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ABSTRACT Machine learning has recently become a popular algorithm in building reliable intrusion
detection systems (IDSs). However, most of the models are static and trained using datasets containing
all targeted intrusions. If new intrusions emerge, these trained models must be retrained using old and
new datasets to classify all intrusions accurately. In real-world situations, new threats continuously appear.
Therefore, machine learning algorithms used for IDSs should have the ability to learn incrementally when
these new intrusions emerge. To solve this issue, we propose T-DFNN. T-DFNN is an algorithm capable
of learning new intrusions incrementally as they emerge. A T-DFNN model is composed of multiple deep
feedforward neural network (DFNN) models connected in a tree-like structure. We examined our proposed
algorithm using CICIDS2017, an open and widely used network intrusion dataset covering benign traffic
and the most common network intrusions. The experimental results showed that the T-DFNN algorithm
can incrementally learn new intrusions and reduce the catastrophic forgetting effect. The macro average of
the Fl-score of the T-DFNN model was over 0.85 for every retraining process. In addition, our proposed
T-DFNN model has some advantages in several aspects compared to other models. Compared to the DFNN
and Hoeffding tree models trained with a dataset containing only the latest targeted intrusions, our proposed
T-DFNN model has higher Fl-scores. Moreover, our proposed T-DFNN model has significantly shorter
training times than a DFNN model trained using a dataset containing all targeted intrusions. Even though
several factors can affect the duration of the training process, the T-DFNN algorithm shows promising results
in solving the problem of ever-evolving network intrusion variants.

INDEX TERMS Network intrusion detection, incremental learning, catastrophic forgetting, deep learning,

classification algorithm.

I. INTRODUCTION
Intrusion detection systems (IDSs) are crucial components
in the current computing infrastructures to identify mali-
cious computer network activities [1], [2]. Along with the
growth of network-based applications and systems, the num-
ber of cyberthreats is increasing [3]. IDSs play a vital role
in cybersecurity [4] by forewarning security administra-
tors about malicious activities such as distributed denial-of-
service (DDoS), port scan, and SQL injection attacks. Having
reliable IDSs is a mandatory safeguard for protecting comput-
ing infrastructures against ever-increasing issues of intrusive
activities [5].

The idea of creating reliable IDSs with improved accu-
racy and fewer requirements for human knowledge drives
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the development of machine learning-based IDSs. Machine
learning algorithms such as artificial neural networks
(ANN?s), fuzzy logic, and support vector machines (SVMs)
have become extensively used in IDS studies [6]-[8]. These
machine learning algorithms can extract knowledge from
datasets through complex pattern-matching processes [6].
Extracting this knowledge requires most machine learning
algorithms to be trained using datasets containing all targeted
intrusions [9].

The requirement of acquiring datasets containing all tar-
geted intrusions raises an important issue. In real-world sit-
uations, security experts collect intrusion data incrementally
because intrusions do not emerge at once but gradually over
time. It is possible to create a new model for these new intru-
sions. However, training a model using a dataset containing
all intrusions may take a long time. Additionally, it is difficult
to modify the previously trained model to accommodate new
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intrusion variants because the training process is static and
only performed once using datasets containing all targeted
intrusions. To solve this problem, we need to develop an
algorithm that can learn incrementally with a shorter training
time as new intrusions emerge. However, the catastrophic
forgetting problem becomes the main challenge to realizing
this idea [10]-[12].

Catastrophic forgetting is a classic problem faced by many
machine learning models and algorithms [12]. Assume we
have trained a classification model; then, we retrain this
model using a new dataset containing new classes. In this
situation, most current classification models may forget how
to classify the old classes. Goodfellow et al. [12] explain that
when we train a machine learning model with a convex
objective, it will always end with the same configuration at
the end of the training process, regardless of how it was
initialized. For example, a support vector machine (SVM)
that is trained on two different tasks will completely forget
how to perform the first task. If this retrained SVM model
can correctly classify some data from the old task, it is only
due to the similarity of both old and new tasks.

This research aims to solve the two problems we previously
mentioned: the problem of ever-evolving network intrusion
variants and the catastrophic forgetting problem. To solve
these issues, we propose an incremental learning algorithm
capable of learning new intrusions incrementally as they
emerge. Our proposed method is composed of multiple deep
feedforward neural network (DFNN) models. Each neuron in
the output layer of a DFNN model is linked with another
DFNN model, creating a tree structure. Hence, we named
our proposed method tree deep feedforward neural networks
(T-DFNN). The tree structure in T-DFNN is expandable. New
nodes can be added when learning new intrusion variants.

Note that we do not intend to propose our incremental
learning model to replace the current standard models, which
use a dataset containing all intrusions in the training process.
Instead, we intend to propose a model that works alongside
existing models. When new intrusions emerge, training a new
model using a dataset containing all intrusions is a prolonged
process. Our research solves this issue by providing an incre-
mental learning model with a shorter training time without
sacrificing the model’s performance. While a current standard
model is being prepared, this incremental learning model can
be used during the interim. The reason is that even though
the current standard model has a slow training process, it has
arelatively simpler structure, thereby having a faster classifi-
cation process. This simpler structure is beneficial when used
in long-term scenarios.

T-DFNN is a supervised machine learning algorithm.
It needs a labeled dataset to perform the training pro-
cess. In this research, we used Canadian Institute for
Cybersecurity’s intrusion detection evaluation dataset
2017 (CICIDS2017) to evaluate our proposed algorithm.
CICIDS2017 is a reliable and labeled network intrusion
dataset that covers both benign and intrusion traffic. The
intrusion traffic in this dataset consists of the most common
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network intrusions. The creator of this dataset [13] did not
design this dataset specifically for the incremental learning
problem. Therefore, we divided CICIDS2017 into several
batches and then trained the models in our experiment using
these batches sequentially to simulate the incremental learn-
ing process.

We should note that the incremental learning term has
been used rather loosely in the literature. This term refers to
several concepts, such as incremental network growing and
pruning, online learning, or relearning of formerly misclas-
sified instances [14]. The incremental learning term in this
study refers to a machine learning algorithm that meets the
following criteria:

1) It can learn new information, e.g., new network intru-
sion variants.

2) It can preserve previously acquired knowledge or,
in other words, it should not suffer from the catas-
trophic forgetting problem.

In summary, we make the following contributions in this

paper:

1) We propose T-DFNN: an incremental learning algo-
rithm for IDSs. A T-DFNN model is composed of mul-
tiple DFNN models connected in a tree-like structure.
This tree structure model can be partially retrained
to accommodate new intrusion variants when they
emerge.

2) The T-DFNN algorithm can reduce the catastrophic
forgetting effect. When a dataset of new intrusions
emerges, it preserves the trained nodes while expanding
the model by adding new nodes to classify the new
intrusions. This mechanism reduces the catastrophic
forgetting effect on the model.

3) The T-DFNN algorithm can shorten the training time
by limiting the old training dataset needed in the
retraining process. In the T-DFNN algorithm, the train-
ing dataset in each node is selected based on the classi-
fication results of the parent node. Only data classified
as the same parent node’s output label are used in each
node.

The remainder of this paper is arranged as follows:
Section II presents related work; Section III describes our
proposed incremental learning algorithm; Section IV explains
the experimental setup of this research; Section V presents a
summary of the experimental results; Section VI discusses
the challenges of implementing the proposed incremental
algorithm in the network intrusion detection problem; and
Section VII provides our conclusion and future work.

Il. RELATED WORK

A. INTRUSION DETECTION SYSTEMS

IDSs are security tools that identify malicious network activ-
ities on computer infrastructures. They monitor network
traffic and system logs to find malicious network activi-
ties that conventional firewalls cannot filter [2], [6]. There
are two main categories of IDSs based on their detection
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method: signature-based and anomaly-based IDSs [6], [15].
Signature-based IDSs use pattern-matching techniques to
find known malicious network activities. Signature-based
IDSs are also known as knowledge-based detection or misuse
detection. In contrast, anomaly-based IDSs analyze network
traffic to find a significant deviation between observed traf-
fic and acknowledged traffic behavior. Anomaly-based IDSs
interpret this deviation of behavior as an intrusion [2], [4],
[6], [7], [15]. One approach in building anomaly-based IDSs
is using machine learning algorithms [4].

Most of the machine learning models used in previous
studies of IDSs are static models and trained using a dataset
containing all targeted intrusions. Only a few of them raised
the issue of ever-evolving network intrusion variants [16].
Studies by Constantinides et al. [16], Chen et al. [17], Yi et
al. [18], Xu et al. [19], and Jiang et al. [20] are examples of
those proposing an incremental learning method to solve the
problem of ever-evolving network intrusion variants. Most
of these studies utilized support vector machines (SVMs) in
their proposed incremental learning methods. SVMs belong
to the supervised machine learning algorithm category com-
monly used for classification problems. Despite the promi-
nent properties of SVMs, the training complexity of SVMs
is highly dependent on the size of a dataset. Thus, SVMs
are not as favored for large-scale data mining as for pattern
recognition [21].

To test the performance of proposed IDS meth-
ods, researchers often used publicly available intrusion
datasets [15]. In this research, we used CICIDS2017. It is
a newer IDS dataset than the KDD Cup 1999 dataset [22],
which has been commonly used in previous IDS incremental
learning studies [17]-[20]. We did not use the KDD Cup
1999 dataset because it has several deficiencies. One of the
critical deficiencies of the KDD Cup 1999 dataset is the
significant number of redundant records, which causes a bias
toward the more frequent records [23]. Another unfortunate
deficiency of the KDD Cup 1999 dataset is the fact that
this dataset is very old [15]. It was created in 1999 for The
Third International Knowledge Discovery and Data Mining
Tools Competition. Hindy et al. [15] explained that depend-
ing solely on old datasets cannot help the advancement of
IDSs. Thus, it is better to use newer intrusion datasets that
cover recent variants of intrusions.

B. INCREMENTAL LEARNING
Recently, many studies have preferred deep learning using
artificial neural networks (ANNSs) to process large-scale
data [24]-[26]. Deep learning using ANNs is one of the
popular algorithms for learning information from complex
datasets. Deep learning using ANNSs can create complex mod-
els compared to traditional probabilistic machine learning
techniques [24]. Therefore, they have been broadly used for
IDSs [2], [6]-[8], [15].

Despite being broadly used, most deep learning stud-
ies in IDSs do not focus on incremental learning. Instead,
they focus on improving the classification performance by
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utilizing deep learning algorithms. In contrast, incremen-
tal learning using deep learning algorithms is thriving in
image processing fields. For example, Roy et al. [27] used
deep convolutional neural networks (CNNs) to build a hier-
archical model for incremental learning. Their proposed
model organizes the incrementally available images into sev-
eral superclasses based on features. In the training process,
new classes of images are added to the hierarchical model
as the subclasses. The retraining processes are limited in
the affected superclasses to reduce the computational over-
head. Sarwar et al. [28] also proposed an incremental learn-
ing algorithm using CNNs. Unlike Roy et al.’s approach,
Sarwar et al. used a partial network sharing method in their
incremental learning method. Inspired by transfer learning
techniques, Sarwar et al.’s method splits CNN layers into
shared and classification layers. The first several layers
become the shared layers, and the rest become the classifi-
cation layers. When the model is retrained using new image
data, the classification layers are cloned to classify the new
images. The result of this cloning process is a tree struc-
ture model of shared and classification layers. Both methods
use different approaches to generate an incremental learning
model. However, the structure of both models resembles a
tree structure. Additionally, both methods limit the retraining
process in the new branches of the tree structure to reduce
the computational overhead. We adopted the idea of using
a tree-structured model for incremental learning in our pro-
posed method.

We used DFNN models in the T-DFNN algorithm. The
DFNN model is one variant of ANNs used for deep learning.
We combined a tree structure and DFNN models to build
an incremental learning algorithm that can preserve knowl-
edge from the previous training while reducing the retraining
process’s computational overhead. Multiple nodes of DFNN
models are used in the T-DFNN model to classify the given
input data. Unlike Roy et al.’s approach [27], we did not
group similar intrusion classes into one superclass. Instead,
we utilized a previously trained model to find the old and new
classes classified as the same output label.

In our experiment, we compared our proposed method with
another tree-based incremental learning algorithm. We chose
a well-known incremental decision tree algorithm, namely,
the Hoeffding tree algorithm [29]. The Hoeffding tree algo-
rithm can learn from large-scale incremental data. It exploits
the fact that a small portion of data is often enough to
select an optimal splitting attribute of the dataset. Thus, this
algorithm is commonly used to process incremental data
[20]. The Hoeffding tree algorithm has been implemented
in several popular machine learning libraries, such as scikit-
multiflow [30] and Weka [31].

ill. METHODS

The T-DFNN algorithm covers both training and classifica-
tion processes. The training process of the T-DFNN algorithm
generates an incremental learning model. This incremental
learning model is then used in the classification process
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FIGURE 1. Training and classification flow of the T-DFNN algorithm.

to classify the input data. The T-DFNN algorithm aims to
classify ever-growing network intrusions efficiently. Thus,
the training process in the T-DFNN algorithm is designed to
preserve the knowledge learned by the previous model while
reducing the quantity of old training data used in the training
processes.

T-DFNN model is a tree-structured model. It consists of
a root node and may have several leaf and internal nodes.
When a T-DFNN model is retrained, the trained nodes are
not modified to preserve the previously learned knowledge.
Instead, new nodes are created. These newly created nodes
are then connected with the existing nodes to create a tree-
structured model. The innovation of our proposed T-DFNN
algorithm is its ability to distribute the training data to each
node while limiting the number of old training data used to
train these new nodes, thereby shortening the time needed to
retrain the model.

Figure 1 shows the training and classification flow of
the T-DFNN algorithm. The main feature of the T-DFNN
algorithm in the training process is the mechanism to reuse
a previously trained model to learn new training data. Thus,
a trained model is saved after each incremental training pro-
cess. Except for the first training process, the saved model is
loaded along with the new training data. This saved model is
then retrained to classify the new input data.

One of the essential components in the T-DFNN model
is the T-DFNN node. There are two important items in the
T-DFNN node: a DFNN model and a map of output labels.
A DFNN model processes the input data and classifies them
into several output labels. These output labels can be linked
with other T-DFNN nodes using a map. A map is a data
structure that consists of key-value pairs. In the map of the
output label, the output labels become keys, and the val-
ues of these keys are either other nodes or NULL values.
A NULL value indicates that the output label is not linked
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Pseudocode 1 T-DFNN Node

class TDFNNNODE () ¢
attribute: M : DFNN model x: map of output labels

of M
1 procedure Instantiation:
2 M < create a DFNN model
3 W < empy map
4 procedure Train (X, Y):

input: X: array of training data Y: array of labels
of training data

// Train DFNN model M using X

and Y
5 DFNNTraining (M, X, Y)
6 foreach L € output labels of M do
// Map output label L to NULL
7 w(L) < NULL
8 end

9 procedure Classify (X):
input: X: array of input data
output: YC: array of labels of classified data

// Classify data X using DFNN

model M
10 YC < DFNNClassification (M, X)
11 return YC

12 procedure Get LinkedNode (L) :

input: L: label

output: N: TDFNNNODE

// Get the node linked with
output label L

13 N <« (L)

14 return N

15 procedure SetLinkedNode (L, N):
input: L: label N: TDFNNNODE

// Map output label L to node N
16 u(lL) < N

with any node. Pseudocode 1 shows the implementation of a
T-DFNN node.

As we previously mentioned, the innovation of the
T-DFNN algorithm is its mechanism to distribute the training
data to several nodes and limit the number of old training
data used in the training process. In the retraining process,
several new nodes can be created. In addition to the new
training data, old training data are also used to train these new
nodes. However, the T-DFNN algorithm limits the number
of old training data used to train these new nodes. Each new
node only uses old training data classified as its parent node’s
output label. The details of this training process are described
in Section III-A.

The classification process in the T-DFNN algorithm is
performed in several steps. First, the input data are processed
using the root node of the T-DFNN model. Then, the outputs
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FIGURE 2. T-DFNN models in its first and second training processes.

of the root node’s classification process are used to determine
whether the classification process will continue using the
child nodes or be terminated. These processes have simi-
larities with the classification process in the decision tree.
The difference is that in the T-DFNN algorithm, we used the
DFNN model outputs as the splitting rules. We discuss the
details of the classification process in section I1I-B.

A. INCREMENTAL TRAINING ALGORITHM

After loading the first batch of training data, we process
it using the incremental learning procedure shown in Pseu-
docode 2. In this first training process, we create a node. Con-
sequently, this node becomes the root node of the T-DFNN
model. This root node is then trained using the given training
data. Last, we map the output labels of the DFNN model
to NULL to indicate that the output labels are not linked
with any node. We describe the initial training process in
Pseudocode 2, Lines 1 to 3.

The retraining process begins by loading the training data
and the trained T-DFNN model. We do not retrain existing
nodes to prevent the catastrophic forgetting effect. Instead,
we use the existing nodes to find suitable output labels to be
linked with the new nodes. These new nodes are trained to
classify the new training data.

We describe the process of finding suitable output labels to
be linked with new nodes in Pseudocode 2, Lines 4 to 18. The
process begins by classifying the new training data using the
root node’s DFNN model, as shown in Pseudocode 2 Line
5. The root node’s DFNN model misclassifies new training
classes as old classes because we did not train the root node’s
DFNN model to classify these new training data. We illustrate
this condition in Figure 2(b). In Figure 2(b), the root node’s
DFNN model misclassifies class 4 training data as output
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: Qutput label
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(b) Second training process.

label 2. It is also possible that the root node’s DFNN model
misclassifies a new training class as two or more old classes.
For example, in Figure 2(b), the root node’s DFNN model
misclassifies part of the class 3 training data as output label
0 and the other part as output label 2.

There are two possible conditions when multiple classes
are classified as the same output label:

1) The output label is linked with a node.
2) The output label is not linked with any node.

In the first condition, where an output label is linked with
another node, we rerun the training process using the linked
node as the new root. This recursive training process con-
tinues until we find an output label with no linked node.
In other words, the second condition occurs. In this second
condition, we create and train a new node. Only the training
data classified as the same parent node’s output label are used
in the training process. Last, we link the parent node’s output
label with this newly trained node by mapping the parent
node’s output label to the new node. We describe these steps
in Pseudocode 2, Lines 9 to 15.

One key component of the T-DFNN incremental training
algorithm is selecting appropriate training data used in each
node. This selection process limits the quantity of training
data in each node. We describe the training data selection
process in Pseudocode 3. Training data in each node are
previously classified as the same parent node’s output label.
For example, in Figure 2(b), the training data used in the
co node are class 0 and part of the class 3 training data because
they are classified as output label O in the root node. Likewise,
the training data used in the ¢ node are class 2, part of
class 3, and class 4 training data because they are classified
as output label 2 in the root node. Training data of a class
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Pseudocode 2 T-DFNN Incremental Training

w N

N & s

10
11
12
13
14

15
16
17
18
19

procedure INCREMENTALTRAINING (X, Y, N):

input: X: array of training data Y: array of labels of training data N: TDFNNNODE

output: N: TDFNNNODE
if N = NULL then

Call Train (X, Y) procedure of N
to NULL

else

YC <« Call Classify (X) procedure of N

as L
if any values in YL # L then

output label L
if linkedN # NULL then

else

to node newN
end

end
end

end
return N

linkedN < Call GetLinkedNode (L) procedure of N

N <« create a TDFNNNODE instance // create TDFNNNODE and run Instantiation procedure
// Train DFNN model of N and map its output labels

// Run Classify procedure in node N

foreach L € unique(YC)do // Loop for each unique value of predicted output labels
XL,YL < SelectTrainingData(X,Y, YC, L)

// Select training data classified

// If there are new classes
// Get TprFNNNODE linked with

// Output label L is linked to [linkedN

‘ linkedN <— INCREMENTALTRAINING (XL, YL, linkedN )

// Output label L is not linked to any node
newN < INCREMENTALTRAINING (XL, YL, NULL)
Call SetLinkedNode (L, newN) procedure of N

// Map output label L in node N

Pseudocode 3 Training Data Selection

AW N =

10
11

procedure SelectTrainingData (X, Y, YC, L):

input: X: array of training data Y': array of labels of
training data YC: array of labels of classified
data L: label
output: XL: array of selected data YL: array of
labels of selected data

// initiate empty array
XL, YL < empy array
j<0
num <— number of row in X
fori < O0...(num — 1) do
// If row i of array YC is L
if row(YC, i) = L then
// Copy row i of array X
row(XL, j) = row(X, i)
// Copy row i of array Y
row(YL, j) = row(Y , i)
j=j+1
end

end
return XL, YL
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may be divided into several parts and trained using different
nodes. For example, class 3 training data used in the co node
were previously classified as output label O in the root node.
In contrast, class 3 training data used in the ¢y node were
previously classified as output label 2 in the root node. Thus,
there are no overlap training data used in those two nodes.

We do not need to use the training data of all old classes
in the training process of new training data. Training data
of some old classes are only needed when the old and new
classes are classified as the same output label. For example,
in Figure 2(b), we do not need to use class 1 training data
because when we classify the new training data using the root
node, there are no new classes classified as output label 1.
This method reduces the quantity of old training data used
for the training process of the new classes.

B. CLASSIFICATION ALGORITHM

The T-DFNN classification algorithm is a recursive pro-
cess. As shown in Pseudocode 4, the first step is classifying
the input data using the root node’s DFNN model. Then,
we check the linked node for each output label. If the out-
put labels of the root node’s DFNN model are linked with
other nodes, we run the classification algorithm recursively
using the linked nodes. This recursive process stops when the

154161



IEEE Access

M. Data, M. Aritsugi: T-DFNN: Incremental Learning Algorithm for Intrusion Detection Systems

fm————

1 .
| 1 :Active node

U : Output label

1
—— 1 : Inactive node @ : Selected classification result

% : DFNN model @ : Unselected classification result

(a) Class 1 data classification flow.

FIGURE 3. T-DFNN model classification processes.

DFNN model’s output label in the last node is not linked with
any node.

When the DFNN model of a node classifies the input data,
there are two possible conditions regarding each output label:

1) The output label is not linked with any node.
2) The output label is linked with a node.

In the first condition, the input data classified as this output
label is not processed further. Thus, this output label becomes
the final classification result. We illustrate this condition in
the root node’s output label 1 in Figure 3(a). In Figure 3(a),
the root node classifies the input data as output label 1.
Because there is no node linked with output label 1, the final
classification result is class 1.

In the second condition, we run the classification algorithm
recursively using a node linked with the output label. Not
all input data are used in this recursive process. Only input
data classified as the output label of the linked node will
be selected. We describe this data selection process in Pseu-
docode 5. This recursive classification process stops when
an output label with no linked node is found. Thus, the last
output label with no linked node becomes the final classifica-
tion result. To do that, we need to update the current node’s
classification result using the recursive process’s output. Only
the classification results of the input data used in the recursive
process are updated. We describe the process of updating the
classification results in Line 7 of Pseudocode 4, which is
explained in more detail in Pseudocode 6.
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(b) Class 4 data classification flow.

cp,node  : Node linked with c,data : Data of classes O and 3
output label 0 in classified as output label
the root node 0 in the root node

c, node : Node linked with c, data : Data of classes 2, 3 and 4

output label 2 in
the root node

classified as output label
2 in the root node

(c) Class 3 data classification flow.

We illustrate the recursive classification process in
Figure 3(b). In Figure 3(b), the root node’s DFNN model
classifies input data as output label 2. Because output label
2 in the root node is linked with the c¢» node, we recursively
run the classification process using the ¢» node. Then, the
¢y node classifies the input data as output label 4. Because
there is no node linked with output label 4 in the ¢, node, the
final classification result of the input data is class 4.

The T-DFNN model may classify a new class using two
or more nodes. For example, in Figure 3(c), the root node’s
DFNN model classifies input data as output labels 0 and 2.
Both output labels are linked with different nodes. Output
labels 0 and 2 in the root node are linked with ¢ and ¢, nodes,
respectively. Under this condition, the input data are split into
two groups. The first group is the input data classified as
output label 0 by the root node’s DFNN model, while the
second group is the input data classified as output label 2 by
the root node’s DFNN model. These two groups of input
data are processed further using different nodes. The first
group is processed by the ¢y node, while the other group is
processed by the c¢» node. Finally, both DFNN models of
nodes co and c; classify the input data as output label 3.
Because there is no node linked with output label 3 in both
nodes, the final classification result of the input data is
class 3.

The classification processes of input data in the T-DFNN
model involve several nodes at different tree levels. Thus, the
time needed to classify the input data is the accumulation of
node classifications from the root to the leaf node. In detail,
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Pseudocode 4 Classification

procedure CLASSIFICATION (X, N):

input: X: array of input data N: TDFNNNODE
output: YC: array of labels of classified data

1 YC <« Call Classify (X) procedure of N
foreach L € unique(YC) do

w N

label L

if linkedN # NULL then
XL,Yl < SelectbData (X, YC, L)
newYC < CLASSIFICATION (XL, linkedN)
YC < UppaTeELABEL (YC, newYC, YI)

end

e L N Nt A

end
10 return YC

// Run Classify procedure in node N

// Loop for each unigque value of predicted output labels
linkedN < Call GetLinkedNode (L) procedure of N

// Get TprFNNNoODE linked with output

// Output label L is linked to linkedN
// Select data labelled as L
// Recursively run CLASSIFICATION
// Update the classification results YC

Pseudocode 5 Data Selection

procedure SelectData (X, YC, L):

input: X: array of input data YC': array of labels of
classified data L: label
output: XL: array of selected data YI: array of row
index of selected data
// initiate empty array
1 XL, Yl < empy array
2 j<0
3 num <— number of row in X
4 fori < 0...(num — 1) do
// If row i of array YC is L
5 if row(YC, i) = L then
// Copy row i of array XL
6 row(XL, j) = row(X, i)
// Copy i as row j of array YI
7 row(Yl,j) =i
8 j=j+1
end
10 end
11 return XL, Y/

the classification time of a T-DFNN model is estimated by
calculating the classification time of its root node using
Equation 1.

. t dN)=0
time(N) = . .
t + max({time(n)|n € child(N)}) d(N) >0
(H
where

¢ N is a node in the T-DFNN model,

o tis the DFNN model’s classification time in node N,
o d(N) is the degree of node N,

e child(N) is a set of node N’s child nodes.
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If the degree of node N is 0, i.e., node N does not have
any child node, the classification time of node N is equal to
its DFNN model’s classification time. Otherwise, the clas-
sification time of node N is the sum of its DFNN model’s
classification time and the longest classification time of its
child nodes.

IV. EXPERIMENTAL SETUP

A. DATASET

In this experiment, we used CICIDS2017. It is a reliable
and labeled publicly available network intrusion dataset [13].
CICIDS2017 contains benign and common network intru-
sion flows, which match the features of a reliable bench-
mark dataset proposed by Gharib ef al. [32]. These features
are anonymity, attack diversity, available protocols, complete
interaction, complete capture, complete traffic, complete net-
work configuration, labeling, feature set, heterogeneity, and
metadata. Thus, researchers are attracted to develop machine
learning models and algorithms [33].

CICIDS2017 consists of 84 network traffic features
extracted from raw network packets using CICFlowMeter
software [34], which is publicly available on the Canadian
Institute for Cybersecurity website. Similar to the previ-
ous study [35], we decided to remove six features from
the dataset: Flow ID, Protocol, Timestamp, Source IP, Des-
tination IP, and Source Port. From the network topology
perspective, the values of these features will differ from
real-world scenarios because this dataset was generated at
an isolated network. Additionally, we removed 288,602 rows
with missing labels from the dataset. After the unused and
unlabeled data were removed, the final dataset consisted of
2,830,743 rows and 78 features. There are fifteen classes in
the CICI2017 dataset, one of which is benign traffic, and the
others are fourteen different types of intrusion traffic. Table 1
shows the traffic distributions in this dataset.

We implemented several preprocessing steps to
CICIDS2017. These preprocessing steps are required for
two main reasons. First, our proposed model uses DFNN
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TABLE 1. Dataset batches and distributions.

Batch Class label Encoded Sample
class label Training Evaluation Total

1 Benign 0 1,818,477 454,620 2,273,097
FTP-patator 1 6,350 1,588 7,938

Bot 2 1,573 393 1,966

Web attack-XSS 3 522 130 652

2 DoS-hulk 4 184,858 46,215 231,073
Port scan 5 127,144 31,786 158,930

DDoS 6 102,421 25,606 128,027

‘Web attack-brute force 7 1,206 301 1,507

3 DoS-golden eye 8 8,234 2,059 10,293
SSH-patator 9 4,718 1,179 5,897
DoS-slowloris 10 4,637 1,159 5,796
DoS-slowhttptest 11 4,399 1,100 5,499

4 Infiltration 12 29 7 36
Web attack-SQL injection 13 17 4 21
Heartbleed 14 9 2 11

Total 2,264,594 566,149 2,830,743

Pseudocode 6 Updating Data’s Label

procedure UpDATELABEL (YC, newYC, YI) :

input: YC: array of labels of classified data newYC:
array of labels of new classified data Y7:
array of row index of selected data

output: YC: array of labels of classified data

num <— number of row in newYC
2 fori < 0...(num — 1) do
// Copy row i of array YI

3 Jj <« row(Yl, i)
// Copy row i of array newYC
4 row(YC, j) < row(newYC, i)
5 end
6 return YC

models to classify data in the nodes. Several preprocessing
steps, such as normalization, should be applied to this dataset
before further processing. Second, the CICIDS2017 was not
explicitly designed for incremental learning. To simulate the
incremental learning process, we divided this dataset into
several batches.

The preprocessing steps used in this experiment are as
follows:

1) Replace missing values on each feature using the mean
value of its class.

2) Replace infinite values on each feature using the max-
imum value of its class.

3) Replace negative values on each feature using the min-
imum of its class.

4) Normalize the features using  unity-based
normalization.

5) Group the dataset into several batches.

6) Split the dataset into training and evaluation groups.
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Equation 2 is used to normalize the feature by restricting the
range of the values between 0 and 1. x;j, Xpin, and Xpgy in
Equation 2 represent the value, the minimum value, and the
maximum value of each feature, respectively. The purpose
of this normalization is to prevent a feature from outweigh-
ing the other features. To simulate the incremental learning
process, we divide the dataset into several batches. Each
batch contains several classes. After dividing the dataset into
several batches, we split the data in each batch into training
and evaluation data. The ratio between training and evaluation
data is 4 to 1. Table 1 shows the batches and data distribution
in each batch. In the training process, some classes from old
batches were used. For example, when we created a new node
that needs to classify old and new training classes, some old
training data are used to train this new node. We illustrate this
case in Figure 2(b). In Figure 2(b), the training data used in
the cg node are training data of class 0 and class 3 classified
as output label 0 in the root node.

Xi = Xmin

@

X =
Xmax — Xmin

B. EXPERIMENTAL SCENARIOS

We built and trained our T-DFNN model using Keras 2.2.4,
which runs on top of the machine learning platform Tensor-
Flow 2.0. The DFNN model used in a T-DFNN node consists
of three dense layers. The number of neurons in the first layer
is 120, and the number of neurons in the second layer is 78.
While the numbers of neurons in the first and second layers
are static, the number of neurons in the last layer is dynamic.
The last layer of the DFNN model is a classification layer. Its
number of neurons depends on the number of classes classi-
fied in this node. We illustrate this behavior in Figure 2(b).
In Figure 2(b), the numbers of neurons of the last layer in
co and ¢ nodes are different; the ¢ node has two, while the
¢> node has three.
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The hyperparameters used by the DFNN model in every
node of the T-DFNN model are identical. For the optimizer,
we used the Adam optimizer with a 0.001 learning rate.
By default, the training process continues until 1000 epochs.
However, we used the early stopping method, which moni-
tors the classification loss. If there was no improvement in
50 epochs, then the training process stopped.

In the experiment, we compared the T-DFNN model to
two DFNN models. We named these two DFNN models
DFNN-batch and DFNN-all. DFNN-batch and DFNN-all
models had an identical network structure and hyperparame-
ters to the DFNN model used in the T-DFNN nodes. However,
these two DFNN models and the T-DFNN model utilized
the training data in different ways. The DFNN-batch model
only used training data from the current batch, while the
DFNN-all model used training data from old and current
batches. Similar to the DFNN-all model, the T-DFNN model
also used training data from the old and current batches.
However, not all data from the old batches were used in the
T-DFNN. The old training data were only used if they were
needed to train new nodes, as we described in section III-A.

The purpose of comparing the T-DFNN model with these
two DFNN models was to measure the effectiveness of
the T-DFNN algorithm in addressing ever-evolving net-
work intrusion variants and catastrophic forgetting prob-
lems. The comparison between the T-DFNN model and
the DFNN-batch model demonstrated how severe the catas-
trophic forgetting problem affects the performance of net-
work intrusion detection. It also demonstrated the effective-
ness of the T-DFNN algorithm in reducing the effect of the
catastrophic forgetting problem. The purpose of comparing
the T-DFNN with DFNN-all models is to analyze the advan-
tages and training performance of the proposed incremental
learning algorithm.

We also compared our proposed T-DFNN model with a
Hoeffding tree model [29]. As discussed in Section II, the
Hoeffding tree model is a well-known incremental deci-
sion tree algorithm capable of learning from large-scale
incremental data. To implement the Hoeffding tree algo-
rithm, we used the HoeffdingTreeClassifier method pro-
vided by the scikit-multiflow library [30], which is based
on MOA [36]. For the hyperparameters of this Hoeffding
tree model, we used default hyperparameters provided by the
scikit-multiflow library. Unlike the proposed T-DFNN model,
the Hoeffding tree model only used the training data from the
current batch, which is similar to the DFNN-batch model. The
comparison with this well-established algorithm can help us
understand the advantages and disadvantages of the proposed
T-DFNN model.

We used precision, recall, and Fl-score as the classifi-
cation metrics to compare the performance of the models.
We applied these metrics to each evaluation class. Using these
metrics, we could measure the classification performance
of the models for each class. To measure the performance
of the models in each evaluation batch, we calculated the
macro and weighted average of the precision, recall, and

VOLUME 9, 2021

Fl-score. Equations 3 and 4 show the formula to calculate
the macro average (MA) and weighted average (WA) metrics,
respectively.

C
1
MM=E;W (3)
C n
WAmzzﬁlxmi 4

where

« m is the classification metric, which is precision, recall,
or Fl-score.

o m; is the value of classification metric m of class i.

o C is the number of classes.

o n; is the number of data of class i.

e N is the number of data of all classes.

Finally, we ran the experiment ten times and then calculated
the average value of all metrics we previously mentioned.

The specification of the computer we used in this experi-
ment is as follows:

o CPU: Intel(R) Xeon(R) Gold 5122 CPU @ 3.60 GHz
o GPU: NVIDIA TITAN V 12 GB

« RAM: 196 GB

o OS: Ubuntu 16.04.6 LTS

V. EXPERIMENTAL RESULTS

Figure 4 shows the average values of our ten experimental
trials. It compares two key aspects of our experiment. First,
it compares the evaluation metrics, i.e., precision, recall, and
F1-score, of the proposed T-DFNN model to DFNN-batch
and DFNN-all models. Second, it compares the macro and
weighted averages of the evaluation metrics of each model.
These comparisons show how well the models classify the
data. These comparisons also help us understand the factors
that affect the T-DFNN model in classifying the data.

In Figure 4, the x-axis represents the batch order. This
batch order also correlates to the number of evaluation classes
used in each batch. In Table 1, we can count that the numbers
of training classes in batches 1, 2, 3, and 4 are 4, 4, 4,
and 3, respectively. However, in Figure 4, the numbers of
evaluation classes in batches 1, 2, 3, and 4 are 4, 8, 12, and 15,
respectively. The number of evaluation classes increases in
every batch because it also contains the old batch’s evaluation
data. Thus, in the last batch, all evaluation data were used.
We included the classes from the old batch in these evaluation
data to simulate the incremental learning process. As we
described in Section I, the model for IDSs should be able to
classify both old and new intrusion classes.

The catastrophic forgetting problem on the DFNN-batch
model became apparent after the retraining process. The
macro average of the DFNN-batch model’s F1-score in Fig-
ure 4 declined sharply in each retraining process. As can be
seen in Table 2, most of the F1-scores of the DFNN-batch
model are below 0.25 after the retraining process. The model
misclassified many new classes as new classes or vice versa.
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FIGURE 4. Experimental results.

The only class that had an Fl-score above 0.8 after the
retraining process was the benign class. However, we should
note that the benign class is the largest in the dataset. 80% of
the data in CICIDS2017 is benign class. Thus, even though
many benign class data were misclassified, it did not severely
affect its F1-score compared to the other minor classes.

The most straightforward approach to avoid a catastrophic
forgetting problem is retraining the model using the dataset
that contains all targeted classes. We tested this approach in
our experiment using the DFNN-all model. All three eval-
uation metrics of the DFNN-all model in Figure 4 show
consistent results. For all batches, the macro and weighted
average of precision, recall, and F1-score of the DFNN-all
model are above 0.8. However, this approach has a severe
drawback. As shown in Table 3, most of the training times
of the DFNN-all model are the longest compared to the
other approaches. The training time of the DFNN-all model
increases along with the number of used training data.

The Hoeffding tree model reduced the catastrophic forget-
ting problem in DFNN batches, and the long training time
in DFNN-all models was quite good. We can see in Figure 4
that the Hoeffding tree model is far less affected by the catas-
trophic forgetting problem compared to the DFNN-batch
model. Additionally, the training processes in the Hoeffding
tree model were shorter than those in the DFNN-batch and
DFNN-all models because it only used the latest training data
in its training process.

The experimental results in Table 3 show that the training
times of the Hoeffding tree model are shorter than those of the
DFNN-batch and DFNN-all models with a reasonably good
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macro average of Fl-scores. However, if we look closely at
the evaluation metrics of the Hoeffding tree model in Table 2,
we can see that the Hoeffding tree model could not classify
several minority classes correctly. The recall values of the
Hoeffding tree model for web attack-XSS and web attack-
brute force are below 0.45 in all batches. Moreover, as shown
in Table 3, the evaluation times of the Hoeffding tree model
increased significantly after each retraining process. When
we implement the Hoeffding tree model in the network intru-
sion detection field, these issues become concerning because,
in reality, some critical attacks may not have many samples to
be analyzed. Additionally, the model may not be feasible for
use for a long period because the classification process may
become too slow.

The T-DFNN model solved the catastrophic forgetting
problem in DENN batches and the long training time in
DFNN-all models. It also had faster classification processes
than the Hoeffding tree model without compromising the
classification performance. We can see in Figure 4 that the
T-DFNN model had better F1-scores than the Hoeffding tree
model. Additionally, as we can see in Table 3, the T-DFNN
model had faster classification times than the Hoeffding tree
model in all baches.

The T-DFNN training algorithm does not use entire old
training data in its training process. Instead, it selects the
training data based on the output labels of each node’s parent
node. The training data used in each node are the training data
classified as the same parent node’s output label. Splitting the
training data and distributing them into several nodes speeds
up the training process because it reduces the quantity of
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TABLE 2. The classification results of evaluation classes in each batch.

. Average precision Average recall Average F1-score
Batch Evaluation classes - - -
DENN-  DFNN-  Hoeffding T-DENN DFNN-  DFNN-  Hoeftding T-DENN DENN-  DFNN-  Hoeffding T-DENN
batch all tree batch all tree batch all tree
1 Benign 1.000 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
FTP-patator 1.000 1.000 0.964 1.000 0.998 0.998 0.993 0.998 0.999 0.999 0.978 0.999
Bot 0911 0.958 0.945 0.962 0.537 0.458 0.436 0.458 0.676 0.620 0.597 0.621
Web attack-XSS 0.980 0.986 0.971 0.984 0.962 0.908 0.037 0.958 0.971 0.946 0.071 0.971
macro avg 0.973 0.986 0.970 0.986 0.875 0.841 0.617 0.854 0.921 0.908 0.754 0.915
weighted avg 1.000 0.999 0.999 0.999 1.000 0.999 0.999 0.999 1.000 0.999 0.999 0.999
2 Benign 0.774 0.999 0.999 0.999 0.751 0.997 0.980 0.998 0.762 0.998 0.989 0.998
FTP-patator 0.571 1.000 0.964 1.000 0.293 0.999 0.993 0.998 0.387 0.999 0.978 0.999
Bot 0.001 0.843 0.944 0.962 0.158 0.587 0.435 0.458 0.001 0.692 0.595 0.621
Web attack-XSS 0.101 0.681 0.900 0.584 0.015 0.105 0.033 0.065 0.026 0.183 0.064 0.118
DoS-hulk 0.286 0.988 0.967 0.985 0.067 0.996 0.999 0.995 0.109 0.992 0.983 0.990
Port scan 0.143 0.984 0.991 0.994 0.159 1.000 0.998 0.999 0.151 0.992 0.994 0.997
DDoS 0.091 1.000 0.803 0.999 0.038 0.999 0.997 0.999 0.054 0.999 0.890 0.999
Web attack-brute force 0.022 0.708 0.801 0.705 0.305 0.954 0.440 0.973 0.040 0.813 0.568 0.818
macro avg 0.249 0.900 0.921 0.904 0.223 0.830 0.734 0.811 0.235 0.864 0.817 0.855
weighted avg 0.665 0.997 0.986 0.997 0.626 0.997 0.982 0.997 0.645 0.997 0.984 0.997
3 Benign 0.758 0.999 0.991 0.999 0.741 0.998 0.975 0.998 0.749 0.999 0.983 0.998
FTP-patator 0.044 1.000 0.996 0.998 0.230 0.998 0.926 0.997 0.073 0.999 0.960 0.998
Bot 0.001 0.910 0.944 0.962 0.104 0.590 0.435 0.458 0.001 0.715 0.595 0.621
Web attack-XSS 0.023 0.801 0.856 0.582 0.009 0.069 0.033 0.064 0.013 0.127 0.064 0.115
DoS-hulk 0.173 0.990 0.969 0.985 0.024 0.995 0.927 0.995 0.043 0.993 0.948 0.990
Port scan 0.073 0.994 0.990 0.994 0.020 1.000 0.997 0.999 0.031 0.997 0.994 0.997
DDoS 0.006 1.000 0.802 0.999 0.001 1.000 0.997 0.999 0.002 1.000 0.889 0.999
Web attack-brute force 0.002 0.709 0.816 0.706 0.025 0.997 0.090 0.963 0.004 0.828 0.162 0.814
DoS-golden eye 0.155 0.994 0.896 0.996 0.022 0.993 0.987 0.991 0.039 0.993 0.940 0.994
SSH-patator 0.080 0.986 0.849 0.977 0.103 0.990 0.896 0.980 0.090 0.988 0.872 0.978
DoS-slowloris 0.006 0.992 0.734 0.990 0.005 0.993 0.903 0.993 0.005 0.993 0.810 0.991
DoS-slowhttptest 0.000 0.977 0.772 0.979 0.000 0.992 0.967 0.992 0.000 0.984 0.858 0.985
macro avg 0.110 0.946 0.884 0.931 0.107 0.884 0.761 0.869 0.108 0.914 0.818 0.899
weighted avg 0.628 0.998 0.978 0.997 0.600 0.998 0.972 0.997 0.613 0.998 0.975 0.997
4 Benign 0.764 0.999 0.989 0.999 0.756 0.998 0.975 0.998 0.760 0.999 0.982 0.998
FTP-patator 0.174 0.999 0.996 0.998 0.294 0.999 0.926 0.997 0.219 0.999 0.960 0.998
Bot 0.001 0.936 0.944 0.962 0.164 0.518 0.435 0.458 0.003 0.667 0.595 0.621
Web attack-XSS 0.008 0.759 0.856 0.582 0.004 0.065 0.033 0.064 0.005 0.119 0.064 0.115
DoS-hulk 0.165 0.990 0.969 0.985 0.036 0.994 0.927 0.995 0.059 0.992 0.948 0.990
Port scan 0.102 0.994 0.990 0.994 0.017 1.000 0.997 0.999 0.029 0.997 0.994 0.997
DDoS 0.003 1.000 0.799 0.999 0.002 1.000 0.964 0.999 0.002 1.000 0.874 0.999
Web attack-brute force 0.002 0.706 0.826 0.705 0.005 0.985 0.090 0.963 0.003 0.823 0.162 0.814
DoS-golden eye 0.177 0.991 0.896 0.996 0.021 0.993 0.982 0.991 0.038 0.992 0.937 0.994
SSH-patator 0.004 0.984 0.849 0.977 0.022 0.988 0.896 0.980 0.007 0.986 0.872 0.978
DoS-slowloris 0.009 0.991 0.734 0.990 0.001 0.991 0.903 0.993 0.002 0.991 0.810 0.991
DoS-slowhttptest 0.000 0.977 0.772 0.979 0.000 0.992 0.967 0.992 0.000 0.984 0.858 0.985
Infiltration 0.000 0.696 1.000 0.805 0.000 0.671 0.529 0.700 0.000 0.684 0.692 0.749
Web attack-SQL injection 0.000 0.860 0.450 0.725 0.025 0.475 0.725 0.275 0.000 0.612 0.555 0.399
Heartbleed 0.000 1.000 0.900 0.967 0.000 1.000 0.800 1.000 0.000 1.000 0.847 0.983
macro avg 0.094 0.926 0.865 0.911 0.090 0.845 0.743 0.827 0.092 0.883 0.799 0.867
weighted avg 0.634 0.998 0.977 0.997 0.612 0.998 0.970 0.997 0.623 0.998 0.974 0.997

training data processed in each node. As shown in Table 3,
the total quantity of training data used by the T-DFNN model
is less compared to the DFNN-all model, while the training
times of the T-DFNN model are shorter than the DFNN-all
model.

The number of new nodes in each batch of the T-DFNN
training process is dynamic. In our study, we ran the exper-
iment ten times. The average numbers of new nodes in
batches 1, 2, 3, and 4 of these experiments were 1, 2.6, 7.6,
and 4.8, respectively. The number of new nodes generated
in each batch depends on the new training data classification
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result in the previously trained node. Thus, the numbers of
new nodes in each batch of the training processes in these
experiments were different.

In Figure 5, we visualize a map of the output labels of
the first experiment we conducted. For simplification, we use
the encoded version of class labels in this visualization. The
conversion from the original to the encoded version of class
labels is listed in Table 1. We list the number of used training
data and the training time of each node in this first experiment
in Table 4. In Figure 5 and Table 4, we can observe how
the training data were split and trained in several nodes.
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TABLE 3. The numbers of used data and processing times in each batch.

P Batch Number of Average number of used data Average duration (second)
rocess atc
classes DFNN-batch DFNN-all Hoeffding tree T-DFNN DFNN-batch  DFNN-all  Hoeffding tree ~ T-DFNN
Training 1 4 1,826,922.0  1,826,922.0 1,826,922.0  1,826,922.0 1,634.72 1,339.07 527.80  1,386.16
2 8 415,629.0  2,242,551.0 415,629.0  2,236,129.7 313.94 1,962.86 124.61 1,611.91
3 12 21,988.0  2,264,539.0 21,988.0  2,242,195.2 37.31 2,704.96 16.22  2,388.26
4 15 55.0  2,264,594.0 55.0  1,935,994.8 5.90 2,309.37 0.05 1,356.44
Evaluation 1 4 456,731.0 456,731.0 456,731.0 456,731.0 17.82 17.31 67.54 17.25
2 560,639.0 560,639.0 560,639.0 560,639.0 24.13 20.16 108.01 42.02
3 12 566,136.0 566,136.0 566,136.0 566,136.0 26.50 21.20 132.28 68.66
4 15 566,149.0 566,149.0 566,149.0 566,149.0 28.11 21.56 140.20 84.41
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Output labels of a node
Coaﬂ|4‘5‘6‘7‘ ol1]9f10 c333‘5‘7‘
Cgh‘0’8‘9|10|11|c‘4a4‘8‘9‘10‘ C5‘5|8|C5‘6|8‘ C7a7‘8‘10‘ cgh‘3‘8|10‘ c7b‘7|10|11|

Coc

0 ‘12‘13’14‘ Ca

8 ‘13‘ cg‘g ‘13‘ c4h‘ 4‘13‘

Cgp 8 |13

FIGURE 5. The visualization of the map of output labels in the T-DFNN model first experiment.

Additionally, we can observe the relationship between the
number of training data points used and the training time of
each node. Even though the map of the output labels and the
numbers of nodes in our ten experiments were different, they
showed a similar pattern, in which the training time tends to
increase along with the number of training data points in each
node.

The training process of each node in the T-DFNN model
was independent. Thus, the training processes were run in
parallel. The training time of each batch equals the longest
training time of a node in each batch. For example, the
training time of batch 4 of our first experiment shown in
Table 4 is 1,367.35 seconds because it is the longest training
time in batch 4.

VI. DISCUSSION

The experimental results have shown that the T-DFNN algo-
rithm has the potential to be used for incremental learning.
However, we found several factors that affect the performance
of the T-DFNN algorithm shown by the evaluation metrics.
These factors are the class similarity problem, scarcity of the
data, and computational overhead.

From the experimental results, we noticed that the class
similarity problem and the scarcity of the data could affect the
precision, recall, and Fl-score of all tested models. We can
observe this problem in the classification results of web
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TABLE 4. The numbers of used training data and training times in each
node of the T-DFNN model first experiment.

Encoded Number of used  Training time
Batch  Node ID o
output labels training data (second)

1 root 0,1,2,3 1,826,922 2,340.65
2 Coa 0,4,5,6,7 2,233,123 847.84
2 C3a 3,5,7 1,488 6.83
3 cop 0,8,9,10,11 1,836,206 3,042.64
3 c1 1,9,10 6,730 48.21
3 Cra 7,8, 10 189 21.87
3 crp 7,10, 11 965 22.45
3 C4a 4,8,9,10 183,238 187.35
3 cs 5,8 127,112 350.51
3 co 6,8 102,770 231.35
3 c3p 3,8,10 67 21.68
4 Coc 0,12, 13, 14 1,815,410 1,367.35
4 cqp 4,13 182,896 62.43
4 C8a 8,13 7,335 32.67
4 csp 8,13 34 7.40
4 ) 9,13 4,672 12.02

attack-brute force, web attack-XSS, and web attack-SQL
injection classes in Table 2. Those classes are similar types
of intrusion. However, as we can see in Table 1, the quan-
tity of data of those classes is severely imbalanced. Some
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of them also have a limited quantity of data. In the first
batch classification result, the F1-score of web attack-XSS
using T-DFNN models was relatively high, 0.971. However,
in the second batch classification result, the F1-score value
dropped to 0.118 because many data were misclassified as
web attack-brute force class, which has a larger number of
data. The same problem also occurred in the classification
result of the web attack-SQL injection class. The model
falsely classified the data of minority classes as other majority
classes of the same intrusion type.

The classification results of the heartbleed and infiltration
classes in Table 2 show an interesting result. These classes
have scarce quantities of data. Heartbleed and infiltration data
are only 0.00039% and 0.00127% of the total data, respec-
tively. However, the T-DFNN model’s precision, recall, and
F1-score of these classes were quite decent. The DFNN-all
and Hoeffding tree models also showed similar results. The
reason those models can classify these classes correctly is
the characteristic of the intrusions. Heartbleed attacks using
the Transport Layer Security (TLS) protocol through a secu-
rity bug in the OpenSSL cryptography library. Infiltration
intrusion scans victims from the internal network of infected
clients [13]. Both have no other similar type of intrusions
in the dataset. These results suggest that data scarcity does
not always contribute to the F1-score reduction in the model.
Instead, the characteristics of the data have more influence on
the F1-score of the model.

Another factor that affects the precision, recall, and
F1-score of the proposed T-DFNN model shown by the eval-
uation metrics was its additional computational overhead.
Because the T-DFNN model consists of several nodes in a
tree-like structure, the data might need to be classified using
several nodes before obtaining the final classification result.
This process created a computational overhead that can be
observed in the classification time of the T-DFNN model in
Table 3. The T-DFNN model classification times were longer
in every batch because the height of the tree structure in the
T-DFNN model increased.

We can estimate the classification time of the T-DFNN
model using Equation 1. For example, we can estimate the
classification times of each batch in Table 5 using Equation 1.
The estimation results show that the classification times of
batches 1, 2, 3, and 4 are 16.425,41.118, 71.702, and 80.869,
respectively. These estimation results are close to the actual
classification times from the experimental results presented in
Table 6. These classification times indicate that the computa-
tional overhead caused by the growth of the T-DFNN model’s
tree structure always increases after each training.

The computational overhead caused by the tree structure
of the T-DFNN model did not occur in the DFNN-batch
or DENN-all model. Thus, the classification time of the
DFNN-batch and DFNN-all models did not increase sig-
nificantly. However, we should note that the computational
overhead caused by the growth of the tree structure also
occurred in the Hoeffding tree model. The T-DFNN algo-
rithm manages to minimize this computational overhead.
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TABLE 5. The number of evaluation data and classification times in each
node of the T-DFNN model first experiment.

Number of Classification

Batch NodeID  Node level

evaluation data  time (second)

1 root 1 456,731 16.425
2 root 1 560,639 21.042
2 coa 2 558,489 20.076
2 csq 2 380 0.145
3 root 1 566,136 26.568
3 Coa 2 563,878 21.768
3 C3a 2 387 0.125
3 1 2 1,688 0.220
3 cop 3 459,801 23.366
3 3p 3 24 0.121
3 Cia 3 46,368 4722
3 cs 3 31,973 3782
3 6 3 25,695 3.184
3 Cra 3 41 0.064
3 crb 3 363 0.388
4 root 1 566,149 20.335
4 coa 2 563,891 20.063
4 c3a 2 387 0.120
4 e 2 1,688 0.213
4 cop 3 459,814 20218
4 ea 3 24 0.135
4 cha 3 46,368 4713
4 cs 3 31,973 3.815
4 e 3 25,695 3.325
4 era 3 41 0.064
4 cp 3 363 0.136
4 coe 4 454,595 20.253
4 ey 4 46,296 2.754
4 cga 4 7 0.047
4 ey 4 1,853 0.232
4 e 4 1,191 0.197

TABLE 6. The numbers of used evaluation data and total classification
times in each batch of the T-DFNN model first experiment.

Batch  Number of evaluation data  Classification time (second)
1 456,731 16.438
2 560,639 41.144
3 566,136 71.734
4 566,149 80.912

As shown in Table 3, the evaluation times of the T-DFNN
model are at least 39% shorter than those of the Hoeffding tree
model.

Despite all challenging factors affecting the T-DFNN
model, we should note that the T-DFNN model has several
advantages. These advantages are that it can reduce the catas-
trophic forgetting effect and shorten the training time. We can
observe these advantages in Tables 2 and 3. The T-DFNN
model was less affected by the catastrophic forgetting
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problem. For each class in Table 2, the T-DFNN model can
classify the evaluation data in every batch. Even though the
precision, recall, or Fl-score of the T-DFNN model was
slightly lower than that of the DFNN-all model in some
classes, the training time of the T-DFNN model was much
shorter than that of the DFNN-all model. Additionally, the
classification times of the T-DFNN model are shorter than
those of the Hoeffding tree model.

VII. CONCLUSION

Incremental learning in IDSs is a challenging problem.
The main problems facing incremental learning are the
ever-evolving network intrusion variants and catastrophic for-
getting problems. We solved both problems by proposing
the T-DFNN algorithm, which combines a tree data structure
and DFNN models. The experimental results showed that
the model produced by the proposed T-DFNN algorithm
can learn and classify the network intrusions incrementally
without being severely affected by the catastrophic forget-
ting effect. Moreover, the T-DFNN algorithm can shorten
the training time. However, the T-DFNN algorithm requires
more computational steps that increase the classification
time.

Other factors that affected the precision, recall, and
F1-score of the model are the similarity between classes and
the scarcity of the data. These factors affected not only the
T-DFNN model but also other models in general. Therefore,
we suggest more comprehensive research on these factors
as future work to improve the performance of the T-DFNN
algorithm.
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