
Received October 7, 2021, accepted October 25, 2021, date of publication November 12, 2021, date of current version December 7, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3128071

Toward a Multi-Criteria Framework for Selecting
Software Testing Tools
ASMA J. ABDULWARETH1 AND ASMA A. AL-SHARGABI 1,2, (Member, IEEE)
1Department of Computer Science, College of Computing and IT, University of Science and Technology, Sana’a, Yemen
2Department of Information Technology, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia

Corresponding author: Asma J. Abdulwareth (aj.alsharjabi@gmail.com)

ABSTRACT Software testing is a vital part of software engineering process. Automated testing makes
this process more accurate and more efficient. For automated testing, many different testing tools were
introduced. Due to the large number and the variety of testing tools, selecting the appropriate tools became
a difficult confusable task. This research aims at developing a comprehensive taxonomy for testing tools
that cover a broad range of testing tools criteria. This comprehensive view would help software developers
and software vendors to specify the testing tool/s they need/develop accurately. In details, the framework
includes two main parts: (1) comprehensive taxonomy of testing tools; (2) multi-criteria selection method.
The first part covers different criteria of testing tools. Because these criteria are large in numbers, wide
and variant, a taxonomy of these criteria is needed. This taxonomy will help developers distinguish among
testing tools based on a wide spectrum of different criteria. The second part of the framework is a multi-
criteria selection method; that enables software developers to choose the appropriate testing tool using
a systematic and adequate automated manner. The selection method employs scientific two well-known
methods of multi-criteria decision-making techniques; Analytic Hierarchy Process (AHP) and Technique for
Order Preference by Similarity to Ideal Solution (TOPSIS). The testing tools taxonomy is well validated by
academic professionals in software engineering and achieved good scores in terms of significance, usefulness
and comprehension. Academics reported that the taxonomy is slightly complex and needs to be simplified.
The selectionmethodwas validated using different scenarios to prove the quality of selection even in complex
cases with many criteria and many alternatives.

INDEX TERMS Software testing, automated testing, testing tools, taxonomy of testing tools, testing tools
classifications, testing tools selection.

I. INTRODUCTION
Software is one of themost important aspects of technological
advances in the world. Software affects all aspects of our
daily life and control most other fields and disciplines [1], [5],
[20], [24], [72]. Within the heart of software development life
cycle (SDLC), testing represents a milestone process to check
the validity and quality of software [9]. In software industry,
testing occupies around 40% of the SDLC, regardless the
software development approach that is used [10], [15], [22].
Therefore, testing should be managed and achieved using the
best practices to develop high quality software with cost-
effective approaches [32], [33], [72].

The associate editor coordinating the review of this manuscript and

approving it for publication was Giuseppe Destefanis .

IEEE defines software testing as the process to evalu-
ate a system or its components manually or by automated
means to determine whether it fulfills the user require-
ments or to find the differences between actual results and
expected results [56]. Manual testing is performed by inter-
acting with the software based on some predefined test cases.
Test cases provide explanations of the features examined
and the expected results. The process of manual testing
is time-consuming [37] and the problem becomes worse
when we repeat the tests after each correction and with
each related feature. Automated testing makes this process
more effective [37]. We can define test cases just once
and we can exercise the software many times automatically.
There are many varied tools that provide automated testing.
These tools exercise the software against some predefined
test cases; and compare the actual outcomes with expected

158872 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-2030-7141
https://orcid.org/0000-0003-3982-6355

A. J. Abdulwareth, A. A. Al-Shargabi: Toward Multi-Criteria Framework for Selecting Software Testing Tools

ones [5], [17], [18]. If there are deviations in the results, this
means there are bugs that need to be spotted and fixed. The
developer have to look through the code, spot and correct the
bugs, and continue running tests until the actual and expected
results be identical [16]. Test cases can be arranged in suites
to facilitate testing [3], [5], [13], [17]. Utilizing testing CASE
tools helps in reducing the amount of time and money spent
on projects, improving the quality of the system developed,
enhancing the developers’ productivity and satisfaction [7],
[13], [15], [39], [69].

SW industry sector introduces a huge number of testing
CASE tools. SW developers face difficulties when choosing
the testing tools that are suitable for their systems. This
is normal given the wide variety of software features and
the difficulty of having a testing tool that includes all this
diversity [2], [11], [31], [42]. There are many factors that
affect your choices such as time, resources, the size of the
SW, and the required quality level. With large-scale software,
it usually combines between the manual and the automated
testing.

There are many testing tools classifications and different
approaches/views to build these classifications. There is a
need for a broad multi-view testing tools classification, and
also there is a need for a method to use and utilize this
classification.

To help SW developers choosing the appropriate tool/s
for particular software, this research aims at introducing a
comprehensive taxonomy of testing tools. This taxonomy
introduces a wide knowledge base about testing tools types,
this would help SW developers select testing tools accord-
ingly. It also could help tools developers introduce better
products based on this comprehensive taxonomy.

The paper structure is as follows: Section II is devoted
for related work and research gaps, Section III explains the
novelty of work and introduces the proposed framework
constructs, Section IV includes the experiments and eval-
uation, and Section V is devoted for conclusions & future
woks.

II. RELATED WORK
Software testing is a vital phase in software life cycle. Soft-
ware industry pay a strong attention for this phase due to
the important effects on software quality. Whatever the soft-
ware development approach, testing occupies not less than
40% of the total software project time [1], [8], [32], [42].
Testing automation is not a new idea. Actually, many tools
are utilized in different software development phases. In the
testing phase, there are many testing tools which can be
used effectively to speed up, control, and improve the test-
ing process [8], [11], [37], [42], [65]. To facilitate using
the testing tools, the research community introduced dif-
ferent approaches of testing-tools classifications [13], [37],
[39], [42], [65]. Beside taxonomies and classifications, other
researchers have addressed the key factors of testing-tools
selection and suggested some guidelines to choose testing-
tools easily and systematically [8], [13]. Basically, testing

tools is selected and used from software developers/testers
based on testing views, software features, or/and testing tools
features [23], [42], [52]. There are different views of testing,
we can address software testing based on testing levels [25],
[31], [35], testing models [4], [19], [21], [23] testing types
[4], [21], [33], and testing techniques [6], [21], [25], [31].
Similarly, software that has being tested, also has different
features such as programming language, data model, and
platform [14], [30], [73].

Before addressing what has been done regarding the
testing-tools taxonomies, some testing terminologies should
be reviewed. The coming two sections are devoted to
introduce the testing views and terminologies. Terms that
are introduced are unit testing, integration testing, sys-
tem testing, acceptance testing, static testing, dynamic
testing, testing management, testing preparation, testing
implementation/execution, testing evaluation, functional test-
ing, usability testing, reliability testing, security testing,
performance/stress/load/volume testing, and maintainability
testing.

Testing levels is decomposed into: unit testing, integra-
tion testing, system testing, and acceptance testing. Unit
testing is concerned with testing the smallest component
in software individually. Components could be an object,
a method if the programming language is object oriented,
a function, or a procedure if the programming language is
structured language. Unit testing focuses on the function of
the tested unit/component. It is usually done by the devel-
oper himself. Unit testing is usually white-box, which means
that the test-cases and test-data are selected based on the
structure of the code. Integration testing deals with testing
the integration between two or more software components.
It is usually achieved after testing the different component
individually, therefore, it focuses on testing the interfaces
between components and the whole functionality of the all-
integrated components collectively. System testing -as its
name indicates- is concerned with testing the overall system
as a whole. It is basically achieved to test all the func-
tions and services regardless the components that it con-
tains. It is usually black-box testing, where black-box means
testing the actual output using a general selected input and
expected/targeted output. Beside functionality, system test-
ing aims at testing other system behaviors/features such as
security, performance, and usability. These prior features are
usually tested at system level because of testing at unit level
does not make sense. Unit, integration, and system testing are
usually performed for software verification which means that
all tests are derived from the requirements’ specifications.
Acceptance testing is the final test level that is achieved by
the user and targets the system validation, which means that
the test-cases and test-data are derived and managed directly
by user. System verification aims at ensuring that the software
satisfies user needs and customers’ expectations. There are
different forms of acceptance testing, the common two types
are alpha-test, and beta-test. Alpha-test is achieved in the
developer organization and environment whereas beta-test is

VOLUME 9, 2021 158873

A. J. Abdulwareth, A. A. Al-Shargabi: Toward Multi-Criteria Framework for Selecting Software Testing Tools

achieved within user organization and real environment [6],
[25], [61], [65].

Testing basically aims at testing the code. Testing the
code could be performed using two general techniques; static
techniques and dynamic techniques. Static testing tests the
code without running, and this is why it is called static. It is
performed for errors detection or code standards convention.
It is performed by going through the code and tracing the
error causes or the standards’ violations. Dynamic testing
tests the code in running mode. It is performed according
to a pre-prepared input and against an expected output [4],
[18], [21], [25], [31]. Within dynamic Test criteria, input and
the expected output are prepared based on different tech-
niques. The common techniques for inputs/outputs preparing
are equivalence partitioning, boundary value analysis and
model-based. The model-based technique is also used for
deriving/extracting the test-criteria. Model-based examples
are decision-table based, state-transition testing and any other
specification-based/model-based technique [9], [14], [21],
[58], [65].

According to the testing process/lifecycle view, many
testing stages are involved which are test-analysis/test-
planning, test-design, test-implementation/execution, and
test-evaluation. Test-analysis phase is concerned with study-
ing all testing artifacts (testware). Test-design phase builds
on test-analysis phase with creating the test-cases/criteria and
test-data. Test execution/implementation deals with perform-
ing the different prepared testes and recording the results.
Test-evaluation phase aims at comparing the test results
against the expected results that were specified in test-
analysis and test-design phases. Finally, test management is
an umbrella activity that controls all testing processes. Test
management aims at monitoring, and controlling the whole
test process [23], [65].

Based on software quality models, there are different
characteristics [52]. The common characteristics are: func-
tionality, reliability, security, maintainability, usability, porta-
bility, and efficiency [59], [60]. Quality characteristics
include all non-functional requirements for software. Exclud-
ing functionality, most test types and test tools target these
characteristics in some way, for example: security testing,
performance testing, usability testing,. . . etc. This is the rea-
son why we consider quality characteristics as an important
view of software testing and software testing tools.

SW development life-cycle and SW process models are
other factors that affect SW testing practices. V-model is
mostly used with waterfall model whereas test-driven/test-
first approach is used with agile methods, besides there are
testing processes for object-oriented systems [16], [19], [26],
[31], [33], [35], [65], [68].

Based on Technical and Economic Factors, there are sev-
eral criteria. According to relevant literature, criteria such
as budget, vendor, software technology, and platform can be
addressed [14], [16], [27], [33], [30].

After this overview of SW testing, these different views
are employed for testing tools classification. In addition,

these views inspired other researchers in their classification
approaches. The following section illustrates the previous
work on testing-tools classifications. Literature addressed
testing-tools categories based on different views [42]. How-
ever, we can cluster these approaches in two general
categories; the first one is top-down and the second one is
bottom-up. The top-down approach utilizes the testing notion,
types, techniques and all views that were mentioned in the
previous section to classify the testing tools. The bottom-
up approach starts from the tools themselves and go up by
clustering the tools into similar groups.

A worthy milestone is what is introduced by Dorothy
Graham in 1991. The introduced scheme proposed six major
categories: Test Management, Test Design, Non-Execution
Evaluation, Test Execution, Test Analysis, and Test Quality
Evaluation [64]. The scheme was simple, deep, scalable, and
comprehensive at the same time. Most classifications that
came latter use this scheme as a reference model. Dorothy
’s Scheme include many sub-categories within each main
category. The scheme was -and still- perfect. Actually, this
taxonomy works well till now. However, with the current
big leap in software testing and in automation in general,
many subcategories can be added/removed.Whatever the tool
you want to classify, it will be involved easily to one or
more category within this taxonomy. The boundaries between
the categories are not sharp, however a clear discrimination
between them was introduced. Therefor a testing tool can
belong to more than one category where it can support many
testing functionalities. A brief description for major cate-
gories is as follows [64]:

Test management tools: this category covers all activities
of risk assessment, planning, resource allocation monitoring,
and control of the testing process. Test design tools: this
category is concerned with different aspects of test design
including deriving, managing, and documenting of test crite-
ria, test inputs, test data, data structures, and test environment.

Non-execution evaluation tools: these tools provide sup-
port for testing activities which evaluate software quality
without executing the code.

Test execution tools: this category conveys tools that
support the process of exercising software with pre-defined
test inputs. The target of test could be a system function
or a system behavior. Consequently, confirmation testing,
regression testing, and stress testing are sub-categories of
this major category. In confirmation testing, test input must
be checked against the expected output to ensure that the
software is preformed correctly. Confirmation testing can be
made for new code or after change. Regression testing is
performed after a change has been made to ensure that there
are no adverse side-effects. Stress testing is performed to
assess the software’s resilience to excessive size or rate of
input.

Test analysis tools: these tools are concerned with assess-
ing and dealing with the results of dynamic test runs, that is,
analyzing the cause of failure in order to identify faults or
defects. Test analysis tools encompass all debugging tools,

158874 VOLUME 9, 2021

A. J. Abdulwareth, A. A. Al-Shargabi: Toward Multi-Criteria Framework for Selecting Software Testing Tools

including those for special type of systems such as real-time
systems and distributed systems.

Test quality evaluation tools: this category encompasses
tools that are used for assessing the quality of testing. All
coverage tools belong to this category.

Between 1988 and 1992, ISO 9126 emerged [59], then
IEEE standards followed; 1061(IEEE, 1992), 1209 (IEEE,
1992), and 1348 (IEEE, 1995) [48], [58], [60], [65]–[67].
These criteria were issued for software CASE tools selection
and adoption, and for software quality criteria. These criteria
affected some other taxonomies that appeared later. The soft-
ware quality aspects that could be used as a basis for software
testing tools taxonomy are as follows:

ISO 9126 classification:
ISO 9126 introduces six quality attributes of software.

These attributes could be considered as a basis of software
testing aspects and also testing tools classification. These
quality attributes are as follows [59]:

Functionality - ‘‘A set of attributes that bear on the exis-
tence of a set of functions and their specified properties.’’
The functions are those that satisfy stated or implied needs.’’
These attributes are:
◦ Suitability
◦ Accuracy
◦ Interoperability
◦ Security
◦ Functionality compliance

Reliability - ‘‘A set of attributes that bear on the capability
of software to maintain its level of performance under some
stated conditions for a stated period of time.’’ which are:
◦ Maturity
◦ Fault tolerance
◦ Recoverability
◦ Reliability compliance

Usability - ‘‘A set of attributes that bear on the effort
needed for use, and on the individual assessment of such use,
by a stated or implied set of users.’’ These attributes are:
◦ Understandability
◦ Learnability
◦ Operability
◦ Attractiveness
◦ Usability compliance

Efficiency - ‘‘A set of attributes that bear on the relation-
ship between the level of performance of the software and the
amount of resources used, under stated conditions’’; which
are:
◦ Time behavior
◦ Resource utilization
◦ Efficiency compliance

Maintainability - ‘‘A set of attributes that bear on the effort
needed to make specified modifications.’’ These are:
◦ Analyzability
◦ Changeability
◦ Stability
◦ Testability
◦ Maintainability compliance

Portability - ‘‘A set of attributes that are born on the
ability of software to be transferred from one environment
to another.’’
◦ Adaptability
◦ Installability
◦ Co-existence
◦ Replaceability
◦ Portability compliance

IEEE 1061 classification: This classification benefited
IEEE Std 1209-1992, IEEE Std 1348-1995, and IEEE Std
1061-1992 (ISO 9126) that illustrates a possible set of soft-
ware quality factors and tools criteria. IEEE quality factors
are the same of ISO 9126: Efficiency, Maintainability,
Portability, Reliability, Usability, and functionality [48],
[60], [66], [67]. It is worthy to say that, ‘‘security’’ -which
became a basic requirement today for any type of software-
is not included in IEEE 1061, and included as a sub-criterion
within ISO 9126. This neglect was reasonable at that time;
however, today we are in need to include security as a basic
quality requirement for software.

In 1999, Mark Fewster with Dorothy Graham built on
what was introduced in [61] and [64]; they classified testing
tools based on V-model or testing life-cycle as illustrated by
Figure 1. The main classes are as follows:

Test design tools: these tools are used in requirements
specification, architectural design, and detailed design. Test
design tools help derive test inputs or test data.

Static analysis tools: these tools are used in coding/
implementation phase. Static analysis tools analyze codes
without executing them. This type of tool detects certain types
of defects much more effectively and cheaply than can be
achieved by any other means. Such tools also calculate vari-
ousmetrics of code such asMcCabe’s cyclomatic complexity,
Halstead metrics, and many more.

Coverage tools: they are used in unit testing phase. Cover-
age tools assess how much of the software under testing has
been exercised by a set of tests.

Dynamic analysis tools: they are used in integration test-
ing phase. Dynamic analysis tools assess the system while
the software is running. For example, tools that can detect
memory leaks are dynamic analysis tools.

Performance testing: used in system and acceptance test-
ing. This type measures the time taken for various events. For
example, they can measure response times under typical or
load conditions.

Test execution and comparison tools: used in unit testing,
integration testing, and system testing as well. Test execution
and comparison tools enable tests to be executed automati-
cally and test outcomes to be compared to expected outcomes.

Test management tools: used at all phases. This type is
used to assist in test planning, keeping track of what tests
have been run, and so on. This category also includes tools
to aid traceability of tests to requirements, designs, and code,
as well as defect tracking tools.

In [61] the classes of testing tools were slightly more
fine-grain. Some sub-categories in [64] appear as a major

VOLUME 9, 2021 158875

A. J. Abdulwareth, A. A. Al-Shargabi: Toward Multi-Criteria Framework for Selecting Software Testing Tools

FIGURE 1. Testing tools spans the software development life cycle [61].

category in this taxonomy. Non-execution tools appear
as Static analysis tools category and separated from
other analysis tools (Dynamic analysis), and test eval-
uation tools entitled as Coverage tools. Stress testing
which is included within Test execution class is also iso-
lated in broader category class that is entitled as Perfor-
mance testing. Performance testing includes different aspects
such as speed and stress/load. Security testing completely
disappeared [61], [64].

Author in [25] experiences 600 testing tools and then clas-
sifies testing tools into 7 main groups. Each main group has
some sub-groups. The main divisions encompass [25]:

Test Design Tools: Tools that help you decide what tests
need to be executed. Test data, test database and test case
generators are subgroups in this division.

GUI Test Drivers: Tools that automate execution of tests
for products with graphical user interfaces. Client/server test
automation tools, including load testers, also go here.

Load and Performance Tools: Tools that specialize in
putting a heavy load on systems (especially client-server
systems). These tools are often also GUI test drivers.

Test Management Tools: Tools that automate execution
of tests for products without graphical user interfaces. Also,
tools that help you work with large test suites.

Test Implementation Tools:Miscellaneous tools that help
you implement tests. For example, tools that automatically
generate stub routines go here, as do tools that attempt to
make failures more obvious.

Test Evaluation Tools: Tools that help you evaluate the
quality of your tests. Code coverage tools go here.

Static Analysis Tools: Tools that analyze programs with-
out running them. Metrics tools fall in this category.

Authors in [25] adopt a practical top-down strategy by
studying more than 600 CAST before introducing their
classification. Many categories still the same as those in
[61], [64], and this is a positive indicator for stability of cat-
egories in [61], [64]. The classification in [25] distinguishes
between ‘‘GUI test drivers’ tools’’ and ‘‘test implementation
tools,’’ whereas they both belong to ‘‘test execution tools’’
in [61], [64]. Load testing tools appear obviously in the title

of ‘‘load and performance tools.’’ The category of ‘‘GUI test
drivers’’ indicates a new trend to classify CAST based on the
tool technical features. The category of ‘‘test implementa-
tion’’ is used for what is called in previous works by ‘‘test
execution’’ category.

In 2004, SWEBOK standards for software engineering
body of knowledge was issued by IEEE and ISO [47], [48].
SWEBOK classified testing tools based on functionality into
the following categories [47], [48]:

Test harnesses (drivers, stubs): these tools provide a
controlled environment in which tests can be launched and
the test outputs can be logged. In order to execute parts of a
program, drivers and stubs are provided to simulate calling
and called modules, respectively.

Test generators: provide assistance in the generation test
cases. The generation can be random, path-based, model
based or a mix thereof.

Capture/replay tool: this category automatically
re-executes or replays previously executed tests which have
recorded inputs and outputs (e.g., screens).

Oracle/file comparators/assertion checking tools: these
tools assist in deciding whether a test outcome is successful
or not.

Coverage analyzers and instrumenters: These work
together. Coverage analyzers assess which and how many
entities of the program flow graph have been exercised
amongst all those required by the selected test coverage cri-
terion. The analysis can be done because of program instru-
menters that insert recording probes into the code.

Tracers: record the history of a program’s execution paths.
Regression testing tools: support the re-execution of a test

suite after a section of software has been modified. They
can also help to select a test subset according to the change
made.

Reliability evaluation tools: Support test result analy-
sis and graphical visualization in order to assess reliability-
related measures according to selected models.

The former category obviously adopted the technical
nature of the tools themselves as a basis of classification.
‘‘Test harness (drivers, stubs)’’ which is a common termi-
nology at that time occupies a main category. This manner
was the common technical method to implement the unit
testing. Similarly, ‘‘capture/reply tools’’ are separated with
a main category. Capture/reply title indicates the technical
feature of these tools. ‘‘Tracers’’ and ‘‘coverage’’ tools are
distinguished to indicate that the former is performed in run-
time where the latter is not, where both perhaps trace the code
paths. ‘‘Execution tools’’ are spans many categories within
this classification, they are: test harness, capture/reply, com-
parators, tracers, and regression categories. Reliability tools
is dedicated with the main category, with a clear technical
feature which is graphical visualization. Reliability criteria
could be spired with software quality criteria in standards
[48], [66], [67].

In 2005, author in [21] categorizes testing tools based on
objectives and features into the following categories:

158876 VOLUME 9, 2021

A. J. Abdulwareth, A. A. Al-Shargabi: Toward Multi-Criteria Framework for Selecting Software Testing Tools

Function/Regression Tools — These tools help you test
software through a native graphical user interface. Some also
help with other interface types. Another example is Web test
tools that test through a browser, for example, capture/replay
tools.

Test Design/Data Tools — These tools help create test
cases and generate test data.

Load/Performance Tools — These tools are often also
GUI test drivers.

Test Process/Management Tools — These tools help
organize and execute suites of test cases at the command
line, API, or protocol level. Some tools have graphical user
interfaces, but they don’t have any special support for testing
a product that has a native GUI. Web test tools that work at
the protocol level are included here.

Unit Testing Tools — These tools, frameworks and
libraries support unit testing, which is usually performed
by the developer, usually using interfaces below the public
interfaces of the software under test.

Test Implementation Tools—These tools assist in testing
at runtime.

Test Evaluation Tools—Tools that help you evaluate the
quality of your tests. Examples include code coverage tools.

Static Test Analyzers — Tools that analyze programs
without running them. Metrics tools fall in this category.

Defect Management Tools — Tools that track software
product defects and manage product enhancement requests.
They manage defect states from defect discovery to closure.

Three titles should be noted in this classification, they are
‘‘Function/regression testing’’ tools, ‘‘Unit testing tools,’’ and
‘‘Defect management tools’’ [21]. Regression testing which
was included as a sub-set category from ‘‘execution tools’’
in [64] is separated from ‘‘function testing’’ in dedicated
category. This manner in classification could be affected by
ISO and IEEE standards [47], [48], [59], [60], [66], [67]. The
category of ‘‘Unit testing’’ appears clearly as a main category,
without including the rest test levels. This, perhaps, indicates
the focus of tools vendors and SW developers on unit testing
at that time. ‘‘Defect management’’ is new category devoted
for tools that support defect tracing, perhaps because of its
importance; whereas in prior work it is included within ‘‘test
management’’ category.

Within ISTQB, Dorothy Graham classified testing
tools based on testing activities into the following
classes [58], [65]:

Tool support for management of testing and testware:
◦ Test management tools and application lifecycle man-
agement tools (ALM)
◦ Requirements management tools (e.g., traceability to

test objects)
◦ Defect management
◦ Configuration management tools
◦ Continuous integration tools

Tool support for static testing:
◦ Static analysis tools

Tool support for test design and implementation:
◦ Model-Based testing tools
◦ Test data preparation

Tool support for test execution and logging:
◦ Test execution tools
◦ Coverage tools
◦ Test harnesses

Tool support for performance measurement and
dynamic analysis:
◦ Performance testing tools
◦ Dynamic analysis tools

A. TOOL SUPPORT FOR SPECIALIZED TESTING NEEDS
This category involves all other specific testing types for non-
functional aspects.

ISTQB Classification has more discrimination between
the different categories with simple hierarchy of main cat-
egories and subset categories. ‘‘Test implementation tools’’
has clear boundary of ‘‘Test execution tools.’’ Model-based
testing tools is introduced to specify the tools that adopt
a particular SWE model such as UML or state-transition
model, this title left the door open for any new model sup-
portive tool. ‘‘Execution tools’’ encompass ‘‘coverage tools’’
and also ‘‘test harnesses’’ and this is better, logical and
simpler than the prior classifications. ‘‘Performance tools’’
is a broad terminology which can include different testes
such as load testing and stress testing. The last category
could include all non-functional aspects tests such as security,
usability, reliability. . . etc. Security which is one important
testing type currently is included in the open category in this
classification.

In 2010, author in [35] classifies testing tools basi-
cally based on test levels. In some subset of classification
ISO 9126 and SWEBOK classifications were referenced.
Reference [35] also benefited from what was introduced
in [62]- as both researches were conducted at the same uni-
versity. This classification is broader than all prior classifi-
cations. To make it short, the new categories are described
where the old ones are already described in previous clas-
sifications. This approach classifies testing tools into the
following categories:

Unit Testing Tools: This class includes the following tools
classes [35]:
• Manual Program Execution: The whole program is
being run. Proper parameter values are derived by man-
ual calculation in order to invoke the required unit. The
main disadvantage of this approach is that it is very time-
consuming, considering that a unit is tested several times
with different test data, and it requires writing client cod.

• Automated Test Drivers: It is test harness (stub,
drivers) tools.

• Direct Test Access: The tools can provide the same
functionality as automated test drivers but without the
need of constructing stubs. It allows the direct control
of the unit under test, without taking the unit out of its
operational environment.

VOLUME 9, 2021 158877

A. J. Abdulwareth, A. A. Al-Shargabi: Toward Multi-Criteria Framework for Selecting Software Testing Tools

B. INTEGRATION TESTING TOOLS
• Top-down integration Testing Tools: In this approach
the stubs tools are used (the same as in unit testing).
This fact explains why software testing tools, initially
designed for unit testing, are also used in integration
testing.

• Bottom-UP integration Testing Tools: Bottom-up inte-
gration starts from construction and testing components
at the lowest level of the program. In this approach no
stub tools are used, because all the required processing
information of a component is already available from the
previous steps. Tools that are used for integration testing
again correspond to those for unit testing activity (test
drivers). This could be almost considered as an extension
of unit testing.

• Regression Testing Tools: This activity can be car-
ried out using automated capture/playback tools, which
allow testers to record test cases and repeat them for
following result comparison. Regression testing often
starts when there is anything to integrate and test at all.
Test cases for regression should be conducted as often
as possible.

C. FUNCTIONAL TESTING TOOLS
Functional testing tools ensures that the tested function pro-
duces the expected outcome, as it is described in (ISO 9126,
1988) for functionality quality characteristic.

D. SYSTEM TESTING TOOLS
System testing tools support a different test whose primary
purpose is to fully exercise the whole computer-based system.
In addition, this category includes recovery, security, stress
and performance testing. Among the existing tools, there
are subsets that focus on specific security areas: database
security, network security and web application security. This
category includes the following sub-categories.
• Security Testing Tools: Security testing relies on
human expertise much more than an ordinary testing,
therefor automation of the security test is less achievable
than other testing types. However, there are different
black box test tools designed for testing application
security issues.

• Performance and Stress Testing Tools: Performance
tests are often coupled with stress testing. Stress testing
is conducted to evaluate a system at themaximumdesign
load, while performance testing aims at verifying that
the software meets the specified performance require-
ments. The main principle of operation of performance
and stress testing tools is simulation of a real user with
‘‘virtual’’ users. The tool then gathers the statistics on
virtual users’ experience. In general, performance test-
ing tools can be divided into load generators, monitors
and frameworks which are used for finding performance
bottlenecks, memory leaks and excessive memory
consumption.

E. ACCEPTANCE TESTING TOOLS
This testing activity differs from others in aspect that it may
or may not involve the developers of the system, and can
be performed by the customer. If some errors are identified
during acceptance testing, after developers correct them or
after any change, the customer should go through acceptance
tests again.

The latter classification is natural accumulated growth of
the different prior classifications. It contains two levels of cat-
egories which allow to encompass easily the different testing
tools. Most categories in prior classifications are involved.
Security which became a basic recommended software fea-
ture has a sub-category within system testing main category.
Unit testing tools include three types of tools based on the
technical implementation of the testing tool. According to
ISO 9126, functional testing tools has a separate category.
However, the overlapping between functional category and
other categories was not clearly described. Some main cate-
gories were disappeared, such as coverage tools, and testing
evaluation tools. The idea of classification based on testing
levels is useful for both developers and testers, as it arranges
tools usage process in a systematic manner.

In 2013, author in [33] introduced the following classifica-
tions based on the nature of the testing process:

Management tools: This class includes different manage-
ment classes as follows:
• Test management tools: this category includes tools
that are used to manage the different assets of testing
process. Assets could be test cases, defects, or test tasks.

• Requirement management tools: These tools are usu-
ally used in software analysis phase; however, it is also
used in the testing phase to link tested units and/or
defects with the relative requirements. These links are
useful to estimate the severity of bugs and locating the
infected areas.

• Incident management tools. This category includes the
tools that are used to document and track system failures
and anomalies. It is also known as defects management
or bugs-tracking tools.

• Configurationmanagement tools. These tools are used
to maintain changes during the testing.

Execution tools: This category encompasses the tools that
are used with code running mode. It includes:
• Test execution tools: This is the most commonly known
category. It is also known as test running, or capture
and replay tools. These tools are basically used for
automation of regression testing. These tools reduce
test execution time significantly when tests are repeated
and/or allow more tests to be executed.

• Test harness/unit test framework: This type of tools
is usually used by developer to test a unit of code.
It provides stubs or drivers to interact with the unit under
test.

• Test comparator: These tools are used to compare the
actual results of programs with predefined ones.

158878 VOLUME 9, 2021

A. J. Abdulwareth, A. A. Al-Shargabi: Toward Multi-Criteria Framework for Selecting Software Testing Tools

• Coverage measurements: tools in this category are
used to examine the coverage of code being tested.
It provides a clear image about how thoroughly software
is tested.

• Security tools: This category includes tools that check
if there is any data leakage.

Static testing tools: This class includes tools that are used
in different types of static testing. It supports formal reviews,
inspections, and walk-throughs. This category includes:
• Review process support tools: this type is used to
support managing static reviews assets.

• Static analysis tools: Tools that fall in this category are
used to analyze the syntax and also the semantic/logic of
code without running it.

• Modelling tools: This category includes tools that sup-
port a particular design model. It helps generating data
for that model. For example, generating test data for such
state transition diagram.

Performance testing tools. This type is an umbrella cat-
egory for all tools that are used to test effectiveness and
speed of software; for example, stress testing, load testing,
spike testing tools fall in this category. Testing tools for
web applications usually support performance testing that is
supposed to be used by a lot of different customers. This
category includes:
• Load testing tools: This type of tools is used to examine
the behavior of the software when there are large num-
bers of users at the same time. These tools are used to
detect the system blockage and how to respond when
the load is gradually enlarged.

• Stress testing tools: This category includes tools that
examine the ability of the system to retain a reasonable
level of efficiency within harsh conditions.

• Dynamic analysis tools: This type is dynamic because
it is performed in running mode; however, it is differ-
ent of dynamic testing. Tools in this category are used
to explore what happens with code behind the scene;
Whether the code is executed by particular test case or
used by operation correctly.

• Monitoring tools: Tools in this category provides
insight of different system aspects such as memory, CPU
while system running.

Test specs tools: Tools in this category are usually used
to help design test cases or generate test data. They usually
support a particular requirements specification format/model.
They provide information that help choose the test type for a
particular target test level or type. For example, they could
specify all true combinations of such classification tree. This
information will help create the true data that cover all paths
in the tree.

Taxonomy that has been introduced in [33] is slightly
similar to ISTQB classification. It introduces a fine-grain
classification with two-levels of categories. Many details
and sub-categories are clearly involved and described. Man-
agement tools include all possible tools with three sub-
categories. Security tools are included within execution tools,

where execution tools category is a broad category that
includes test execution tools, coverage tools, test harnesses,
and security tools. Similarly, performance tools category is
broad and includes load testing tools, stress testing tools,
dynamic analysis tools and monitoring tools with clear dis-
crimination between them. Monitoring tools appear as a
separate category as they became popular. Modeling tools
category is included within the static testing tools, although
there is a test specs tools category that conveys the tools that
are used for generating test data based on a specific design
model. Nevertheless, this model is comprehensive, simple
and clear.

On the other hand, there are variant testing tools that
were developed for specific type of software, technology,
or specific software criteria. Software industry sector intro-
duces different testing solutions based on application tech-
nology such as web applications testing tools [14], [30],
mobile applications testing tools [28], [52], [53], [55], [56],
and embedded software testing tools [12], [30]. These solu-
tions serve in different ways, there are stand-alone systems,
web services, or even cloud-based services. Besides, there
are tools that are built for specific type of software such
as object-oriented software [25], [26], aspect-oriented soft-
ware [63], and web-services systems [38]. For many soft-
ware criteria/quality-aspects, there are many tools in software
market. For example, there are tools for security, reliability,
usability, and maintainability [19], [21], [57], [63].

Finally, there is a lack of a systematic comprehensive way
to classify testing tools [19], [21], [57]. There are many
views that could be used for classification. A comprehen-
sive taxonomy will help both developers/testers and vendors
and will help using automation tools in software industry.
On the other hand, there is no a method to use testing tools
taxonomies; there are a need for such methods to facilitate
selection between the wide range of testing tools.

III. PROPOSED MULTI-CRITERIA FRAMEWORK FOR
SELECTING TESTING TOOLS
This section introduces a framework of testing tools selec-
tion. This framework aims to help software developers to
select appropriate testing tool/s accurately from large number
of testing tools based on broad criteria classification. The
novelty of this paper is represented by: 1) introducing a
comprehensive taxonomy of SW testing tools as the previous
taxonomies are usually admit just one view, so they usually
not comprehensive and cannot cover all testing tools criteria;
2) introducing a scientific method to utilize the introduced
taxonomy to select the appropriate tool/s even in case of
complex decisions with many criteria and many alternatives.
A multi-criteria decision making is used. This method can
then be built as an engine and produced as a web service to
facilitate choosing the appropriate testing tools or a particular
software.

The proposed framework consists of twomain parts; (1) the
taxonomy categories, (2) a multi-criteria selection method
for choosing the appropriate tool/s for a particular software.

VOLUME 9, 2021 158879

A. J. Abdulwareth, A. A. Al-Shargabi: Toward Multi-Criteria Framework for Selecting Software Testing Tools

The first part which is the taxonomy tries to involve many
criteria of testing tools as possible; the aim is a comprehensive
taxonomy that could help both users and vendors as well,
with automatic accurate selection method. The introduced
selection method uses two well-known methods of multi-
criteria decision-making techniques, AHP (Analytic Hierar-
chy Process) and TOPSIS (Technique for Order Preference
by Similarity to Ideal Solution). AHP and TOPSIS are used
in many fields to support decision making, especially in
business. This is whywe think to utilize in the context of SWE
decisions. AHP and TOPSIS performed an accurate rank of
decision alternatives even where the decisions are complex
with many criteria and many alternatives. Accuracy here
means producing an accurate rank for alternatives [between
1 - 0] [43]–[46]. Figure 2 illustrates the components of the
proposed framework.

For industrial sector, this framework would contribute to
make automated testing easier and more efficient. It could be
developed as an agent within website and then fed by a large
knowledgebase of all available testing tools and their classifi-
cation based on the proposed taxonomy. This may contribute
to reducing software developers’ reluctance to use testing
tools as described in Section I. On the other hand, software
developers can utilize the proposed taxonomy to choose the
type of their products based on broad view. Consequently, test
automation practices will be improved.

FIGURE 2. Multi-criteria framework for selecting testing tools.

A. A COMPREHENSIVE TAXONOMY OF TESTING TOOLS
This section introduces the first part of the framework, the
different categories of the introduced taxonomy. The pro-
posed taxonomy encompasses three basic classes depending
on the similarities on the different criteria in the literatures
as shown by Figure 3 and TABLE 1. These three classes
are: (1) technical and economic view, (2) testing process
view, and (3) Software quality standards. The taxonomy
includes three abstraction levels as shown in TABLE 1. This
is due to the different abstraction/refinement level of the
different criteria. To make the taxonomy comprehensive, all
testing tools criteria -which are addressed in the literature-
is included in the proposed taxonomy within the appropriate

class/sub- class. The third/final level includes the criteria that
the user can directly deal with. According to the nature of
some sub-classes, the scalability by adding new criteria is
taken into consideration. For example, the ‘‘SW operating
system/platform,’’ and ‘‘Vendors’’ criteria includes open slot.

Each class in the proposed taxonomy is explained below.

FIGURE 3. The proposed taxonomy for testing tools (the main categories).

1) TECHNICAL AND ECONOMIC VIEW
This class includes criteria that are usually first considered by
tools customers (developers/testers).Most literature classifies
testing tools based on these criteria. Is the tool technically
appropriate for the software being tested? and how easy we
can get the tool? These questions represent the basic consid-
erations for customers. We can say that, this class represents
the first layer/filter of criteria; Where after that, other criteria
within other classes can be investigated. This class include
variant technical, and economic criteria such as platform,
software technology, and programming languages. As men-
tioned earlier, some sub-criteria slots are open to include any
new criteria.

2) TESTING PROCESS VIEW
Testing process view is the second class in the proposed
taxonomy. This class was very complicated at first as there
were many different dimensions within it. However, it was
subjected to several refinement cycles to make it simpler
while maintaining the same level of richness. The complexity
came not just from the variant views, but also from the large
amount of possible interlapping links between these views.
For example: we can include the test technique under test
levels and vice versa. For simplification, we avoid making the
classification inmore than three-levels. Therefore, the criteria
are not mutually exclusive where a particular test could be
classified as: dynamic testing, unit testing, functional testing,
and black-box testing at the same time. Besides, testing tools
is already classified in the literature based on all these criteria
as illustrated by TABLE 1. The sub-class ‘‘Function of testing

158880 VOLUME 9, 2021

A. J. Abdulwareth, A. A. Al-Shargabi: Toward Multi-Criteria Framework for Selecting Software Testing Tools

tools’’ is inspired basically from ISTQB classification [7],
[58], [65], IEEE SWEBOK classification [38], [47], [48],
and many other researches as anticipated in TABLE 1 and
as described in related work section. ‘‘Function of testing
tools’’ category includes different functions such as test man-
agement, test design, and performance testing. Functions that
go together and hold different titles, or tools that has the
same function are included in the same sub-criteria such as
‘‘Test Design/Model-based Testing’’ and ‘‘Test Execution/
Comparators/Test Harness.’’ Security testing represented a
separate category. It is not included clearly within both
SEBOK and ISTQB; however, it is included in many other
researches as clarified in related work. In IEEE 106, it is
included within ‘‘functionality’’ criteria as one aspect of
functionality. Security became a basic feature for software
today where IOT platform became the future platform, so it is
better to have it as a separate clear category. The last category
within this class is ‘‘Software testingModel/Approach.’’ This
category includes the different SWE models that was sup-
ported by testing tools such as ‘‘Agile’’ and Service-Oriented-
Architecture SOA. We found many testing tools are built and
worked based-on.

3) SOFTWARE QUALITY STANDARDS
SW quality standards can be employed as one perspective of
testing-tools classification that specifies the general quality
aspects for software. Some criteria within these standards
are already included within the previous classes, such as
‘‘Efficiency’’ in standards and ‘‘Performance Testing’’ in the
prior class. Similarly, ‘‘Maintainability’’ in standards and
‘‘Static Analysis’’ in the second class, where maintainability
is measured using different metrics using static-analysis test-
ing tools. On the other hand, ‘‘Security’’ is not included in
this class clearly, although it is a sub-quality-criteria within
‘‘Functionality’’ criteria in standards. This is because it is
already included in the second class as described earlier.
Finally, for all quality criteria in this class, several tools can
be found in SW market.

B. A MULTI-CRITERIA METHOD FOR SELECTING TESTING
TOOLS
This section introduces the second part of the proposed
framework, which is amulti-criteria selectionmethod for test-
ing tools. This method is proposed to simplify the selection
process among the huge number of testing tools. Besides,
the criteria of testing tools are variant; which makes it dif-
ficult for software developer to choose the best appropriate
tool for the software in hand. In the introduced framework,
a multi-criteria decision-making technique are employed;
specifically, AHP and TOPSIS [43], [44]. These two method
were selected because their success in decisionmakingwithin
many different fields, especially in business and administra-
tion. They are well-known accurate methods, in terms of the

TABLE 1. The criteria of the proposed taxonomy.

VOLUME 9, 2021 158881

A. J. Abdulwareth, A. A. Al-Shargabi: Toward Multi-Criteria Framework for Selecting Software Testing Tools

TABLE 1. (Continued.) The criteria of the proposed taxonomy.

best decisions they help to make between many alternatives
and with many complex criteria [43]–[46].

The following section introduces an overview about AHP
and TOPSIS. AHP is used to quantify the weighted impor-
tance of different criteria, then TOPSIS is used to rank all
appropriate tools and determining the best.

1) AN OVERVIEW OF ANALYTIC HIERARCHY PROCESS (AHP)
Analytic Hierarchy Process (AHP) is based on priority the-
ory; it is used because of its consistency with the multi-layers
of taxonomy as it works well with the decisions that have
layered criteria. In addition, it provides a way to compute
the weights of different criteria accurately using pairwise
comparison of the different criteria [43]–[46].

Step 1: Decomposition
In this step, the hierarchy of criteria is done; in this case,

the proposed taxonomy will be employed.
Step 2: Weighting the Criteria
In this step, a numerical weight is given for each criterion

in the hierarchy by making a pair-wise comparison. This is
done as follows:

- Building a single pairwise comparison matrix for the
criteria.

- Calculating the Eigenvector of the matrix.
- Repeating step 2 until the difference between successive

normalized rows sum is less than a very small value (pre
specified). This step can be shortened by summing values
in each column of the pairwise comparison matrix and then
dividing each element by its column total and then computing
the average of elements in each row.

- Calculating and checking the Consistency Ratio (CR).
This is a main step in AHP that reflects the consistency of

the pairwise results. For example, if the result of comparison

between A and B is 4 and between B with C is 3 so, A com-
pared with C must be 4 × 3 = 12. If the result was not 12,
some inconsistency might exist and the pairwise comparisons
must be revised. Steps of the examination of consistency are
as follows:
1) Multiplying pairwise comparison matrix via relative pri-

orities to acquire a weighted sum vector.
2) Dividing weighted sum vector elements via associated

priority values.
3) Calculating the average (denoted λmax) of the values

from Step 2.
4) Calculating Consistency Index (CI) as shown by

Formula 1.

CI = (λmax− n)/(n− 1) (1)

where n is the number of the compared items.
5) Computing Consistency Ratio (CR) as clarified

Formula 2:

CR = CI/RI (2)

where RI is a Random Index.

2) AN OVERVIEW OF TECHNIQUE FOR ORDER PREFERENCE
BY SIMILARITY TO IDEAL SOLUTION (TOPSIS)
TOPSIS method is used for ranking all alternatives (tools in
this case) by measuring the distance between each alternative
in addition to the best and worst solution. The best solution
will be the alternative with the shortest distance from the
ideal solution, and the farthest from the worst one. TOPSIS
produces a high accurate indication/rank in comparison with
the other solutions, even with multi-criteria decisions [44].
The output of AHP is the input of TOPSIS, criteria with
weight matrix will be the input in this case. The following
steps then are achieved [43], [44].

Input to TOPSIS:
A decision matrix (x ij)m×n of m alternatives and n criteria;

and a vector (wi)n of criteria weights. TOPSIS supposes that
there are m options and n criteria and it has the score of each
alternative with respect to each attribute e.

Step 1: Constructing normalized decision matrix
This step converts various attribute dimensions to

non-dimensional criteria, that allows comparisons across
attributes. Matrix (xij) m × n is then normalized to form the
matrix (rij) m × n as illustrated by Formula 3:

rij = xij/
√
(6x2ij)i for i = 1, . . . ,m; j = 1, . . . , n (3)

Step 2: Constructing the weighted normalized decision
matrix
• Assume we have a set of weights for each criteria wj for
j = 1, . . . n.

• Multiply each column of the normalized decision matrix
by its associated weight. Elements of the new matrix are
calculated using Formula 4:

vij = wjrij (4)

158882 VOLUME 9, 2021

A. J. Abdulwareth, A. A. Al-Shargabi: Toward Multi-Criteria Framework for Selecting Software Testing Tools

Step 3: Determining the ideal and negative ideal
solutions

For calculating the best and worst ideal solutions, For-
mula 5, and Formula 6 are used:

- Ideal solution A∗.

A∗ = {v∗1, . . . , v
∗
n}, where

v∗j = {max(vij)i if j ∈ J;min(vij) if j ∈ J′} (5)

- Worst ideal solution A′.

A′ = {v′1, . . . , v
′
n}, where

v′ = {min(vij)i if j ∈ J;max(vij) if j ∈ J′} (6)

where:
J = {1, 2, 3, , n | j} is associated with the criteria that

have a positive impact, and
J′ = {1, 2, 3, , n | j} is associated with the criteria that

have a negative impact.
Step 4: Calculating the separation measures for each

alternative.
This step is calculated using Formula 7 and Formula 8. The

separation from the ideal alternative S∗i is:

S∗i = [6(v∗j − vij)2]1/2 i = 1, . . . ,m (7)

Similarly, the separation from the negative ideal alternative
S′i is:

S′i = [6(v′j − vij)2]1/2 i = 1, . . . ,m (8)

Step 5: Calculate the relative closeness to the ideal
solution Ci∗

This step is achieved using Formula 9:

C∗i = S′i/(S
∗

i + S′i), 0 < Ci∗ < 1 (9)

The alternatives/solutions are ranked based on distance
from value 1. The best alternative will be the alternative with
C∗i closest to 1.

3) ILLUSTRATIVE EXAMPLE FOR USING AHP AND TOPSIS IN
THE FRAMEWORK
Based on the framework, the first step will apply AHP to get
the relative weight for each criterion, where the user will be
required to determine the criteria according to the proposed
taxonomy. Then TOPSIS will follow to rank the different
alternatives/solutions starting with the best solution.

The first stage of AHP is to decompose the goal into
the criteria that affect the alternative assessment. Users can
choose any number of criteria from the proposed taxonomy.
All criteria will be chosen from the third level. In our exam-
ple, the selected criteria are clarified by TABLE 2.

Then pairwise comparison matrix is produced using crite-
ria in testing tools as shown in TABLE 3.

Then, eigen vector is calculated for each row in the matrix
and finally the weights of criteria will be as shown by
TABLE 4.

Although the number of criteria is large, AHP could cal-
culate the relative weight accurately. The weights are used

TABLE 2. The chosen criteria in the illustrative example based on the
proposed taxonomy.

TABLE 3. Pairwise comparison matrix for the different criteria.

TABLE 4. Summary of criteria with weights.

by TOPSIS to evaluate each alternative in the database.
Alternatives will be the different testing tools within the
database.

VOLUME 9, 2021 158883

A. J. Abdulwareth, A. A. Al-Shargabi: Toward Multi-Criteria Framework for Selecting Software Testing Tools

Now, TOPSIS will use the output of AHP to select the best
choice between different alternatives in testing tools database.
A testing tools database is created based on the criteria in the
proposed taxonomy. When testing tools database is created,
each test tool is inserted with its criteria; each tool will have
a value for each criterion in third level within the proposed
taxonomy.

Therefore, two basic inputs will be used in TOPSIS; the
weight matrix which is produced by AHP, and the alternative
decision matrix that will be retrieved from the alternatives
database. TABLE 5 shows values of different criteria for each
testing tools; which are retrieved from the database.

TABLE 5. Criteria for each tool in database (decision matrix for
alternatives).

TOPSIS method will calculate the positive ideal alterna-
tive A∗ and the negative ideal alternative A- as described in
TABLE 6.

TABLE 6. Positive ideal and negative ideal solutions.

Finally, all alternatives are ranked based on the distance to
the positive ideal solution and the negative ideal solution as
shown by TABLE 7.

IV. EXPERIMENTS AND EVALUATION
This section articulates experiments and evaluation for the
proposed framework. First of all, the taxonomy is validated
by academic experts in software engineering, then the selec-
tion method is implemented and tested based on different
criteria and scenarios.

A. VALIDATION OF THE TAXONOMY OF SOFTWARE
TESTING TOOLS
To validate the proposed taxonomy model, the model is
validated by a group of SWE academics. These academics
have been selected from different universities in Yemen

TABLE 7. The relative closeness to the positive ideal solution.

TABLE 8. The basic questions in taxonomy validation tool.

and Saudi Arabia based on their long expertise; the most
experienced people in different universities were selected.
The validation tool was designed by the researcher and
revised by specialists. ‘‘Likert’’ scale is used. The valida-
tion tool included sixteen questions, twelve of them were
closed questions and four of them were opened questions.
The main dimensions- which are covered by the validation
tool- are: usefulness, credibility, comprehension, accuracy,
logical correlation between the content in the different lev-
els within classes, and finally, usability of the taxonomy
model. TABLE 8 Show the basic questions in validation.
Figure 4 illustrate a snapshot of the results after answering
the specific questions by academic experts.

158884 VOLUME 9, 2021

A. J. Abdulwareth, A. A. Al-Shargabi: Toward Multi-Criteria Framework for Selecting Software Testing Tools

FIGURE 4. The results of validation of the proposed taxonomy (response
of academic experts).

As shown by Figure 4, the result was positive. Almost all
experts indicated that it was better to simplify the taxonomy
more.

B. IMPLEMENTATION AND EVALUATION OF THE
PROPOSED SELECTION METHOD
After validating the proposed taxonomy, the selectionmethod
is implemented and evaluated. The method is implemented as
a website; the idea is to make the framework available for SW
industry market. The proposed selection method is evaluated
according to predefined criteria using the proposed taxonomy
and some common testing tools. Real working systems are
selected in the first author university; University of Science
and Technology, Yemen. Experiments has been carried out to
examine the different test cases. Scenarios are designed based
on different parameters. The actual result is compared against
predefined expected result. Description of the data which is
used in evaluation and the test cases parameters is clarified in
the following sections.

1) DESCRIPTION OF DATA
At first, it is important to clarify that there is no a well-known
dataset for this type of research. However, a real data is used
for the framework evaluation. Data include two categories:
(1) Used testing tools; (2) Some real working software. The
following section introduces these two categories:

a: USED TESTING CASE TOOLS
Among hundreds of available testing tools, twelve well-
known of them were selected to be involved in the framework
experiments. The selected tools are the most well-known
tools within industrial community. Furthermore, the tools are
selected to cover different criteria. TABLE 9 shows the used
testing tools with their testing criteria. The empty cells mean
that the tool does not support these criteria.

b: USED SYSTEMS
A number of working systems are used to test the proposed
framework. These systems are used within the University of
Science and Technology (UST). Some of them are part of
UST ERP and other dedicated systems. TABLE 10 shows
these systems and their characteristics based on the proposed

taxonomy. The criteria are carefully prepared by system
admins and then reviewed by the managers in the UST IT
center.

2) EXPERIMENTS
This section describes the experiments that were conducted to
evaluate the framework. At first, the different parameters that
were adopted to evaluate the framework were clarified. Then
the different scenarios/test cases are designed in the light of
the parameters introduced in advance. The evaluation process
then was taking place using the data clarified in the last
section. Finally, the result is introduced and carefully criti-
cized based on the expected results in the test cases/scenarios.

To examine the performance of the framework, some
parameters were taken into consideration when designing the
scenarios/test cases. These parameters were chosen in the
light of multi-criteria decision-makingmethods [44]; because
the framework is a multi-criteria selection framework. The
first factor is the number of tools that are available to test
each system; if the number of the available tools is large
then the selection becomes more difficult. For the same
reason, the second parameter is the number of criteria for
each tool. In addition, the weights of the criteria were also
one of the adopted parameters. The different weights are
important parameters as where the weights are contrasted, the
decision become more difficult. Consequently, the different
scenarios were designed with different combinations of these.
TABLE 11 summarizes the different parameters that form the
different experiments scenarios/test cases.

In the light of the parameters in TABLE 11, many scenarios
were designed. This section introduces some main different
Scenarios/test cases with the expected results to clarify how
the evaluating process is conducted.

All tables below show the expected results that is manually
estimated by developers, and the results that is produced by
selection method. For all scenarios, method could success in
choosing the best tool/s with accurate rank [between 0-1] for
all tools can be used in each scenario. The best choice will
be the tool/s that has/have the higher value as described in
Section III and Table 7. value 1 means that this alternative is
most close to the ideal solution with 100% satisfaction of the
required criteria, in other words, it is the best choice based on
the selected criteria.

a: THE FIRST SCENARIO
This scenario aims at testing the framework against the first,
second and third parameters with few tools and few software
criteria. The results are shown in TABLE 12.

Because of that the scenario parameters are simple, the
expected results that estimated manually is similar to extent
with actual result that produced by the selection method.

b: THE SECOND SCENARIO
This scenario aims at testing the framework against the first,
second and third parameters with many tools and few soft-
ware criteria. The results are shown by TABLE 13.

VOLUME 9, 2021 158885

A. J. Abdulwareth, A. A. Al-Shargabi: Toward Multi-Criteria Framework for Selecting Software Testing Tools

TABLE 9. Used testing tools with criteria.

158886 VOLUME 9, 2021

A. J. Abdulwareth, A. A. Al-Shargabi: Toward Multi-Criteria Framework for Selecting Software Testing Tools

TABLE 10. Used software with criteria.

TABLE 11. A summary of the different parameters.

As shown by TABLE 13, even where tools are many
(more than 10), the selection method produced distinguish-
able results. At the first and third case, the manual estimation
was difficult due to the high number of potential tools.

TABLE 12. The first scenario.

c: THE THIRD SCENARIO
This scenario aims at testing many tools, few software crite-
ria, and close weights for the same criteria. The results are
shown by TABLE 14.

VOLUME 9, 2021 158887

A. J. Abdulwareth, A. A. Al-Shargabi: Toward Multi-Criteria Framework for Selecting Software Testing Tools

TABLE 13. The second scenario.

As shown by Table 14, even with this difficult scenario,
where criteria are close in weights, the results are distinguish-
able. The first and the second tools (TestTrack, Zephyr) are
clearly more appropriate for the investigated system, while
the former ones (Testrail, TestPAD) are not good choice. The
manual estimation make all four selected tools are equal in
rank for the system in hand.

TABLE 14. The third scenario.

TABLE 15. The fourth scenario.

d: THE FOURTH SCENARIO
This scenario assumes a confusable case with many tools and
many criteria. In this case, a manual decision is difficult and
even impossible. TABLE 15 shows how easily the framework
can make an accurate decision.

A summary of results is in the following:
1. The selection method has achieved a good success in

selecting the appropriate testing tools listed from the
best to the worst. As shown by table 16, our method suc-
cess to select the best choice at all different scenarios.

158888 VOLUME 9, 2021

A. J. Abdulwareth, A. A. Al-Shargabi: Toward Multi-Criteria Framework for Selecting Software Testing Tools

TABLE 16. Summary of results of all scenarios. TABLE 16. (Continued.) Summary of results of all scenarios.

2. The results and calculations still accurate even with
complicated cases. Accuracy here means that the best
choice still gets the high rank value even there are many
criteria and many alternative tools.

3. As a consequence of 2, the framework is flexible; any
number of tools and criteria can be added and used.

Finally, as shown by results, the different parts of the pro-
posed framework are well evaluated. The proposed taxonomy
is well validated by experts in terms of usefulness, effective-
ness, and importance. The selection method performs good
results in all different scenarios by determining the appropri-
ate testing tools with accurate rank.

V. CONCLUSION & FUTURE WORKS
This research introduces a framework for selecting testing
tools. The proposed framework includes a comprehensive
taxonomy of testing tools, and a selection method for devel-
opers to use the taxonomy for selecting appropriate testing
tools.

Based on findings, the proposed framework was well eval-
uated, the taxonomy of the testing tools and also the selection
method. For the first part of the framework- testing tools
taxonomy- the experts indicated that the taxonomy is/will:
(1) important and useful; (2) comprehensive; (3) help devel-
opers choosing the best tools for software testing among a
large number of testing tools. However, most experts indi-
cated that the taxonomy is complicated a little bit and this
could make it difficult to use.

The second part of the proposed framework was successful
based on the experiments that have been conducted. The eval-
uation is designed and implemented carefully using different
parameters and scenarios. The proposed selection method
achieved good results even with complicated cases. For all
scenarios, method can determine the appropriate testing tools
with accurate rank. Thanks go to using AHP with TOPSIS
as a hybrid multi-criteria selection method. The results were
accurate and the method always chooses the best tool with
high rank and ranks all tools accurately from the best tool to
the worst.

VOLUME 9, 2021 158889

A. J. Abdulwareth, A. A. Al-Shargabi: Toward Multi-Criteria Framework for Selecting Software Testing Tools

Using the proposed framework would help developers to
choose the best testing tools for their software based on the
criteria of both tools and the software. It reduces the cost
of selection process and helps the beginners in testing to
choose the testing tools based on scientific and comprehen-
sive criteria.

For future work, the taxonomy can be simplified. A wide
validation for the taxonomy by developers and academics is
recommended. An experimental study is recommended as it
can provide an accurate image about the proposed taxonomy.

REFERENCES
[1] B. B. Agarwal, S. P. Tayal, and M. Gupta, Software Engineering and

Testing. Boston, MA, USA: Jones & Bartlett, 2010.
[2] M. Barnett, W. Grieskamp, W. Schulte, N. Tillmann, and M. Veanes,

‘‘Validating use-cases with the AsmL test tool,’’ in Proc. 3rd Int. Conf.
Quality Softw. (QSIC), Dallas, TX, USA, Nov. 2003, pp. 238–246.

[3] S. Bhuvana and M. V. Srinath, ‘‘A survey on automated combinatorial
testing for software tool (ACTS) with experimental revise based on T-way
test generation,’’ Int. J. Comput. Appl., vol. 6, no. 3, pp. 13–20, 2016.

[4] R. Bryce and R. Kuhn, ‘‘Software testing [guest editors’ introduction],’’
Computer, vol. 47, no. 2, pp. 21–22, Feb. 2014.

[5] I. Burnstein, Practical Software Testing: A Process-Oriented Approach.
Springer, 2014.

[6] R. K. Chauhan and I. Singh, ‘‘Latest research and development on software
testing techniques and tools,’’ Int. J. Current Eng. Technol., vol. 4, no. 4,
pp. 2368–2372, 2014.

[7] G. Coleman and M. Walsh, Agile Testing: An ISTQB-BCS Foundation
Guide. Swindon, U.K.: BCS Learning & Development Limited, 2017.

[8] E. Dustin, J. Rashka, and J. Paul, Automated Software Testing: Introduc-
tion, Management, and Performance. Boston,MA, USA: Addison-Wesley,
1999.

[9] M. M. Eslamimehr, ‘‘The survey of model based testing and industrial
tools,’’ M.S. thesis, Linköping Univ., Linköping, Sweden, 2008.

[10] T. Garrepalli, ‘‘Knowledge Management in software testing,’’ M.S. thesis,
Blekinge Inst. Technol., Karlskrona, Sweden, 2015.

[11] J. Iivari, ‘‘Why are CASE tools not used?’’ Commun. ACM, vol. 39, no. 10,
pp. 94–103, Oct. 1996.

[12] S. Jain, V. Srivastava, and P. Katiyar, ‘‘Integration of metric tools for
software testing,’’ Int. J. Enhanced Res. Sci. Technol. Eng., vol. 2319,
no. 7463, pp. 445–447, 2014.

[13] S. Jarzabek and R. Huang, ‘‘The case for user-centered CASE tools,’’
Commun. ACM, vol. 41, no. 8, pp. 93–99, Aug. 1998.

[14] H. Javed, N. M. Minhas, A. Abbas, and F. M. Riaz, ‘‘Model based testing
for web applications: A literature survey presented,’’ J. Softw., vol. 11,
no. 5, pp. 347–361, 2016.

[15] S. H. Kan, Metrics and Models in Software Quality Engineering, 2nd ed.
Boston, MA, USA: Addison-Wesley, 2002.

[16] H. Kaur and G. Gupta, ‘‘Comparative study of automated testing tools:
Selenium, quick test professional and test complete,’’ J. Eng. Res. Appl.,
vol. 3, no. 5, pp. 1739–1743, 2013.

[17] C. Klammer and R. Ramler, ‘‘A journey from manual testing to auto-
mated test generation in an industry project,’’ in Proc. IEEE Int. Conf.
Softw. Quality, Rel. Secur. Companion (QRS-C), Prague, Czech Republic,
Jul. 2017, pp. 591–592.

[18] B. B. Konka, ‘‘A case study on software testing methods and tools,’’
M.S. thesis, Gothenburg Univ., Gothenburg, Sweden, 2012.

[19] E. Koppel, ‘‘Software test management tool evaluation framework,’’
M.S. thesis, Univ. Tartu, Tartu, Estonia, 2012.

[20] C. Lassenius, T. Soininen, and J. Vanhanen, ‘‘Constructive research,’’ in
Proc. Methodol. Workshop, Espoo, Finland: Helsinki Univ. of Technology,
2001.

[21] W. Lewis, Software Testing and Continuous Quality Improvement, 2nd ed.
Boca Raton, FL, USA: CRC Press, 2005.

[22] G. Lopez and A. Martinez, ‘‘Use of Microsoft testing tools to teach
software testing: An experience report,’’ in Proc. 1st Annu. Conf. Expo.
Indianapolis, IN, USA: American Society for Engineering Education,
Jun. 2014, pp. 1310–1324.

[23] V. Maheshwari and M. Prasanna, ‘‘Generation of test case using automa-
tion in software systems—A review,’’ Indian J. Sci. Technol., vol. 8, no. 35,
pp. 1–9, Dec. 2015.

[24] S. Masuda, ‘‘Software testing design techniques used in automated vehicle
simulations,’’ in Proc. IEEE Int. Conf. Softw. Test., Verification Validation
Workshops (ICSTW), Tokyo, Japan, Mar. 2017, pp. 300–303.

[25] P. Pohjolainen, ‘‘Software testing tools,’’ M.S. thesis, Univ. Kuopio,
Kuopio, Finland, 2002.

[26] L. Rajamanickam, ‘‘Testing tool for object oriented software,’’ Int. J. Sci.
Res. Manage., vol. 2, no. 8, pp. 1205–1208, 2014.

[27] R. Rattan, ‘‘Comparative study of automation testing tools: Quick test pro
and selenium,’’ VSRD Int. J. Comput. Sci. Inf. Technol., vol. 3, no. 6, 2013.

[28] G. Shah, P. Shah, and R. Muchhala, ‘‘Software testing automation using
Appium,’’ Int. J. Current Eng. Technol., vol. 4, no. 5, pp. 3528–3531, 2014.

[29] K. Shaukat, U. Shaukat, F. Feroz, S. Kayani, and A. Akbar, ‘‘Taxonomy of
automated software testing tools,’’ Int. J. Comput. Sci. Innov., vol. 2015,
no. 1, pp. 7–18, 2015.

[30] J. Singh andM. Sharma, ‘‘Comprehensive review ofweb-based automation
testing tools,’’ Int. J. Innov. Res. Comput. Commun. Eng., vol. 3, no. 10,
pp. 9255–9259, 2015.

[31] K. Sneha and G. M. Malle, ‘‘Research on software testing techniques and
software automation testing tools,’’ in Proc. Int. Conf. Energy, Commun.,
Data Anal. Soft Comput. (ICECDS), Chennai, India, Aug. 2017, pp. 77–81.

[32] Software Testing Fundamentals. (Oct. 11, 2016). Definition of Test.
[Online]. Available: http://softwaretestingfundamentals.com/definition-
of-test/

[33] M. Tiitinen, ‘‘Key factors for selecting software testing tools,’’ M.S. thesis,
Metropolia Univ. Appl. Sci., Helsinki, Finland, 2013.

[34] T. Toroi, ‘‘Testing component-based systems: Towards conformance test-
ing and better interoperability,’’ Ph.D. dissertation, Univ. Kuopio, Kuopio,
Finland, 2009.

[35] S. Uspenskiy, ‘‘A survey and classification of software testing tools,’’
M.S. thesis, Lappeenranta Univ. Technol., Lappeenranta, Finland, 2010.

[36] V. Vaishnavi, W. Kuechler, and S. Petter. (Mar. 21, 2017). Design
Science Research in Information Systems. [Online]. Available:
http://www.desrist.org/design-research-in-information-systems/

[37] K. Valliammai and P. Sujatha, ‘‘Analysis of efficiency of automated soft-
ware testing,’’ Methods, Direction Res., Int. J. Sci. Res., vol. 5, no. 12,
pp. 34–38, 2015.

[38] T. Wala and A. K. Sharma, ‘‘Improvised software testing tool,’’ Int. J.
Comput. Sci. Mobile Comput., vol. 3, no. 9, pp. 573–581, 2014.

[39] H. V. Gamido and M. V. Gamido, ‘‘Comparative review of the features of
automated software testing tools,’’ Int. J. Electr. Comput. Eng., vol. 9, no. 5,
pp. 4473–4478, Oct. 2019.

[40] R. Isha, G. Pooja, and M. Himani, ‘‘A review of tools and techniques
used in software testing,’’ J. Emerg. Technol. Innov. Res., vol. 6, no. 4,
pp. 262–266, 2019.

[41] D. Mohammad and I. Mohammad, ‘‘How software testing impacts the
quality of software systems?’’ Int. J. Eng. Comput. Sci., vol. 1, no. 2,
pp. 5–9, 2019.

[42] A. Shamsu, A. Zakari, H. Abdu, A. Nura, M. A. Zayyad, S. Suleiman,
A. Adamu, and A. S. Mashasha, ‘‘Software testing: Review on tools,
techniques and challenges,’’ Int. J. Adv. Res. Technol. Innov., vol. 2, no. 2,
pp. 11–18, 2020.

[43] R. V. Rao, Decision Making in the Manufacturing Environment: Using
Graph Theory and Fuzzy Multiple Attribute Decision Making Methods.
Berlin, Germany: Springer, 2007.

[44] E. Triantaphyllou,Multi-Criteria Decision Making Methods: A Compara-
tive Study. Boston, MA, USA: Springer, 2000.

[45] M. Büyükyazıcı and M. Sucu, ‘‘The analytic hierarchy and analytic net-
work processes,’’ Hacettepe J. Math. Statist., vol. 32, no. 1, pp. 65–73,
2003.

[46] T. L. Saaty, ‘‘How to make a decision: The analytic hierarchy process,’’
Eur. J. Oper. Res., vol. 48, no. 1, pp. 9–26, 1990.

[47] IEEE Guide to the Software Engineering Body of Knowledge (SWEBOK),
Version 3.0, IEEE, Piscataway, NJ, USA, 2014.

[48] Guide to the Software Engineering Body of Knowledge (SWEBOK),
Standard ISO/IEC TR 19759:2004, 2004.

[49] G. Saini and K. Rai, ‘‘Software testing techniques for test cases genera-
tion,’’ Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 3, no. 9, pp. 261–265
2013.

[50] F. Okezie, I. Odun-Ayo, and S. Bogle, ‘‘A critical analysis of software
testing tools,’’ J. Phys., Conf. Ser., vol. 1378, Dec. 2019, Art. no. 042030.

158890 VOLUME 9, 2021

A. J. Abdulwareth, A. A. Al-Shargabi: Toward Multi-Criteria Framework for Selecting Software Testing Tools

[51] S. Singh. 10 Top Testing Automation Tools for Software Testing Tools.
https://www.netsolutions.com/insights/top-10-automation-testing-tools/

[52] D. R. Mohammad, S. Al-Momani, Y. M. Tashtoush, and M. Alsmirat,
‘‘A comparative analysis of quality assurance automated testing tools for
Windows mobile applications,’’ in Proc. IEEE 9th Annu. Comput. Com-
mun. Workshop Conf. (CCWC), Jan. 2019, pp. 414–419.

[53] H. Anjum, M. Imran, M. Jehanzeb, M. Khan, S. Chaudhry, S. Sultana,
Z. Shahid, F. Zeshan, and S. Nazir, ‘‘A comparative analysis of quality
assurance ofmobile applications using automated testing tools,’’ Int. J. Adv.
Comput. Sci. Appl., vol. 8, no. 7, pp. 249–255, 2017.

[54] P. Srinivas. What is OpenScript, Testing Tools. Accessed: May 24, 2019.
[Online]. Available: http://www.testingtools.co/oats/what-is-openscript

[55] K. Holl and F. Elberzhager, ‘‘Mobile application quality assurance,’’
in Advances in Computers. Amsterdam, The Netherlands: Elsevier,
2018.

[56] S. Zein, N. Salleh, and J. Grundy, ‘‘A systematic mapping study of mobile
application testing techniques,’’ J. Syst. Softw., vol. 117, pp. 334–356,
Jul. 2016.

[57] M. S. Iqbal, M. Sadiq, A. Rehman, and T. Khan, ‘‘Framework for the
development of automated inspection tools,’’ Int. J. Comput. Sci. Netw.
Secur., vol. 16, no. 1, pp. 16–26, 2016.

[58] Foundation Level Syllabus, Version 3.1, ISTQB, Brussels, Belgium, 2018.
[59] Software Engineering—Product Quality, Standard ISO/IEC 9126,

ISO/IEC 25022:2016, Oct. 1988.
[60] Software Quality Metrics Methodology, IEEE Standard 1061-1992, doi:

10.1109/IEEESTD.1993.115124.
[61] M. Fewster and D. Graham, Software Test Automation: Effective Use of

Test Execution Tools. Great Britain, U.K.: Pearson, 1999.
[62] O. Tipale, ‘‘Observations on software testing practice,’’ M.S. thesis,

Lappeenranta Univ. Technol., Lappeenranta, Finland, 2007.

[63] R. M. Parizi, A. A. A. Ghani, R. Abdullah, and R. Atan, ‘‘Empirical
evaluation of the fault detection effectiveness and test effort efficiency
of the automated AOP testing approaches,’’ Inf. Softw. Technol., vol. 53,
no. 10, pp. 1062–1083, Oct. 2011.

[64] D. R. Graham, ‘‘Software testing tools: A new classification scheme,’’
Softw. Test., Verification Rel., vol. 1, no. 3, pp. 17–34, Oct. 1991.

[65] D. Graham et al., Foundations of Software Testing: ISTQB Certification,
4th ed. 2019.

[66] Recommended Practice for the Evaluation and Selection of CASE Tools,
IEEE Standard 1209-1992.

[67] Recommended Practice for the Adoption of Computer-Aided Software
Engineering (CASE) Tools, IEEE Standard 1348-1995.

[68] M. A. Jamil, M. Arif, N. S. A. Abubakar, and A. Ahmad, ‘‘Software testing
techniques: A literature review,’’ in Proc. Int. Conf. Inf. Commun. Technol.
Muslim World, Nov. 2016, pp. 177–182.

[69] J. Kasurinen, O. Taipale, and K. Smolander, ‘‘Software test automation in
practice: Empirical observations,’’ Adv. Softw. Eng., vol. 2010, pp. 1–18,
Feb. 2010, doi: 10.1155/2010/620836.

[70] K. M. Mustafa, R. E. Al-Qutaish, and M. I. Muhairat, ‘‘Classification of
software testing tools based on the software testing methods,’’ in Proc. 2nd
Int. Conf. Comput. Electr. Eng., 2009, pp. 229–233.

[71] S. Nidhra and J. Dondeti, ‘‘Black box and white box testing techniques—
A literature review,’’ Int. J. Embedded Syst. Appl., vol. 2, no. 2, pp. 29–50,
Jun. 2012.

[72] I. Sommerville, ‘‘Software engineering,’’ in Software Tool Classification,
10th ed. 2015.

[73] J. P. Dias, F. Couto, A. C. R. Paiva, and H. S. Ferreira, ‘‘A brief overview of
existing tools for testing the Internet-of-Things,’’ in Proc. IEEE Int. Conf.
Softw. Test., Verification Validation Workshops, Apr. 2018, pp. 104–109.

VOLUME 9, 2021 158891

http://dx.doi.org/10.1109/IEEESTD.1993.115124
http://dx.doi.org/10.1155/2010/620836

