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ABSTRACT Breast cancer causes approximately 684,996 deaths worldwide, making it the leading cause of
female cancer mortality. However, these figures can be reduced with early diagnosis through mammographic
imaging, allowing for the timely and effective treatment of this disease. To establish the best tools for
contributing to the automatic diagnosis of breast cancer, different deep learning (DL) architectures were
compared in terms of breast lesion segmentation, lesion type classification, and degree of suspicion of
malignancy tests. The tasks were completed with state-of-the-art architectures and backbones. Initially, dur-
ing segmentation, the base UNet, Visual Geometry Group 19 (VGG19), InceptionResNetV2, EfficientNet,
MobileNetv2, ResNet, ResNeXt, MultiResUNet, linkNet-VGG19, DenseNet, SEResNet and SeResNeXt
architectures were compared, where ‘“Res’” denotes a residual network. In addition, training was performed
with 5 of the most advanced loss functions and validated by the Dice coefficient, sensitivity, and specificity.
The proposed models achieved Dice values above 90%, with the EfficientNet architecture achieving 94.75%
and 99% accuracy on the two tasks. Subsequently, classification was addressed with the ResNetS0V2,
VGG19, InceptionResNetV2, DenseNetl121, InceptionV3, Xception and EfficientNetB7 networks. The
proposed models achieved 96.97% and 97.73% accuracy through the VGG19 and ResNet50V2 networks on
the lesion classification and degree of suspicion tasks, respectively. All three tasks were addressed with open-
access databases, including the Digital Database for Screening Mammography (DDSM), the Mammographic
Image Analysis Society (MIAS) database, and INbreast.

INDEX TERMS Artificial intelligence, biomedical imaging, cancer, image segmentation, machine learning,
mammography, medical diagnostic imaging.

I. INTRODUCTION

Breast cancer is a type of malignant tumor with the highest
global incidence rate, accounting for approximately 10.4% of
cancers [1]. It manifests as an excessive, disorganized, and
invasive growth of breast cells [2]. The affected cells can
spread through the blood or lymphatic system, generating
new tumors and affecting other vital organs [2]. Currently,
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breast cancer is the leading cause of death among women
between the ages of 20 and 50 years, and according to
2019 figures from the American Cancer Society, it esti-
mated that there were approximately 268,600 new cases of
invasive breast cancer, 48,100 cases of ductal carcinoma in
situ (DCIS), and 41,740 deaths in the United States alone
[1], [3]. By 2020, the figure reached a total of 684,996 deaths
worldwide, making it the leading cause of female cancer
mortality [4], [5]. Furthermore, at the beginning of 2021, the
World Health Organization (WHO) reported this disease as
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the most common cancer worldwide, surpassing lung can-
cer [6]. Currently, these statistics continue to grow, and an
increase of 50% is estimated over the next two decades as
a consequence of increased life expectancy, unhealthy diets,
insufficient physical activity, and the consumption of harmful
substances such as alcohol [7]. This demonstrates the need for
research at all stages related to breast cancer, from prevention
to timely diagnosis and treatment [7], [8].

Breast cancer typically manifests as a mass or lump sensa-
tion, which can be detected by breast self-examination [9].
However, not all lumps are synonymous with cancer,
i.e., there are benign and malignant lumps.

Various studies suggest that the incidence rates in low-
income countries are lower than those in high-income coun-
tries. However, in the latter group, the mortality rate is
lower, and the incidence rate (despite being higher) has been
decreasing, while in the former, it has been progressively
increasing [10]. These trends may be due to risk factors
inherent to the socioeconomic positions of these countries,
where one of the highest risk factors is the lack of access to
early breast cancer detection [11]. In addition, this may be
accompanied by other factors, such as age, ethnicity, breast
characteristics, reproductive patterns, hormonal and environ-
mental factors, and alcohol and tobacco consumption [12].
However, the probability of survival depends mainly on the
stage and subtype of breast cancer. Detection at early stages
can reduce the mortality rate from 40% to 15% [13], so it is
vital to develop systems for the early and accurate detection
of breast cancer.

There are many tools for diagnostic assistance in differ-
ent areas of medicine [14]. Breast cancer is no exception
to this rule, where technological evolution has allowed the
integration of complex tools such as mammography, mag-
netic resonance (MR) imaging, positron emission tomogra-
phy (PET), computed tomography (CT), and single-photon
emission computed tomography (SPECT) [15]. These tech-
niques have made it possible to evaluate and detect breast
cancer with a high percentage of accuracy. However, the costs
of these pieces of equipment prevent them from being inte-
grated into health systems, especially in low-income coun-
tries or regions with difficult access [16], [17]. In this sense,
conventional mammography is usually the most economical
and viable solution. In addition, it is one of the most efficient
tools for early breast cancer diagnosis [18]. In such mam-
mographic images, benign masses appear as regular shapes,
while those with irregular borders are usually malignant [19].
Furthermore, research has shown that annual mammograms
can help detect abnormalities even before the patient or physi-
cian can perceive a significant change [20]. Consequently,
mammography plays a primary role in the early detection of
breast cancer, increasing the likelihood of curing the disease
and the success of breast-conserving surgeries [20], [21].
In fact, this examination’s effectiveness can decrease mor-
tality from 40% 20% and increase the 5-year relative sur-
vival rate to 99% in screened women [22]-[24]. In this
sense, mammography’s potential has encouraged multiple
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applications ranging from interpretation, analysis, and visu-
alization approaches for medical data [25]. Moreover,
state-of-the-art artificial intelligence techniques have enabled
the integration of complex tasks such as detection, segmen-
tation, and classification with speeds that exceed human
performance [26], [27]. However, much work is needed to
develop and refine these systems, particularly in mammogra-
phy cases, where the structure of the breast is quite complex.
Additionally, traditional medical segmentation techniques are
time-consuming and knowledge-intensive processes that can
lead to errors or subjective diagnoses [28].

As mentioned above, lesions or masses are the main signals
utilized for breast cancer diagnosis [8]. The boundary infor-
mation in the affected regions reflects the growth pattern and
biological characteristics of the disease [29]. Therefore, poor
masses segmentation limits the classification of these masses
(benign or malignant), making segmentation one of the most
important processes in new diagnostic aid systems for breast
cancer detection.

On the other hand, in the last decade, various artifi-
cial intelligence techniques for segmenting medical images
or environments with objects of interest have been stud-
ied [30], [31]. The implementations include developments
ranging from basic image processing techniques to current
deep learning (DL) algorithms, where the latter has exhibited
exponential growth in the areas of health informatics and
medical imaging [31]-[33]. DL includes architectures such as
a convolutional neural network (CNN), which is similar to the
primary visual network [34]. In particular, the CNN design
can extract complex features at the same level as humans,
giving it a more efficient generalization capability than that
of conventional machine learning methods. Furthermore, DL
can be performed on raw data, i.e., it is unnecessary to per-
form preprocessing on the input images or to know the back-
ground of the problem in detail [35]. Moreover, the paradigm
shift toward automatic diagnostic aid systems is a reality
inherent to technological evolution due to the generation of
large datasets and the development of state-of-the-art com-
puters [36]. The implications of using artificial intelligence
range from reducing radiologist workloads, aiding diagnosis,
improving response times, and even providing information
that is not perceptible to the naked eye during mass breast
segmentation; therefore, Al systems are handy tools in daily-
life medical practice [37], [38].

Following the above considerations and with the aim of
improving the accuracy of automatic breast exam segmenta-
tion, we perform a comparative analysis of 12 DL networks
with the latest backbones and architectures in this paper. The
models are the most efficient and the most widely used meth-
ods in classification and segmentation tasks. Additionally,
we propose studying these models under the five most-used
loss functions to better compare them. The analysis includes
architectures such as the original UNet, Visual Geome-
try Group 19 (VGG19), InceptionResNetV2, EfficientNet,
MobileNetv2, ResNet, ResNeXt, MultiResUNet, linkNet-
VGG19, DenseNet, SEResNet and SeResNeXt, where ‘“‘Res”
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denotes a residual network. The model training process is
performed on binary cross-entropy loss functions, including
weighted binary cross-entropy, Dice, Tversky focal, and log-
cosh Dice functions.

Mainly, the following elements are highlighted in the study.

« A model is found that achieves scores exceeding those
reported for state-of-the-art methods in similar works
regarding the segmentation breast lesions.

o A comparative analysis of the 12 state-of-the-art archi-
tectures with respect to the segmentation task is
addressed.

o The state-of-the-art architectures and backbones pre-
sented before or during 2021 are included.

« Different loss functions are compared to determine
which one has the best performance on the segmentation
task.

o The importance of resolution for achieving strong
in-network evaluation metrics under the segmentation
scenario is highlighted.

Finally, the paper is organized as follows. Initially, work
related to the segmentation and classification of breast lesions
is addressed. The main DL techniques that have been used to
address these problems are highlighted, followed by a brief
literature review of the latest and most recent works. Next,
details of the methodology used to explore the different net-
works are given, and the main characteristics of the utilized
materials and methods are shown. Subsequently, the results
are shown while each of the findings is discussed, leading to a
general discussion that highlights the most relevant elements
of the study. Finally, the main conclusions are presented.

Il. RELATED WORK

Early concepts in mammographic image anomaly automa-
tion date back to the 1960s [39]. Originally, develop-
ments were focused on minimizing errors due to fatigue
or inherent in human execution [39], and since that time,
research and developments have included techniques rang-
ing from the basic image processing methods to recent DL
techniques [40].

DL has exhibited exponential growth in recent years,
and there are even recent reviews highlighting the use
of CNNs for different tasks and datasets. For example,
Abdelrahman et al. [41] achieved advances with modern
architectures such as ResNet, UNet, DenseNet, and atten-
tion mechanisms. The results demonstrated excellent per-
formances on tasks such as classification, detection, and
segmentation. However, the survey lacked heterogeneity
between the utilized models and techniques, as all studies
have different databases and evaluation metrics, limiting the
ability to conduct an objective comparison between architec-
tures [41]. On the other hand, diagnostic aid approaches can
also be performed with other techniques.

For example, Zhou et al. defined a series of image intensity
steps, consisting of background removal, pectoralis muscle
removal, and a technique based on a regularized distance level
to segment masses [42]. Similarly, Sadeghi et al. used image
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intensity with a new adaptive thresholding method based
on variable-size windows. This method allows for the exact
location of a mass to be calculated, reducing the possibility
of generating false positives [43]. Salih and Kamil proposed
mass segmentation through classical and diffuse morpholog-
ical techniques. Their method processes the breast’s internal
structures generated from a thresholding process, allowing
for highlighting and extracting the lesion of interest [44].
In other more novel approaches, Kamil and Salih imple-
mented two clustering techniques as segmentation methods.
In the first technique, they employed the K-means method,
and in the second approach, they employed the fuzzy c-means
(FCM) algorithm. In both cases, the techniques were inte-
grated with the lazy snapping algorithm as an additional
step, improving the segmentation of abnormal areas [45].
These techniques achieved accuracies of 91.18% and 94.12%,
respectively.

Although the above methods are promising methods, most
researchers focus on the versatility, performance, and advan-
tages of recent DL algorithms. For example, Li, Abdelhafiz,
De Moor, and Zhu et al. approached the problem of breast
lesion segmentation with CNNs [28], [46]-[48]. Li et al. com-
bined the densely connected UNet (DenseNet) with attention
gates (AG). The model was trained under the cross-entropy
loss function, and its performance reached 82.24%, 77.89%,
and 78.38% in terms of the Fl-score, sensitivity, and accu-
racy metrics, respectively [28]. Similarly, Abdelhafiz er al.
used UNet as a base network in two different mass seg-
mentation studies. In the first one, UNet was integrated with
residual attention blocks (RUNet). The network was trained
with the Dice loss function, and its segmentation ability
was validated with the accuracy metric, reaching a value of
98.7% [46]. The second uses a version of UNet enhanced
with batch normalization layers, dropout layers, and increas-
ing convolutional layers. Again, the network was trained
with Dice loss and achieved an accuracy of 92.6% [47].
De Moor et al. used the base UNet for segmentation and
evaluated it through free receiver operating characteristics
(FROCs). Moreover, in their study, they achieved a maximum
sensitivity of 0.94 [48]. Finally, Zhu et al. implemented a
fully convolutional network (FCN) to model a potential func-
tion, followed by the use of a conditional random field (CRF)
to perform structured learning. The design was trained with
the maximum likelihood loss function (distribution-based
loss), achieving a Dice score of 91.30% [49].

Finally, Salama and Aly [50] segmented and classified
mammograms by implementing DenseNet121, ResNet50,
VGG16, and MobileNetV2 models for classification and
a UNet model for breast region segmentation. The results
achieved a maximum accuracy of 98.87% for the classifica-
tion case.

IIl. MATERIALS AND METHODS
A. DATASET

Three sets of data were taken for the different tasks performed
on the mammograms, which are described below.
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1) SEGMENTATION

Segmentation was performed on the public database
“Curated Breast Imaging Subset Digital Database for Screen-
ing Mammography” (CBIS-DDSM) [51]-[53]. The data
contain the digital mammograms of several subjects with
corresponding segmentation masks performed by expert radi-
ologists. Only mammograms confirmed as normal, benign,
and malignant cases, plus verified pathological information,
were taken. Therefore, a total of 714 randomly distributed
images were used for training, validation, and testing and
divided into groups of 499, 72, and 143 images, respectively.
It should be clarified that each model was run 20 times,
and during each run, the training, validation, and test data
were randomly selected to obtain more accurate descrip-
tions of the architectures and ensure that the results did not
depend on the splitting of the data. The process is similar
to cross validation and is known as Monte Carlo cross
validation.

2) CLASSIFICATION
The mammograms were classified in two different ways. The
first method was based on the types of lesions, i.e., whether
they were calcifications, well-defined or circumscribed
masses, spiculated masses, other ill-defined masses, masses
with architectural distortion, asymmetric masses or normal
areas. In this case, 322 images from the mini-Mammographic
Image Analysis Society (MIAS) database of mammograms
were used [54]. Second, classification by degree of suspicion
(BI-RADS) was performed using 410 images from INbreast,
a full-field digital mammographic database [55]. The two
datasets were divided into proportions of 60, 20, and 20%
for training, validation, and test data, respectively, as shown
in Table 1.

Similar to segmentation, during classification, the data
were taken randomly in each run, ensuring that the results
obtained did not depend on the split.

B. PREPROCESSING

The main feature of DL is that it can work with raw data [35].
For this reason, the mammograms were only subjected to
two processes. First, they were normalized, converting the
intensity values to a scale from O to 1. It should be clarified
that the normalization process was performed because neural
networks work more efficiently with these values and float
data. However, this does not imply a reduction in or loss of
information about the images.

Second, due to the large sizes of the images and the dif-
ferences between them, the images were downsampled as
follows: the segmentation images were changed to 512 x 512
size to reduce the computational load. Similarly, the images
for classification were also reduced in size. However, their
sizes were set to 256 x 256 to reduce the computational
load and to increase the number of images for use with
the new data augmentation method explained in the next
section.
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TABLE 1. Data used in the classification process and their respective
splits for training, validation, and testing before data augmentation.

MIAS data

Lesion DC TR VA TE
MISC: Other ill-defined masses 14 8 3 3
CIRC: Well-defined/circumscribed masses 23 13 5 5
CALC: Calcification 25 15 5 5
SPIC: Spiculated masses 19 11 4 4
ASYM: Asymmetry 15 9 3 3
ARCH: Architectural distortion 19 11 4 4
NORM: Normal 207 124 41 42

INbreast data

BI-RADS DC TR VA TE
1: Negative 67 40 13 14
2: Benign 220 132 44 44
3: Most likely benign 23 13 5 5
4a: Low suspicion of malignancy (2-9%) 13 7

4b: Moderate suspicion of malignancy (10-49%) 8 4 2 2
4c: High suspicion of malignancy (50-94%) 22 13 4 5
5: Highly suggestive of malignancy 49 29 10 10
6: Known biopsy-proven malignancy 8 4 2 2

DA: Data by class, TR: training, VA: Validation and TE: test

C. DATA AUGMENTATION

Data augmentation techniques were integrated into this study
to increase the size of the training set and avoid overfitting
the model.

For the case with the segmentation images, a total
of 7 additional images were generated for each image, yield-
ing 3992 mammograms for training. The images were gener-
ated by inverting the pixels from right to left and rotating the
images at 90-degree angles in all possible positions, as illus-
trated in Figure 1. Similarly, this process was performed for
the true segmentation of the breast lesions.

Original Image

Augmented Images

FIGURE 1. Example of images generated through the data augmentation
method. Example of data augmentation for a single image. The original
image (blue box) was rotated at angles of 90, 180, and 270 degrees
(upper images). This same rotation was used to flip the images from left
to right (lower images). The mammograms were taken from [51]-[53].
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The two databases used in the classification process had
unbalanced data, i.e., some classes had few subjects, while
other classes had significant numbers of subjects. Therefore,
data augmentation was performed in two different ways.
In the first approach, eight images per subject were aug-
mented regardless of the number of subjects per class.

In the second case, data augmentation was performed so
that all classes had the same number of images, generating
up to a maximum of 16 images per subject. The 16 possible
images were generated by resizing the images to 1024 x
1024. Subsequently, each image was divided into 256*256
quadrants. Each quadrant had a size of 4 x 4. Finally, each
image was generated by taking the pixels of each quadrant at
the same position. The process is illustrated in Figure 2.

k\ 16 possible positions

Image generated
with the first position

. l D Quadrants
D Pixels

| Selected pixels

FIGURE 2. Reduction in image size and increase in number of data based
on reduction. New images were created from the selected pixels in each
quadrant. The mammograms were taken from [51]-[53].

D. SEGMENTATION WITH DL NETWORKS

In medical imaging, the segmentation process consists of
classifying each pixel into all possible interest elements
(e.g., background and affected tissues). UNet [49] is one of
the most popular networks for this task and was originally
created to focus on medical imaging. The structure consists
of convolutional layers interspersed with clustering layers,
forming an encoder-decoder design. The low-level layer fea-
tures are combined with the high-level layers (see Figure 3),
preserving some of the spatial information. The encoder
extracts the features, and the decoder performs upsampling.
The major difference between UNet and other segmentation
networks is that UNet adopts splicing and fusion in the
channel dimension. Additionally, the network can be trained
with a low amount of data since its structure can converge
quickly [56].

The design allows UNet to be highly efficient in the seg-
mentation process. However, recent studies have presented
variations of the network (e.g., backbones of other models),
which could be more efficient for this task. In this sense,
we proposed evaluating 11 of the most novel convolutional
networks, including UNet, as a reference. The implemented
networks are shown in the following table with their relevant
characteristics.

152210

Images Segmentation
4 |I
- Blocks - l-

Connections

Encoder Decoder

FIGURE 3. Base architecture of a deep neural network for segmentation.
Based on [56].

The networks are made up of several layers, and each
convolutional layer uses filters to extract the desired features
once the model is trained. The following mathematical model
governs the convolutional layers.

M
O _ ) -1, 5@, 3O
A =f (ZAi « Ky + b ) 1)

i=1
where A;l) is the feature map (output) of the 1-th convolu-

tional layer associated with the j-th convolutional filter (K fjl ) ).
Algl_l) is the output of the previous layer or the input for
the 1-th layer. b;l) is the bias, and M =1 is the number of
feature maps in the previous layer. Additionally, f denotes
a nonlinear activation function, which usually consists of a
rectified linear unit (ReLU). Despite the fact that all neural
networks are based on convolutional layers, their behaviors
can vary significantly due to their structural designs, i.e., the
depth of the network (number of layers); the number of filters,
connections or trajectories; and specific features, as described
in Table 2.

The input image passes through the architecture, generat-
ing the output (the training parameters; see Figure 3). Finally,
the training results are validated using the associated loss
function, and the model is iteratively adjusted until the best
model performance is obtained.

E. LOSS FUNCTIONS

As mentioned above, image segmentation consists of clas-
sifying pixels into different types of elements, usually those
associated with the background and the object of interest
(e.g., breast lesion). The difference between the regions
spanned by the elements (data imbalance) usually causes
the networks to be biased toward the larger element. How-
ever, some loss functions can circumvent this problem.
These can be classified into four different types: distribution-
based, region-based, boundary-based, and composite loss
functions [67]. Therefore, we proposed using five of the most
common loss functions to fit the segmentation models to the
training data. The utilized loss functions are described in
detail below.
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TABLE 2. State-of-the-art CNN architectures.

Networks Date of Remarks
publication
VGGI19 [57] 2015 Sequential convolutional architecture with a depth of 19 weight layers. *
ResNet [58] 2016 First network with residual connections between convolutional layers. *
InceptionResNetV2 [59] 2017 Modified multipath convolutional network with residual connections. *
DenseNet [60] 2017 Architecture with direct-access connections (throughout the network) or a densely connected structure. *
LinkNet-VGG19 [61] 2017 Deep architecture that allows for greater model tuning without a significant increase in the number of

parameters. *

ResNeXt [62] 2017 A network with residual connection blocks and building blocks that aggregate a set of transformations with the
same topology. *

SEResNet [63] 2018 A network composed of “squeeze-and-excitation” blocks, which adaptively recalibrate channel feature
responses by explicitly modeling the interdependencies between channels. *

SEResNeXt [63] 2018 A network composed of “squeeze-and-excitation” blocks, which adaptively recalibrate the responses of channel
characteristics by explicitly modeling the interdependencies between channels. Additionally, it has blocks that
aggregate a set of transformations with the same topology. *
EfficientNet [64] 2019 Architecture tuned through a composite coefficient that scales the width, depth, and resolution dimensions of
the network. *
MobileNetv2 [65] 2019 A network based on an inverted residual structure. The residual block's input and output are thin bottleneck
layers, allowing for the filtering of features in the intermediate expansion layer. *
MultiResUNet [66] 2020 Modern network with blocks and connections between blocks based on residual connections. Originally used in

dermoscopy, endoscopy, fluorescence microscopy, electron microscopy, and MRIL.

* Originally trained on natural images, i.c., not on medical images.

1) BINARY CROSS ENTROPY

Binary cross entropy is a loss function that is commonly used
to measure the difference between two probability distribu-
tions. This principle can be applied to individual pixels in
images, classifying elements into two possible values: the
background and the object of interest [68]. The binary cross-
entropy loss (Lpcg) is mathematically defined as:

Lgce (y,3) = — (vlog () + A =y log (1 =3)) (2

where y is the true value (label) and y is the predicted
probability of the label for the same element in the dataset.
It should be clarified that the binary cross entropy in a dataset
is defined as the average of all the elements that compose the
dataset.

2) WEIGHTED BINARY CROSS ENTROPY

As in the previous case, the weighted binary cross-entropy
loss is used to measure the difference between two distribu-
tions. However, this variant weights the sets, eliminating the
bias induced by imbalanced data [69]. The weighted binary
cross-entropy loss is mathematically defined as:

Lwse (3, 9) = — (Bylog (5) + (1 —y) log (1 —3)) (3

Here, y is the true value (label), y is the predicted proba-
bility of the label, and 8 is the weighting coefficient used to
adjust for false positives or false negatives.

3) DICE LOSS
The Dice coefficient is a statistic used to calculate the simi-
larity between two samples. Its use can be extended to images
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by comparing the similarity between spatially matched pix-
els [70]. The coefficient has also been included in a loss
function, which is mathematically defined as:

DL(y.j)=1- 2L @
y+y+1

where y is the true value (label) and ¥ is the predicted prob-

ability of the label. It should be noted that equation (4) is

modified with a 1 in the numerator and denominator, ensuring

that the function is defined even in extreme cases where y and

y are equal to zero.

4) FOCAL TVERSKY LOSS

The Tversky index is a measure of asymmetric similarity
between sets [71]. This function can be viewed as a gen-
eralization of Dice’s coefficient, and it is mathematically
expressed as follows:

¥y
WHBA =+ —-By(1-7)

Equation (5) averages the false positive and false negative
weights through the coefficient. Similar to Dice’s coefficient,
Tversky’s index can also be fitted to a loss function as
follows [72]:

TI (v,3) = ®)

TL =1-TI (6)

The loss function can be modified to a focal loss by
reducing the weights of individual examples and focusing
the training process on hard negatives through a modulation
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factor y [73], as shown below:

FTL =" (1—TI)" @)

Here, the modulation factor must meet the condition of
y > 0.

5) DICE LOG-COSH LOSS

Dice’s coefficient is widely used in computer vision for con-
ventional images. However, due to its nonconvex nature, the
smoothed version using a hyperbolic log-cosine has recently
been proposed [67]. The loss function is defined as follows:

Lp;, = log (cosh (DL)) ®)

Here, DL is the loss with the Dice coefficient established
in equation (4).

F. EVALUATION METRICS

As an important part of the objective model comparison d,
our approach was based on five evaluation metrics: the Dice
coefficient, sensitivity, specificity, accuracy, and F1-score.
The five metrics are mathematically expressed as follows:

) 2TP
Dice = ———— )
2TP + FP+ FN
Sensitivity = TP (10)
ensitivity = TP+ FN
ficity = —* (11)
specificity = IN T FP
TP + TN
Accuracy = (12)
IN +TP + FP + FN
2TP
Fl_score = ———— (13)
2TP + FP + FN

where the five metrics are established in terms of the true
positives (TP), true negatives (TN ), false positives (FP) and
false negatives (FN).

G. EXPERIMENTAL DESIGN

1) SEGMENTATION

A comparative analysis among the models in terms of their
automatic anomaly segmentation performance in mammo-
graphic images was proposed. The analysis addressed the
study of the five loss functions and the 12 architectures
described above. The performance of the networks was
observed during training with the Dice coefficient to deter-
mine the architecture with the best performance. Similarly,
validation was performed only through the Dice coefficient.
Finally, all networks were evaluated (after training) with the
test set under the Dice coefficient, sensitivity, specificity, and
accuracy metrics.

Figure 4 shows a graphical summary of the experimental
design. It started with the CBIS-DDSM dataset, and these
values normalized and divided into three datasets at propor-
tions of 70, 10, and 20% for training, validation, and test-
ing, respectively. The training dataset was augmented with
the proposed method, and subsequently, the models were
trained on all possible combinations of the five loss functions
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(see Equations (2), (3), (4), (7), and (8)) and the 12 deep archi-
tectures (see Table 2 ). Each model was trained for 150 epochs
with the training dataset, and their parameters were adjusted
to the optimal values. At each epoch, the models were eval-
uated on the training and validation data. Finally, the trained
models were used to generate predictions for the test data,
and the resulting scores were calculated through the true
segmentation and evaluation metrics.

Each network was run 20 times on average to generate
different scores and obtain the approximate distribution of
metrics. Besides, each network was run under the following
hyperparameters:

o Number of epochs: 150

o Optimizer: Adam

« Batch size: 4

o Weights initialization: Uniform Glorot

« Bias initialization: Zeros

The performance metrics provide detailed descriptions of
the implemented models. However, in discrete space, each
metric’s effectiveness is subject to the size of the element of
interest. For example, in Equation 9, a difference of only one
pixel between the actual and predicted segmentation results
(false positives or false negatives) would not generate a low
Dice score for a large region (many TPs). In contrast, small
regions would generate low values based on a difference of
only one pixel. Therefore, to obtain a more detailed descrip-
tion of the Dice score as a function of size, the best network
scores were compared with scores generated from the dilated
and eroded masks. These processes introduced minimal error
in the real regions by increasing or decreasing the perimeter
by one pixel (dilation and erosion).

2) CLASSIFICATION

Similar to the previous case, a comparative analysis of state-
of-the-art CNNs was proposed for breast lesion classification.
In this case, the most common classifications were used:
classification by lesion type and by degree of suspicion. In the
two classification processes, seven CNNs were addressed
under the cross-entropy loss function. The performance of the
networks was observed during training through accuracy and
validated with the same metric (accuracy). Finally, all models
were evaluated (after training) with the F1-score, accuracy,
sensitivity, specificity, and precision metrics.

The process is shown in Figure 4. Initially, the datasets
were split and preprocessed; data augmentation was per-
formed using the proposed method and the different networks
were trained. It is worth noting that each network was run
an average of 40 to generate different scores and obtain the
approximate distribution of metrics. Besides, each network
was run under the following hyperparameters:

o Loss function: Cross entropy.

o Number of epochs: 40

o Optimizer: Adadelta

« Batch size: 10

o Weights initialization: Uniform Glorot

« Bias initialization: Zeros
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The architectures were modeled with the Python program-
ming language by utilizing the main Keras and TensorFlow
libraries. The models were executed on a Colab platform
configured with 25 GB of RAM and a Tesla T4 GPU.
The implemented codes are publicly available in the follow-
ing GitHub repository: (https://github.com/Qsinap/Breast-
cancer-segmentation).

IV. RESULTS AND DISCUSSIONS

A. SEGMENTATION

This section shows the results generated by the models under
the different loss functions. The tables are presented with per-
centage values and graphs containing scores in their fractional
form, i.e., with values ranging from O to 1 that are equivalent
to values from 0 to 100%.

Table 3 shows the maximum metric values achieved by
the 12 deep CNNs. In this case, the EfficientNet archi-
tecture delivered the best result, reaching a Dice score of
94.75%. Moreover, the model achieved the highest sensitivity
with a value of 95.21%, ensuring a low negative false rate,
i.e., a small loss of lesioned regions. Likewise, the specificity
score was 99.99%, indicating a low probability of generating
false regions as lesions.
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Additionally, although EfficientNet was not the architec-
ture with the highest number of convolutional layers, it had
the highest number of training parameters, i.e., this architec-
ture had more filters per convolutional layer, allowing it to
obtain a higher number of feature maps per layer.

Similarly, the InceptionResNetV2 network exhibited sim-
ilar behavior to that of EfficientNet. The results show that
the same specificity and sensitivity values were achieved,
with an almost 1% difference. The Dice score also yielded
a difference of less than 1%, i.e., the network had high per-
formance (slightly lower than that of EfficientNet) but with a
smaller number of training parameters, which implies that a
lower computational load was required when implementing
this model.

In contrast, the UNet base network was the model with the
lowest number of training parameters and the lowest number
of convolutional layers. This explains the low performance
obtained by this network compared to that of the other archi-
tectures to a large extent.

Similarly, Table 4 indicates the highest scores achieved
by the loss functions, where binary cross entropy generated
the highest Dice score, sensitivity, and specificity. Other-
wise, the Dice, Tversky focal, and log-cosh Dice losses were
assumed to be more efficient since they are region-based
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TABLE 3. Best Dice scored achieved by the twelve deep CNNs and a summary of their structures.

Ec & & g £Hg& 5§ ¢ g€ £ § & %
Networks Eé IE L‘% g g §=_ el g 2 %‘ g S = 5 %
E = § 3§ F3& &7 S EF:i = E 5 3

s A & < O S Z
EfficientNet 9475 9521  99.99 9996  75.05 289 284 5 55 173 4 48
InceptionResNetV2 9406 9423 9999 9995  62.06 260 255 5 5 214 47 0
ResNet 93.60 9325 9999 9995  67.30 223 166 5 1 163 4 50
ResNeXt 9352 93.67 99.99 9995 5128 1178 1138 5 1 115 37 33
SEResNet 93.00 9127 9999 9994  73.94 323 266 5 51 165 4 50
SEResNeXt 92.86  91.84 9999 9994 5606 1244 1204 5 34 114 37 33
DenseNet 9279  91.54  99.99 9994 2638 218 211 5 4 211 102 0
MobileNet 90.59  90.19  99.99 9992 8.05 73 63 5 0 62 4 10
MultiResUNet 9029  90.88  99.99  99.94 7.26 61 57 4 4 85 13 19
LinkNet-VGG19 89.93 8746 10000 9991  25.63 39 34 5 5 17 0 4
VGG19 86.54 8055 10000 9989  29.06 34 29 5 5 12 4 0
Base UNet 86.51 8679  99.99  99.90 1.95 23 19 4 4 18 4 0

functions [67]. However, the results were more than 4%
below those of the binary cross-entropy loss function and
its weighted version. This finding implies that small-element
segmentation is not performed well with region-based func-
tions and would be performed better with distribution-based
losses.

TABLE 4. Best scores by loss function.

Losses M%;Z;um Sensoitivity Specificity Accuracy

) (%) (%) (%)
Binary CE 94.75 95.21 100 99.96
Weighted Binary CE 94.47 95.21 100 99.95
Focal Tversky 90.11 90.85 99.96 99.90
Dice coefficient 89.29 85.56 100 99.90
87.60 84.67 100 99.88

Log-cosh Dice

CE: cross entropy

Figure 5 shows two examples of the segmentations gen-
erated by the 12 models with the highest Dice scores (see
Table 3 ). The process was performed on large and small
lesion. The results were obtained with the respective loss
functions that performed best for each network and were
generated with the test data. Each example contained a mam-
mogram, an enlarged image of the region of interest (ROI),
the actual segmentation, and the probability or prediction map
generated by the model. Among the predictions, it can be seen
that EfficientNet presented a heat map that was similar to the
real region, even with the small ramifications presented by the
lesion. Additionally, the network approached the real region
in the small lesion and presented more defined edges.

Likewise, the InceptionResNetV2 network generated a
probability map similar to that of the EfficientNet network.
The central region appeared with high probability values
(close to 1), guaranteeing low uncertainty in this region.
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In particular, the differences occurred at the edge, where the
probability decreased because the network could not classify
the pixels as lesions or nonlesions. It should be noted that this
same effect was present in EfficientNet, making it difficult to
discern the visual differences in between two results.

In contrast, the basic UNet displayed diffuse edges in both
cases, generating a poor segmentation result for the element
of interest and producing the lowest metric scores, as shown
in Table 3.

As mentioned above, EfficientNet achieved the best perfor-
mance; therefore, Figure 6 shows the training (Figure 6a) and
validation (Figure 6b) results of this model only. The graphs
are the training averages for all loss functions, where the
translucent bands are the 95% confidence intervals. Figure 6a
shows that the Dice coefficient increased, indicating better
performance in each successive training epoch. Similarly,
Figure 6b presents the same behavior, with the same val-
ues reached at the end of the 150 epochs. This behavior
reveals that the model did not overtrain (overfitting) for any
of the 5 loss functions, and again, it can be seen that the
binary cross-entropy and binary-weighted cross-entropy loss
functions achieved the best performance. It should be noted
that all models presented the same behavior, i.e., they did
not overfit the day. However, the results of the other models
were made available to the public in the GitHub repository
(https://github.com/Qsinap/Breast-cancer-segmentation).

Figure 7 presents the overall results of all the training
processes. Figure 7a shows the distribution of the Dice scores
generated by all the training sessions. The figure shows that
EfficientNet had the most homogeneous distribution with
the highest values. The behavior assumes a probability of
conducting training with the highest score through this net-
work. Similarly, EfficientNet network a more homogeneous
sensitivity distribution than those of the other networks (see
Figure 7b).
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FIGURE 5. Examples of the segmentations generated by the deep neural networks with their respective
mammograms, the region of interest, the real region, and the heat map associated with each model’s

prediction. The mammograms were taken from [51]-[53].

In the case of specificity, all the networks had distributions
above 99.8%, with values generated by the background’s
large presence and low probabilities of generating false pos-
itives, i.e., pixels classified as injuries. Finally, Figure 7d
shows that the 5 loss functions exhibited same behaviors
regarding the metrics. The specificity had homogeneous dis-
tributions close to 1, while the Dice score and sensitivity
distributions displayed more heterogeneous behaviors. Addi-
tionally, in this last graph, the crossed and weighted binary
entropy distributions of the losses are above the other losses.
In fact, the first quartile of the first loss function is above
the last three, showing a marked difference between these
functions.

The test set consisted of 143 images of patients with dif-
ferent lesion sizes. Consequently, Figure 8 shows the real
breast lesion area and the areas generated by the best and
worst models, i.e., by EfficientNet and the base UNet (see
Table 3). The results show high agreement for EfficientNet,
even for small lesions (see Figure 8a). Likewise, the Incep-
tionResNetV?2 network exhibited similar behavior to that of
the EfficientNet network (see Figure 8c); however, there were
some divergences for small lesions, limiting the segmentation
ability of this model. UNet presented large differences with
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small lesions; however, the area was closer to the real values
when the lesion was larger (see Figure 8b).

Although EfficientNet presented an average Dice score of
94.75% (see Table 3 ), Figure 8c shows that lesions with larger
areas yielded scores above 95%. In contrast, smaller lesions
led to values below 95% and even 90%.

Additionally, Figure 8c introduces the Dice score gen-
erated from the dilated and eroded masks, i.e., the score
between the real mask and the mask with introduced mor-
phological transformation error. As expected, the introduced
error affected the behavior of the Dice score. The coefficient
decreased by up to 40% for smaller lesions. Otherwise, the
Dice score had high values for larger lesions even though
they were generated with the same error type. On the other
hand, theoretically, erosion and dilatation affect the inter-
nal and external perimeters, respectively. Consequently, the
outer perimeter was expected to be larger than the inner
perimeter, generating a larger error and affecting the Dice
score to a greater extent. However, Figure 8c shows that
erosion created a greater reduction in the Dice score. The
metric’s behavior versus the induced error reveals the depen-
dence of the models on the sizes of the segmented regions.
In other words, even if the segmentation effects are good,
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FIGURE 6. Training and validation of EfficientNet as a function of the
number of epochs. The plots show the performance of the network with
the Dice coefficient metric for the five loss functions in the a) training and
b) validation processes.

the corresponding scores can decline significantly for small
elements.

Finally, EfficientNet maintained high values despite the
inherent failure of the Dice coefficient in discrete space.

Figure 9 shows the segmentation performed by Efficient-
Net on two lesions: a large lesion and a small lesion. The
network prediction map closely resembles the actual seg-
mentation; however, the Dice coefficient varies drastically
between these two examples, confirming the impact that the
size of the element of interest has on the Dice coefficient.

Figure 10 shows the average time requirements of
the 12 models for automatic segmentation. In this case, the
UNet base network presented the shortest segmentation time;
however, the other architectures had comparable times, with
values below 15 milliseconds.

Finally, as shown in Table 5, the results showed that Effi-
cientNet achieved better scores than other similar works,
guaranteeing better segmentation results with respect to
masses on mammographic images.

Although there are innovative state-of-the-art DL architec-
tures, it makes little sense to evaluate the models from their
structures since each is complex regarding the elements that
are not directly comparable to each other. In this sense, the
performance of the models is directly summarized by their
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evaluation metrics, i.e., a model is efficient if the evaluation
metrics are high relative to other models. Consequently, the
results in Table 5 clearly show that one of the proposed
networks outperformed the results reported to date in terms
of the segmentation of mammographic images. This is very
useful for finding the affected regions (breast lesions) in short
times and with high performance, making this network a
handy tool in clinical settings.

The results show that the proposed network gener-
ated higher scores than related approaches. For example,
regarding the accuracy metric, EfficientNet reached a score
of 99.96%, surpassing the maximum score achieved by
the method of Abdelhafiz ef al. [46] across care models. In the
case of sensitivity, EfficientNet scored 95.21, surpassing the
maximum score reported by de Moor et al. [48] (94%).
Similarly, the Dice coefficient reached 94.75%, exceeding the
value reached by Zhu et al. [49] with multiscale networks by
almost 4%.

Finally, the results clearly show that the new DL architec-
tures are at the technological forefront in terms of screening
breast masses. However, there are some inherent limitations
relative to the problem at hand. For example, the Dice metric
is the most reported measure in the literature. However, the
size dependence of the element of interest creates a bias that
limits the objective evaluation of this work and existing work
that has been evaluated with the same metric. In this sense,
an approach could be sought to adjust the Dice metric to avoid
the drops in the coefficient due to small regions. On the other
hand, from a methodological point of view, the study was
based on an extensive dataset; however, this does not cover
all possible considerations of breast examinations, as several
protocols generate different types of mammographic images.

Additionally, it is necessary to include outlier images to
obtain more detailed descriptions of the networks in the face
of these drawbacks. These challenges could be overcome
by searching for and including new databases with differ-
ent characteristics, where transfer learning could be con-
ducted from the current methods to the models with the new
databases. This transfer would enable the models to avoid
starting with random parameters and allow them to reach
lower loss function values more quickly.

B. CLASSIFICATION

This section shows the results obtained for the two types
of classification problems, i.e., classification by the types
of lesions and classification by the degree of suspicion in
BI-RADS. As in the previous case, the tables present the
results in percentage values, while the graphs show the values
in their fractional forms.

Initially, classification by lesion type was performed with
the 7 CNNs: VGG19, ResNet50V2, DenseNetl121, Incep-
tionV3, InceptionResNetV2, EfficientNetB7 and Xception.
Table 6 shows the overall results obtained for the test data
in terms of the five different metrics. However, the results
were organized from the highest to lowest Fl-score met-
rics. The Fl-score provides a better description of this
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d) Distributions of scores as functions of the loss functions with the same three metrics. The results were derived from the test data.

case, presenting the imbalances between the six classes’
images.

In particular, the results show that the VGG19 network
achieved the maximum F1-score on the test data. This net-
work achieved the best performance even though the network
was one of the worst networks in the segmentation task. The
result confirms the need to search for a network carefully
for each specific task. That is, if a network has the best
performance on one task, this does not guarantee that this
behavior will be maintained in other types of tasks.

On the other hand, Table 6 shows how misleading the
accuracy metric can be. The metric was above 95% for
all networks. However, the sensitivity dropped to 14% for
the Xception network. That is, the network achieved 95%
accuracy but had a low ability to identify true positives.
Additionally, it is worth noting that the marked difference
between accuracy and sensitivity is due to the class imbalance
problem, where it is possible that there are true positives than
true negatives.

The results in Table 6 also show the high effectiveness
of the ResNet50V2 network. Although the network was 5%
below VGG19, it remained among the most efficient net-
works for classification and segmentation.

Table 7 shows the maximum classification scores achieved
for each of the lesion types. The results contain high
F1-scores for normal lesions. That is, the models were highly
efficient in discriminating mammograms without any abnor-
malities. However, it is also worth noting that the results could
have been generated due to data imbalances. For example,
the normal class yielded the highest probability percent-
age, but this class occurred more frequently than the others
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(see Table 1). Similarly, the MISC lesions (ill-defined masses,
others) had the lowest frequency. Consequently, it was the
class with the worst scores.

Table 8 shows the results for the case of classification by
the degree of suspicion (BI-RADS). The networks presented
similar behaviors to those in the previous case. The ResNet50
and VGG19 networks generated the best performances. How-
ever, in this case, the ResNet50 network outperformed the
VGG19 network by more than 6% in terms of the F1-score.

Similarly, the accuracy metric did not present significant
differences between the networks, and all of values exceeded
97%. Again, the differences were found among the sensi-
tivities of the networks, where there was a difference of
approximately 47%. In other words, the ResNet50 network
had a better performance than EfficientNet in terms of dis-
criminating between true positives. It should be noted that
all the networks were excellent at determining true negatives
(high specificity), which could be attributed to the greater
probability of encountering a true negative.

Table 9 shows the scores achieved according to the differ-
ent grades of suspicion regarding the test data. Class 1 yielded
a marked difference relative to the other classes, i.e., neg-
ative mammograms were clearly distinguishable unlike the
other classes. In fact, suspicions highly suggestive of malig-
nancy (6) produced the second-best results, but with an almost
47% difference from the first-place results. In this case, the
marked difference between the classes could not be directly
attributed to class imbalance since the benign class (3) had
the highest number of mammograms (see Table 1), but its
Fl1-score reached 11.43%. In summary, Table 9 shows the
high performance of the models in detecting true negatives
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TABLE 5. Comparative summary of similar works and the two best architectures.

Author

Method

Loss

Function

Advantages

Disadvantages

Metric

Score

Kamil

k-mean

Not

applicable

ML methods are faster with lower computational
burdens. This method is based on unsupervised
algorithms, i.e., it does not need training data
generated by a radiologist. Used under the MIAS
database.

It has low generalizability, i.e., the results have low
reproducibility if any changes are generated or if
other images are used. The accuracy metric is an
inferior metric that does not consider class
imbalance.

Accuracy

Nl
—_
[\

Kamil

fuzzy c-mean

Not

applicable

ML methods are faster with lower computational
loads. This method is based on unsupervised
algorithms, i.e., it does not need training data
generated by a radiologist. Used under the MIAS
database.

It has low generalizability, i.e., the results have low
reproducibility if any changes are generated or if
other images are used. The accuracy metric is an
inferior metric that does not consider class
imbalance.

Accuracy

94.1

Li

DenseNet with AG

Cross entropy

This model has relatively low parameters
compared to those of the other models, and the
architecture handles the vanishing gradient
problem well, i.e., it does not encounter a problem
when training the first deep layers. Attention
models allow it to focus on more relevant regions,
allowing it to preserve image attributes for better
segmentation. Used under the CBIS- DDSM
database.

It is trained only with the cross-entropy loss
function, as it is a measure based on the input data
distribution.

F1-score

82.2

attention
blocks

Dice

Attention models allow the model to focus on more
relevant regions, allowing it to preserve image
attributes for better segmentation. Used under the
CBIS- DDSM and INbreast databases.

The UNet network is the most straightforward deep
network among the fully convolutional models, and
its segmentation capability is limited relative to that
of modern models.

98.7

Abdelhafiz|Abdelhafiz

UNet with | UNet with
on layers

normalizati

Dice

Normalization layers prevent model overtraining.
Used under the CBIS-DDSM and INbreast
databases.

The UNet network is the most straightforward deep
network among the fully convolutional models, and
its segmentation capability is limited relative to that
of modern models.

Accuracy | Accuracy

92.6

De Moor

UNet with FROC

Weighted logistic

The simplicity of the UNet network is generally
reflected in shorter run times and lower
computational  loads. Used wunder own
mammograms.

The UNet network is the most straightforward deep
network among the fully convolutional models, and
its segmentation capability is limited relative to that
of modern models. It is trained only with the
weighted logistic loss function, as it is a measure
based on the input data distribution. It is evaluated
through sensitivity, a metric that does not consider
unbalanced data between the background and
element of interest.

Sensitivity

94

Zhu

CNN with
CRF

likelihood

This model uses multiscale fully convolutional
neural networks to achieve good segmentation
results for small masses. Used under the CBIS-
DDSM database.

It uses the maximum likelihood function based on
the distribution of the data without considering the
imbalance between the background and element of
interest, limiting the performance of the network.

Dice

Proposed

EfficientNet

entropy

Accuracy

100

Sensitivity

95,2

Dice

94,8

Proposed

sNetV2

InceptionRe

Binary cross|Binary cross| Maximum

entropy

Accuracy

100

Sensitivity

94,2

Dice

94,1

(specificity), but they have low abilities to determine true
positives.

Based on the results shown in Tables 6 and 8, it is clear that
the VGG19 and ResNet50 networks are the best architectures
for classifying lesions and the degrees of suspicion regarding
breast lesions. Therefore, Figures 11 and 12 show the average
behaviors exhibited during the 40 different training runs.

Figure 11 shows the training and validation results of the
VGG19 network as a function of the 40 epochs. In this case,
the different training runs did not present significant differ-
ences since the error band (translucent color) was small. That
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is, the VGG19 network exhibited stability during training,
guaranteeing convergence to similar training and validation
scores. Moreover, the training and validation curves con-
verged above 90%, guaranteeing a low degree of overtraining,
which agreed with the test results shown in Table 6. On the
other hand, both the accuracy and loss curves showed slight
divergences between training and validation, which were gen-
erated near epoch 30, i.e., the models require approximately
30 epochs to reach the best performance without overfitting.

Similarly, Figure 12 shows the training and validation of
the ResNet50 network in terms of the accuracy metric and
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FIGURE 8. Results as a function of breast lesion size for the 143 test
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segmentation of a) EfficientNet; b) InceptionResNetV2; and c) UNet
(base); d) Dice scores as functions of the area generated by EfficientNet
and by the induced dilation and erosion errors. A yellow line
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Prediction
Dice=0.8845

L

Mammography ROI Ground Truth

Dice=0.9801

EfficientNet

FIGURE 9. Comparison of the Dice scores obtained for two lesions of
different sizes. The mammograms were taken from [51]-[53].

the loss of the model. The network exhibited stability between
the different parts of training, generating a reduced error band
and converging close to 0.8. The result guarantees that the
model was not overtrained, and the results agree with those
obtained in Table 8. On the other hand, the losses of training
and validation exhibited similar behaviors, corroborating the
fact that the model did not overfit. However, the curves do
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FIGURE 10. Segmentation times per subject for the 12 deep CNN models.

TABLE 6. Maximum clustering scores achieved by the different neural
networks - MIAS database.

o > 2 2 =
g ~ S~ =~ S~ 2~
Network PSS IR =X =N RS
= o< g < g3 < 8 <

~ < A 2 A
VGGI19 79.12 96.97 92.86  100.00 100.00
ResNet50V2 74.47 95.45 83.33 100.00  100.00
DenseNet121 71.74 96.97 78.57 100.00 100.00
InceptionV3 54.55 95.45 50.00 100.00 100.00
InceptionResNetV2 50.00 96.97 33.33 100.00 100.00
EfficientNetB7 36.36 95.45 25.00 100.00 100.00
Xception 21.88 9545 14.58 100.00 100.00

TABLE 7. Maximum classification scores achieved for the different types
of lesions.

o > 2 2 =

= 5% = = I
S ~ s~ >~ S ~ 2~
Class 2 5 OER ER OER
= g g < g < 8 <

~ < A N A~
Normal 79.12 8839 92.86 93.75 7347
Calcification 55.88 9242 79.17 100.00 50.00
Asymmetry 46.15 9545 4375 100.00 52.63
Circumscribed masses*  40.00  93.94  43.75 100.00 100.00
Architectural distortion  40.00 9545 4792 100.00 100.00
Spiculated masses 39.18 9394 39.58 100.00 50.00
Ill-defined masses** 36.54 9545 39.58 100.00 50.00

*Well-defined. **Other

not show any apparent divergences, so it is possible to train
the model over a greater number of epochs to obtain a better
result.

As mentioned above, the models were run by randomly
selecting data. Therefore, the box-and-whisker plots cor-
responding to the different obtained scores are shown in
Figures 13 and 14. In addition, the difference between the
datasets with data augmentation and without the proposed
data augmentation approach is also presented.

Figure 13a shows the distribution of the accuracy metric
as a function of the seven CNNs. The results corroborate the
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TABLE 8. Maximum classification scores achieved by the different neural

networks - INbreast database.

g iy 2z z £
o ~ S~ >~ Q o~ =~
Network A€ € 38 58 %€

m 2 3 & &
ResNet50V2 73.68 9773 79.55  100.00  100.00
VGGI19 67.92 9773 81.82  100.00 100.00
InceptionResNetV2 6526 9772 7045  100.00 100.00
DenseNet121 60.00 9770  56.82  100.00 100.00
InceptionV3 5570 9770 50.00  100.00  100.00
Xception 50.00  97.68  33.33  100.00  100.00
EfficientNetB7 42.09  97.68  32.66  100.00 100.00

TABLE 9. Maximum classification scores achieved for the different types

of bi-rads abnormalities.

Class* F1_score Accuracy Sensitivity Specificity Precision
(%) (%) (%) (%) (%)
1 73.68 90.63 79.55 100.00 100.00
5 27.03 97.65 15.63 100.00 100.00
3 26.67 96.47 18.75 100.00 100.00
6 26.67 88.67 18.75 100.00 100.00
4a 15.38 97.65 9.38 100.00 42.86
2 11.43 94.12 6.25 100.00 100.00
4b 11.43 94.12 6.25 100.00 100.00
4c 6.06 88.24 3.13 100.00 100.00
*BI-RADS
a) Accuracy
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FIGURE 11. Training and validation of the VGG19 network as a function of
the number of epochs. The graphs show the network performance
through the a) accuracy and b) loss. The network was trained to classify
the types of lesions in the MIAS database.

fact that there is was higher probability of arriving at a high-
performance network through VGGI19 than through other
networks for the lesion type classification case. Moreover,
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FIGURE 12. Training and validation of the ResNet50 network as a
function of the number of epochs. The graphs show the network
performance through the a) accuracy and b) loss. The network was
trained to classify the lesions in BI-RADS with the INbreast database.

it is more than evident that an increase in data contributes
to better results for all networks. Indeed, this behavior can
be seen in both the sensitivity (Figure 13b) and specificity
(Figure 13c) metrics.

In Figure 13d, it can be seen once more that all classes
exhibited high specificity, i.e., the models were highly effi-
cient in identifying true negatives. In contrast, the detection
rate of true positives declined significantly. Again, this trend
can be attributed to the low chance of finding a true positive
versus the high probability of finding a true negative. Fur-
thermore, in this plot, it can be observed that the normal class
yielded the three highest metrics, confirming that the class
with the highest number of data (see Table 1) resulted in better
discrimination for the networks.

The classification by degree of suspicion (BI-RADS)
behavior similarly to the classification by the degree of the
lesion. Figure 14a shows that the increase in data generated a
better score distribution, reaching values close to 1, i.e., 100%
probability. Likewise, the networks that achieved the best
performance were the VGG19 network and the ResNet50 net-
work, where the latter produced the highest scores for classi-
fying the degree of suspicion. Again, specificity was observed
to be the highest metric even without data augmentation, and
it was difficult to see significant differences in most networks
except for the VGG19 network (Figure 14c). In other words,
the performance of the networks is subject to their sensitivity.
That is, most of the networks managed to clearly identify
the true negatives, as these were found in higher proportion,
but were limited to incorrectly identifying the true positives
(sensitivity), as shown in Figure 14b. We highlight that this
effect could have been generated due to the distribution of
the data.
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FIGURE 13. Distributions of scores generated by training all of the seven deep CNNs for the metrics of a) accuracy; b) sensitivity; and c) specificity;
d) Distributions of scores as functions of lesions in terms of the same three metrics. The results were derived from the MIAS database and were

generated with test data only.

Furthermore, since there were several classes, the possibil-
ity of finding a true positive of a class decayed in proportion
to the number of classes being classified. That is, in this
particular case, there were eight different classes. Therefore,
the probability of finding a true positive of class 1 was 1/8.
Additionally, this problem becomes more acute when the
classes do not have the same numbers of images, i.e., when
the data are unbalanced.

The accuracy, sensitivity, and specificity were maintained
for the eight different classes. All classes yielded specificity
distributions close to 100%, and accuracy produced high val-
ues. However, the distributions declined for sensitivity except
for that of class 1.

In the classification by lesions scenario, although the
class with the highest number of data presented the best
results, in this case, this characteristic was not preserved.
Table 1 shows that the benign class (3) had a higher number of
images, but the distribution of this class was similar to those
of the classes with less data (see Figure 14d).

Finally, to describe the performance of the running net-
works, Figure 15 shows the average classification time per
subject for each of the seven utilized networks. In this case,
the ResNet50 network required the shortest classification
time; this was in agreement with the general descriptions of
the residual connection networks, which improve their train-
ing times by forcing the learning process to follow a residual
mapping f (x) —x and being easier to train if the ideal residual
mapping is the identity function f (x) = x [58]. Similarly, the
other networks also had relatively short run times for classi-
fying subjects, with most utilizing below 200 milliseconds of
classification time.
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It is also worth noting that all models had similar behaviors
in the two classification cases. In fact, the ResNet50 network
presented the best execution time, while the EfficientNet
network generated higher execution times in the two cases.

Finally, as previously mentioned, this study focused on a
comparative analysis of different CNNs implemented with
conventional images. The approach sought to determine the
behaviors of state-of-the-art DL networks in cases with med-
ical images, specifically mammograms. The results showed
the high effectiveness of EfficientNet regarding the segmen-
tation of breast lesions, even in small lesions, despite the
inherent constraints of small lesions. In addition, the study
revealed the need to search for the network that best fits the
specific task, i.e., although the MultiResUNet network is one
of the newer architectures for segmentation, the performance
metrics remained below those of EfficientNet. The review of
the state-of-the-art approaches uncovered new elements for
the case of breast lesions. However, most of the networks
used with conventional images were shown to generate good
results without the need for significant modifications except
for the hyperparameters used during training. Even Efficient-
Net managed to the surpass state-of-the-art methods in terms
of the segmentation of breast lesions. In the same sense, in the
lesion classification and degree of suspicion tasks, the state-
of-the-art networks did not generate the best performances.
In fact, in this particular case with mammograms, the optimal
classification results were obtained with the VGG19 network,
even though this was one of the first deep CNNs to be
developed.

Therefore, among the different types of available networks,
it is necessary to test them to accurately establish the network
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FIGURE 15. Classification time per subject for the seven deep CNN
models in the a) classification by lesion and b) classification by BI-RADS
tasks.

that is best suited for the specific task encountered in medical
imaging.

The CNNs performed well in the segmentation and classi-
fication tasks, surpassing the state-of-the-art methods. How-
ever, the study presents some limitations that should be
addressed in future studies. Initially, the databases remained
one of the main limitations in the implementation of the
DL algorithms. In this case, the CBIS-DDSM, MIAS, and
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INbreast databases, three of the main open-access databases
in mammography, were used. However, all three databases
lack heterogeneity, and each has features that address dif-
ferent problems. In other words, it is necessary to attempt
to evaluate the results with external databases containing the
same labels or segmentations of the same regions to reach
an objective conclusion. For example, Salama and Aly [50]
addressed the segmentation problem. However, their research
focused on the segmentation of the breast and not lesions.

On the other hand, as mentioned above, the accuracy metric
is not the most suitable for unbalanced data, as it can generate
high values despite having very low sensitivity. To avoid this
drawback, this study was performed with different evaluation
metrics. However, a comparison with previous work evalu-
ated with the accuracy metric might not reveal significant
differences.

V. CONCLUSION

A comparative analysis of methods for the segmentation
and classification of breast lesions on digital mammograms
was proposed. Initially, we proposed a comparative analysis
of 12 state-of-the-art DL networks under five loss functions
to improve the automatic segmentation of breast examination
images. The proposed convolutional models were built with
the base UNet and the most recently developed networks
with building blocks, squeeze-and-excitation blocks, resid-
ual connections, large numbers of deep layers, and novel
architectures for segmentation or conventional classification,
i.e., on problems other than medical imaging. The results
showed that EfficientNet, together with the binary cross-
entropy loss function, achieved an accuracy of 99.96%,
outperforming the most recently developed approaches.
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Additionally, this model presented the most homogeneous
distribution with higher scores than those of the other
architectures. EfficientNet generated training and validation
curves that converged with a Dice score close to 95%, indi-
cating that the model was not overtrained. The architecture
was validated with test datasets of different sizes, where the
generated segmentations had areas with sizes close to those of
real areas, even for minor lesions. Similarly, in the segmen-
tation tests, it was possible to observe the details generated
at the edges of the lesions, demonstrating the high effective-
ness of EfficientNet. The model’s effectiveness provides a
detailed view of the morphological characteristics of breast
masses, allowing their structures to be compared with theo-
retical bases for an objective assessment of the morphological
aggressiveness of the masses and, consequently, allowing for
the pathological characterization of the masses as potentially
malignant or benign masses.

On the other hand, the comparative method with Dice’s
coefficient and the morphological transformations of the real
segmentation images allowed for observing the effect that the
discretization of the images had on the segmentation results
of small regions, i.e., the validation metrics lose objectivity
when the segmented element is smaller.

In this sense, the results are promising with EfficientNet.
However, new methods need to be explored to reduce the
error associated with the metrics when lesions are small.
Future work should consider this variable and focus on small
lesions, increasing model performance and ensuring an effi-
cient model that is applicable in the clinical setting.

Finally, a comparative analysis was performed for the clas-
sification process through two different databases: MIAS and
INbreast. The images were classified by the types of lesions
and the degree of suspicion of malignancy. In the first case,
the classification by lesion type yielded 96.97% accuracy.
However, the results were subject to the distribution of the
input data because there was a greater probability of finding
true negatives than true positives, which is a critical limitation
of the classification process. Similarly, the lesion type classi-
fication case produced 97.73% accuracy but was limited by
identical drawbacks due to the distribution of the data across
classes. The results showed that although new developments
and techniques have emerged in the architectures of DL
models, it is necessary to explore different networks to arrive
at the one that best fits the desired task. For example, in this
case, we obtained the best results through the VGG19 and
ResNet50 networks, where the former is one of the oldest DL
networks available.
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