSSION
In this study, we developed a new automatic physical nee-
dle localization framework for MRI-guided percutaneous
interventions. The framework included two Mask R-CNN
stages. First, the needle feature Mask R-CNN provided an
initial estimate for the needle position. Next, the cropped
image patch(es) containing the needle feature was sent to
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FIGURE 10. Example 3-slice physical needle Mask R-CNN localization results and single-slice
physical needle Mask R-CNN localization results projected on 2D in-plane image coordinates and
orthogonal side view of 3-slice and single slice MRI with needle tilting angle (α) of −54.2o and
rotation angle (θ) of −19o with respect to B0, TE = 1.9 ms, and bandwidth (BW) = 888 Hz/pixel.

a single-slice or 3-slice physical needle Mask R-CNN. The
single-slice model takes a single-slice image as input, assum-
ing the imaging plane is already closely aligned with the
physical needle. The 3-slice model takes 3 parallel and adja-
cent slices as input, in which the imaging plane orientation
could be misaligned with the physical needle axis. Both
models were trained by a substantial set of physics-based
simulation images that included realistic needle-induced sus-
ceptibility features. The cropped image patch helped to avoid
false detection results and maintained the assumption of a
rigid needle segment for the input to the physical needleMask
R-CNN models. The reference physical needle position was
measured using a fiducial marker and needle actuator, which
achieved stable and repeatable needle placement during the
experiments [34]. Our validation and testing results demon-
strated that the proposed framework with single-slice model
accurately and rapidly estimates the in-plane physical needle
position using single-slice MRI. The 3-slice model further
reduced the through-plane needle localization error due to
misaligned imaging plane with physical needle and rapidly
estimated the overall 3D physical needle position.

As part of our framework, we developed an image-based
needle susceptibility calibration method that compares the
discrepancies between the physical needle and needle feature
from experimental MRI data with the physics-based simula-
tions in different situations. This calibration step can improve
the understanding of the needle feature characteristics under
specific conditions and on specific types of MR images.
It showed that the discrepancies between needle feature
and physical needle varied with different needle orienta-
tions and imaging parameters; proper selection of the needle
susceptibility ensured the fidelity of the simulated images

for training. By adding noise during data augmentation, the
simulated images formed a sufficient dataset to train the
physical needle Mask R-CNN while avoiding the need for
expensive MRI experiments and manual annotations.
Ex vivo tissue phantom MR images have realistic noise

characteristics and also tissue features in the background,
which resemble features expected on in vivo interventional
MRI. The statistical comparisons showed that the physical
needle tip localization accuracy was improved by using the
fine-tuned singe-slice model trained by fusing simulated nee-
dle features with tissue background patches. The percent-
age of dxy >2.5 mm using the non-fine-tuned model was
three times larger than the fine-tuned model. The thresh-
old of 2.5 mm is informative, as clinically relevant tissue
targets for minimally invasive interventions have diameters
of 5-10 mm or larger [18]. Therefore, the fine-tuned model
has potential to reducemistargeting duringMRI-guided inter-
ventions, especially for precise maneuvers in smaller targets.
Furthermore, the physical needle localization error using
the proposed network was lower than the localization error
caused by the discrepancy between the physical needle and
the needle feature. Overall, our results demonstrate that our
proposed deep learning-based framework using single-slice
model is an accurate and fast approach (processing time of
200 ms/image) to overcome the discrepancy, thereby achiev-
ing accurate physical needle localization on MRI. No addi-
tional processing was required except for the two-stage Mask
R-CNN, which combined an updated faster R-CNN and a
mask branch [11]. The fine-tuning scheme implemented in
our framework can be used in future work to adapt it for
specific in vivo applications (i.e., fine-tuning with additional
in vivo datasets relevant for an MRI-guided procedure).
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FIGURE 11. Violin plots of physical needle (a) tip localization and (b) axis
orientation results for the ex vivo tissue phantom testing dataset with
certain range of misalignment between the needle axis and image plane
orientation (shown in Table 3) using needle feature localization and the
physics-driven single-slice and 3-slice Mask R-CNN models. In (a), the red
line represents the 2.5 mm threshold considering clinically relevant tumor
sizes of ≥5 mm diameter. In the pair-wise comparisons, p1 value of
Wilcoxon signed rank test is on the left and p2 value of Brown–Forsythe
test is on the right. ∗ indicates Wilcoxon signed rank test with p1 < 0.01.
1 indicates Brown–Forsythe test with p2 < 0.05.

Our extended FORECAST method for the 3-slice physics-
based simulation took about three days and 1 GB storage
space to generate the training data. Since the input and output
of the 3-slice model and the spatial information encoded from
different input channels are different from the single-slice
model and other Mask R-CNN models for in-plane object
detection and segmentation, no pretrained model was used
during the training. Ex vivo tissue phantom images for 3-slice
model testing considered a specified range of misalignment
between the imaging plane and the physical needle. Statistical
comparisons of dxyz and dφ demonstrated that the 3-slice
model reduced the through-plane needle localization error
compared with the single-slice model. Overall, the median
3D physical needle tip localization error was 2.2 mm and
more than 50% of the results were <2.5 mm. This cor-
responds to 1 to 2 pixels in-plane and is less than the
5-mm slice thickness. While this localization performance
is not at the subpixel level, as we have demonstrated for the
case when the imaging plane is aligned with the needle, the

direct 3D localization accuracy already can be sufficient for
certain targeting applications (e.g., targets around 10 mm in
diameter).

The single-slice and 3-slice models we have developed in
this work can be used in concert to support different steps
in the MRI-guided interventional workflow. For example,
during procedural setup and adjustment, the 3-slicemodel can
rapidly localize the physical needle position in 3D space and
inform alignment of the MRI scan plane(s) with the physical
needle, using standard manual adjustments or new automated
methods [41]. Once the imaging plane is aligned with the
physical needle, the single-slice model can be applied to
dynamically localize, track, and confirm the physical nee-
dle position with sub-millimeter accuracy. This strategy for
closed-loop confirmation of the physical needle position has
the potential to improve physicians’ confidence in assessing
and ensuring procedural accuracy.

There are limitations in this study. Firstly, we only tested
the GRE sequence with 3 different sets of imaging parameters
that we often use in our research work. The proposed method
could be applied to different interventional MRI sequences
and imaging parameters by adjusting the simulation steps or
by including the desired MRI parameters as inputs to the
framework. Secondly, in vivo interventional MRI datasets
were not included to evaluate the proposed technique. Due
to difficulties of ground truth labeling of the physical needle
position on in vivo datasets for training and testing, unsuper-
vised or weakly supervised training strategies may be needed.
Future work can acquire in vivo interventional MRI datasets
from well-controlled animal experiments to further improve
and evaluate our proposed technique. Thirdly, although the
3-slice model significantly reduced the through-plane phys-
ical needle localization error, the overall accuracy of the
3D physical needle localization was not yet at the level of the
sub-pixel 2D localization results from the single-slice model
for perfectly aligned imaging planes. Therefore, improving
the 3-slice model may require a weighting factor to empha-
size features on a specific channel location that is more
representative of spatial information in the through-plane
direction.

V. CONCLUSION
In summary, we have developed a new physical needle local-
ization framework based on physics-driven Mask R-CNN for
MRI-guided percutaneous interventions. No previous works
have used the passive needle feature on MRI in a deep
learning method to localize the underlying physical nee-
dle position. By calibrating the needle susceptibility value,
the physics-based simulated needle feature achieved close
agreement with actual MRI scans of the physical needle.
We trained a single-slice physical needle Mask R-CNN
model, in which the imaging plane is perfectly aligned with
the needle. The testing results in ex vivo tissue phantoms
demonstrated sub-millimeter accuracy of physical needle
localization with real-time processing. In addition, we trained
a 3-slice physical needle Mask R-CNN model, in which the
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imaging plane is not aligned with the needle. The testing
results in ex vivo tissue phantoms demonstrated improved
through-plane physical needle localization accuracy com-
pared with the single-slice model. Overall, the proposed
framework can help to overcome the discrepancy between
the passive needle feature and the physical needle during
interventional MRI procedures.
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