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ABSTRACT To provide coordinate information for the use of intelligent transportation systems (ITSs) and
autonomous vehicles (AVs), the global positioning system (GPS) is commonly used in vehicle localization
as a cheap and easily accessible solution for global positioning. However, several factors contribute to GPS
errors, decreasing the safety and precision of AV and ITS applications, respectively. Extensive research has
been conducted to address this problem. More specifically, several optimization-based cooperative vehicle
localization algorithms have been developed to improve the localization results by exchanging information
with neighboring vehicles to acquire additional information. Nevertheless, existing optimization-based
algorithms still suffer from an unacceptable performance and poor scalability. In this study, we investigated
the development of deep learning (DL) based cooperative vehicle localization algorithms to provide GPS
refinement solutions with low complexity, high performance, and flexibility. Specifically, we propose three
DL models to address the problem of interest by emphasizing the temporal and spatial correlations of the
extra given information. The simulation results confirm that the developed algorithms outperform existing
optimization-based algorithms in terms of refined error statistics. Moreover, a comparison of the three pro-
posed algorithms also demonstrates that the proposed graph convolution network-based cooperative vehicle
localization algorithm can effectively utilize temporal and spatial correlations in the extra information,
leading to a better performance and lower training overhead.

INDEX TERMS Cooperative vehicle localization, data fusion, deep neural network (DNN), graph
convolution network (GCN), long short-term memory (LSTM), vehicle-to-vehicle (V2V).

I. INTRODUCTION
Intelligent transportation systems (ITS) and autonomous
vehicles (AV) enable several convenient applications and are
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expected to bring about new experiences with enhanced effi-
ciency and safety to road users in the near future [1]. More
specifically, ITS applications such as geographic information
dissemination, traffic control, and the automatic position-
ing of accidents can be used to increase the efficiency of
road users while traveling. By contrast, automatic collision
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avoidance systems in AVs can be employed to provide safety
to road users. However, accurate localization is one of the
most vital premises for the implementation of the aforemen-
tioned applications [2]. Although several localization meth-
ods, such as map matching, fingerprinting, and image/video
localization, can be used to provide coordinate information
of vehicles, the global positioning system (GPS) is still the
most common choice for providing localization results to
vehicles. There are two reasons for prohibiting the wide use
of these methods. First, to apply these methods, expensive
sensors, such as cameras and video recorders, should be
installed in the target vehicle to provide the required infor-
mation for matching or fingerprinting. To achieve accurate
localization, acceptable sensors, which can be used to provide
a high-resolution or high-quality output, are costly, hindering
the widespread use of such methods. Second, to achieve an
effective matching or fingerprinting, a database containing
sufficient reference samples should be built in advance, pro-
hibiting the wide use of these methods. Moreover, the need
for a predefined database also limits the operation area for
effective localization. As an alternative, GPS is the most
commonly used localization system for vehicle applications,
offering a cheap and easily accessible solution for global
positioning [3].

Although GPS offers an easy and accessible way to con-
duct localization, the precision of GPS still has room for
further improvement in providing accurate localization. To be
more specific, GPS suffers from the influence of several
factors (e.g., receiver noise and a multipath effect) such that
the received GPS coordinates have large errors with the
actual coordinates of the vehicle, thereby posing a threat to
the safety of the AV or the precision of ITS applications.
To solve this drawback by working on the GPS error refine-
ment, vehicular ad-hoc networks (VANETs) [4] have recently
been introduced to the automotive research community where
vehicles can communicate with each other to improve their
location awareness [2], [5]–[7]. By integrating vehicle-
to-vehicle (V2V) communication, an effective ‘‘cooperative
driving’’ network can be established to share information
for GPS refinement usage [1]. To be more specific, several
studies have already focused on incorporating GPS with aux-
iliary information (e.g., ranging measurement and reference
points) through optimization-based algorithms to enhance
the system performance [2]. In [5], the authors proposed
a direction of arrival (DOA)-based cooperative localization
method, incorporating GPS with radar to improve the local-
ization. Furthermore, because the information coming from
each sensor has its own limitations, the concept of data fusion
has been introduced into the GPS refinement to refine the
GPS results based on the information acquired from multiple
sensors. In addition, in [7], the authors proposed a cooperative
neighboring vehicle positioning system (CNVPS), incorpo-
rating GPS with various sensors using the weighted average
to improve the localization. However, the approach in [7] only
employs a linear function for the application of a sensor data

fusion for GPS refinement, thereby leaving room for further
performance improvements.

Although more powerful algorithms should be developed
to improve the performance of existing CNVPS algorithms,
the design of advanced optimization-based CNVPS algo-
rithms is not trivial. First, the design is highly dependent
on the precise domain knowledge of different information
sources (i.e., the error distribution of extra sensors), which
may not be easily available under real scenarios. Moreover,
the optimization problem should be redesigned if different
types of sensors are employed. Second, to achieve accurate
results, multiple iterations or complex matrix operations are
often employed in the optimization process. Finally, although
the problem of interest can be considered time-series data
(i.e., multi-time-slot data), existing optimization-based meth-
ods only focus on the scenario of a single time-slot data
fusion. As a result, the modeling of an optimization problem
for extracting the correlation in multiple time-slot data and
further improving the performance remains an open problem.

Differing from existing optimization-based algorithms, our
idea is to develop CNVPS algorithms based on a deep learn-
ing (DL) algorithm owing to such advantages as a low com-
plexity, high performance, and design flexibility. Specifically,
given a sufficient training dataset, even without a precise
mathematical system model, the DL model can be used
to construct a nonlinear function and automatically solve
the optimization problem of interest. Moreover, during the
online testing stage, only simple matrix operations are exe-
cuted when generating GPS refinement results, matching the
computational limitations of on-board vehicle units. Further-
more, the DL model can extract hidden features (i.e., cor-
relation of a multiple time-slot scenario) to further improve
the GPS refinement results, making it almost impossible
for optimization-based algorithms to do the same. Based
on the aforementioned motivations, we decided to focus
on the development of DL-based CNVPS GPS refinement
algorithms. As a result, we can not only fully fuse var-
ious sensors but also integrate multiple time-slot data by
introducing flexible characteristics of DL algorithms. For a
single time-slot GPS refinement, we propose a multi-layer
perceptron-cooperative neighboring vehicle positioning sys-
tem (MLP-CNVPS) to achieve DL-based GPS refinement.
Considering amultiple time-slot GPS refinement, we propose
a long short-term memory-cooperative neighboring vehicle
positioning system (LSTM-CNVPS) for obtaining superior
results by considering the temporal correlation in multi-
ple time-slot data. Moreover, a graph convolution network-
cooperative neighboring vehicle positioning system (GCN-
CNVPS) was further developed to better utilize both tem-
poral and spatial correlations and achieve an efficient GPS
refinement, leading to an even better performance com-
pared to the aforementioned DL-based CNVPS algorithms.
Although some more complex architectures of graph neural
networks, such as GraphSAGE [8], [9], can also be used
to implement cooperative neighboring vehicle positioning
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systems, it is noteworthy that the main idea of this paper is
to provide a way for on-board computing units to achieve
fast localization enhancement with outstanding performance.
As a result, we consider GCN is a more suitable candidate
than other graph neural network architectures due to the
relatively straightforward and stable graph structure of the
considered problem [10] and the real-time demand of vehicle
applications.

Simulation results show that the performance of the pro-
posed DL-based localization approach is better than that
of existing optimization-based localization algorithms by
improving the GPS error mean from 4 − 20 m to 2 − 4 m.
This improvement is comparable to the current V2I local-
ization performance [11], thus verifying the contribution of
this study. Moreover, as [12] reported, an error mean of
approximately 6− 8 m is sufficient for most vehicular appli-
cations using V2V ranging. Furthermore, when it comes to
the implementation issues of the proposed approaches, recent
studies [9], [13] suggest that the proposed GCN structure can
be implemented in on-board computing units to provide real-
time GPS enhancement due to the low complexity nature of
the proposed GCN structure. Considering both the perfor-
mance and complexity, our study is a strong candidate to be
implemented inV2V applications with the advantages of low-
cost hardware, a fast and simple method, and accurate and
stable performance.

The remainder of this paper is organized as follows.
In Section II, the system model and sensor configurations
are as described below. Section III illustrates the proposed
method in detail, including the framework of the deep
learning-based localization approach and the operations in
both the online and offline stages. The simulation results
are presented in Section IV, followed by some concluding
remarks in Section V.

II. SYSTEM SETUP AND PROBLEM FORMULATION
A. SYSTEM SETUP
As shown in Fig. 1, a cooperative group consisting of N
vehicles is considered to enable a CNVPS-aided localization
refinement [7]. With the support of vehicle-to-vehicle (V2V)
communications, a target vehicle can use extra information
from the GPS localization results of neighboring vehicles
in the group and sensors in the vehicle to refine the GPS
localization result. Specifically, GPS installed in each vehi-
cle is used to estimate the vehicle coordinates. Moreover,
commonly used omnidirectional radar is also employed in
each vehicle to measure the relative distance and angle of
the surrounding vehicles. We further assume that these mea-
surements can be matched to the right surrounding vehicle
owing to the matching ability of the sensors and GPS [7].
We also assume that each vehicle in the group can communi-
cate with neighboring vehicles through V2V, which is used
as a setting in related studies [2], [5]–[7]. To explain this,
the basic safety message (BSM) [14] and the optional part of
the BSM, which is supported by both dedicated short-range

communication [7], [15] and cellular vehicle-to-everything
standards [16], can satisfy our need to exchange information
between vehicles in a group. As a whole, in each BSM frame
(i.e., time slot), each vehicle can acquire the GPS coordinate
results of all surrounding vehicles (from GPSs and V2V
exchanges), the relative distance and angle to other vehicles
(from on-board omnidirectional radar), and the received sig-
nal strength indication (RSSI) of other vehicles (from V2V
exchange) for achieving CNVPS-aided localization refine-
ment for a refined GPS localization result.

B. SENSOR CONFIGURATION
In this section, we introduce the sensor configurations used
in this study, including GPS, radar, and RSSI.

1) GPS
In this study, GPS provides location information in units of
degrees of latitude and longitude. To employ GPS measure-
ments and distance measurements of radars in the developed
DL model with the same numerical scale, it is assumed
that after the target vehicle receives GPS measurements
from the neighboring vehicles, GPS measurements are pre-
processed and transformed into coordinates with units of
meters. By doing so, the unit scope of input variables is guar-
anteed to be the same, assisting the problem to be modeled.
It is noteworthy that the unit conversion is a one-to-one rela-
tionship, a linear calculation can be exploited to acquire GPS
refinements of degrees after acquiring a refined localization
result in terms of meters. We also use the meter as the unit
in the following sections to provide clarity and intuition. Fur-
thermore, it is assumed that the GPS error follows a Gaussian
distribution, as there are several independent sources, such
as satellite clock bias, atmospheric delay, code acquisition
noise, and multipath effect, contributing to the GPS error
in practice [17]–[19]. In each case, the relationship between
the GPS localization result Ĝ ∈ R2 and the real position
G ∈ R2 of a vehicle can be expressed as follows:

Ĝ = G+ n, (1)

where n = [Re{|a|ejθ }, Im{|a|ejθ }]T denotes the error term
with a ∼ N (µ, σ 2) and θ ∼ u(0, 2π ). According to existing
literature [20], because the levels of the multipath effect
are site-dependent, the statistical properties of the Gaussian
distribution should be set differently to reflect the GPS error
in different environments. In this study, we simulated three
different environments to validate the robustness of different
CNVPS-aided refinement algorithms. Specifically, in this
study, three environments, including freespace (e.g., highway
environment), suburban, and urban scenarios, were consid-
ered and set asN (4.7, 4.84),N (14.8, 49), andN (20.5, 72.25),
respectively, [2] to reflect the GPS estimation behavior.

2) RADARS
In this study, radar is used to provide the relative distance and
angle of the surrounding vehicles as an information source
for GPS refinement. It is noteworthy that although the ghost
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FIGURE 1. The considered scenario of cooperative vehicle localization through V2V. V2V communication is used to transmit additional information
acquired from on-board sensors for the use of GPS refinement. The information is arranged in a specific format and fed into the DL-based CNVPS
algorithm, generating GPS-refined results.

target effect may appear in the radar sensing stage, we assume
that the radar raw data processing step can be finished ideally
based on the following reasons. First, the physical character-
istics and the detection results from different time-slots can
be utilized to aid the ghost target removing. Furthermore,
as only short-range radars will be employed in the considered
scenario and the number of detecting targets can be regarded
as a prioir knowledge according to the pre-defined size of
the considered vehicle group, with the aforementioned infor-
mation, several advanced ghost target removing algorithm
[21], [22] can be used to provide correct processed radar data
in the considered scenario. As a result, we assume ideally
radar raw data is available for the use of proposed algorithms.

To simulate the radar measurements, the relationship
between the radar distance measurement D̂ ∈ R and the real
distance D ∈ R of a vehicle can be expressed as follows:

D̂ = D+ ňD, (2)

where ňD ∼ u(−0.025D, 0.025D) describes the longitudinal
uncertainty of the measurement related to the true distance.
Note that the uncertainty increases with the real distance, sat-
isfying the realistic radar measurement behavior. Moreover,
the relationship between the angle measurement Θ̂ ∈ R and
the real angleΘ ∈ R of a vehicle can be expressed as follows:

Θ̂ = Θ + ň2, (3)

where n̆2 ∼ u(−0.5, 0.5) describes the lateral uncertainty
of the radar measurement with an angular error of 0.5◦

according to [23].

3) RSSI
Despite the radar measurements, because we adopt BSM to
serve V2V communication, the RSSI information can also

be acquired in each frame of the BSM to provide another
distance measurement for the GPS refinement [24], [25].
To model the RSSI measurements, the practical path loss
can be described as a log-normally distributed random vari-
able with a distance-dependent location parameter [12], [26].
That is,

Pr(d) = P0(d0)− 10np log10(
d
d0

)+ ñ, (4)

where Pr(d) denotes the received signal strength measured in
decibel milliwatts (dBm) at the transmitter-receiver distance
d (in meters), P0(d0) denotes the reference power (in dBm)
at a reference distance d0 (in meters), np is the channel
path loss exponent, and ñ is the effect of channel fading.
To conduct the simulation in this study, we set the afore-
mentioned parameters as P0(d0) = −34, np = 2.1, and
ñ ∼ N (0, 5.52).

C. PROBLEM STATEMENT
The GPS refinement problem can be considered as a method
for improving the GPS localization based on the extra afore-
mentioned information. Hence, the goal of this study is to
design a function that takes extra information and the original
GPS estimations as input and returns the refined GPS estima-
tion result, minimizing the difference between the predicted
result and the real position of the target vehicle by means of
data fusion.

Specifically, as shown in Fig. 1, in each vehicle in the
group, through a V2V information exchange, the extra infor-
mation Xt,i is available in each vehicle i at time slot t for the
refinement of the GPS localization result. Based on the afore-
mentioned sensor configurations, the extra information can
be further expressed as Xt,i = [Ĝt,i, D̂t,i , 2̂t,i , Pr;t,i ] ∈ R5,
which contains the GPS, relative distance to the target
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vehicle, the relative angle to the target vehicle, and the RSSI.
Hence, for a target vehicle in the group with GPS measure-
ments ĜT, the problem we address can be expressed as a
function design problem. That is,

f ∗ = argmin
f
‖f (ĜT,XTc,1,XTc,2, . . . ,XTc,N−1)−GT‖

2,

(5)

where XTc,1,XTc,2, . . . ,XTc,N−1 are the extra information
from other N − 1 vehicles in the group at the current time
slot Tc. Note that all algorithms in the previous studies
[2], [5], [7], [17], [18] can also be regarded as designing
the prediction function through the optimization process.
Furthermore, considering that a cooperative group usually
exists for several BSM transmission periods (i.e., multiple
time slots), for multi-time-slot scenarios, although we can
deal with different time slots independently using single time-
slot CNVPS solutions, we try to further improve the GPS
localization result by using the correlation between multi-
time-slot measurements. In light of this, we first consider
the GPS refinement problem under the multiple time-slot
scenario in this study. In particular, the multiple time-slot
problem we considered can be expressed as

f ∗ = argmin
f
‖f (ĜT, X̃1, X̃2, . . . , X̃Tc )−GT‖

2, (6)

where X̃1, X̃2, . . . , X̃Tc are the features of the previ-
ous time slots and can be further expressed as X̃t =

[Xt,1,Xt,2, . . . ,Xt,N−1]. Note that Eq. (5) can be regarded as
a special case of Eq. (6) when only one time-slot information
is provided for GPS refinement.

III. DEVELOPMENT OF DL-BASED
LOCALIZATION ALGORITHMS
A. OVERVIEW
Our idea is to develop CNVPS algorithms based on DL
algorithms owing to their low complexity, high perfor-
mance, and design flexibility. More specifically, for a sin-
gle time-slot GPS refinement, we propose a multi-layer
perceptron-cooperative neighboring vehicle positioning sys-
tem (MLP-CNVPS) to achieve a DL-based GPS refinement.
For a multiple time-slot GPS refinement, to obtain superior
results by considering the temporal correlation in multi-time-
slot data, we propose a long short-term memory-cooperative
neighboring vehicle positioning system (LSTM-CNVPS).
Moreover, a graph convolution network-cooperative neigh-
boring vehicle positioning system (GCN-CNVPS) was
further developed to better utilize both temporal and spatial
correlations for achieving an efficient GPS refinement, lead-
ing to an even better performance compared to the aforemen-
tioned DL-based CNVPS algorithms. In the remainder of this
section, the motivations and details of the DL-based CNVPS
GPS refinement algorithm with different structures are first
introduced, and followed by the training specifics at the end
of this section.

B. ARCHITECTURE OF THE PROPOSED MLP-CNVPS
As shown in Fig. 2 (a), we propose MLP-CNVPS based on
a conventional MLP DL model. Under the multiple time-
slots scenario, all extra information and original GPS mea-
surements of the target vehicle will be directly fed into the
MLP-CNVPS without preprocessing. As a result, the input
layer of MLP-CNVPS can be expressed as a vector of size
1 × ((5 × (N − 1) + 2) × T ), where T is the number of
time slots, according to the considered systemmodel (i.e., the
extra information from N-1 vehicles from the same cooper-
ative group and the GPS measurements of the target vehicle
itself). Following the input layer, we constructed four fully
connected layers as hidden layers to process the input data.
The neurons in each layer were set to 256, 128, 64, and 32,
respectively. Behind each layer, the parametric rectified linear
unit (PReLU) [27] is employed as the activation function to
provide nonlinearity. Then, the output of the last hidden layer
is fed into the output layer with two neurons, generating the
refined localization of the target vehicle.
As amathematical expression, theMLP-CNVPSmodel for

multiple time-slot scenarios can be described as follows:

fMLP-CNVPS(ĜT, X̃1, X̃2, . . . , X̃Tc;2MLP)

= 0(Wout . . . 0(W20(W1XMLP + b1)+ b2)+ · · · + bout),

(7)

where Wi and bi represent the weights and bias of the
ith layer, respectively, 0 function is the employed PReLU
activation function. In addition, 2MLP = {{Wi, bi}4i=1,
Wout , bout } represents all trainable parameters, and XMLP =

Vec(ĜT, X̃1, X̃2, . . . , X̃Tc ), where Vec(·) is a vectorized oper-
ation. Note that the MLP-CNVPS under a single time-slot
scenario can be considered as a special case of Eg. (7) when
Tc = 1. With the aforementioned DL model architecture,
MLP-CNVPS, can be used to construct a nonlinear function
and extract hidden information in the given input to refine the
GPS estimation results automatically. The simulation results
confirm that MLP-CNVPS outperforms the existing CNVPS
solutions.

C. ARCHITECTURE OF THE PROPOSED LSTM-CNVPS
Although MLP-CNVPS can extract hidden information in
multiple time-slot measurements and provide an improved
GPS refinement, the performance achieved can be further
improved by further utilizing the correlation of multi-time-
slot measurements along the temporal axis. For the con-
sidered problem, multiple time-slot measurements actually
belong to the time-series data format. However, it should
be noted that all features from different time slots are
fed into MLP-CNVPS simultaneously, failing to empha-
size the correlation of multiple time-slot measurements in
the temporal axis. As an alternative, we further propose
LSTM-CNVPS to better utilize a temporal correlation inmul-
tiple time-slot measurements.More specifically, the proposed
LSTM-CNVPS, as shown in Fig. 2(b), is based on LSTM to
leverage its ability to extract hidden information in multiple
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FIGURE 2. Illustration of the proposed model structures under a multiple time-slot condition.(a) MLP-CNVPS: All input data from multiple time slots
are fed into the model directly without further pre-processing. (b) LSTM-CNVPS: Input data from multiple time slots are separated and fed into the
model in different time slots to emphasize the temporal correlation. (c) GCN-CNVPS: Using the special kernel design of a GCN, the adjacency matrix is
used to describe the spatial correlation of input data under the graph structure, and to achieve a superior performance, the temporal and spatial
correlation in the input feature matrix will be simultaneously emphasized.

time-slot measurements. In time slot t , the operation of the
LSTM-CNVPS can be expressed as follows:

ft = σ (W l
f [ht−1,XLSTM,t]+ b

l
f)

it = σ (W l
i [ht−1,XLSTM,t]+ b

l
i)

ot = σ (W l
o[ht−1,XLSTM,t]+ b

l
o)

C̃t = tanh(W l
c [ht−1,XLSTM,t]+ b

l
c)

Ct = ft � Ct−1 + it � C̃t

ht = ot � tanh(Ct) (8)

where ht is the state vector, and XLSTM,t = Vec(ĜT, X̃t )
of time slot t . In addition, W l

f , W
l
i , W

l
o, W

l
c , and b

l
f, b

l
i , b

l
o,

and blc are the weights and biases of the lth layer. Moreover,
σ (x) = 1

1+e−x is the sigmoid function, and tanh(x) = ex−e−x
ex+e−x

is the hyperbolic tangent function. The� operation represents
an element-wise multiplication. It is noteworthy that in every
time slot, a state vector h will be generated and considered
as an input in the next time slot. By doing so, important
information from the measurements of the previous time
slot will be extracted and kept in this state vector, thereby
affecting the operation of LSTM-CNVPS in the next time

slot and emphasizing and better utilizing the correlation in
the temporal axis compared to MLP-CNVPS.

For the model structure, we constructed an LSTM-CNVPS
with two LSTM layers, and the LSTM units of each layer
were 44 and 88, respectively. The output is fed into a fully
connected layer, which contains two neurons and is regarded
as a refined location estimation. The full LSTM-CNVPS
model can be described as follows:

fLSTM-CNVPS(ĜT, X̃1, X̃2, . . . , X̃Tc;2LSTM). (9)

where 2LSTM is the set of all trainable weights and biases,
and is further expressed as

2LSTM = {{W l
f ,W

l
i ,W

l
o,W

l
c , b

l
f, b

l
i, b

l
o, b

l
c}
2
l=1,Wout , bout }.

(10)

Finally, it is worth noting that when we employ LSTM-
CNVPS to solve the GPS refinement problem in a single
time-slot scenario, because there is only one time slot in (8),
the special mechanism of LSTM used to extract the temporal
correlation will no longer exist, and the behavior of LSTM-
CNVPS is retrograde to that of MLP-CNVPS.
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D. ARCHITECTURE OF THE PROPOSED GCN-CNVPS
Although LSTM-CNVPS can better utilize a temporal corre-
lation to improve the performance of MLP-CNVPS, neither
MLP-CNVPS nor LSTM-CNVPS consider the spatial cor-
relation of neighboring vehicles. To explain, the extra infor-
mation provided by different neighboring vehicles should
have different weights or levels of confidence considering the
relative distance in an adaptive manner, MLP-CNVPS and
LSTM-CNVPS cannot support a delicate design for handling
this aspect. To further improve the performance of vehicle
localization, we propose GCN-CNVPS to simultaneously
consider both temporal and spatial correlations. To do so,
if the input data belongs to Euclidean space (i.e., image data),
a convolutional neural network (CNN) can satisfy the need
to consider both temporal and spatial correlations simulta-
neously based on its special kernel design and consequent
convolution operations. However, the input data of the prob-
lem considered belongs to a graph representation, limiting the
usage of the CNNmodel. As an alternative, Fig. 2(c) presents
the architecture of the proposed GCN-CNVPS. The input for
the GCN-CNVPS is represented by an adjacency matrix A
and a feature matrix XGCN. Specifically, the adjacency matrix
is used to describe the graph structure of interest, allowing the
GCN to utilize the spatial correlation in the considered graph
structure. We describe this structure to reflect the fact that the
target vehicle is able to communicate with the neighboring
N − 1 vehicles, despite these N − 1 vehicles having no
connections with each other. The resulting adjacency matrix
of size N × N can be defined as follows:

A=


0 0 · · · 0 1
0 0 · · · 0 1
...
...
. . .

...
...

0 0 · · · 0 1
1 1 · · · 1 0

 . (11)

However, notice that directly employing adjacency matrix
A into GCN-CNVPS causes numerical problems (a gradi-
ent explosion and vanishing problem) [28] during the train-
ing process, failing to lead to the convergence of optimal
weightings. As a result, a normalized adjacency matrix is
adopted to prevent the aforementioned issue. In particular,
Â = D̃−

1
2 (A + IN )D̃−

1
2 is a normalized adjacency matrix

with added-self connections, where IN is the identity matrix,
D̃ = D + IN is the degree matrix, and D = diag(

∑
j Aij) ∈

RN×N . The first D̃−
1
2 represents the normalization for each

row, and the second represents that for each column. By using
the normalized adjacency matrix, the numerical problem
during the GCN model training process can be solved. For
the model input, the feature matrix XGCN can be repre-
sented as a matrix with N rows and ((3× (N − 1)+ 2)× T )
columns, representing N vehicles and (3× (N − 1)+ 2)×T
measurements for T time slots, respectively. To utilize the
spatial correlation effectively, the information of each sur-
rounding vehicle should be assigned and placed carefully
to be processed separately. Specifically, for the ith row

(i∈[1,N − 1] for the neighboring vehicles), the mea-
surements are [Ĝt,i, 0, . . . , D̂t,i, 0, .., 2̂t,i , 0, . . . , Pr;t,i ] ∈
R(3×(N−1)+2). That is, each neighboring vehicle only acquires
the observations of itself and has no information about
other vehicles, letting the corresponding values to be set
to 0. By contrast, for the N th row (the target vehicle), the
measurements of time slot t can be expressed as [ ˆGt,N ,

D̂t,1, . . . , D̂t,N−1, 2̂t,1, . . . , 2̂t,N−1.Pr;t,1, . . . , Pr;t,N−1] ∈
R(3×(N−1)+2). To explain this, the target vehicle possesses
its own GPS measurement as well as radar observations and
RSSI obtained from neighboringN−1 vehicles through V2V
communications.

Note that the dimensions of the measurements are slightly
different from the previous to separate the acquired infor-
mation of each vehicle by arranging the measurements in
different rows. However, the overall amount of information
remains the same.

Finally, for the structure of GCN-CNVPS, to exploit the
spatial dependence in the input features, we employed two
GCN layers [29], [30], with the number of neurons in each
layer being 32 and 16, respectively, in GCN-CNVPS. Specif-
ically, the convolution function of the GCN layer can be
expressed as follows:

fconv(XGCN; Â) = 0(ÂXGCNW + b). (12)

The0 function is the employed PReLU activation function.
Here, W and b represent the trainable weight matrix and
bias matrix, respectively. In (12), ÂXGCNW aggregates all
features of neighboring nodes with trainable weights for each
node. According to [31]–[33], the operation is analogous to
the function of the convolutional kernels in convolutional
neural networks (CNNs) and is therefore capable of extract-
ing spatial characteristics in a graph. The output of the last
GCN layer was flattened and fed into a fully connected layer.
The number of neurons in each layer was 2. The complete
operations of GCN-CNVPS can be formulated as follows:

fGCN-CNVPS(XGCN; Â;2GCN)

= fout (fconv2(fconv1(XGCN; Â), Â))

= Wout (0(Â0(ÂXGCNW1 + b1)W2 + b2))+ bout (13)

2GCN is the set of all trainable weights and biases, which can
be represented as

2GCN = {W1,W2, b1, b2,Wout , bout }. (14)

E. TRAINING METHOD
To train the aforementioned DL-based models, supervised
learning algorithms were adopted, and the mean square error
was employed as the loss function as follows:

L(2) =
1
D

D∑
i=1

(ϕi − f (Xi;2))2, (15)

where f (Xi;2) is the DL-based model that estimates the
result corresponding to a sample Xi with trainable weightings
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2, ϕi is the true localization, and D is the total number of
samples in the training dataset.

Adam [34], a popular gradient descent-based optimizer,
was employed to iteratively reduce the loss of each epoch
through a backpropagation algorithm during the training pro-
cess. For MLP-CNVPS, the initial learning rate was set to
0.00001, and the batch size was set to 128. After 1000 epochs,
the trained weightings of MLP-CNVPS were recorded, and
the offline training process was completed. For LSTM-
CNVPS, we set the initial learning rate to 0.00005 and the
batch size to 128. After 1000 epochs, the trained weights
of the LSTM-CNVPS were recorded, and the LSTM train-
ing was completed. For GCN-CNVPS, we set the initial
learning rate to 0.0001 and the batch size to 128. After
750 epochs, the trained weights and bias of the GCN-CNVPS
were recorded, and the GCN training was completed. Once
the offline training process is completed, during the online
testing process, the trained DL model can be used to provide
vehicle localization estimation results without any further
operations.

IV. SIMULATION RESULTS AND DISCUSSION
In this section, three proposed DL-based CNVPS algo-
rithms, MLP-CNVPS, LSTM-CNVPS, and GCN-CNVPS,
are evaluated and compared to three existing optimization-
based CNVPS algorithms. More specifically, the existing
optimization-based CNVPS algorithms, centroid loca-
tion (CL) algorithm [35], DOA-based location algorithm [5],
and optimization-based CNVPS algorithm [7] are imple-
mented in this study as benchmarks. Without the assistance
of extra sensors, the CL algorithm simply averages the GPS
coordinates of neighboring vehicles to estimate the loca-
tion of the target vehicle. Thus, the variance of the GPS
estimations can be reduced. With the assistance of radar,
the DOA-based locating algorithm employs the direction of
arrival information of neighboring vehicles to estimate the
position of the target vehicle. However, this algorithm cannot
exploit additional sensors to further improve the performance.
As in the previous study, CNVPS successfully utilizes various
sensors to estimate the coordinates of the target vehicle and
conducts weighted average localization considering prior
knowledge in terms of the standard deviation of each extra
sensor. However, because CNVPS only employs a linear
function to exploit the information from extra sensors, the
achieved performance is limited. Moreover, because the
weightings of different sensors are pre-defined according to
the statistics of the sensors and remain fixed, the CNVPS
cannot adjust the weightings adaptively according to different
inputs to achieve better performance. Furthermore, CNVPS
also fails to be employed in multiple time-slot scenarios
to further improve the performance. In contrast to existing
algorithms, DL-based algorithms provide a way to design
an adaptive nonlinear function to better utilize the informa-
tion from extra sensors by extracting temporal and spatial
correlations. Moreover, multiple time-slot scenarios can be
considered and supported to provide a superior performance

FIGURE 3. (a) Error mean versus scenarios and (b) error standard
deviation versus scenario performance with N = 5 and Tc = 1.

compared to a single time-slot scenario. In this section,
we first introduce the process of data generation and then
compare different algorithms in different scenarios to validate
the superiority of DL-based CNVPS algorithms.

A. DATA GENERATION
To obtain the dataset for model training and testing, we first
generate the coordinates of the target vehicle GT and then
generate neighboringN−1 vehicle coordinates {Gi}

N−1
i=1 with

a distance constraint ‖GT −Gi‖
2< 10 (unit: meters). Subse-

quently, we can obtain measurements according to the sensor
configurations mentioned in Sec. II. Specifically, MATLAB
software is used to generate virtualmeasurements for our sim-
ulations. We have followed the aforementioned sensor set-
tings and created a scenario as depicted in Fig. 1. In particular,
we collect some real data on campus to validate the sensor
configurations settings employed in this paper and the results
show the same tendency to the generated data based on the
system model of this work. As for the generation of multiple
time-slot measurements, we specify the vehicle mobility by
setting the horizontal velocity Vh and vertical velocity Vv for
each vehicle. Moreover, we defined two driving modes, the
straight-through mode and the lane change mode, to set
the driver behavior. The vehicle velocities of the former are
set as Vh = 0 and Vv ∼ u(10, 15) m/s, the latter of which
are set as Vh ∼ N (0, 1.52) and Vv ∼ u(10, 15) m/s. Based on
the aforementioned settings, we set the number of samples
for training, validation, and testing datasets to 100000 for
each of these three scenarios under different driving modes.
We then compute the resulting average mean and standard
deviation of the different algorithms to report the error
statistics.
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FIGURE 4. Error mean versus time slot performance under (a) free space, (b) suburban, and (c) urban scenarios in straight-through mode with N = 5.
(d)–(f) Plots of the same for the standard deviation of the error.

FIGURE 5. Error mean versus time slot performance under (a) free space, (b) suburban, and (c) urban scenarios in lane change mode with N = 5.
(d)–(f) Plots of the same for the standard deviation of the error.

B. PERFORMANCE ANALYSIS WITH SINGLE
TIME-SLOT MEASUREMENTS
In this section, we simulate and discuss the behavior of differ-
ent CNVPS algorithms in three practical scenarios: freespace,
suburban, and urban, under a single time-slot measurement
condition. Fig. 3 shows the achieved mean and standard
deviation of the estimation error for different algorithms
under three scenarios with a cooperative group size equal
to 5. Although optimization-based algorithms can improve
the GPS estimation error, DL-based algorithms can further
improve the GPSmeasurements by showing a lower achieved
mean and standard deviation for all scenarios. Specifically,
regardless of the severity of the original GPS estimation error,
DL-based CNVPS algorithms can refine the GPS estimations
and provide a certain level of improvement. It is also worth

noting that GCN-CNVPS slightly outperformsMLP-CNVPS
because the spatial correlation is emphasized and better uti-
lized through the special mechanism of GCN operations.

C. PERFORMANCE ANALYSIS WITH MULTIPLE
TIME-SLOT MEASUREMENTS
In this section, we discuss the performance of differ-
ent algorithms under three scenarios with multiple time-
slot measurement conditions. Because none of the existing
optimization-based algorithms can be extended tomulti-time-
slot conditions, in this section, we describe the application a
single time-slot CNVPS algorithm, which showed the best
results among the optimization-based algorithms in the pre-
vious simulation, in each time slot instead as a benchmark.
Fig. 4 illustrates the error statistics for different algorithms
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FIGURE 6. Error mean versus time slot performance under (a) free space, (b) suburban, and (c) urban scenarios in straight-through mode with N = 10.
(d)–(f) Plots of the same for the standard deviation of the error.

FIGURE 7. Error mean versus time slot performance under (a) free space, (b) suburban, and (c) urban scenarios in lane change mode with N = 10.
(d)–(f) Plots of the same for the standard deviation of the error.

under the three scenarios when the driving mode is set as the
straight-through mode in a cooperative group containing five
vehicles. Compared to CNVPS,which fails to utilize informa-
tion frommultiple time-slot measurements to further improve
the performance, as the number of time slots increases, all
three DL-based CNVPS algorithms can gain from the extra
information and achieve a better performance compared to
single time-slot measurement conditions. More specifically,
LSTM-CNVPS outperforms MLP-CNVPS because of the
special mechanism for emphasizing a temporal correlation.
Furthermore, GCN-CNVPS can offer a better performance
than LSTM-CNVPS because temporal and spatial correla-
tions are both considered through the convolution operations
of the GCN model. However, we can also note that the
improvement of the urban case is more compelling because

the GPS error in this scenario has more room for improve-
ment. However, even under the free-space scenario, DL-based
CNVPS algorithms can still be used to improve the original
GPS estimation results. Fig. 5 shows the error statistics for
different algorithms under the same three scenarios when the
driving mode is set as the lane-change mode in a cooper-
ative group containing five vehicles. Nevertheless, we can
observe the same behaviors of the three algorithms by show-
ing impressive improvements over the results of the CNVPS
algorithm. Note that straight-through mode is easier than
lane-change mode because of the relatively fewer variations
in directions and relatively higher correlation of locations at
different time slots. Hence, we found that all methods per-
form worse than the straight-through mode. However, among
them, GCN-CNVPS always achieved the best performance in
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both modes. These results suggest that GCN-CNVPS
enhances the performance of GPS by extracting temporal and
spatial relationships from historical measurements, confirm-
ing our motivation toward the design of GCN-CNVPS.

D. SCALABILITY OF PROPOSED ALGORITHMS
In this section, we further verify the scalability of the pro-
posed algorithms by extending our algorithms to a vehicular
scenario that consisting of ten cars. Figs. 6 and 7 present
the error statistics for different algorithms in the three sce-
narios under different driving modes in a cooperative group
containing ten vehicles. With additional information pro-
vided by increasing the number of surrounding vehicles, the
performance of all DL-based CNVPS algorithms improved
compared to the previous simulations. However, we also
noted that because MLP-CNVPS and LSTM-CNVPS cannot
utilize a spatial correlation well, the performance of these
two algorithms saturates quickly under this scenario. As an
alternative, GCN-CNVPS can handle and utilize the complex
spatial correlation between ten vehicles and offer an even bet-
ter performance than a smaller group of cooperative vehicles,
proving the scalability of GCN-CNVPS.

FIGURE 8. comparison of training overhead of different DL-based CNVPS
algorithms.

E. TRAINING OVERHEAD OF DIFFERENT DL-BASED
CNVPS ALGORITHMS
Fig. 8 shows the number of trainable parameters for different
DL-based CNVPS algorithms. Because the dimensions of the
input layer of MLP-CNVPS increase with the number of time
slots, the number of trainable parameters also increases with
this number. For the LSTM-CNVPS, the number of trainable
parameters remains the same because LSTM-CNVPS can use
the same trainable parameters to process the data from differ-
ent time slots. Moreover, we can observe that the numbers
of trainable parameters of MLP-CNVPS and LSTM-CNVPS
are comparable. For GCN-CNVPS, although the number of
trainable parameters will also increase with the number of
time slots because the number of dimensions of the input

layer of GCN-CNVPS also increases with the number of time
slots, the rate of increase is fairly flat compared to that of
MLP-CNVPS. Finally, we can observe that the training over-
head of GCN-CNVPS is far less than that of MLP-CNVPS
and LSTM-CNVPS. Note that GCN-CNVPS can also signif-
icantly outperformMLP-CNVPS and LSTM-CNVPS. Based
on the aforementioned observations, we conclude that GCN-
CNVPS is an efficient CNVPS solution with a high per-
formance and low training overhead, because both temporal
and spatial correlations are well utilized for aiding the GPS
refinement during GCN operations, making GCN-CNVPS a
potential solution to assisting the GPS refinement in practice.

V. CONCLUSION
In this study, we proposed several cooperative vehicle local-
ization approaches based on the DL technique to provide pre-
cise location estimation results. Specifically, MLP-CNVPS
can be used to apply an effective data fusion and aid in the
GPS refinement. LSTM-CNVPS was developed by further
considering the temporal correlation hidden in the multi-
ple time-slot data. Finally, GCN-CNVPS was developed to
consider temporal and spatial correlations simultaneously,
offering a higher performance and lower training overhead
compared to the existing aforementioned algorithms. More-
over, extensive simulations also confirmed the scalability and
robustness of the proposed algorithms, making the developed
algorithms potential candidates for use in GPS refinement in
practice. Inspired by outstanding performance in this work,
we will look for industry partners to test our algorithm in
over-the-air scenarios in the future. We also hope that this
study will encourage researchers to introduce GCN-based
algorithms for efficient vehicular applications.
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