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ABSTRACT Deep Learning is the most widely used tool in the contemporary field of computer vision. Its
ability to accurately solve complex problems is employed in vision research to learn deep neural models for
a variety of tasks, including security critical applications. However, it is now known that deep learning is
vulnerable to adversarial attacks that can manipulate its predictions by introducing visually imperceptible
perturbations in images and videos. Since the discovery of this phenomenon in 2013, it has attracted
significant attention of researchers from multiple sub-fields of machine intelligence. In 2018, we published
the first-ever review of the contributions made by the computer vision community in adversarial attacks
on deep learning (and their defenses). Many of those contributions have inspired new directions in this
area, which has matured significantly since witnessing the first generation methods. Hence, as a legacy
sequel of our first literature survey, this review article focuses on the advances in this area since 2018.
We thoroughly discuss the first generation attacks and comprehensively cover the modern attacks and their
defenses appearing in the prestigious sources of computer vision and machine learning research. Besides
offering the most comprehensive literature review of adversarial attacks and defenses to date, the article also
provides concise definitions of technical terminologies for the non-experts. Finally, it discusses challenges
and future outlook of this direction based on the literature since the advent of this research direction.

INDEX TERMS Adversarial examples, adversarial defense, adversarial machine learning, black-box attack,
deep learning, perturbation, white-box attack.

I. INTRODUCTION
Deep Learning (DL) [1] is a data driven technology that can
precisely model complex mathematical functions over large
data sets. It has recently provided scientists with numerous
breakthroughs in machine intelligence applications. From
analysing mutations in DNA [2] to reconstruction of brain
circuits [3] and exploring cell data [4]; deep learning methods
are currently advancing our knowledge formany cutting-edge
scientific problems. Thus, it is not surprising that multiple
contemporary sub-fields of machine intelligence are fast
adopting this technology as ‘the tool’ to solve their long-
standing problems. Along speech recognition [5] and natural
language processing [6], computer vision is one of the sub-
fields that currently relies heavily on deep learning.
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The rise of deep learning in computer vision was triggered
by the seminal work of Krizhevsky et al. [7] in 2012,
reporting a record performance improvement on a hard image
recognition task [8] using a Convolutional Neural Network
(CNN) [9]. Since [7], the computer vision community has
contributed significantly to deep learning research, which
has led to increasingly powerful neural networks [10]–[12]
that can handle a large number of layers in their architectures
- establishing the essence of ‘deep’ learning. The advances
made in the context of computer vision have also enabled
deep learning to solve complex problems of Artificial Intelli-
gence (AI). For instance, one of the crowning achievements
of the modern AI, i.e. tabula-rasa learning [13] owes a fair
share to Residual Learning [10], which originated in the field
of computer vision.

Owing to the (apparent) super-human abilities of deep
learning [13], computer vision-based AI is believed to have
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reached the maturity required for deployment in safety and
security critical systems. Auto-pilots of vehicles [14], facial
recognition in ATMs [15] and Face ID technology of mobile
devices [16] are a few fore-running real-world examples that
portray the developing faith of modern societies in computer
vision solutions. With highly active deep learning-based
vision research for autonomous vehicles [17], face recogni-
tion [18], [19], robotics [20] and surveillance systems [21]
etc., we can anticipate the omnipresence of deep learning
in security critical computer vision applications. However,
serious concerns are now emerging for this prospect due to
an unsought discovery of adversarial vulnerability of deep
learning [22].

FIGURE 1. Attacking a deep visual model (GoogLeNet [41] here) by
imperceptible image manipulation results in incorrect prediction with
high confidence. FGSM attack [30] is used here to manipulate the image.

It was discovered by Szegedy et al. [22] that deep neural
network predictions can be manipulated with extremely low
magnitude input perturbations. For images, these pertur-
bations can be restricted to the imperceptible regime of
human vision system, yet they can completely alter the
output predictions of a deep visual model (see Fig. 1).
Originally, these manipulative signals were discovered for
the image classification task [22]. However, their existence
is now well-established for a variety of mainstream computer
vision problems, e.g. semantic segmentation [23], [24]; object
detection [25], [26]; and object tracking [27], [28]. The
literature highlights numerous characteristics of adversarial
perturbations, that make them a real threat to deep learning
as a pragmatic technology. For instance, it is repeatedly
observed that the attacked models generally show high
confidence on the wrong predictions of the manipulated
images [29], [30]. It is also established that the same
perturbation can often fool multiple models [31], [32]. The
literature has also witnessed pre-computed perturbations,
known as universal perturbations, that can be added to ‘any’
image to fool a given model with high probability [33], [34].
These facts have profound implications for security critical
applications, especially when it is widely believed that deep
learning solutions have predictive prowess that can surpass
human abilities [13], [35].

Due to its critical nature, the topic of adversarial attacks
(and their defenses) has received considerable attention of
the research community in the last five years. In [29],
we surveyed the contributions surfaced in this direction until
the advent of 2018. Most of those works can be seen as the

first-generation techniques that explore the core algorithms
and techniques to fool deep learning or defend it against the
adversarial attacks. Some of those algorithms have inspired
streams of followup methods that further refine and adapt the
core attack and defense techniques. These second-generation
methods are also found to focus more on other vision tasks
instead of just the classification problem, which is the main
topic of interest in early contributions in this direction.

Since 2018, there has been an ever increasing number
of publications in this research direction (see Fig. 2-a,b).
Naturally, these publications also include instances of
literature reviews, e.g. [36]–[40]. The literature survey we
provide here differs from the existing reviews in many ways.
This article is unique in that it is a legacy sequel of [29] -
the first-ever peer-reviewed literature survey on this topic.
Subsequent reviews, e.g. [39] are often found to be closely
following [29]; or building on [29] for specific problems [40].
In recent years, this direction hasmatured significantly within
the field of computer vision. By building on the insights
of [29] and subsequent literature, we are able to provide
more precise definitions of the technical terminologies for
this fast developing research direction. This also resulted
in a more coherent structure of literature reviewed in this
article, for which we provide concise discussions based
on the current understanding of the terminologies by the
research community. Moreover, we focus on peer-reviewed
publications appearing in the prestigious research publication
venues of computer vision andmachine learning. Focusing on
the leading contributions allows us to provide a more clear
outlook of this direction for computer vision and machine
learning researchers. Not to mention, this article reviews
the most recent contributions of this fast evolving area to
provide the most comprehensive review in this direction
to date.

The rest of the article is organized as follows. In Section II,
we provide definitions of technical terminologies used in the
rest of the article. In Section III, we formulate the broader
problem of adversarial attacks. The first generation of the
attacks are discussed in Section IV, followed by the recent
attacks focusing on the classification problem in Section V.
We focus on recent attacks beyond classification problem
in Section VI, and on the attacks tailored to the Physical
world in Section VII. Contributions focusing more on the
theoretical aspect of the existence of adversarial examples
are discussed in Section IX. Recent defense methods are the
topic of Section X. The article reflects on the literature trends
in Section XI, where it also provides a discussion on the
outlook of this research direction and future venues. Finally,
we conclude in Section XII.

II. DEFINITION OF TERMS
To provide a clear discussion on the literature, it is imperative
to first specify precise definitions of the technical termi-
nologies commonly appearing in publications. Currently, the
domain of adversarial machine learning is evolving rapidly.
Hence, understanding of the related technical terms is also
evolving in the research community. Arranged alphabetically
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FIGURE 2. (a) Cumulative number of adversarial attacks and defense papers appearing on arXiv in recent years (data from [42]).
Over 3,000 papers have appeared since the first survey article [29]. (b) An increasing number of publications in this direction is
experienced by the leading research sources of computer vision and machine learning. The bar chart indicates the total number of
papers appearing per year which include ‘adversarial’, ‘attack’ or ‘defense’ keyword in their title, while the paper-content directly
focuses on adversarial attack or defense problem. (c) Structuring of the literature reviewed in the article. The survey covers both
aspects of attacks and defenses with emphasis on the attack methods.

below, we provide definitions of the frequently encountered
terminologies in the related literature, as widely understood
by the computer vision (and machine learning) community.
The same definitions of the concepts are followed in the rest
of this article.
• Adversarial example/image is an image that is inten-
tionally manipulated to cause incorrect model predic-
tion. It is generally computed by adding adversarial
perturbation to a natural image.Clean, natural or benign
image are the commonly used terms to describe the
opposite of an adversarial image.

• Adversarial perturbation is the component of an
adversarial image that causes the incorrect prediction.
Commonly, it is a low magnitude additive noise-like
signal. However, exceptions are possible.

• Adversarial training is a process that injects adversarial
examples in the training data of a model to make it
adversarially robust.

• Adversary is the agent (i.e. the attacker) creating
an adversarial example. Alternatively, the adversarial
signal/perturbation is also referred to as the adversary,
albeit much less often.

• Attack detector is an external mechanism for a model
to (only) identify an input as adversarial or clean.

• Black-box attack assumes no knowledge of the target
model. More strictly, the adversary is unaware of
its training process and parameters. One category of
black-box attacks allows probing the deployed target
models with queries. This setup is more commonly
known as query-based attack. To distinguish from
the query-based attacks, other black-box attacks are
sometimes also referred to as Zero-knowledge attacks.
Opposite of black-box attack is white-box attack - see
the definition below.

• Data membership attack aims to identify if a sample was
used in the training of a model or not.

• Defense/adversarial defense is a broader term used for
any mechanism of inducing inherent robustness in a
model, or external/internal mechanisms to detect adver-
sarial signals, or image processing to negate adversarial
effects of input manipulations. Adversarial robustness is
the preferred alternate term for the techniques focusing
on inducing inherent resilience in the models, e.g. with
adversarial training.

• Digital attack assumes that the adversary has full access
to the actual digital input to the model. Most of the
existing adversarial attacks are digital attacks. The
opposite of digital attack is Physical (world) attack - see
definition below.

• Evasion attack is a broader term for the adversarial
attacks that fool pre-trained models into misclassifying
input images at ‘test time’. Poisoning attack (see below)
is its close antonym that poisons a model during
‘training’.

• Fooling rate/ratio is the commonly used evaluation
metric, defined as the percentage of adversarial images
on which the target model prediction is incorrect.

• Gradient-based attacks involve gradient computation
of a model’s cost surface (or intermediate internal
representation) with respect to the input. White-box
attacks are predominately gradient-based.

• Gradient-free attacks do not involve gradient computa-
tion of any model.

• Gray-box attack assumes partial knowledge of the
target model. However, since partial knowledge may
actually lead to more knowledge, we prefer the term
restricted knowledge white-box over the gray-box in this
review. Under this nomenclature, gray-box attacks form
a sub-category of the white-box attacks.

• Image-specific attack is computed to fool a target model
on a specific image. Close antonyms for this term are
universal attack and label universal attack.
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• Insertion attacks insert an adversarial object (or a well-
localised visible pattern) in an image, e.g. adversarial
patch to alter the model prediction.

• Label universal (adversarial) attack aims at class-
specific fooling. It computes an additive perturbation
that has a pronounced effect on all samples of a selected
class.

• Model extraction attack aims at recovering infor-
mation about a target model (e.g. its classification
boundaries) to subsequently use the information for
fooling it.

• Model inversion attack aims at reconstructing individual
training samples of the target model.

• Norm-bounded perturbations restrict the `p-norm of
additive adversarial perturbations to control their per-
ceptibility in adversarial examples. An overwhelming
majority of the additive adversarial perturbations is
norm-bounded.

• One-step methods compute perturbations in a single
step, as opposed to iterative methods that use multiple
iterations in their algorithm. These terms are generally
more relevant to white-box attacks.

• Physical (world) attacks do not assume any access
to the digital representation of the target model’s
input. Adversarial examples are ‘clean’ images of
e.g. physically modified or adversarially illuminated
objects.

• Poisoning attack causes a model to misbehave when
exposed to a trigger in the input. This (mis-)behavior
is programmed into the model by manipulating
the training process with tampered training data
or algorithm. Generally, trojan or backdoor attack
are used as synonyms for poisoning attack. This
article largely focuses on the attacks (and their
defenses) launched on clean pre-trained models.
Hence, poisoning attack is not a direct topic for this
survey.

• Quasi-imperceptible perturbations introduce slight
visual impairment to images. This is in contrast to
the imperceivable changes induced by imperceptible
perturbations.

• Query-based attack is a form of black-box attack where
the attacker is able to query the target model and
exploit its output to optimize adversarial image(s).
It either treats the target model as an oracle or learns
a substitute model (see below) to be used as an
oracle to subsequently generate adversarial images. A
decision/boundary-based attack is a specific form of
query-based attacks that assumes knowledge of only the
predicted labels (not confidence scores) of the target
model. The query-based attacks that also exploit confi-
dence scores of the target model are termed score-based
attacks.

• Real-world attacks are evaluated in practical conditions
by attacking real-world systems, as opposed to the bare
models in laboratory setup. These attacks may still be
digital or physical.

• Targeted attack forces the output of a model
to pre-specified prediction of adversary’s choice,
as opposed to random incorrect prediction in the case
of non-targeted attack.

• Target image is the clean image being manipulated by
the adversary.

• Target model is the model under attack.
• Target label is the (desired) incorrect label of the
adversarial example. The term is more relevant for
targeted attacks.

• Threat model refers to the assumed collective adversarial
conditions against which a defense mechanism is
designed and tested to verify its effectiveness.

• Transferability is the ability of an adversarial exam-
ple/perturbation to generalise beyond the model for
which it was originally computed.

• Substitute model is a model trained by an adversary to
replicate the prediction behavior of the target model.
Surrogate model and auxiliary model are the commonly
used synonyms for the term substitute model.

• Universal (adversarial) perturbations are image-
agnostic manipulative signals that can alter the model
prediction on any input with high probability.

• Unrestricted adversarial attacks replace a natural image
with a (synthetically) generated adversarial image, such
that the latter has the same semantic meaning as the
former for humans but not for the target model.1

• White-box attack assumes complete knowledge of the
target model. We refer to the attacks that assume partial
knowledge of the target model or its training process,
as restricted knowledge white-box attacks. Such attacks
differ from the black-box attacks in that the latter
only assume the knowledge of ‘prediction’ made by
the model. The prediction may include a single/set of
labels or a single/set of confidence scores. Any further,
but incomplete knowledge makes the attack restricted
knowledge white-box attack.

III. ADVERSARIAL ATTACKS: THE FORMAL PROBLEM
Let M(.) be the target deep visual model such that M(I ) :
I → `, where I ∈ Rm is a natural image and ` ∈ Z+ is the
output of the model. In the most common form of adversarial
attacks, the adversary seeks a signal ρ ∈ Rm to achieve
M(I+ρ)→ ˜̀, where ˜̀ 6= `. To ensure that the manipulation
to a clean image is humanly imperceptible, the perturbation
ρ is often norm-bounded, e.g. by enforcing ||ρ||p < η, where
||.||p denotes the `p-norm of a vector and ‘η’ is a pre-defined
scalar. More concisely, the adversary seeks ρ that satisfies:

M(I + ρ)→ ˜̀ s.t. ˜̀ 6= `, ||ρ||p < η. (1)

The formulation above underpins the most prevailing
contemporary understanding of the adversarial attacks. Yet,
it does not encompass all attacks. For instance, unrestricted

1This understanding of the term is slightly different from [43] and relates
more to [44] that allows a clearer delineation between the unrestricted and
conventional adversarial examples.
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adversarial examples [43], [44], where the adversary is
neither restricted to manipulate the original image (i.e. the
image itself can be replaced) nor concerned with limiting
the perturbation norm, cannot be described by the constraint
in (1). Similarly, the addition of a localized, but perceivable
adversarial pattern in an image (e.g. adversarial patch [45])
is not accounted for by (1). Hence, for comprehensiveness,
we also consider a more broader constraint, given as

M(Ĩ )→ ˜̀ s.t. ˜̀ 6= `, Ĩ ∈ SI , M
(
I ∼ {SI− Ĩ }

)
=`,

(2)

where SI is the set of images perceived as clean or allowed
by humans to produce the desired output `. For the sake
of brevity, we are assuming a single adversarial sample in
SI in (2). The conventional view of additive perturbations
(in Eq. 1) becomes a special case of this constraint where
Ĩ = I+ρ and Ĩ ∈ SI is ensured by restricting the perturbation
norm. Since (2) does not deal with ρ explicitly, one must
articulate any additional constraint over ρ to specify an attack
under (2) - as we have done above for the imperceptible
perturbation.

Adversarial examples for deep visual models were orig-
inally discovered for the image classification task [22],
where additive perturbations were used to launch the attack.
Consequently, a vast majority of the existing attacks leverage
some form of the additive perturbations to manipulate
the model output. Moreover, image classifiers still remain
the most popular target models for attacks. This trend
partially owes to the fact that classification is one of the
fundamental tasks in pattern recognition. Thus, it is important
to explicitly, though briefly, discuss the broad concept of
adversarial attacks on deep image classifiers under the above
formulation.

For the image classifiers, an output is a class label
` ∈ Z+. The nature of the task makes it more interesting
to change this label to a pre-specified incorrect label
˜̀ ∈ Z+ by the attack, which motivates the targeted
adversarial attacks on classifiers. A non-targeted attack
on a classifier can also be considered as a special case
of the targeted attacks, where ˜̀ is chosen at random.
Whereas image-specific attacks lead to misclassification of
individual images, it is also possible to compute additive
perturbations ρ that cause incorrect label predictions on
a large number of images. Such universal perturbations
were first reported by Moosavi-Dezfooli et al. [33]. Here,
we discuss the notions of image-specific vs universal, and
targeted vs non-targeted attacks in the context of classifiers
for a clear understanding of the text to follow immediately.
Nevertheless, these concepts are more general and can also
be applied to other computer vision tasks.

IV. FIRST-GENERATION ATTACKS
In the context of this survey, as a legacy sequel of [29], the
first generation of adversarial attacks include the most influ-
ential contributions surfacing before 2018, which inspired
series of followup methods. These attacks focus more on

the fundamental algorithms to compute adversarial images,
using image classification task as the test bed. We discuss
these methods upfront as a separate section for two main
reasons. First, by organizing the discussion on these methods
in a (roughly) chronological order, we also provide the
readers with a historical account of this research direction.
Second, describing these seminal works early provides a
more clear understanding of the inspiration of the more recent
techniques.

A. THE L-BFGS ATTACK
Szegedy et al. [22] first discovered the vulnerability of deep
visual models to adversarial perturbations by solving for the
following optimisation problem:

min
ρ
||ρ||2 s.t. M(I + ρ) = ˜̀; I + ρ ∈ [0, 1]m. (3)

The above is a hard problem, for which an approx-
imate solution is computed by Szegedy et al. with
the Limited Memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) algorithm, which is a quasi-Newton algorithm
involving computation of inverse Hessian [46] - inspiring
the name of the attack adopted in the subsequent literature.
To solve (3), the constraint min

ρ
||ρ||2 is combined using a

Lagrangian multiplier ‘c’ and the solution is computed by
estimating the smallest c > 0 for which the minimizer ρ of
the problem (4) satisfiesM(I + ρ) = ˜̀.

min
ρ

c|ρ| + L(I + ρ, ˜̀) s.t. I + ρ ∈ [0, 1]m, (4)

where L(., .) is the classifier loss. Manipulation of a clean
image with the additive perturbation resulting from (4)
remains imperceivable to the human visual system, see
Fig. 3. This observation had a profound impact on the
vision research community, which was fast developing
the impression that deep visual features well approximate the
perceptual differences in images with Euclidean distances.
Discovery of adversarial perturbations that could completely
alter the decisions of deep visual models with minuscule
Euclidean norm revised this impression. Szegedy et al. also
demonstrated that their adversarial attack transfers well
between different deep visual classifiers. This intriguing
vulnerability of deep learning to adversarial attacks attracted
a wide interest of researchers in the subsequent years.

B. THE FGSM ATTACK
It was originally observed by Szegedy et al. [22] that includ-
ing adversarial images in the training data of a classifier
improves its robustness to adversarial examples. Reinforced
by multiple followup works, this observation is the main
motivation behind the idea of adversarial training in the
literature. However, solving (4) for a large number of
images is computationally prohibitive. This inspired the Fast
Gradient Sign Method (FGSM) [30] to efficiently compute
adversarial perturbations as:

ρ = ε sign (∇I Jθ (I , `)) , (5)
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FIGURE 3. Szegedy et al. [22] were the first to demonstrate imperceptible
perturbations to images to fool deep learning. Here, the image of a ‘dog’
is confused as ‘ostrich’ by AlexNet [7] when the shown perturbation is
added to it. The perturbation is exaggerated for visualisation.

where Jθ (., .) is the cost for the model with parameters θ , ∇I
computes its gradientw.r.t. I , sign(.) denotes the sign function
which is applied to each element in a vector, and ε is a pre-
fixed scalar value to control perturbation perceptibility. The
adversarial image is finally computed as Ĩ = I + ρ.
The FGSM is a one-step gradient-based method that

computes norm-bounded perturbations, focusing on the ‘effi-
ciency’ of perturbation computation rather than achieving
high fooling rates. Goodfellow et al. [30] also used this attack
to corroborate their linearity hypothesis, which considers the
linear behavior of the modern neural networks in high dimen-
sion spaces (induced by e.g. ReLUs) as a sufficient reason
for their vulnerability to adversarial perturbations. They also
advocated this behavior as a major cause of transferability
of the attacks between different modern networks, as their
architectures pervasively allow such linearity for training
efficiency. At the time, the linearity hypothesis was in sharp
contrast to the developing idea that adversarial vulnerability
was a result of high ‘non-linearity’ of the complex modern
networks.

The FGSM [30] is among the most influential attacks in
the existing literature, especially in the white-box setup. Its
core concept of performing gradient ascend over the model’s
loss surface to fool it, is the basis for a plethora of adversarial
attacks. Many follow-up attacks can be strongly related to the
original idea of FGSM. For instance, the Fast Gradient Value
Method (FGVM) of Rozsa et al. [47] mainly removes the
sign function from (5) to launch the attack. Similarly, ignoring
the sign function, Miyato et al. [48] normalised the gradient
with its `2-norm to launch the attack. Kurakin et al. [49]
also analysed the normalisation with `∞-norm. They also
extended the FGSM to I-FGSM - its iterative variant, which
is subsequently enhanced to incorporate momentum during
the iterative optimisation byDong et al. [50]. Their technique
is known as Momentum Iterative (MI-)FGSM. Diverse Input
I-FGSM, i.e. DI2-FGSM [51] is another example of the
attacks that directly builds on FGSM. The main idea of [51]
is to diversify the input used in each iteration of the
iterative FGSM by applying image transformations, such as
random resizing and padding, with a fixed probability. This
diversification is claimed to facilitate better transferability
of the resulting attack in a black-box setup. The authors
also extendDI2-FGSM toM-DI2-FGSMby incorporating the
momentum following [50].

In the above discussion, we consider FGSM as the first
generation attack that inspired the followup works. It is

emphasized that the discussed follow-up contributions do not
form an exhaustive list of the methods that largely build on
FGSM by far. Other such methods will keep appearing in the
remaining article.

FIGURE 4. Kurakin et al. [49] first demonstrated adversarial attack in the
physical world by fooling a classifier on a printed adversarial image.
Printed clean image of ‘Washer’ is predicted correctly, but printed
adversarial image is predicted as ‘Safe’ by the TensorFlow Camera app
used by [49].

C. THE BIM & ILCM ATTACKS
Though closely building on the FGSM [30] as the original
concept of iterative FGSM, the Basic Iterative Method
(BIM) [49] is also an influential contribution that introduced
the Physical World attacks. The attack, which is essentially
the iterative FGSM algorithm, computes an adversarial image
by repeating

Ĩi+1 = Clipε
{
Ĩi + α sign(∇IJθ (Ĩi, `)

}
, (6)

where ‘i’ indicates the ith iteration, Clipε{.} performs clipping
at ε, and α is a pre-selected fixed scalar. Kurakin et al. [49]
fooled the ImageNet inception model [52] on a mobile device
by imaging printed adversarial images in the physical world,
see Fig. 4. This idea also played its role in inspiring physical
world attacks. The notion of targeted adversarial attacks can
also be traced back to [49] and [53], where it is shown
that the log-probability of prediction for a target class of
adversarial image can be maximised by modifying (6) by
changing addition to subtraction and replacing ` by ˜̀ as:

Ĩi+1 = Clipε
{
Ĩi − α sign(∇IJθ (Ĩi, ˜̀)

}
. (7)

For a classifier with cross-entropy loss, solving (7)
maximizes the confidence of the model on ˜̀ for the image Ĩ .
Originally, the authors proposed to use the label of the least-
likely class of the clean image (as predicted by the model)
as ˜̀ to compute interesting fooling outcomes. Hence, the
technique is also referred to as Iterative Least-likely Class
Method (ILCM).

D. THE PGD ATTACK
The Projected Gradient Descent (PGD) attack is widely con-
sidered as one of the most powerful attacks in the literature,
while referring to the seminal work of Madry et al. [54] as
its origin. However, Madry et al. also refer to the iterative
FGSM ([49], [53]) as a PGD method because Projected
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Gradient Descent is a standard optimization technique that
projects gradients to a ball. Specifically, the authors see the
iterative FGSM as the `∞-bounded PGD, in which the `∞-
norm of the perturbation is bounded by the clipping operation
- the projection. The main contribution of [54] comes in the
form of looking at the adversarial robustness of deep models
through the lens of robust optimisation, thereby defining
adversarial training of deep models as a formal min-max
optimisation problem below:

min
θ
ρ(θ ), s.t. ρ(θ ) = E

(I ,`)∼I

[
max
ρ

L(θ , Ĩ , `)
]
, (8)

where E[.] is the Expectation operator and I is a distribution
defined over the input images. This view allowed the authors
to identify PGD as possibly the strongest first-order attack.

From the above view, we can also look at the variants
of I-FGSM discussed in the previous sections as variants
of PGD. In turn, PGD can be related to FGSM. However,
a crucial finding by Madry et al. [54] makes PGD more
appealing than FGSM for adversarial training. That is,
the phenomenon of ‘label leaking’, observed in FGSM-
based adversarial training [53], does not occur for PGD-
based adversarial training. In plain words, label leaking
occurs when adversarially trained model ends up with higher
prediction accuracy for adversarial images, as compared
to the clean images. FGSM results in a restricted set of
adversarial examples, which can lead to over-fitting in adver-
sarial training, thereby causing label leaking. Considering
that a major objective of FGSM is to compute samples
for better adversarial training, avoiding label leaking is a
significant advantage of PGD. Madry et al. [54] also showed
that adversarial training with PGD - the strongest first-order
attack - automatically makes the model robust against the
weaker first-order attacks, e.g. FGSM. Nevertheless, being
an iterative technique, PGD is computationally expensive.

E. JSMA & ONE-PIXEL ATTACK
Whereas most of the early attacks focused on perturbing
a clean image holistically while enforcing perturbation
imperceptibility by restricting the `2 or `∞ norms of
the perturbations, the Jacobian-based Saliency Map Attack
(JSMA) [55] and One-pixel attack [56] deviate from this
practice by restricting the perturbations to smaller regions
of the image. Contrary to the convention of computing
the backward-gradient of the network for perturbation
estimation, as done by e.g. FGSM and its variants, JSMA
computes the forward-gradient of a networkM(.) as:

∇M(I ) =
∂M(I )
∂I

=

[
∂Mj(I )
∂xi

]
, (9)

where j ∈ 1, . . . ,M for the M-dimensional function
represented by M(.), i ∈ 1, . . . ,N for the N -dimensional
vecrotized form of I , whose ith element is denoted as xi.
Essentially, (9) computes the Jacobian of the function learned
by the network. Later, an adversarial extension of the saliency
map [57] is used by [55] to modify only a few selected

pixels that are most influential in terms of altering the model
prediction.

Su et al. [56] demonstrated that a deep visual model can
even be fooled by restricting the perturbation to a single
pixel. However, this is generally more effective for the
smaller image sizes, e.g. 64 × 64 or smaller. They used
Differential Evolution (DE) [58] to estimate the location
and RGB value of the pixel to be modified in the image
to create an adversarial image, where the fitness criterion
of the evolution is defined by accounting for the model
prediction. Interestingly, the use of DE in contrast to model
gradients, inherently makes their attack a query-based black-
box attack. The authors also analysed the cases of a few pixel
modifications, e.g. altering 5 instead of a single pixel for
fooling. Although not originally emphasized as such, both
JSMA and One-pixel attacks can be casted as optimisation
problems with external constraints over the `0-pseudo norm
of the perturbations.

F. THE DEEPFOOL ATTACK
Instead of restricting the perturbation norms to pre-fixed
values, Moosavi-Dezfooli et al. [59] specifically aimed at
minimising the norm of the adversarial perturbation by
solving:

1(I ; `) := min
ρ
||ρ||2 s.t. ˜̀ 6= `. (10)

The main motivation behind computing the perturbations
with minimal normwas to effectively quantify the adversarial
robustness of the targetmodels, where the robustnessmeasure
was defined as:

ρadv = EI
1(I ; `)
||I ||2

, (11)

where EI is the expectation over the data distribution.
DeepFool is the algorithm that computes ρ in (10)

to compute the robustness defined by (11). The iterative
algorithm linearizes the class boundaries around the current
image to form a convex polyhedron and pushes the image
towards the closest hyperplane to change the class label, see
Fig. 5. The image gets updated in each iteration with the
additive perturbation. Though originally proposed to quantify
model robustness, DeepFool is now generally seen as an
effective image-specific adversarial attack, while overlooking
the quantification aspect.

G. THE C&W ATTACK
The discovery of adversarial vulnerability of deep learn-
ing [22] also started a parallel research direction of defenses
against adversarial attacks on deep learning in 2015-16.
Defensive distillation [60] was a prominent technique that
promised an effective solution to the problem, by building on
the insights of knowledge distillation in deep networks [61].
However Carlini and Wagner [62] developed a set of attacks
that computes norm-restricted additive perturbations that
completely break defensive distillation. It is also shown that
their attack is successful in fooling a defensively distilled
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FIGURE 5. The DeepFool algorithm [59] linearizes the decision
boundaries around a data point to form a convex polyhedron to gradually
push the point over the closest boundary for minimal perturbation.

network under black-box settings, where the perturbation is
computed using an unsecured white-boxmodel. Transferabil-
ity of their attack in this setting significantly undermines the
efficacy of defensive distillation.

To compute the adversarial perturbation, Carlini and
Wagner solve the following optimisation problem:

min ||ρ||p + c.f (I + ρ), s.t. I + ρ ∈ [0, 1]m, (12)

where f (.) is a function satisfying M(Ĩ ) → ˜̀, ⇐⇒

f (I+ρ) ≤ 0. A range of analytical forms of f (.) are discussed
by the authors to compute the desired perturbations. Carlini
and Wagner [62] bounded the perturbations in their `2, `∞
and `0-pseudo norms, which gave rise to a set of attacks.
The authors later showed that their attacks are also effective
against other defense techniques [63]. The Carlini & Wagner
(C&W) attack is generally considered a very strong attack,
however, it does have a higher computational cost.

H. UNIVERSAL ADVERSARIAL PERTURBATIONS
The above-mentioned methods compute adversarial per-
turbations that fool a target model on a specific image.
Moosavi-Dezfooli et al. [33] focused on computing image-
agnostic perturbations that could fool the model on any image
with a high probability, see Fig. 6. Dubbed ‘universal’ for
their transferability across different images (as opposed to
models), these perturbations aim at satisfying the following
constraint:

P
I∼I

(
M(I ) 6=M(I + ρ)

)
≥ δ s.t. ||ρ||p ≤ η, (13)

where P(.) is the probability, I denotes the distribution
of clean images and δ ∈ (0, 1] is a predefined scalar,
deciding the acceptable fooling ratio for the perturbations.
The resulting universal adversarial perturbations are shown to
be effective with both `2 and `∞ bounds over their respective
norms. It can be observed from the experiments of [33]
that perturbations bounded to around 4% of the respective
image norms are able to achieve a significant fooling ratio
(of ∼80%) for popular ImageNet models, e.g. ResNet [10],
Inception [12]. However, a 4% distortion in an image is often
slightly perceivable to the human visual system, hence the
authors termed the perturbations to be quasi-imperceptible.

FIGURE 6. A single universal adversarial perturbation [33] can fool a
model on multiple images. Fooling of GoogLeNet is shown here. These
perturbations often transfer well across different models.

The universal adversarial perturbations are also able
to transfer well across different models. In a sense, this
property makes them ‘doubly universal’, as suggested by
the authors [33]. However, since the estimated pertur-
bations depend on parameters δ and η, (δ, η)-universal
perturbations is a more qualified term for these signals.
Moosavi-Dezfooli et al. compute these perturbations by
building on the concept of Deepfool [59], where a single
image is gradually pushed out of the decision boundary
of its class. In the case of universal perturbations, the
iterative algorithm sequentially pushes all the data points
out of their respective class regions, while accumulating
the (label changing) perturbations by back-projection them
onto an `p-ball of radius η. It is shown in the original
paper that computing universal perturbations with as little as
2000 training images can still achieve∼50% fooling ratio for
ImageNet models.

V. RECENT ATTACKS ON CLASSIFIERS
Mainly building on the core concepts of the first-generation
attacks, there have been a multitude of more recent attacks on
image classifiers. We cover those attacks in this section as per
the structure illustrated in Fig. 2(c).

A. ADVANCED GRADIENT BASED ATTACKS
There is still a variety of contributions that are intended to
improve the core strategy of gradient ascend for adversarial
attacks. Naturally, these methods can be seen as down-
stream fine-tuning of first generation attacks like FGSM
or PGD. For instance, Dong et al. [64] proposed to focus
the gradient-based perturbation computed in an FGSM-
like manner on the salient regions of images with the
help of super-pixel guided attention. Such perturbations
are claimed to be more robust against image process-
ing based defenses. Similarly, Guo et al. [65] focused on
improving the transferability of gradient-based attacks by
backpropagating the computed gradients linearly through the
model. Their gradient backpropagation mimics the scenario
in which nonlinear activations are not encountered in the
forward pass. Their modification is claimed to achieve
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better transferability of gradient-based attacks on large scale
models.

Dong et al. [66] proposed a so-called GreedyFool algo-
rithm that performs a sparse distortion in the input image
based on gradients of its pixels. With improved sparsity,
the perceptibly of their gradient-based perturbations becomes
lower. Sriramanan et al. [67] proposed a Guided Adversarial
Margin Attack (GAMA) that introduces a relaxation term
in the standard losses (e.g. cross-entropy) of gradient-based
attacks, e.g. PGD. It is claimed that this modification allows
the attack to find better gradient directions, thereby increasing
its efficacy. Similarly, Tohsiro et al. [68] devised a gradient-
based strategy called Output Diversity Sampling (ODS) that
is claimed to improve attacks in both white and black-box
setups. Many adversarial attacks use random sampling of
distributions, e.g. for initializing optimization process or
updating query (in black-box setup). The ODS is mainly
directed to provide a better sampling scheme for such attacks.

In [69], decoupling of the direction and norm of `2-norm
bounded gradient-based perturbations was proposed to make
the attack more lethal. The resulting attack is commonly
referred to as Decoupled Direction and Norm (DDN) attack.
Yao et al. [70] recommended to upgrade the first generation
gradient-based attacks with Trust Regions [71]. During
optimization, trust regions around the current point in the
loss landscape finds descent/ascent directions that reduce
errors due to the local nature of decisions. It is shown
that multiple first-generation attacks can be improved for
norm reduction and computational efficiency using trust
regions. Phan et al. [72] argue to also consider the influence
of image processing pipeline of cameras in attacks. They
develop a gradient-based attack by differential approximation
of this pipeline such that their perturbations are able to fool
classifiers by images from one camera pipeline and not for
another.

We emphasize that although we categorize only a few
methods under advanced gradient attacks, nearly all white
box (and transfer-based) attacks can be placed under this title,
because those attacks inadvertently deal with model gradients
rather directly. However, we introduce those attacks under
subcategories more suited to their objective or threat models.
Our intention to include a separate subsection for ‘advanced’
gradient attacks is to emphasize on the fact that improving
the core gradient ascend scheme for attacks is still an active
direction in this domain. The gradient based attacks, which
are inherently white box, are generally the easiest to compute.
Hence, they are the hardest to defend against. This makes
them a useful tool to analyze model robustness.

B. BLACK-BOX ATTACKS
From a pure adversarial perspective, black-box attacks form
the most pragmatic category, because they assume no (or
minimal) knowledge of the target model. Their practicality
is making them highly popular in the recent literature.
We review the recent black-box attacks along the directions
of query-based and transfer-based attacks.

1) QUERY-BASED ATTACKS
These attacks query the target model and use their outputs
to construct adversarial images. Generally, their objective is
to achieve minimal distortion in adversarial samples while
maintaining model fooling. Queries are normally utilized
for refining stronger perturbations for imperceptibility, see
Fig. 7. Due to their practicality, decision/boundary-based
attacks in this category are overwhelmingly popular as
compared to their score-based counterpart.

FIGURE 7. Representative examples of query-based adversarial examples
(attacks selected randomly): Generally, a larger number of queries is
required for smaller perturbation perceptibility. For [79], we provide
average query range, as queries for the shown image are not reported.
Perturbed images are taken directly from [73], [79], [80].

Recently, Rahmati et al. [73] introduced a framework
exploiting the decision boundary geometry to launch a
black-box attack with a small number of queries to
the target model that returns only the top-1 label, see
Fig. 7. The attack exploits the smaller ‘mean’ curva-
ture of the decision boundaries near the data point to
estimate the normal vector, along which the data point
can be efficiently nudged to the other side of the
decision boundary by adding perturbations with small
`p-norm for p ≥ 1. The authors also show that the computed
perturbation converges to the minimal norm for p = 2 for
curvature-bounded decision boundaries. Better performance
in terms of the number of queries and perturbation norm
are reported as compared to the Boundary attack [74],
HopSkipJump attack [75] and the qFool attack [76].

The Customized Adversarial Boundary (CAB) attack [77]
reduces the number of queries by customising adversarial
noise distribution with the queries in query-history, and
initializing with perturbations already aimed for transferable
attacks. Similarly, to improve query efficiency, a technique
to extract generalizable prior using the earlier queries with
meta learning is proposed in [78]. Another effort to improve
query efficiency includes Projection & Probability-Driven
Black-box Attack (PPBA) [79] that restricts the solution
space of the problem with low-frequency constrained sensing
matrix - a concept inspired by compressive sensing theory.
Li et al. [80] proposed a Query Efficient Boundary-based
Black-box Attack (QEBA), that iteratively adds perturbation
to a source image to retain its original label, but alters the
image to form a perceptibly clean target image of a different
object.

In [81], a Bayesian optimisation based attack is proposed.
One method to reduce the number of queries it to search
for adversarial images in a lower dimensional latent space
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as compared to the original image space. In that case,
estimating the correct dimensionality of the latent space
becomes a problem of its own. Ru et al. [81] employ non-
parametric Bayesian strategy to resolve that by exploiting
Gaussian Processes [82] based surrogate models to generate
queries. Cheng et al. [83] also claimed a query efficient
attack, altering the optimization objective of their previous
work [84] that performed a binary search to estimate the
gradient of the target model using query results. Later, they
improved the attack by drastically reducing the number of
queries by focusing on estimating gradient signs instead of
gradients [83]. In another attempt to decrease the number
of queries, Cheng et al. [85] also introduced a prior-guided
random gradient-free method.

A TRansferable EMbedding based Black-box Attack
(TREMBA) [86] trains an encoder-decoder model to learn
a low-dimensional embedding space, where an adversarial
example is searched for a given target model in a query-
based setup. This process is claimed to reduce the number of
queries significantly due to reduction in the search space of
queries. Another method looking at the problem from search
space perspective performs the attack as a progressive binary
search using the gradient signs (instead of magnitude) [87].
The attack shows fooling of MNIST models with as little
as 12 queries. Ilyas et al. [88] revisited the zeroth-order
optimization (zoo) and proposed a query-based attack using
bandit optimization that exploits prior information about the
target model gradient. From zoo perspective, Zhao et al. [89]
also proposed to augment the optimization with an ADMM-
based framework.

Query-based black-box attacks are attracting significant
interest of the research community in the recent literature.
There are multiple other recent works that deal with these
kinds of attacks, e.g., [84], [90]–[93]. Mostly, the current
literature is dealing with decision-based attacks [94]–[98].
However, score-based attack schemes are also frequently
encountered in the recent literature [99], [100].

2) TRANSFER-BASED ATTACKS
Among the black-box attacks, transfer-based attacks are even
more popular than the query-based attacks. This is because
transfer based attacks do not require to query the black-box
model and hence avoid suspicion altogether. The core idea
behind transfer-based attacks is to compute perturbation on
local surrogate models such that the perturbations will also
effectively fool the remote target model. Popularity of these
attacks also owes to the fact that the insights from white-box
setup can often be readily leveraged for these attacks. The
main objective of the methods appearing in this direction then
is to amplify the intrinsic transferability of perturbations, for
which different strategies are adopted.

Recently, Wu et al. [101] proposed to boost the trans-
ferability of perturbations by focusing them more on the
salient image regions, where the regions are computed with
Grad-CAM [102]. Improving perturbation transferability by
manipulating the internal representation of the models is

studied in [103]. Similarly, Huang et al. [104] fine-tuned
adversarial examples using representations of pre-specified
layers of the source model to improve attack transferability.
A concept of ‘Adversarial Example Game’ is introduced
in [105] that trains a generator for a transfer-based attack by
training it against a discriminator for a hypothesis class of
the target classifier. Since the underlying attack generation
method does not assume details of the target (remote model),
this setup is termed No-box attack in [106].

FIGURE 8. Typical examples of transfer-based perturbations (chosen
randomly). Due to the harder objective of targeted transfer-based attacks,
success rates are generally low (e.g. <50%) while perturbations are often
perceptible. The reported average success rates across ImageNet models
are taken from the original papers, which fall in the typical range of
transfer-based attack success rates in the literature. Images are taken
from [107] and [108].

From the perspective of enhancing perturbation trans-
ferability, Lin et al. [107] exploit Nesterov gradient accel-
eration [109] with iterative FGSM for computing more
generalizable, and hence transferable perturbations, see
Fig. 8. The authors also introduced a scale-invariant attack
method that induces an ensemble of models from an original
model using data transformations that preserve the original
loss of the model. Adversarial examples computed with
these models are shown to exhibit better transferability.
Lu et al. [110] demonstrated the possibility of fooling deep
learning across different computer vision tasks. Analysing
image classification, object detection, semantic segmentation
and content detection as the tasks, they showed transferability
of adversarial examples across them with rather modest
perturbations. This is mainly achieved by reducing the
dispersion in the feature maps of the internal layers of
the surrogate model with the help of a specialized loss.
Inkawhich et al. [111] also claimed that feature space per-
turbations are particularly helpful in computing adversarial
examples that are more transferable across models.

There are also examples of targeted transferable attacks.
For instance, Li et al. [108] proposed to make gradient-
based targeted attacks more transferable by identifying two
characteristics of white-box targeted attacks that restrict their
transferability. First, reduction in gradient magnitude across
iterations - leading to noise curing. Second, proximity of the
adversarial examples to the true class region. The first issue
is handled in [108] by allowing adaptive gradient magnitude
in optimisation. Whereas the second is mitigated by metric-
learning based regularization. Inkawhich et al. [112] claimed
state-of-the-art results for transferable targeted attacks on
pristine ImageNet models. Instead of the classification layer,
their method focuses on modeling layer-wise and class-wise
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feature distributions of a white box model and uses this
information to alter the label of an adversarial image.

The direction of transferable attacks is also expanding in
terms of the target tasks and underlying objective. For exam-
ple, Wang et al. [113] demonstrated successful transferable
attacks for the task of person re-identification.We also find an
example of improving transferability of universal adversarial
perturbations [114]. Moreover, training surrogate models in
a data-free manner for transferable attacks was proposed
in [115]. The core idea is to use a generator to construct
synthetic images and label those with the target model
(similar to query-based attacks), and train the substitute
model with those images to better replicate the decision
boundaries of the target model. Other recent examples
focusing directly or indirectly on improving transferablity of
perturbations include [116]–[120].

FIGURE 9. Examples of unrestricted attacks. Images taken
from [122], [124].

C. UNRESTRICTED ADVERSARIAL ATTACKS
Whereas the majority of mainstream attacks induce pertur-
bation imperceptibility in adversarial images by restricting
the `p-norm of perturbations, it is sometimes argued that the
perturbation norm is not a good indicator of the perceptual
difference between the two images [121]. The works related
to achieving perturbation imperceptibility based on preserv-
ing semantics of the target image [122]–[125] and preserving
the structural information [126], [127] are motivated by this
argument, see Fig. 9. In [128], unrestricted perturbations are
introduced by manipulating the image color and texture to
make them adversarial. It is claimed that such unrestricted
perturbations are generally robust to defenses like feature
squeezing, JPEG compression and adversarial training.
On the other hand, compression and adversarial training are
sometimes found effective against norm-bounded attacks like
FGSM [30]. Shamsabadi et al. [129] demonstrated that it is
possible to selectivelymanipulate image colors imperceptibly
by operating on the decorrelated a, b channels of the Lab color
space [130]. By changing image colors only to natural colors,
and restricting manipulation to perceptually less sensitive
regions in images, they computed transferable unrestricted
adversarial examples that appear natural to humans.

Zhao et al. [131] recently proposed to use the perceptual
color distance CIEDE2000 [132] to control the impercepti-
bility of perturbations. The CIEDE2000 distance is known to
align better with human perception. Zhao et al. demonstrated

that accounting for the perceptual color distance while per-
turbing images can allow larger perturbations (having higher
`p-norm) to remain imperceptible. The authors extended the
C&Wattack [62] to its variant that accounts for the perceptual
color distance, Per-C&W. Their results show that higher
confidence on incorrect labels and better transferability
of attacks is possible by considering the perceptual color
distance, without sacrificing perturbation imperceptibility.
The proposed Per-C&W attack still computes a norm-
bounded perturbation though, and the resulting image is
not an unrestricted adversarial example. Another example of
unrestricted perturbation attack is the semantic adversarial
attack that manipulates image attributes with parametric
conditional generative models [124], [133]. Incidentally,
we can also categorise the emerging deepfakes [134], [135] as
unrestricted attacks. In a recent work, Hendrycks et al. [136]
also reported two sets of natural images for which ImageNet
models have extremely low accuracies (<5%). Named
ImageNet-A (for adversarial) and ImageNet-O (for out-of-
distribution), these images are termed natural adversarial
examples by the author.

D. BACKDOOR ATTACKS
Whereas adversarial attacks manipulate images during test
time, backdoor attacks embed a backdoor or Trojan in
the model during training. The targeted model normally
shows high accuracy for clean input, however, its output is
easily manipulated by embedding an attacker-defined trigger
in the input. Although this article does not directly deal
with backdoor or Trojan attacks, we still include recent
papers in the surveyed venues due to the proximity of this
research direction to adversarial attacks and for the sake of
comprehensiveness of our survey. For a more detailed review
of backdoor attacks appearing in other venues, we refer
to [137], [138].

Generally, backdoors are embedded in the victimmodel by
including trigger patterns in the training data so that themodel
learns a false association of a label with the trigger pattern.
An issue with such triggers in training data is that the trigger
patterns are often conspicuous, leading to easy detection
of triggers with visual inspection. Liu et al. [139] recently
proposed to use reflection patterns as triggers. Casting the
triggers as natural looking shadows makes them harder to
detect. Often, triggers in the backdoor attacks are uniform
across input images. However, Nguyen and Tran [140]
proposed a generator-based backdoor attack that allows using
different trigger patterns based on the context in the image.
This makes detection of the trigger pattern even harder.
Xie et al. [141] introduced a distributed backdoor attack on
Fedrated Learning [142] in which the trigger is distributed
among different parties providing the training data. This is in
contrast to the centralized poisoning of data that appears in
conventional supervised learning [143], [144].

A method claiming effective targeted poisoning was
proposed in [145] for the practical setups where minimal
assumptions can be made about the target network. That
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technique uses a pre-trained network to learn an attack model
that can be directly used to generate images that would fool
the victim model. In another example of backdoor attacks,
Rakin et al. [146] generated a Trojan trigger to locate and flip
the vulnerable bits of a DNN in DRAM tomake it misbehave.
It is noted in [147] that static backdoor attack on images
do not work well for videos. Hence, a specialized backdoor
attack for the task of video recognition was proposed. Similar
to the concept of universal adversarial perturbations [33],
their method uses a universal trigger to perform Trojan attack
on video models.

The current literature is also witnessing multiple methods
to secure deep learning models against the backdoor attacks.
For instance, Kolouri et al. [148] introduced a ‘universal
litmus patterns’ (ULP) for detecting a backdoor in pre-trained
models. The detection is done by binary classification of
the response of logit layers of the model in question for
multiple geometric ULPs. The geometric ULPs are pre-
defined, which are computed by an optimization problem
inspired by universal adversarial perturbations [33]. Along
the line of defense against Trojan attacks, Wang et al. [149]
analyzed the possibility of detecting backdoors in the context
of Federated Learning. They claimed that the detection is
‘‘unlikely’’ - assuming first-order oracles or polynomial time.
Building on this theoretical insight they introduced a new
family of backdoor attacks, called edge-case backdoors,
which forces model fooling on the inputs living on the tail of
the input distribution. By doing so, they make the detection
of their attack very hard.

E. MODEL INVERSION
Model inversion aims to reconstruct training data or its
markers from a trained model [150]. These attacks raise
serious privacy concerns. Although model inversion problem
is currently not as popular in the computer vision literature as
additive perturbations, the attack is highly relevant for visual
models in practical adversarial setups.

Since the discovery of the model inversion phe-
nomenon [150], there have been multiple attempts to for-
malize the underlying problem for systematic investigation
of the issue. For example, [151] uses the notion of influence
from Boolean analysis to characterized inversion of Boolean
functions. Similarly, [152] formulates the risk faced by the
model to reveal individuals in training data. It is shown
that the risk increases with over-fitting. To an extent,
the model inversion problem can be related to feature
visualization [153] or the recently introduced attack to
explain [154]. However, the overall adversarial objective of
model inversion remains different from these frameworks
which are more focused on model explanation.

Recently, Zhang et al. [155] proposed a generative model-
inversion attack that trains a GAN to estimate the distribu-
tional prior of the target model’s training data. Combining
the prediction loss of the target model with the loss of the
discriminator, the trained generator is shown to produce high
quality training samples of the target model, especially for

the face models. Interestingly, the authors showed that highly
predictive models establish stronger correlation between
learned features and the sample labels. This is exactly what
can be leveraged to do better in launching an inversion attack.
An implication of this fact is that more accurate models might
be more vulnerable to inversion attacks.

F. ADAPTIVE ATTACKS
It is now known that defenses against adversarial attacks
can also be broken with counter-counter measures. For
instance, in [63] and [156], we see multiple defenses broken
with subsequent stronger attacks. This has prompted the
research community to evaluate defenses against adaptive
attacks [157]. Adaptive attacks are designed to specifically
fool a defense mechanism. Although, research community
is fast adapting the convention of evaluating defenses
against adaptive attacks, Tramer et al. [157] showed that
these evaluations are still far from providing guaranteed
robustness against such attacks. The authors demonstrate this
by circumventing thirteen recent defenses published in the
proceedings of ICML, ICLR and NeurIPS. These defenses
include [158]–[169] and [170]. A key takeaway from [157]
is that adaptive attacks should be hand-designed to specific
defenses to be more effective, instead of automated attack
adaption.

Although certifiable defenses are sometimes assumed
robust to adaptive attacks, we also witness instances in the
literature for adaptive attacks against certified defenses (see
Section X-D). For example, Ghiasi et al. [171] proposed a
‘‘Shadow Attack’’ to break certifiable defenses. Through
generating the perturbation outside the certified `p bounds,
their method produces a ‘‘spoofed’’ certificate, which results
in visually imperceptible adversarial perturbations to break
the defense. Whereas the underlying tools to develop
adaptive attacks (i.e. counter-counter measures) are generally
similar to conventional adversarial attacks, it is normally the
objective of circumventing a specific (type of) defense that
characterizes adaptive attacks. In recent years, these attacks
are studiedmainly in the context of developing robust defense
techniques.

G. MISCELLANEOUS ATTACKS
The above sections reviewed literature related to the attacks
on classifiers along popular directions. There are also other
multiple interesting attacks related to the classification prob-
lem that do not fall under the above-mentioned subcategories.
We provide a summary of those attacks in this section.

In [172], the authors devise an adversarial ranking attack,
where the attacker can raise or reduce the rank of the potential
label for the image. The unique objective of this attack
differentiates it from the conventional fooling attacks. The
literature has also seen attempts to fool deep neural networks
by exploiting their storage on Dynamic Random Access
Memory (DRAM) [173]–[175]. These attacks are particu-
larly interesting for deep learning in practice. In another
interesting work, Rezaei and Liu [176] demonstrated the
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possibility of adversarial manipulation of predictions for
transfer learning, without the knowledge of the target domain.
Similarly, Mor et al. [177] study optimal strategies against
generative adversarial attacks. A Feature Disruptive Attack
was proposed in [178] that is targeted at disrupting the
internal representation of models for the adversarial samples,
instead of simply focusing on altering the prediction.

The literature has also seen attacks to disrupt classifiers for
point clouds. For instance, Zhou et al. [179] proposed a label
guided GAN-based method for targeted attack on 3D point
clouds in real-time. The proposed Label-Guided employs a
multi-branch adversarial network for input feature extraction
and then embeds the target label information in the features
with an encoder. Vulnerability of deep 3D point cloud models
to isometry transformations has also been exposed [180].
Other recent examples of attacks on point clouds and 3D data
(and their defenses) include [181]–[185].

We also witness adversarial examples for video classifiers.
Due to the additional time dimension, attacks on images can
often not be readily translated to video. Hence, specialized
attacks for videos are devised. Zhang et al. [186] used the
movement patterns in the video frames to compute a noise
prior that can help in gradient estimation for fooling video
classifiers in the context of query-based attacks. A spatio-
temporal attack is also introduced for embodied agents
in [187]. Liu et al. [188] proposed an FGSM-like attack to
fool skeleton-based human action recognition models. Their
attack also accounts for multiple task-specific constraints in
the optimization problem, e.g. anthropomorphic plausibility
of adversarial inputs. Another example of skeleton action
recognition attack is [189]. Wang et al. [190] have also
provided an analysis of adversarial robustness of skeleton-
based action recognition. We also see exploitation of task-
specific constraints in developing attacks and defenses
against such attacks. For example, Pony et al. [191] introduce
flickering across the temporal dimension to fool video
recognition systems. Xiao et al. [192] proposed a defense
against attacks on videos that detects adversarial inputs by
analysing temporal consistency property of the videos.

We also see examples in the literature that devise attacks
for specific types of network architectures. For instance,
attacks specifically devised for GCNs are studied in [188]
and [193]. Jin et al. [194] also analyze certified robustness of
GCNs under topological perturbations. Similarly, an attack
specialized to binarized neural networks can be found
in [195]. Another example of attacks on quantized networks
can be found in [196]. We also see other unique ways
of rendering inputs adversarial for deep learning models.
Alaifari et al. [197] deformed image planes to construct
adversarial examples. The techniques in [198] and [126] aim
at perceptibility reduction of adversarial perturbations by
directly focusing on `0-norm reduction of perturbation vector.
In [199], we witness an unsupervised universal attack method
to compute perturbations that exploit model uncertainty.
The method uses a Monte Carlo scheme to activate more
neurons to increase model uncertainty during perturbation
computation with a stochastic gradient descent technique.

It also exploits a textural bias prior. A steganography
based universal adversarial perturbation method is proposed
in [200] that embeds a secret natural image in another
image to render the latter adversarial. In another example
of universal attacks, Rampini et al. [201] extended the notion
to deformable geometric shapes. They compute the attack in
the spectral domain by perturbing eigenvalue sequence of the
representation. Recovering shape from spectrum then leads
to adversarial samples.

VI. ATTACKS BEYOND CLASSIFICATION
In this section, we focus on the contributions that fool deep
visual models for tasks other than classification. Whereas the
fundamental tools to generate perturbations for these tasks
are the same as those used to fool classifiers, the unique
objectives of these tasks results in more specialized attack
algorithms.

A. OBJECT DETECTION AND TRACKING
Object detection and tracking are longstanding computer
vision problems. Their wide application in practical deep
learning has led to numerous specialized techniques for these
tasks. From the adversarial perspective, it has also resulted
in specialized attacks. Interestingly, many of those attacks
foray into the realm of physical world attacks (Section VII)
due to the practical nature of these tasks. For instance,
Eykholt et al. [123] have analyzed adversarial stickers on
stop signs in the context of autonomous driving to fool
YOLO [202] - a popular object detector. Jia et al. [27]
have recently developed a ‘tracker hijacking’ technique
to fool multiple object trackers with adversarial examples
computed for object detectors in the perceptual pipeline
of autonomous driving. We note that the original tracker
used by [27] follows tracking-by-detection paradigm [203].
Adversarial training of detectors for their robustification
is discussed in [204]. The authors also proposed a class-
aware adversarial training that uses universal perturbations
to eventually compute class-weighted loss for improved
robustness.

Yan et al. [205] developed an attacking technique to
deceive single object trackers, in specific SiamRPN++ [206].
Their method trains a generator model to construct
adversarial frames under a ‘cooling-shrinking’ loss. The loss
is designed to cool down the hot target regions and forcing
the bounding boxes to shrink during online tracking. A Fast-
Attack-Network is also developed in [207] to attack the
trackers based on Siamese network. In [208], the authors
introduced an adversarial pattern that can be printed on a
poster in the physical world. When a target moves in front
of that poster, the tracker locks itself to the poster pattern
instead of tracking the target.

Huang et al. [209] studied physical attacks on object
detectors in-the-wild by developing a universal camouflage
for object categories. The hard objective of the problem
resulted in conspicuous patterns for their attack though, see
Fig. 10. Robustness of object detectors are also explicitly

VOLUME 9, 2021 155173



N. Akhtar et al.: Advances in Adversarial Attacks and Defenses in Computer Vision: Survey

FIGURE 10. Representative attacks on detectors - randomly selected. (Left) Universal adversarial camouflage [209] incorrectly detects the
target class at the cost of conspicuous patterns. (Right) Invisibility cloak [210] makes target object invisible with high probability. Images are
taken from [209] and [210].

studied in [26]. Whereas it appears that object detectors are
relatively hard to fool, [26] shows that their robustness can
also be improved with adversarial training. Another example
of deceiving object detector in the real-world can be found
in [210]. Zolfi et al. [211] develop a physical translucent
patch that can be placed on camera lens to deceive detectors
operating down the stream. A one-shot adversarial attack is
proposed in [28] for single object tracking where inserting a
patch in the first frame of the video results in losing the target
in the subsequent frames. A spatial-aware attack (SPARK)
is proposed in [212] to fool online trackers. This method
imposes an L1,2 regularization constraint over perturbations
while computing them incrementally based on previous
frames. It is shown that their perturbations are able to fool
multiple state-of-the-art trackers. An example of black-box
attack (decision-based) on trackers can be found in [213]
that focuses on IoU reduction by accounting for current and
previous frames.

B. REINFORCEMENT LEARNING
Reinforcement Learning (RL) is a major research direction in
AI. Although it is not a mainstream topic in computer vision
research, adversarial attacks on RL systems are often inspired
by attacks on visual models. Hence, we find it imperative to
briefly touch upon the advances made in adversarial attacks
on RL in our literature survey.

Huang et al. [214] were among the first to demonstrate
that FGSM-like perturbations can also be used to degrade
the performance of trained policies in RL. They considered
adversaries that can manipulate raw input of policies.
Their experiments prove success of adversaries even in
black-box scenarios. Xiang et al. [215] developed a PCA-
based model for predicting adversarial examples in the
context of Q-learning based path-finding. In another related
work, Bai et al. [216] also attacked the Deep Q Network
(DQN) [217] for robotic path-finding in a white-box setup.
Similarly, Chen et al. [218] also explored adversarial attacks
for the same problem, and devised a so-called Common
Dominant Adversarial Examples Generation Method for
computing adversarial examples for a given map. In light
of their threat models, we can categorize [215], [216]
and [218] as white-box attacks within the RL context. We can
also find early instances of black-box attacks for RL. For
example, [219] showed successful transferability of attacks
across different DQN models. Additional early examples of
black-box attacks on RL include [220] and [221]. For the

interested readers, we refer to [222] for a more thorough
review of the literature in adversarial attacks and defenses on
RL up until 2019.

More recently, Gleave et al. [223] showed the existence
of adversarial policies in zero-sum games between robots,
especially in high dimensional environments. The victim
of their policies are robust opponents trained with self-
play. It is claimed that their adversarial policies defeat
the victims reliably, while generating apparently random
behavior. Rakhsha et al. [224] analysed a training time attack
on RL where the adversary can poison the environment
of an agent to enforce execution of a target policy in a
stealthy manner. Zhang et al. [225] also developed ‘adaptive’
reward-poisoning attack that allows perturbation to reward
at every step to cause learning of adversarial policies.
From the perspective of endowing robustness to deep
reinforcement learning from adversarial observations in an
agent’s environment, Zhang et al. [226] showed that directly
applying robustification methods, e.g. adversarial training
is insufficient. They proposed a State Adversarial Markov
Decision Process (SA-MDP) method for regularizing the
policies. It is claimed that this method is applicable to a large
family of popular deep RL techniques, including DQN.

C. IMAGE CAPTIONING/DESCRIPTION
Image and video captioning/description [227] is a multi-
model task that normally involves a visual model (e.g. CNN)
to extract visual information from the input, followed by a
language model (e.g. RNN). Due to the temporal dependency
in captions, attacking such a captioning/description frame-
work is more challenging than attacking a visual model alone.
Nevertheless, we do find recent examples that successfully
fool these frameworks. For instance, Xu et al. [228] fool
an image captioning framework by treating the generated
sentences as individual labels. Their focus is on fooling
the language model (i.e. RNN) while keeping the CNN
embeddings of input image intact. In a related work,
Chen et al. proposed ‘Show and Fool’ method [229] that fools
the ‘Show and Tell’ model [230]. Their technique can gen-
erate a pre-specified target caption for any image, or embed
adversarial keywords in the caption, see Fig. 11. Recently,
Xu et al. [231] also proposed a targeted partial caption attack
that formulates the underlying task of generating adversarial
partial captions as a structured output learning task with
latent variables. The problem is solved under a generalized
expectation maximization method and structural SVMs with
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latent variables. In [232], an adversarial optimization-based
attack is developed for scene text recognition that employs
sequential models. However, the method focuses on the
related problem of text recognition, not directly on caption
generation. Another remotely related work to captioning
is FreeLB [233] that promotes adversarial robustness in
language models with adversarial training. Whereas attacks
on captioning are currently not as popular as attacks on other
mainstream computer vision tasks, following the trends of
other tasks, we can anticipate a gradual rise in the popularity
of captioning attack in the future.

FIGURE 11. Example of ‘Show and Fool’ [229] generating a targeted
incorrect caption (top) and embedding adversarial keywords in a caption
(bottom).

D. FACE RECOGNITION
Face recognition is also a long-standing problem in computer
vision. Although the task is closely related to classification,
due to specific data properties, it is often treated separately
from classification. From adversarial perspective, treating
face recognition separately is even more meaningful due
to the serious implications of adversarial attacks on these
systems, which are generally not relevant to general purpose
visual classifiers.

Although deep learning era has witnessed highly accurate
face recognition models [18], [234] these systems are
also vulnerable to adversarial attacks. Goswami et al. [235]
provided an analyses of face recognition systems’ robustness
against adversarial attacks. They ascertained the susceptibil-
ity of popular model OpenFace [236] and VGG-Face [237].
Dong et al. [238] also reported adversarial vulnerability
of face recognition in black-box setups, specifically to
decision-based attacks. They adapted a popular evolutionary
strategy [239] to perform search over the perturbation in
the black-box setup, where the search is guided by the
local geometry of the searched directions for efficiency.
Zhong et al. [240] used transferability to fool face recogni-
tion systems in another black-box scenario. They devised
a so-called Drop-out Face Attacking Network (DFANet)
that focuses on matching the internal representation of
an identify (image) with another identity to confuse the
target model between the two. An FGSM-like method,
Penalized Fast Gradient Value Method was introduced

in [241] to demonstrate fooling of face recognition models.
A friend-safe attack on face recognition systems was also
introduced in [242], which computes images that are adver-
sarial for ‘enemy’ models, but benign for ‘friend’ models.

The above methods mainly compute additive perturbations
without explicitly accounting for geometric information
of faces. In contrast, Dabouei et al. [243] devised a facial
landmark manipulation method to mislead recognition sys-
tems. Their technique computes adversarial landmarks to
perform spatial distortions in images that result in incorrect
recognition, see Fig. 12. Adversarial patches for faces are
also studied for their transferability in [244]. In another
related example, Yang et al. [245] proposed an Attentional
Adversarial Attack Generative Network (A3GN ) for targeted
fooling of face recognition models. It is claimed that their
network is able to exploit geometric and context information
of the target with the help of a conditional VAE and attention
modules to achieve this feat. Another example of using GAN
for deceiving face recognition systems is AdvFaces [246]
that manipulate geometric features of the face in the image.
Similarly, Li et al. [247] generate a fake face image by
matching the latent representation of the image with its
adversarial counterpart that can fool fake image detectors.
Along the line of utilizing GANs for manipulating faces
in images and videos, an interesting research direction
of DeepFakes is emerging. Interested readers are referred
to [248] for a recent survey of that direction.

FIGURE 12. An example of fooling face recognition system by landmark
manipulation [243].

Due to the practical nature of face recognition task,
the literature has also witnessed fooling attempts through
manipulating faces in the physical world. For instance,
Sharif et al. [249] demonstrated the possibility of physically
realizable attacks to impersonate an identity or evade the
face recognition system. They devised an eyeglass frame for
fooling the target network, see Fig. 13. Their technique was
further improved in [125] for attack robustness. On a similar
line, Zhou et al. [250] developed a cap that illuminates face
of the person wearing it to fool the recognition system.
They compute the adversarial illumination pattern on an
image of the identity and use the cap to project that pattern
on the face in physical world while presenting the face
to the vision system. A related concept of ‘adversarial
light projection’ is studied in [251] that projects a rather
conspicuous pattern on faces to evade FaceNet model [252]
in white-box settings. Other examples of physical world
attack on face recognition systems include AdvHat [253] and
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FIGURE 13. An example of fooling a face recognition model by wearing
an adversarial eyeglass fame [249].

adversarial patches for faces [254]. Face presentation attacks
are also studied in [255]. We refer to our first survey [29] for
the more classic attacks on face recognition.

E. MISCELLANEOUS ATTACKS
Even for the tasks beyond classification, multiple other
attacks exist that do not fall under the categories described
above. For example, Nakka and Salzmann [256] devised an
attack to demonstrate the vulnerability of semantic segmen-
tation networks against holistic perturbations and localized
ones. Similarly, for the problem of segmentation, a data
membership attack is devised in [257]. Choi et al. [258] also
observed that deep learning models for super-resolution are
also vulnerable to adversarial attacks. This is demonstrated
by introducing unnoticeable distortions in the low-resolution
images, which adversely affect the super resolution results.
Mehra et al. [259] proposed a poisoning attacks for reducing
the average certified radius of a given class for certified
defenses.

Deep neural networks are often successfully applied to
predict depth in monocular scenes. Recently, [260] showed
that adversarial attacks can be used to manipulate the
predicted distance from the camera. The method in [260] can
match the predicted distance to a different target scene or
directly fabricate the depth of specific instances in the scene.
Targeted attacks on hashing based retrieval are proposed in
[119], [261], whereas a universal perturbation for image
retrieval systems is computed in [262]. An example of adver-
sarial attack on Graph Matching can be found in [263]. There
has also been enhancements and variants of patch attacks
for multiple vision tasks. For example, Yang et al. [264]
improved the patch attack in a blackbox setup by reducing
the required number of queries with reinforcement learning.
Similarly, a universal patch is proposed for face recognition
in [265] and the patch attack is extended to optical flow
in [266]. It is shown that a patch as small as 1% of the image
size can disrupt optical flow networks.

VII. PHYSICAL WORLD ATTACKS
We already reviewed some of the literature performing
physical world attacks in § VI-A for the tasks of object
detection and tracking, and for face recognition in § VI-D.
Below, we further expand on the literature in this direction
by focusing on the practical physical world application of
autonomous driving and general purpose object detection and
classification attacks.

In the context of autonomous driving, Tu et al. [25]
proposed a technique to compute physically realizable

FIGURE 14. Representative example of fooling object detector with LiDAR
data [25]. The adversarial mesh placed on top of vehicle makes it
undetectable for visual detector. Image taken from [25].

adversarial examples using LiDAR data to fool object
detectors in simulated autonomous vehicle scenarios, see
Fig. 14. It is claimed that placing an adversarial object
(with underlying adversarial mesh computed from their
technique) on the rooftop of a target vehicle can make the
vehicle undetectable. The mesh surface of the computed
object generally remains unnatural though. In another study,
Cao et al. [267] showed that CNN-based object detectors
can be fooled in vehicle detection scenarios. An adversarial
pattern computed by their technique serves as a camouflage
to evade detectors in their work. The notion of camouflage is
also explored in the physical world settings in [268], [269].

Kong et al. [270] used a GAN-based setup to generate
norm-bounded adversarial images, which when printed,
demonstrate resilience to changes in the physical world
conditions, e.g. lighting condition, viewing angle. Their
method, PhysGAN is specifically designed to fool steering
models of autonomous vehicles, under a regression-based
formulation of the angle prediction problem. PhysGAN
computes perturbations for a stream of visual features of
driving video while ignoring the scene background. It is
claimed that this strategy allows effective perturbations for
dynamic scene conditions, nullifying the need of static scene
assumption appearing in earlier literature [123]. In [271],
it is shown that with camera shake and pose variation
while imaging physical world objects, one can acquire
images that can easily fool deep learning models. Here, the
imperceptibility of the perturbation comes in the form of
semantic-imperceptibility i.e. contextually, the pose or shake
appears natural.

FIGURE 15. Representative examples of successful physical world attacks
to fool recognition systems with AdvCam [272], RP2 [123] and adversarial
patch [45].

The use of ‘adversarial patch’ [45] is another effective
method to launch a physical world attack. An adversarial
patch is normally a clearly visible, but well localized pattern
- i.e. a patch that can be placed beside an object to cause
model fooling, see Fig. 15. More recently, Duan et al. [272]
proposed a neural style transfer [273] based technique to
compute unrestricted perturbations that can take effect as a
physical world attack to camouflage a target object. Their
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proposed AdvCam is able to compute patterns that are
claimed to be more stealthy than earlier related techniques
(e.g. adversarial patch [45], RP2 [123]) in that the adversarial
pattern appears more natural to humans (Fig. 15). To compute
the physical world pattern, their technique captures image of
the scene with a given camera and estimates the perturbation
digitally in a restricted knowledge white box setup. The
substitute model used to compute the adversarial pattern has
the same architecture as the target model. The pattern is
then placed in the physical world and the same camera is
again used to capture the adversarial example. The technique
requires manual specification of the region to place the
adversarial pattern and the target style. In another example
related to adversarial patch, Liu et al. [274] constructed a
universal patch and used it to deceive automatic checkout
models.

As also noted in § VI-A, deceiving object detectors is
a particularly interesting problem for the physical world
attacks. We are already witnessing interesting methods in this
direction. Recently, Xu et al. [275] proposed a technique to
fabricate adversarial T-shirt for evading detectors. Another
example of fooling object detectors on similar lines is [210].
The authors compute a so-mentioned ‘invisibility cloak’ that
contains the patterns causing misdetections for state-of-the-
art detectors, see Fig. 10. Considering the implications of
this direction of research, a dataset for adversarial attacks
on object detectors in the physical world is also introduced
in [276]. Whereas currently attacks on object detectors are
not as popular as attacks on classifiers, we can anticipate
much larger interest of the research community for this
problem due to many interesting, and sometimes security-
critical applications.

There are also works in the literature that fool classi-
fiers by distorted illumination in the scene. For instance,
Sayles et al. [277] distort leverage radiometric rolling shutter
effect for distortions that cause misclassification. Similarly,
Duan et al. [278] proposed an adversarial laser beam attack,
which computes adversarial parameters for a laser that can
be used to distort illumination such that the captured image
is adversarial. We have already seen multiple examples for
fooling face recognition systems with adversarial illumina-
tion patterns in Section VI-D.

VIII. BEYOND ADVERSARIAL OBJECTIVE
Although the primary objective of adversarial attacks in
the literature is to fool deep learning models, there are
also instances where adversarial perturbations are exploited
under more constructive objectives of improving model
performance, interpreting it, or estimating the performance.
Note that, for the former, we are not alluding to the
works leveraging adversarial training to robustify models -
explained shortly.

A. IMPROVING MODEL PERFORMANCE
Xie et al. [279] recently demonstrated that adversarial exam-
ples can actually help in performance gain in fully

supervised setups for large-scale models, e.g. ImageNet [8].
To demonstrate that, the authors propose Adversarial Propa-
gation (AdvProp) technique that is applied to EfficientNet-
B7 [280] to achieve performance gains of 0.7%, 6.5%,
7.0% and 4.8% for ImageNet, ImageNet-C, ImageNet-A and
Stylized ImageNet datasets. Moreover, after enhancing the
network to EfficientNet-B8, their method sets the new state-
of-the-art of 85.5% on ImageNet top-1 accuracywithout extra
training data. The key insight used by AdvProp is that the
underlying distribution of adversarial images is different from
natural images. This calls for disentangling the normalisation
statistics for the networks in the Batch Normalization (BN)
layers. Hence, the authors proposed an auxiliary BN layer that
is explicitly used for adversarial examples during training,
and dropped during testing. During training, the loss is
computed by propagating the clean and adversarial images
separately through their respective BN layers.

The AdvProp is unique in that successfully aims at
performance gain for large-scale models on clean images
with adversarial examples. This is different from adversarial
training, which generally results in sacrificing model accu-
racy on the clean images to gain robustness to adversarial
examples [29], [281]. There are also other instances that
report performance gain on clean data by accounting for
adversarial image in training. For instance, [22], [282] report
improved model accuracy for a small dataset (MNIST) under
a fully supervised setup. Similarly, [48] and [283] improve
model performance with adversarial examples for large
models in a semi-supervised setup. Ho and Vasconcelos [284]
also found use of adversarial example in Contrastive Learning
for self-supervised learning. They used adversarial examples
to augment data for pretext learning of embeddings.

It is also claimed by Salman et al. [285] that adversarially
trained models, while less accurate than the standard models,
often perform better for transfer learning. In another study,
Gan et al. [286] propose VILLA, a representation learning
approach based on large-scale adversarial training on vision-
and-language data. They perform a task-agnostic adversarial
training followed by a task-specific adversarial fine-tuning in
the embedding space. Thismethod is claimed to achieve state-
of-the-art performance on a variety of tasks, including Visual
Question Answering, Visual Commonsense Reasoning, and
Image-Text Retrieval. Using the anti-adversarial directions
for weakly supervised models, Lee et al. [287] claimed
improvement in the semantic segmentation performance.

B. THE LINK BETWEEN ATTACKS AND MODEL
INTERPRETATION
Jalwana et al. [288] developed a technique to visually reveal
the understanding of human-defined semantic concepts by
deep learning perceptual models, see Fig. 16. By expanding
the domain of the adversarial perturbation and iteratively
refining it, the authors demonstrate the presence of human-
understandable patterns in the perturbations. A more clear
relation between the adversarial and explanation character of
their perturbations is later established in [154]. The authors
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FIGURE 16. Jalwana et al. [288] proposed an ‘attack to explain’ which uses perturbations to visualize human-defined semantic concepts as
understood by a model. They also utilized their attack to perform low-level vision tasks by attacking robust classifiers. (Left) Perturbations
computed with attack to explain VGG-16. The signals visualize understanding of VGG-16 for human-defined concepts of Bowtie and Nails.
(Right) The attack is used to generate an image of ‘mountain tent’ with a random seed image. For interactive image manipulation, the seed
image is refined into a bird with the attack.

also utilize their ‘attack to explain’ to perform low-level
vision tasks by attacking robust classifiers. This concept
builds on [289]. In a related approach, Augustine et al. [290]
associate model explainability to its adversarial robustness,
demonstrating generative properties of their adversarially
robust model similar to [289]. Elliott et al. [291] also
attempts to bridge the gap between adversarial perturbations
and counter-factual explanation of deep models. They
localized their perturbations to salient regions of inputs
to demonstrate that perceptually regularized counterfactuals
provide useful model explanation.

There is also a line of research that considers interpretabil-
ity of the induced perturbation patterns themselves. For
instance, Xu et al. [292] applied group sparsity over the per-
turbation vector and showed that the resulting perturbations
are more interpretable. Nevertheless, this method does not
offer interpretability of the model itself like [154], [288].

C. OTHER APPLICATIONS
Among other interesting related applications,
Elsayed et al. [293] showed that adversarial perturbations
can be used to reprogram a target model. For instance,
with embedded perturbations, they successfully con-
verted a classifier into a box-counting machine. Finally,
Sakaguchi et al. [294] recently proposed an algorithm, called
AFLITE, to adversarially reduce task- or dataset-specific
biases in head distribution, while preserving complexity of
the tail. This bias reductionmitigates overestimation ofmodel
performance, which is evident by their performance on out-
of-distribution and adversarial examples. In a followup work,
Bras et al. [295] theoretically studied AFLITE and provided
extensive evidence that AFLITE reduces measurable dataset
biases. They showed that the models trained on the filtered
dataset generalize better to out-of-distribution data.

IX. ON THE EXISTENCE OF ADVERSARIAL EXAMPLES
The existence of adversarial examples for otherwise highly
accurate deep visual models has confounded the research
community since the discovery of this phenomenon. The
literature has witnessed numerous hypotheses to explain the
adversarial vulnerability of deep learning. However, many of

those fail to generalise, and the remaining often conflict with
each other. It can be argued that there is still no consensus
on the reasons of the existence of adversarial examples.
Whereas it was common among the earlier contributions
to also hypothesize about generic causes of the adversarial
susceptibility of neural networks, the recent attack methods
are more concerned with achieving higher fooling rates and
better transferability etc. Nevertheless, the contributions that
analyze the causes of adversarial vulnerability as the core
topic, are still attractive because the wider impression is
that this phenomenon is still not fully understood. Below,
we review contributions and major hypotheses in this
direction along the lines of input-specific perturbations,
input-agnostic perturbations and other prevailing topics.

A. ON INPUT-SPECIFIC PERTURBATIONS
One of the first popular hypotheses on the existence of adver-
sarial examples for modern deep network was the linearity
hypothesis [30] - see the FGSM attack in § IV for details.
However, it was later shown by Tanay and Griffin [296] that
this hypothesis does not generalize as there are classes that
do not suffer from adversarial examples for linear classifiers.
Nevertheless, Kortov and Hopfiled [297] later provided
another evidence based on Dense Associative Memory [298]
that supports the role of linearity in neural model susceptibil-
ity to adversarial examples. Similarly, linearity is also blamed
for adversarial vulnerability in [299]. In [300], ‘inherent
prediction uncertainty’ of neural networks is blamed for
their adversarial vulnerability. The claim is corroborated by
computing a functional form of the prediction uncertainty
which remains independent of the architecture and training
of the model. It is also argued that clean image accuracy
of models correlates with their adversarial robustness, which
resonates with the findings of [301] and other earlier
observations [30], [54]. Evolutionary stalling [302] is another
interesting hypothesis, according to which, the inability of
training samples to contribute beyond a certain capacity
leaves their representation very close to the model decision
boundaries. This allows adversaries to easily nudge those
and similar representations out of the correct classification
regions.
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Exploring the space of adversarial examples, Tabacof and
Valle [303] showed that adversarial examples reside in large
regions in the pixel space of images. Their findings suggest
that weak shallow networks are as susceptible to adversarial
examples as the complex deep networks. On a similar note,
Tramer et al. [304] claimed that adversarial examples span a
contiguous high dimensional space. The high dimensionality
of this space and subspaces of different classifiers results in
their intersections which causes transferability of the attacks
across different models. More recently, [305] claimed that
model’s gradient leakage along the perpendicular to a tangent
space of training data manifold contributes to adversarial
vulnerability of the models.

In another work, Jacobsen et al. [306] claimed that deep
neural networks are highly invariant to a variety of task-
relevant changes in the input that causes vast input space
regions to be vulnerable to adversarial perturbations. This is
in addition to the high sensitivity of the models to the task-
irrelevant changes to the input. Along the lines of analysing
the existence of adversarial examples from the robustness
perspective, Reddy et al. [307] studied the biological visual
system of primates. They showed that non-uniform sampling
done by primate retina and the existence of multiple receptive
fields (having a range of field sizes) improves the robustness
of neural networks to adversarial perturbations.

Pal and Vidal [308] proposed a game-theoretic framework
for analysing attacks and defenses that exist in equilibrium.
They proved that under a locally linear decision boundary
model, FGSM and the randomized smoothing [309] exhibit
a Nash Equilibrium [310]. Daniely and Schacham [311]
provided a theoretical analysis that studies the vulnerability of
ReLU networks against adversarial perturbations, concluding
that most ReLU networks suffer from `2 perturbations.
We also find a similar but broader claim that adversarial
examples are inevitable for certain types of problems in [312].

Similar to the linearity hypothesis of
Goodfellow et al. [30], another popular concept related
to the existence of adversarial examples is ‘manifold
assumption’ [296], which argues that adversarial examples
tend to leave the clean data manifold. Nevertheless, there
is also evidence of on-manifold adversarial examples
[43], [313], [314]. There is also a debate in the literature
of associating robustness of neural models to their gener-
alization [315]. For instance, Trsipras et al. [316] provide
systematic evidence of clash between adversarial robustness
and generalization of a model. This is also partially supported
by the empirical study in [317]. However, we also find
works in the literature that suggest the opposite [301], [313],
i.e. improved generalization results in better robustness.

B. ON INPUT-AGNOSTIC PERTURBATIONS
Analysing the existence of universal perturbation, Moosavi-
Dezfooli et al. [33] claimed that these signals leverage the
geometric correlations between the decision boundaries
of classifiers. The authors theoretically demonstrate the
existence of common directions for multiple data points

along which a classifier’s decision boundaries can be highly
curved [318], [319]. It is argued that such directions allow
the universal perturbations to effectively fool the classifier
across multiple samples. On a similar note, Jetley et al. [320]
demonstrated that the directions (in image space) used by
neural networks to achieve higher performance are the same
that make them vulnerable to adversarial attacks. Thus,
the high accuracy and adversarial vulnerability of neural
networks are related phenomena, which allow the existence
of universal perturbations.

Analysing the Pearson correlation between the coefficients
of logit vectors of a classifier for clean and adversarial
images, Zhang et al. [321] showed that for universal pertur-
bations, adversarial examples are strongly correlated with
the perturbations. On the other hand, a low correlation is
observed between the adversarial and clean images. The
leads to the conclusion that universal perturbations hold more
dominant features as compared to clean images despite their
low power and visual (quasi-)imperceptibility. The authors
also leverage this insight to introduce a method to compute
universal perturbations using random clean images.

C. ADVERSARIAL EXAMPLES AS FEATURES &
OTHER SOURCES
Inline with the findings of Jetley et al. [320] (discussed
above), Ilyas et al. [322] claimed adversarial examples to
be essential data features for neural networks, as opposed
to unwarranted bugs. They demonstrated that the exis-
tence of adversarial examples can be attributed to non-
robust features that are pervasive in datasets and are
an effective source of achieving higher accuracy for the
neural perception models. The authors also demonstrate the
possibility of disentangling robust and non-robust features
and showed that robust features align more to human
perception than their non-robust counterparts. This insight
is exploited by Santurkar et al. [289] to use adversarially
robust models to perform visually appealing image synthesis.
Tsipras et al. [316] also noted the tension between adver-
sarial robustness and classifier accuracy under the idea that
adversarial examples are non-robust features used by models
to achieve better performance.

Bubeck et al. [323] argued that adversarial vulnerability of
classifiers in high dimension is ‘‘likely not due to information
theoretic limitations, but rather it could be due to com-
putational constraints’’. They provided evidence to support
the hypothesis that ‘‘identifying a robust classifier from
limited training data is information theoretically possible but
computationally impossible’’. Interestingly, their evidence
weakens the notion that identifying a robust classifier
requires huge amount of training data. In a study more
focused on ReseNet inspired architectures, Wu et al. [324]
identified adversarial vulnerabilities of skip-connections. The
authors claimed that the use of skip connection results in
more transferable adversarial examples for models. They
introduced a Skip Gradient Method (SGM) that relies on
the gradient flow from skip connections to compute more
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transferable examples for the models that employ skip
connections.

X. DEFENSE AGAINST ADVERSARIAL ATTACKS
Akhtar and Mian [29] organized defenses against adversarial
attacks into three broad categories. They incorporated
defenses resulting from (1) modifying the target models for
robustification, (2) modifying input for perturbation removal
and (3) adding external modules (mainly detectors) to the
model. Since 2018, the research direction of adversarial
defenses has evolved mainly along the same three lines.
Hence, we first review the recent literature along the same
directions. However, there is a subclass of defenses that
is gaining rapid popularity in the recent literature, known
as ‘certified defenses’. Although most of the works in this
subclass follow (1), we review these methods separately
in § X-D due to their unique common objective of
providing certificates/guarantees for the developed defenses.
In § X-E, we also provide a bird’s-eye view of other
recent defense techniques that either combine more than
one strategies noted above, or develop specialized defenses,
e.g. for specific tasks or network types.

A. MODEL ALTERATION FOR DEFENSE
The most common framework that modifies the (potentially)
targeted model itself for robustification against adversarial
attacks is ‘adversarial training’. Hence, we review techniques
focusing on this framework separately, before discussing
other recent methods in the category.

1) ADVERSARIAL TRAINING
The adversarial training framework is considered among
the strongest principled defenses against adversarial attacks.
It exposes the model to adversarial examples during training
to obtain some level of immunity against them. Adversarial
training was originally employed in [22], [30]. However,
Madry et al. [54] are the first to theoretically study and justify
it through the lens of robust optimization for deep learning.
Since [54], adversarial training has attracted significant inter-
est of the research community. This also resulted in multiple
contributions highlighting weaknesses of this framework. For
instance, Zhang et al. [325] showed that adversarialy trained
models are still vulnerable to ‘blind-spot’ attacks. Arguments
against the robustness induced by adversarial training can
also be found in [326]. It is also claimed that adversarial
training is sensitive to the training data distribution in [327].
Moreover, poor generalization of adversarial training is also
often highlighted in the literature [328]–[331].

Despite is shortcomings, adversarial training is still favored
by the research community due to its principled nature.
Over the last few years, multiple variants and enhance-
ments of adversarial training have surfaced. For example,
a Missclassification Aware adveRsarial Training (MART)
is proposed in [332] to incorporate distinctive influence
of clean misclassified examples in the training process.
Gowal et al. [333] improved adversarial training by varying

the Style-GAN-based [334] disentangled representations of
original images. This can be considered a defense against
unrestricted perturbations. A margin-maximization variant
of adversarial training was proposed in [335] that creates
adversarial examples using sample-specific η (see Eq. 1)
instead of a fixed η value across the training samples. The η
value corresponds to the ‘‘shortest successful perturbation’’
that fools the model.

Among other variants of adversarial training frameworks,
we have [336] where in each training iteration, the model is
verified for robustness using convex relaxation and adversar-
ial examples are computed under that relaxation for training
purpose. Vivek and Babu [337] also proposed a dropout
scheduling method to improve the efficacy of adversarial
training with single-step methods. To improve generalization
of adversarially trained models, Song et al. [338] proposed
Robust Local Features for Adversarial Training (RLFAT) that
employs random block shuffle of the input during training.
Farnia et al. [339] also proposed a spectral normalization
based regularization for adversarial training to address the
generalization issue. In [340], enhancement is suggested by
using adversarial examples generated by attacking a model
other than the model to be defended. To make adversarial
training more efficient, Zheng et al. [31] proposed to use
the same adversarial perturbations across multiple epochs
during the training. This reduces the number of computations
in the overall training process while achieving acceptable
performance.

Naseer et al. [341] proposed self-supervised adversarial
training, whereas adversarial training is independently ana-
lyzed for self-supervision by incorporating it in pretraining
in [342]. Similarly, [343] used a generator in adversarial
training to generate more diverse adversarial examples.
A Dual Manifold Adversarial Training (DMAT) is proposed
in [344], which uses perturbations in the image space as
well as latent space of StyleGAN to make training more
effective. In another related work, Wang and Zhang [345]
proposed a bilateral adversarial training that not only perturbs
input images during training, but also their labels. The
authors claimed improvements in state-of-the-art adversarial
training results with this modification. It is often argued
that adversarial training leads to the requirement of larger
models. Ye et al. [346] proposed a concurrent adversarial
training and weight pruning strategy to address this specific
issue.

Considering further variants of adversarial training,
Dong et al. [347] proposed an adversarial distributional train-
ing. Their method also formulates adversarial training as
a minimax problem, however, the inner maximization is
aimed at learning an adversarial distribution under an
entropic regularizer. The outer minimization problem mini-
mizes the loss over the worst-case adversarial distributions.
Madaan et al. [348] proposed a vulnerability suppression
loss that minimizes the expected difference between latent
features of the network on clean and their corresponding
adversarial images. They further learned a pruning mask that
explicitly minimizes adversarial loss by pruning features with
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high distortion. In an attempt to address multiple perturbation
models for adversarial training, Maini et al. [349] proposed
to incorporate several perturbations into a single attack by
taking the worst-case over the entire steepest directions as
an extension to the standard PGD. It is claimed that their
approach produces state-of-the-art robust classifiers against
`1, `2, and `∞ norm bounded perturbations simultaneously.

In the literature, we also find methods that conceptually
relate to adversarial training closely without presenting
themselves as such. For example, in [350], a mixup training
of neural networks was introduced. The main concept of the
method is to augment training data with additional samples
that are created as convex linear combination of the already
available samples. The same is done to the labels of the
combined samples to provide the label of the resulting
samples. It is shown that besides improving accuracy of the
original model, this practice also helps in robustness against
adversarial samples [351]. Pang et al. [167] takes this notion
further by also applying mixup of samples in the inference
phase. A related adversarial vertex mixup method is adopted
in [352] to achieve better adversarial generalization of the
models.

We also find multiple contributions in the literature
that focus on analyzing adversarial training instead of
devising its variants. For example, Xie and Yuille [353]
have reported some interesting properties of adversarial
training. The most intriguing ones include an improvement
in the adversarial robustness for the process with separate
Batch Normalization for clean and adversarial images, and
a consistent improvement in the adversarial robustness with
even deeper models as compared to the popular depth limits
among the visual models. Li et al. [354] also analyzed the
implicit bias of gradient descent on adversarial training on
separable data. Their findings theoretically back the efficacy
of adversarial training for robustness. In [355], it is also
demonstrated that transfer learning on adversarially robust
models retains (to an extent) the robustness effect for the
target domain. Sehwag et al. [356] also devised a method
for an adversarial training-aware model pruning in resource
constrained environment.

Wong et al. [357] showed that adversarial training with
FGSM combined with random initialization is as effective
as adversarial training with the first order PGD attack.
On their computational setup, they trained a robust CIFAR10
classifier with 45% robust accuracy in 6 minutes as compared
to the 10 hours training of PGD-based counterpart that
achieves similar results. Their improvement of adding
randomization with FGSM-based adversarial training is,
however, contradicted to an extend by [358]. Zhao et al. [359]
study themode connectivity of loss landscape of adversarially
robust and regular models, demonstrating the existence of
robustness loss barrier for the former. Wu et al. [360] showed
that many adversarial training improvements appearing in
the literature, e.g. early stopping, new objective functions,
or exploiting unlabeled data, implicitly flatten the weight
loss landscape (i.e. loss change w.r.t. weights). Hence, they
proposed an Adversarial Weight Perturbation (AWP) that

directly regularizes the flatness of weight loss landscape, and
can be used to improve adversarial training.

Even though Madry et al. [54] have justified adversarial
training by robust optimization theory, it is still unclear
how adversarial training results in low robust training
loss. Gau et al. [361] provide a theoretical analysis of
adversarial training to explain its success using Neural
Tangent Kernel and tools from online learning. They also
prove that more model capacity is required for robust
interpolation. However, their approach is limited to networks
with exponential width and run time. Zhang et al. [362]
extend their work for situations where the width of the
network and its run time is polynomial in input dimension.
They also extend the results to ReLU activation function.
Another related method [363] proposes to boost adversar-
ial training by embedding a hypersphere method in the
training process by regularizing features onto a compact
manifolds.

The literature also contains instances in which adversarial
training is moulded to specific task requirements. For
example, Wu et al. [364] proposed an adversarial training
method in which the adversarial samples are generated
specifically keeping in view the physical world attacks.
It is noted in [364] that commonly used adversarial training
and randomized smoothing for the digital attacks do not
perform well for the physical world attacks. Hence, the
modification was proposed. Instead of focusing on robustness
against adversarial attacks, Zhu et al. [233] employ adversar-
ial training in natural language understanding for achieving
higher embedding space invariance by perturbing the word
embeddings. This is reported to result in better generalization
of language models. This result also resonates with the
observations of [365].

2) OTHER MODEL MODIFICATIONS
Besides adversarial training that focuses on modifying model
weights through alternate training samples, there are multiple
approaches that alter the basic building blocks of the model
to incorporate adversarial robustness through regular training
data. For instance, Pang et al. [162] suggested to replace the
softmax cross-entropy loss with a new loss, called Max-
Mahalanobis center loss to induce adversarial robustness
in the model. Xiao et al. [158] proposed to alter the ReLU
activations with a k-winner-takes-all C0 discontinuous to
secure models against the gradient-based attacks. There are
also works that advocate on modifying the networks in a
holistic manner. For instance, in [165], the authors suggest
using quantized models for robustness against gradient-based
attacks. Guo et al. [366] also proposed RobNets, designed
with neural architecture search, which are claimed to
provide up to 5% gain in robust accuracy on large datasets,
e.g. ImageNet. Bui et al. [367] propose an Adversary Diver-
gence Reduction Network that can be used in conjunction
with adversarial training for improved robustness. Similarly,
a Bayesian neural network is proposed in [368] for adversarial
robustness.
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From the viewpoint of altering internal components of
models, Jeddi et al. [369] proposed perturbation-injection
modules in the internal layers of model during training and
testing and used an alternating back-propagation scheme to
train the network. A 4-7% improvement in robustness over
adversarial training with FGSM and PGD (`∞) is claimed
by the authors. Li et al. [370] introduced image restoration
and denoising modules in the network and constrained
its classification layer’s Lipschitz constant for adversarial
robustness. In the context of defense against the universal
perturbations [33], [371] devised a method to identify
adversarially vulnerable convolutional filters in a model and
introduces ‘regeneration units’ to generate resilient features
for those filters to avoid fooling. Wang and Yu [372]
proposed to model adversarial noise with a generator that
is trained jointly with a discriminator classifier and showed
its effectiveness against balck-box attacks. Xie et al. [373]
suggested that adversarial perturbations result in noisy
features of the networks. Hence, they proposed networks
containing denoising blocks with non-local means or other
filters. Building on the idea of injecting noise in the network
while training [374], [375], He et al. [376] proposed a
trainable Gaussian model for injecting the noise. A family
of CNNs that alternate between the Euclidean convolutions
and graph convolutions to leverage the information from the
graph of peer samples is proposed in [377].

Another emerging model alteration approach to defend
against adversarial attacks is through search for robust
architectures. Following this paradigm, Hosseini et al. [378]
propose DSRNA to search for robust architectures via
two differentiable metrics for robustness. Moreover,
Cazenavette et al. [379] proposed a deep pursuit algo-
rithm that formulate the architecture search as a global
sparse coding problem that jointly computes all network
activations.

We also witness techniques that approach at adversar-
ial robustness from the model regularization perspective.
For example, based on the observation that Jacobian of
adversarially robust models are more salient and inter-
pretable as compared to their non-robust counterparts [316],
Chan et al. [380] proposed a Jacobian-based GAN-like reg-
ularization scheme to show improved robustness. A joint
gradient phase and magnitude regularization was proposed
in [381] to improve robustness of ensemble models. A
concept of biologically inspired post-learning sleep phase
of neural networks was introduced in [382]. The proposed
technique allows a trained network to reflect on its statistics in
an unsupervised manner and alter the weights to avoid over-
fitting to the training data. Addepalli et al. [383] proposed to
regularize models with Bit-plane consistency as an efficient
alternate for adversarial training.

We note that whereas we discuss the above methods
separately from adversarial training to provide a better
structure to the literature, the boundary separating these
two lines of research is often abstract. One can understand
adversarial training as a more fundamental framework that
can generally be combined with other defenses, including

those discussed in the subsequent sections, for improved
robustness. Other methods discussed above often demand
model modifications that are less generic.

B. DETECTION FOR DEFENSE
Instead of proactively inducing a robust model during the
training phase, there are also techniques that provide add-on
mechanisms and modules for pre-trained models to defend
them against adversarial attacks. Mostly, these methods are
limited to detecting the presence of adversarial perturbations
in the input during inference. Based on our earlier survey [29]
and recent literature, we can say that this line of research
is getting slightly less popular (as compared to its earlier
years) in the leading research sources of computer vision
and machine learning. A possible reason for that is their
ad-hoc nature as compared to defenses like adversarial
training. Nevertheless, we still witness interesting techniques
of adversarial detection using add-on mechanisms in the
recent literature.

Qin et al. [384] proposed amechanism of class-conditional
reconstruction of images to detect adversarial examples
during test time. The authors also introduced an attack to
overcome this defense, demonstrating better robustness of
CapsNet [385] over CNNs for their attack. More importantly,
their attack shows more visual similarity between the
adversarial examples and target object category for CapsNet.
In essence, this demonstrates a larger perceptual alignment
between CapsNet representation and human visual system
as compared to CNNs. For reference, perceptual alignment
between deep visual models and human vision is also
discussed at length in [154], [288]. In [386], the authors
proposed to leverage Lightweight Bayesian neural networks
for task agnostic detection of adversarial perturbations in
inputs using Bayes principle. The technique replaces last
few layers of the attacked model with Bayesian module
and performs detection-oriented fine-tuning that allows to
maintain original performance while enabling detection.

Li et al. [387] proposed to use context inconsistency of
adversarial patterns in images for their detection using an
external mechanism. For face recognition, Tao et al. [388]
proposed amethod to identify internal neurons corresponding
to critical facial attributes. By amplifying activation of
these neurons, they construct an attribute-steered model.
Later, they detect adversarial examples by identifying
inconsistencies between the original and the attribute-steered
models. In [389], the authors proposed a mechanism to
trace the activation paths of clean and adversarial images
and detect adversarial perturbations based on the different
characteristics of these paths. Liu et al. [390] proposed
to detect adversarial examples by analysing inputs from
steganography point of view. Their method estimates the
probability of modification to images keeping in view
adversarial perturbations. Yin et al. [391] introduced a so-
called generative adversarial training method that learns
an adversarial example detector. To robustify the detector
against adaptive attacks, the authors employed asymmetric
adversarial training.

155182 VOLUME 9, 2021



N. Akhtar et al.: Advances in Adversarial Attacks and Defenses in Computer Vision: Survey

C. INPUT TRANSFORMATIONS FOR DEFENSE
Instead of focusing on model robustness to ‘adversarial’
inputs, transformation based methods aim at cleaning inputs
to make them benign for the target model. For instance,
JPEG-based compression of input has been studied for
removing adversarial perturbations from images [392]–[394].
Compressed adversarial images have been found to sig-
nificantly loose their fooling abilities. Generally, input
transformation provides the benefit that it can be easily used
in conjunction with other defense mechanisms, e.g. with
adversarialy trained models. In some cases, different input
transformations are also combined to improve their collective
strength. For example, in [395], Raff et al. proposed to
stochastically combine multiple input transformations to also
secure their defense against adaptive attacks. However, it is
also observed in [395] that more transformations undesirably
lead to significant reduction in model performance on clean
images. Similarly, [396] also proposed to utilize a set of
random input transformations as an adversarial defense. The
main idea behind this method is that the ‘key’ controlling the
randomization of transformations is assumed to be kept secret
during test time. This mitigates the risk of potential adaptive
attacks on their defense.

Instead of directly using standard image compression,
learnable compression methods that use neural models are
also proposed in the literature for adversarial defense [397],
[398]. In [398], an external defender module for a deployed
model is learned that projects inputs to a so-called
adversarial-free data zone for the target model. We can
also categorize learning-based compression techniques as
defense mechanisms altering the models by appending add-
on modules to them. In another related work, Sun et al. [399]
transformed an input image using convolutional sparse
coding. Their method use a ‘Sparse Transformation Layer’
to project input to a quasi-natural space that is claimed to be
less sensitive to adversarial manipulation.

In [400], Samangouei et al. presented one of the first
examples of input transformation using GANs. Their method,
Defense-GAN learns the distribution of clean images. For
inference, it computes an output close to the input image,
which does not contain the potential adversarial perturbation.
A desnoising based defense is proposed by [401] that selec-
tively denoises high attention regions of an image to recover
the correct label. Kuo et al. [402] noted that when input
transformation is employed as a defense technique [394], the
softmax distribution characteristics can be used to improve
the clean image accuracy of the classifier with the help
of an external lightweight classifier trained on the softmax
distribution of clean images.

In [403], an ensemble generative cleaning with feedback
loop is proposed to clean the image from adversarial patterns.
Their method also relies on external generative modules
to denoise adversarial images. Cohen et al. [404] developed
an external detector mechanism for adversarial samples
using a so-called influence function. This function measures
the impact of all training samples on the validation data
to provide sample influence scores. Supportive training

instances for validation samples are identified with their
scores. A k-nearest neighbor (k-NN) model is also fitted on
the models activations to compute a ranking of the supportive
training samples. Supportive samples are claimed to be highly
correlated with the nearest neighbors of clean test sample,
while the correlation is found to be weaker for adversarial
inputs.

D. CERTIFIED DEFENSES
Although the literature is witnessing multiple defense
techniques, it is shown that stronger attacks can be formed
to defeat the existing defense methods [63], [156], see
§ V-F for more examples. Even adversarial training has its
problems despite being widely considered a reliable defense
strategy. For instance, adversarially trained models with
`∞-norm bounded perturbations are still found vulnerable
to `p-norm perturbations, where p 6= ∞ [326], [405].
Certified defenses attempt to provide guarantee that the
target model cannot be fooled within an `p-ball of the clean
image. This guarantee is either achieved by computing the
minimal `p-norm of the perturbation to break the provided
defense [406], [407]; or by providing a lower bound on the
norm [408]–[410]. There are also other methods that aim
to both enhance network robustness and produce models
that are more amenable to robustness verification techniques
[411], [412]. Nevertheless, most of the certified defenses are
able to prove their robustness against only one kind of bound
on the perturbation, e.g. `2, `∞, struggling to provide generic
bounds for multiple `p-norms simultaneously [413], with a
few exceptions [326], [414].

Corce and Hein [413] recently proposed a regularization
scheme for ReLU networks to enforce robustness against
`1 and `∞ attacks and showed that it results in provable
robust models for any `p norm, where p ≥ 1. As opposed
to providing certified robustness for top-1 predictions,
Jia et al. [415] derived tight robustness in `2-norm using
Gaussian randomized smoothing for top-k predictions. Their
method builds on the notion of randomized smoothing
introduced in [416] and [309]. Zhai et al. [417] also built on
the insights of [309] to develop a method for MAximizing the
CErtified Radius (MACER) of the models that is claimed to
be scalable to large models.

Fischer et al. [418] also extended the notion of randomized
smoothing to incorporate parameterized transformations
(e.g., translations, rotations) and certified the robustness of
models in parameter space (e.g., rotation angle). Another
example of using randomised smoothing for a certifiable
defense can be found in [419]. This defense is aimed at
patch attacks, and it provides certificate against given image
and patch size. For patch attacks, more certified defenses
are studied in [45], [420], [421]. Zhang et al. [422] extended
the Gaussian smoothing noise in randomized classifiers to
non-Gaussian noise. They designed a family of non-Gaussian
smoothing distributions that works more efficiently against
`1, `2, and `∞ attacks.
As noted earlier, the direction of certified defenses is

gradually becoming quite popular in adversarial machine
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learning literature. Incidentally, the problem is attracting
more interest of machine learning community as com-
pared to the compute vision community. Nevertheless,
inspirations for the techniques developed along this line
of research are coming from different directions. For
instance, Rahnama et al. [423] treat the networks from a
control theory perspective to provide tight bounds on
any layer’s response to adversarial examples. Generally,
randomised smoothing is the most commonly utilised tool
be certified defense tools, which relates to adversarial in
essence. Further recent examples of certified defenses can be
found in [424]–[428].

E. MISCELLANEOUS METHODS
Among defenses, there are numerous works that either
propose methods for specialized tasks, networks or attack
types. There are also techniques that mainly focus on
improving the defense strength by combining multiple
defense strategies discussed above. This section provides a
summary of such works in the recent literature.

Cemgil et al. [429] analyzed the susceptibility of Varia-
tional Auto-Encoders (VAEs) to adversarial examples. They
identified ‘evidence lower bound’ as one of its major
causes, which is addressed by a data augmentation strategy
during training in their work. He et al. [430] specifically
proposed a binarization aware training method to defend
against the Bit Flip Attack [175]. Robustness of Bayesian
networks to gradient-based attacks is studied in [431].
Similarly, inherent robustness of spiking neural networks
is the main topic of discussion in [432]. Defending Graph
Neural Networks (GNNs) is studied in [433]. Among other
specialized defenses, differential privacy is used in [434] to
detect poisoning samples for backdoor attacks. There are
also methods that focus entirely on defending neural models
against the universal adversarial perturbations [435], [436]
Cost sensitive adversarial robustness is studied in [437],
whereas a so-called ‘guided complement entropy’ loss is
proposed in [438], claiming better robustness over the
standard cross entropy loss.

There are also examples providing specialized defenses
for computer vision tasks other than standard classifica-
tion, e.g. tracking [439], open-set recognition [440], face
recognition [441]. Goldblum et al. [442] proposed a method
to infer robust models for few-shot classification tasks
based on adversarially robust meta-learners. A prediction
poisoning attack is adopted as a defense against the model
stealing attacks in [443]. The technique systematically alters
the prediction of a target model to maintain the original
performance but poison any model trained to steal the target
model. A similar approach is taken in [444] by selectively
making incorrect prediction for out-of-distribution queries to
avoid model stealing.

Methods analyzing defense mechanisms and robustness
instead of proposing new specialized defenses are also found
for this category of defenses. For instance, [445] anaylzes
the robustness of sparse coding to adverarial examples.
It is observed in [446] that multitask learning generally

results in improving adversarial robustness of the models.
Kim et al. [447] claim that by leveraging sparsity and other
perceptual biological mechanisms, adversarial robustness of
models can be improved. Wang et al. [448] studied how
to calibrate a trained model in-situ, in order to analyze
the achievable trade-offs between the standard and robust
accuracy of the model. Trade-off between the backdoor
and adversarial robustness of models is studied in [449].
Chen et al. [450] proposed to use Neural Architecture Search
to find adversarially robust architectures. Adversarial robust-
ness in the more practical scenario of long-tailed data
distribution is analyzed in [451]. The authors combine
adversarial training with the existing recognition methods
for imbalanced and long-tailed data to highlight interesting
properties of models. For instance, it is shown that unreliable
evaluation can easily give fake robustness gain impression for
these models.

XI. DISCUSSION
Since its advent in 2013, the problem of adversarial attacks
and lack of defenses for deep learning has intrigued the
computer vision community considerably. Currently, this
research direction is more active than ever. We found an
ever-increasing number of papers appearing in the leading
research sources of computer vision. The mainstream venues
of machine learning research are also publishing papers with
almost the same frequency as the computer vision venues.
Interestingly, we found that most works in the direction
of adversarial attacks and defenses appearing in machine
learning sources still use ‘visual models’ as their test-bed.
Nevertheless, we find a particular interest of the machine
learning community in robustification of the models instead
of devising new methods of fooling them. Of 400+ papers
identified among the top six computer vision and machine
learning venues in the last three years, we find around 74%
papers dealing with defense techniques in machine learning
venues. In contrast, only 40%of the papers in computer vision
venues make adversarial defense as their central topic.

Among many interesting sub-problems in this area, the
problem of ‘black-box’ attacks under better transferability
and query-based setup is gaining significant popularity in
computer vision research sources. In parallel, the topics
of ‘adversarial training’ and ‘provable/certified’ defenses
currently stand out in the literature appearing in machine
learning sources. Below we summarize a few general trends
that we observed in the literature. We intentionally keep the
discussion at a higher-level of abstraction while covering the
broader direction. The reader is encouraged to visit the related
sections of the article to observe these trends with specific
instances.

A. GENERAL TRENDS AND CHALLENGES
1) ADVERSARIAL ATTACKS
Whereas the first generation of attacks explored new core
tools to fool deep visual classifiers, the more recent attacks
are concerned with utilizing those tools for more specific
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fooling objectives. Gradient ascend over the loss surface of
the model is arguably the most common (and effective) tool
for adversarial attacks in the literature. An overwhelming
majority of the existing white-box attacks and transfer-based
black-box attacks use this tool in some form to compute
the additive adversarial perturbations. Model gradients are
sometimes also utilized to satisfy linearization assumptions
used by the attacks that aim at exploiting the geometry of
the classification regions of the model. The observation that
model gradients are the central tool for adversarial attacks
resounds with the fact that deep models are, in the end,
differentiable programs. Nevertheless, there are also other
tools and heuristics, e.g. evolutionary algorithms, color-space
search, that have been shown to find effective adversarial
examples. As compared to model-gradients, such techniques
are found to be more ad-hoc though.

The more recent core attack methods often aim at making
the attacks more threatening by further reducing the norm
of the perturbations and amplifying the transferability of the
adversarial examples in black-box setups. Although universal
perturbations can be considered a more serious threat from a
practical viewpoint, the vast majority of the existing literature
(>95%) is concerned with image-specific attacks. A major
reason for that is, from the defense perspective, securing
models against (stronger) image-specific attacks already
provides some robustness against the universal attacks,
because the adversarial objective of the latter is already more
challenging than that of the former. Nevertheless, we still find
active investigations related to specifically securing models
against the universal perturbations.

Since black-box attacks are gaining considerable popu-
larity in the recent literature, it is worth summarizing some
of the trends specifically in this direction. For the transfer-
based black-box attacks, currently an accuracy reduction
(of the target model) in the range 40 − 50% with `∞
perturbation norm of 15/255 is generally considered a
good achievement in the recent literature for ImageNet
models. This is true only for untargeted fooling though. The
norm-bound is often considerably relaxed for the targeted
black-box fooling (e.g. up to 32/255) without achieving
fooling ratios at par with untargeted fooling with half the
perturbation norm. We also observer that black-box attacks
are reported to transfer better between the models with
architectural similarity. For instance, one can expect to see an
accuracy reduction of∼50% when transferring perturbations
computed on inception-V3 to inception-V4. This number
is expected to be ∼25% when those perturbations are
transferred to a ResNet-50 model. These numbers are
not hypothetical. We provide them by observing multiple
contributions. However, since each attack method has its
own specific algorithm, the exact transfer rates may vary.
We intentionally do not associate these numbers to specific
methods, and only provide a rough estimate as a general guide
to the readers.

One surprising trend we observed in the literature is about
the evaluation of transfer-based black-box attacks. The term
‘black-box’ is understood by the community as a setup where

the attacker does not have ‘any’ information about the target
model (except its output in query-based setup). However, the
existing methods generally report the attack transfer rates on
‘ImageNet’ models while also computing the perturbations
on the ‘ImageNet’ models. In essence, this setup entails
complete knowledge of the training data of the target model,
which violates the definition of ‘black-box’ setup. Strictly
speaking, the target models must be trained on unseen data,
and should have, e.g. unknown number of output labels.
We suggest that the research community considers this aspect
in evaluating the transfer-based black-box attacks.

Among the query-based black-box attacks, the boundary
attacks are more popular - outweighing their score-based
counterpart by ∼5 to 1. Generally, the query-based attacks
optimize for two contradictory objectives of (a) achieving
high fooling rates with stronger perturbations that use
minimum number of queries, (b) keeping the perturbations
imperceptible by restricting their norm. The most widely
used strategy is to first query the black-box model with
large perturbations, and then reduce the perturbation norm
with a refinement mechanismwhile maintaining the incorrect
prediction. We witness a large variation in the achieved
fooling ratios and the number of queries utilized by different
methods in this direction. It is clear from the reported results
that these values depend rather strongly on image size. For
ImageNet sized images, current literature considers 20K to
100K+ queries per image to still be reasonable to achieve
imperceptible perturbations. This number drastically reduces
to ∼1K for image sizes of 32× 32.
From the perspective of threat of adversarial attacks in the

physical world, we do not find research to be as active as
in the digital domain. One reason for that is the processes
involved in physically realizing the computed adversarial
patterns are often cumbersome and time taking. This does
not mix well with the extremely fast pace of this research
direction in the digital domain. Hence, even the attacks
devised for the physical world applications are often just
evaluated in simulated environments, e.g. camouflage cars
for autonomous driving. Whereas we did not find any
convincing argument that could suggest that physical world
attacks are not a real concern to vision systems, we do
find the adversarial samples for the physical world to be
more conspicuous. Generally, such samples can be marked
by obvious unnatural/irrelevant geometry or texture. Such a
compromise over the stealthiness of the attack directly comes
from the fact that visual sensors digitize only the ‘visible’
information. Hence, the adversarial patterns have to be visible
to the sensor. Hiding the adversarial patterns from humans by
semantically blending them in the scene environment is then
the obvious choice for imperceptibility of the attacks in the
physical world.

One interesting emerging utility of adversarial attacks
is in explaining deep visual models. Considering that
model gradients are utilized by both attack methods and
popular model explanation methods, e.g., Grad-CAM [102],
CAMERAS [452], it is not surprising that this overlap is
emerging. Since deep learning models are differentiable
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programs, one can expect adversarial perturbations (which
are a processed form of gradient information) can carry
a signature of that program. From another perspective,
perturbations can also be expected to focus (in some form)
more on the salient regions of object to take model’s attention
away from those regions. This notion also resounds with
image saliency. Hence, researchers are also getting interested
in explainability of the perturbation itself.

Beyond the above-mentioned trends and challenges, the
recent attacks are gradually getting more and more special-
ized to specific vision tasks and data modalities. Neverthe-
less, since the discovery of adversarial perturbations, their
theoretical understanding has always been a topic of debate.
Though a number of hypotheses exist in the literature on the
susceptibility of deep learning to adversarial attacks, there is
no single theory to fully explain all the observed phenomena
in this direction. The adversarial vulnerability of deep models
seem to emerge from a number of processes, and the debate
on its existence and theory to explain all its aspect can be
expected to stay as a long-standing problem for this research
direction.

2) ADVERSARIAL DEFENSES
Whereas a large number of defenses against adversarial
attacks are appearing in the literature, arguably the most
promising stream ofworks still concerns itself with ‘adversar-
ial training’. Interestingly, the concept of adversarial training
was presented simultaneously with adversarial perturbations
in the original work of Szegedy et al. [22]. Most of the later
literature significantly digressed from this original idea of
robustifying the models. However, the later defense strategies
mostly rely on ad-hoc rules and heuristics. Many of those are
also shown to be broken with stronger attacks or different
attack conditions [453]. In fact, recently, Tramer et al. [157]
also show that thirteen different defenses that actually
account for adaptive attack strategies can also be broken.
From the defense perspective, the research community
(especially machine learning community) is focusing more
on adversarial training and certified defenses due to their
principled nature. Nevertheless, reduction in the accuracy
of the robust models on clean images is a major challenge
at this front. It is easy to observe in the literature that
methods withstanding stronger attacks have proportionally
low accuracy on clean images.

3) FUTURE OUTLOOK
Considering an ever-increasing influx of research papers in
adversarial attacks (and defenses) since the advent of this
direction, we can easily predict high research activity in this
direction in the near-future. From the attacks perspective,
whereas white-box attacks are likely to keep building around
the tools used by the first-generation attackmethods, a variety
of new techniques for black-box setup can be anticipated.
This is especially true for query-based attacks that is gaining
increasing interest of the research community. Naturally,
we can also anticipate the attacks to soon circumscribe

Transformer models in vision, which are gaining popularity
in computer vision community [454].

Based on the existing literature, we can argue that topics
like understanding the existence of adversarial examples,
intrinsically robust models, robustness-accuracy trade-off,
adversarial training, certified defenses; are gradually adapt-
ing into long-standing problems of this direction. Hence,
we also expect a multitude of works directed to address
these problems in the future. We are likely to see mergence
of adversarial perturbation techniques with other related
directions, e.g. deepFakes [248], backdoor attacks [455].
Specifically, a potential interesting scenario is adopting
the adversarial objective of perturbations to independently
fool the detectors of deepFakes and backdoor attacks.
We are also likely to witness more activity in terms of
expansion of adversarial attacks through visual models to
multi-model tasks, e.g. image/video captioning [227] which
combines visual models with language models, providing the
opportunity to control the latter by attacking the former.

Since adversarial examples question the core utility of
deep learning of making ‘reliable’ automated decisions,
the research direction of adversarial attacks (and their
defenses) seems to be here to stay with deep learning
research. Just like deep learning is finding utilities in all
applications, adversarial attacks are gradually adapting to
those applications as its nemesis. From the viewpoint of this
research direction, this arm race is promising, but not somuch
for deep learning in practice.

XII. CONCLUSION
In this article, we reviewed the research direction of adversar-
ial attacks and defenses for deep learning models, focusing
on the visual models. Since its advent in 2013, this direction
has particularly intrigued the computer vision community,
which has led to a large influx of papers in the recent
years. To ensure the authenticity and quality of the discussed
contributions, the survey mainly focused on the papers
published in the top-ranked sources of computer vision
and machine learning research. For standardising technical
terminologies in this relatively new research direction, the
survey also provided a list of definitions of the frequently
used terms in the related literature. It also presented a detailed
discussion on the early contributions in adversarial attacks
to provide a historical account of the overall direction.
The presented review builds on the first-ever peer-reviewed
survey in this direction [29] - co-authored by the authors of
this survey - as a legacy sequel. In [29], literature until 2018 is
covered thoroughly. Hence, this article focused on the more
recent literature, published after 2018. The covered literature
is divided into attacks and defenses methods, which are
further broken down into sub-topics by clustering the papers.
This provided a clear indication of the current and emerging
trends in the literature, that we discussed and reflected upon
explicitly after reviewing the literature.
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